351
|
Perreault ML, Hasbi A, Alijaniaram M, O'Dowd BF, George SR. Reduced striatal dopamine D1-D2 receptor heteromer expression and behavioural subsensitivity in juvenile rats. Neuroscience 2012; 225:130-9. [PMID: 22986162 DOI: 10.1016/j.neuroscience.2012.08.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/28/2012] [Accepted: 08/19/2012] [Indexed: 11/19/2022]
Abstract
In adult rat striatum the dopamine D1-D2 receptor heteromer is expressed selectively in a subset of medium spiny neurons (MSNs) that coexpress the dopamine D1 and D2 receptors (D1R and D2R) as well as dynorphin (DYN) and enkephalin (ENK), with higher coexpression in nucleus accumbens (NAc) and much lower in the caudate putamen (CP). In the present study we showed that in neonatal striatal cultured neurons >90% exhibited the D1R/D2R-DYN/ENK phenotype. Similarly, in the striatum of juvenile rats (age 26-28 days) coexpression of D1R and D2R was also coincident with the expression of both DYN and ENK. Quantification of the number of striatal MSNs exhibiting coexpression of D1R and D2R in juvenile rats revealed significantly lower coexpression in NAc shell, but not core, and CP than in adult rats. However, within MSNs that coexpressed D1R and D2R, the propensity to form the D1-D2 receptor heteromer did not differ between age groups. Consistent with reduced coexpression of the D1R and D2R, juvenile rats exhibited subsensitivity to D1-D2 receptor heteromer-induced grooming following activation by SKF 83959. Given the proposed role of D1R/D2R-coexpressing MSNs in the regulation of thalamic output, and the recent discovery that these MSNs exhibit both inhibitory and excitatory capabilities, these findings suggest that the functional regulation of neurotransmission by the dopamine D1-D2 receptor heteromer within the juvenile striatum may be significantly different than in the adult.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Age Factors
- Animals
- Animals, Newborn
- Cells, Cultured
- Corpus Striatum/cytology
- Dynorphins/metabolism
- Enkephalins/metabolism
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Grooming/drug effects
- Grooming/physiology
- Male
- Neurons/drug effects
- Neurons/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/metabolism
Collapse
Affiliation(s)
- M L Perreault
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
352
|
|
353
|
Ohno Y, Okano M, Masui A, Imaki J, Egawa M, Yoshihara C, Tatara A, Mizuguchi Y, Sasa M, Shimizu S. Region-specific elevation of D1 receptor-mediated neurotransmission in the nucleus accumbens of SHR, a rat model of attention deficit/hyperactivity disorder. Neuropharmacology 2012; 63:547-54. [DOI: 10.1016/j.neuropharm.2012.04.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/21/2012] [Accepted: 04/28/2012] [Indexed: 11/16/2022]
|
354
|
Darland T, Mauch JT, Meier EM, Hagan SJ, Dowling JE, Darland DC. Sulpiride, but not SCH23390, modifies cocaine-induced conditioned place preference and expression of tyrosine hydroxylase and elongation factor 1α in zebrafish. Pharmacol Biochem Behav 2012; 103:157-67. [PMID: 22910534 DOI: 10.1016/j.pbb.2012.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/21/2012] [Accepted: 07/31/2012] [Indexed: 01/27/2023]
Abstract
Finding genetic polymorphisms and mutations linked to addictive behavior can provide important targets for pharmaceutical and therapeutic interventions. Forward genetic approaches in model organisms such as zebrafish provide a potentially powerful avenue for finding new target genes. In order to validate this use of zebrafish, the molecular nature of its reward system must be characterized. We have previously reported the use of cocaine-induced conditioned place preference (CPP) as a reliable method for screening mutagenized fish for defects in the reward pathway. Here we test if CPP in zebrafish involves the dopaminergic system by co-treating fish with cocaine and dopaminergic antagonists. Sulpiride, a potent D2 receptor (DR2) antagonist, blocked cocaine-induced CPP, while the D1 receptor (DR1) antagonist SCH23390 had no effect. Acute cocaine exposure also induced a rise in the expression of tyrosine hydroxylase (TH), an important enzyme in dopamine synthesis, and a significant decrease in the expression of elongation factor 1α (EF1α), a housekeeping gene that regulates protein synthesis. Cocaine selectively increased the ratio of TH/EF1α in the telencephalon, but not in other brain regions. The cocaine-induced change in TH/EF1α was blocked by co-treatment with sulpiride, but not SCH23390, correlating closely with the action of these drugs on the CPP behavioral response. Immunohistochemical analysis revealed that the drop in EF1α was selective for the dorsal nucleus of the ventral telencephalic area (Vd), a region believed to be the teleost equivalent of the striatum. Examination of TH mRNA and EF1α transcripts suggests that regulation of expression is post-transcriptional, but this requires further examination. These results highlight important similarities and differences between zebrafish and more traditional mammalian model organisms.
Collapse
Affiliation(s)
- Tristan Darland
- Biology Department, University of North Dakota, United States; Turtle Mountain Community College, United States.
| | | | | | | | | | | |
Collapse
|
355
|
Gangarossa G, Valjent E. Regulation of the ERK pathway in the dentate gyrus by in vivo dopamine D1 receptor stimulation requires glutamatergic transmission. Neuropharmacology 2012; 63:1107-17. [PMID: 22796106 DOI: 10.1016/j.neuropharm.2012.06.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/22/2012] [Accepted: 06/29/2012] [Indexed: 11/18/2022]
Abstract
Acute systemic administration of the dopamine D1/D5 receptors (D1Rs) agonist, SKF81297, activates the extracellular signal-regulated protein kinases (ERK) pathway selectively in the granule cells of the dentate gyrus. In this study, we examined the mechanisms involved in this regulation and investigated the molecular components that could promote ERK-dependent transcription and translation. SKF81297 induced phosphorylation of ERK and histone H3 required intact glutamatergic transmission. Blockade of glutamate release achieved by the mGluR2/3 agonist, LY354740 or the selective adenosine A1R agonist, CCPA as well as neurotoxic lesions of lateral entorhinal cortex reduced the ability of SKF81297 to induce ERK activation in the dentate gyrus. This activation required the combined stimulation of NR2B-containing NMDARs, mGluR1 and mGluR5. SKF81297 evoked phosphorylation of the ribosomal protein S6 (rpS6) selectively at the Ser235/236 site while the Ser240/244 site remains unchanged. The SKF81297 induced increased phosphorylation of rpS6 was dependent on PKC and ERK/p90RSK activation. Surprisingly, administration of D1Rs agonist suppressed mTORC1/p70S6K pathway suggesting an mTOR-independent regulation of rpS6 phosphorylation. Taken together, our results show that intact glutamatergic transmission plays a major role in the regulation of ERK-dependent phosphorylation of histone H3 and rpS6 observed in the mouse dentate gyrus after systemic administration of SKF81297.
Collapse
|
356
|
Hobson BD, Merritt KE, Bachtell RK. Stimulation of adenosine receptors in the nucleus accumbens reverses the expression of cocaine sensitization and cross-sensitization to dopamine D2 receptors in rats. Neuropharmacology 2012; 63:1172-81. [PMID: 22749927 DOI: 10.1016/j.neuropharm.2012.06.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 12/16/2022]
Abstract
Adenosine receptors co-localize with dopamine receptors on medium spiny nucleus accumbens (NAc) neurons where they antagonize dopamine receptor activity. It remains unclear whether adenosine receptor stimulation in the NAc restores cocaine-induced enhancements in dopamine receptor sensitivity. The goal of these studies was to determine whether stimulating A(1) or A(2A) receptors in the NAc reduces the expression of cocaine sensitization. Rats were sensitized with 7 daily treatments of cocaine (15 mg/kg, i.p.). Following one-week withdrawal, the effects of intra-NAc microinjections of the adenosine kinase inhibitor (ABT-702), the adenosine deaminase inhibitor (deoxycoformycin; DCF), the specific A(1) receptor agonist (CPA) and the specific A(2A) receptor agonist (CGS 21680) were tested on the behavioral expression of cocaine sensitization. The results indicate that intra-NAc pretreatment of ABT-702 and DCF dose-dependently blocked the expression of cocaine sensitization while having no effects on acute cocaine sensitivity, suggesting that upregulation of endogenous adenosine in the accumbens is sufficient to non-selectively stimulate adenosine receptors and reverse the expression of cocaine sensitization. Intra-NAc treatment of CPA significantly inhibited the expression of cocaine sensitization, which was reversed by both A(1) and A(2A) receptor antagonism. Intra-NAc treatment of CGS 21680 also significantly inhibited the expression of cocaine sensitization, which was selectively reversed by A(2A), but not A(1), receptor antagonism. Finally, CGS 21680 also inhibited the expression of quinpirole cross-sensitization. Together, these findings suggest that adenosine receptor stimulation in the NAc is sufficient to reverse the behavioral expression of cocaine sensitization and that A(2A) receptors blunt cocaine-induced sensitization of postsynaptic D(2) receptors.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, USA
| | | | | |
Collapse
|
357
|
Kravitz AV, Kreitzer AC. Striatal mechanisms underlying movement, reinforcement, and punishment. Physiology (Bethesda) 2012; 27:167-77. [PMID: 22689792 PMCID: PMC3880226 DOI: 10.1152/physiol.00004.2012] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Direct and indirect pathway striatal neurons are known to exert opposing control over motor output. In this review, we discuss a hypothetical extension of this framework, in which direct pathway striatal neurons also mediate reinforcement and reward, and indirect pathway neurons mediate punishment and aversion.
Collapse
Affiliation(s)
- Alexxai V. Kravitz
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California
| | - Anatol C. Kreitzer
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California
- Departments of Physiology and Neurology, University of California, San Francisco, California
| |
Collapse
|
358
|
Horio M, Kohno M, Fujita Y, Ishima T, Inoue R, Mori H, Hashimoto K. Role of serine racemase in behavioral sensitization in mice after repeated administration of methamphetamine. PLoS One 2012; 7:e35494. [PMID: 22530033 PMCID: PMC3329469 DOI: 10.1371/journal.pone.0035494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/20/2012] [Indexed: 02/07/2023] Open
Abstract
Background The N-methyl-D-aspartate (NMDA) receptors play a role in behavioral abnormalities observed after administration of the psychostimulant, methamphetamine (METH). Serine racemase (SRR) is an enzyme which synthesizes D-serine, an endogenous co-agonist of NMDA receptors. Using Srr knock-out (KO) mice, we investigated the role of SRR on METH-induced behavioral abnormalities in mice. Methodology/Principal Findings Evaluations of behavior in acute hyperlocomotion, behavioral sensitization, and conditioned place preference (CPP) were performed. The role of SRR on the release of dopamine (DA) in the nucleus accumbens after administration of METH was examined using in vivo microdialysis technique. Additionally, phosphorylation levels of ERK1/2 proteins in the striatum, frontal cortex and hippocampus were examined using Western blot analysis. Acute hyperlocomotion after a single administration of METH (3 mg/kg) was comparable between wild-type (WT) and Srr-KO mice. However, repeated administration of METH (3 mg/kg/day, once daily for 5 days) resulted in behavioral sensitization in WT, but not Srr-KO mice. Pretreatment with D-serine (900 mg/kg, 30 min prior to each METH treatment) did not affect the development of behavioral sensitization after repeated METH administration. In the CPP paradigm, METH-induced rewarding effects were demonstrable in both WT and Srr-KO mice. In vivo microdialysis study showed that METH (1 mg/kg)-induced DA release in the nucleus accumbens of Srr-KO mice previously treated with METH was significantly lower than that of the WT mice previously treated with METH. Interestingly, a single administration of METH (3 mg/kg) significantly increased the phosphorylation status of ERK1/2 in the striatum of WT, but not Srr-KO mice. Conclusions/Significance These findings suggest first, that SRR plays a role in the development of behavioral sensitization in mice after repeated administration of METH, and second that phosphorylation of ERK1/2 by METH may contribute to the development of this sensitization as seen in WT but not Srr-KO mice.
Collapse
Affiliation(s)
- Mao Horio
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Mami Kohno
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Tamaki Ishima
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Ran Inoue
- Department of Molecular Neuroscience, Toyama University Graduate School of Medicine, Toyama, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Toyama University Graduate School of Medicine, Toyama, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
- * E-mail:
| |
Collapse
|
359
|
Abstract
Abstract
Objectives
Epigenetics refers to the heritable, but reversible regulation of various biological functions. Changes in DNA methylation and chromatin structure derived from histone modifications are involved in the brain development, pathogenesis and pharmacotherapy of brain disorders.
Key findings
Evidence suggests that epigenetic modulations play key roles in psychiatric diseases such as schizophrenia and bipolar disorder. The analysis of epigenetic aberrations in the mechanisms of psychoactive drugs helps to determine dysfunctional genes and pathways in the brain, to predict side effects of drugs on human genome and identify new pharmaceutical targets for treatment of psychiatric diseases.
Summary
Although numerous studies have concentrated on epigenetics of psychosis, the epigenetic studies of antipsychotics are limited. Here we present epigenetic mechanisms of various psychoactive drugs and review the current literature on psychiatric epigenomics. Furthermore, we discuss various epigenetic modulations in the pharmacology and toxicology of typical and atypical antipsychotics, methionine, lithium and valproic acid.
Collapse
Affiliation(s)
- Nadka Boyadjieva
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University, Sofia, Bulgaria
- Department of Animal Sciences, Cook College, Rutgers University, New Brunswick, NJ, USA
| | - Miroslava Varadinova
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University, Sofia, Bulgaria
| |
Collapse
|
360
|
Gangarossa G, Perroy J, Valjent E. Combinatorial topography and cell-type specific regulation of the ERK pathway by dopaminergic agonists in the mouse striatum. Brain Struct Funct 2012; 218:405-19. [PMID: 22453353 DOI: 10.1007/s00429-012-0405-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/12/2012] [Indexed: 12/11/2022]
Abstract
Therapeutic agents and drugs of abuse regulate the extracellular signal-regulated kinase (ERK) cascade signaling in the medium-sized spiny neurons (MSNs) of the striatum. However, whether this regulation is associated with specific cortical and thalamic inputs has never been studied. We used Drd2-EGFP BAC-transgenic mice to undertake a topographical and cell-type specific analysis of ERK phosphorylation and two of its downstream targets histone H3 and ribosomal protein S6 (rS6) in the dorsal striatum following injection of SKF81297 (D1R-like agonist), quinpirole (D2R-like agonist) or apomorphine (non selective DA receptor agonist). In striatal areas receiving inputs from the cingulate/prelimbic, visual and auditory cortex, SKF81297 treatment increased phosphorylation of ERK, histone H3 and rS6 selectively in EGFP-negative MSNs of Drd2-EGFP mice. In contrast, no regulation was found in striatal region predominantly targeted by the sensorimotor and motor cortex. Apomorphine slightly enhanced ERK and rS6, but not histone H3 phosphorylation. This regulation occurred exclusively in EGFP-negative neurons mostly in striatal sectors receiving connections from the insular, visual and auditory cortex. Quinpirole administration inhibited basal ERK activation but did not change histone H3 and rS6 phosphorylation throughout the rostrocaudal axis of the dorsal striatum. This anatomo-functional study indicates that D1R and D2R agonists produce a unique topography and cell-type specific regulation of the ERK cascade signaling in the mouse striatum, and that those patterns are closely associated with particular cortical and thalamic inputs. This work evidences the need of a precise identification of the striatal areas under study to further understand striatal plasticity.
Collapse
|
361
|
Dopamine D1-D2 receptor heteromer in dual phenotype GABA/glutamate-coexpressing striatal medium spiny neurons: regulation of BDNF, GAD67 and VGLUT1/2. PLoS One 2012; 7:e33348. [PMID: 22428025 PMCID: PMC3299775 DOI: 10.1371/journal.pone.0033348] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/13/2012] [Indexed: 12/15/2022] Open
Abstract
In basal ganglia a significant subset of GABAergic medium spiny neurons (MSNs) coexpress D1 and D2 receptors (D1R and D2R) along with the neuropeptides dynorphin (DYN) and enkephalin (ENK). These coexpressing neurons have been recently shown to have a region-specific distribution throughout the mesolimbic and basal ganglia circuits. While the functional relevance of these MSNs remains relatively unexplored, they have been shown to exhibit the unique property of expressing the dopamine D1–D2 receptor heteromer, a novel receptor complex with distinct pharmacology and cell signaling properties. Here we showed that MSNs coexpressing the D1R and D2R also exhibited a dual GABA/glutamate phenotype. Activation of the D1R–D2R heteromer in these neurons resulted in the simultaneous, but differential regulation of proteins involved in GABA and glutamate production or vesicular uptake in the nucleus accumbens (NAc), ventral tegmental area (VTA), caudate putamen and substantia nigra (SN). Additionally, activation of the D1R–D2R heteromer in NAc shell, but not NAc core, differentially altered protein expression in VTA and SN, regions rich in dopamine cell bodies. The identification of a MSN with dual inhibitory and excitatory intrinsic functions provides new insights into the neuroanatomy of the basal ganglia and demonstrates a novel source of glutamate in this circuit. Furthermore, the demonstration of a dopamine receptor complex with the potential to differentially regulate the expression of proteins directly involved in GABAergic inhibitory or glutamatergic excitatory activation in VTA and SN may potentially provide new insights into the regulation of dopamine neuron activity. This could have broad implications in understanding how dysregulation of neurotransmission within basal ganglia contributes to dopamine neuronal dysfunction.
Collapse
|
362
|
Enoksson T, Bertran-Gonzalez J, Christie MJ. Nucleus accumbens D2- and D1-receptor expressing medium spiny neurons are selectively activated by morphine withdrawal and acute morphine, respectively. Neuropharmacology 2012; 62:2463-71. [PMID: 22410393 DOI: 10.1016/j.neuropharm.2012.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 01/23/2012] [Accepted: 02/21/2012] [Indexed: 11/28/2022]
Abstract
Opioids are effective analgesic agents but serious adverse effects such as tolerance and withdrawal contribute to opioid dependence and limit their use. Opioid withdrawal involves numerous brain regions and includes suppression of dopamine release and activation of neurons in the ventral striatum. By contrast, acute opioids increase dopamine release. Like withdrawal, acute opioids also activate neurons in the ventral striatum, suggesting that different populations of ventral striatal neurons may be activated by withdrawal and acute opioid actions. Here, immunofluorescence for the activity-related immediate-early gene, c-Fos, was examined in transgenic reporter mouse lines by confocal microscopy to study the specific populations of ventral striatal neurons activated by morphine withdrawal and acute morphine. After chronic morphine, naloxone-precipitated withdrawal strongly increased expression of c-Fos immunoreactivity, predominantly in D2-receptor (D2R) medium-sized spiny neurons (MSNs) of the nucleus accumbens (NAc) core and shell regions. By contrast, a single injection of morphine exclusively activated c-Fos immunoreactivity in D1-receptor expressing (D1R) MSNs of the core and shell of the NAc. These results reveal a striking segregation of neuronal responses occurring in the two populations of MSNs of the NAc in response to morphine withdrawal and acute morphine.
Collapse
Affiliation(s)
- T Enoksson
- Brain and Mind Research Institute, The University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
363
|
CBP in the nucleus accumbens regulates cocaine-induced histone acetylation and is critical for cocaine-associated behaviors. J Neurosci 2012; 31:16941-8. [PMID: 22114264 DOI: 10.1523/jneurosci.2747-11.2011] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cocaine exposure triggers molecular events that lead to long-lasting changes in brain structure and function. These changes can lead to the development of persistent and robust behavioral adaptations that characterize addiction. Recent evidence suggests the regulation of transcription via chromatin modification, such as histone acetylation, has an important role in the development of addictive behavior. Histone acetylation is regulated by histone acetyltransferases (HATs), which acetylate histones and promote transcription, and histone deacetylases (HDACs), which remove acetyl groups and silence transcription. Studies have demonstrated that HDACs may negatively regulate cocaine-induced behaviors, but very little is known about the role of specific HATs in long-lasting drug-induced plasticity. The histone acetyltransferase CREB-binding protein (CBP) mediates transcriptional activation by recruiting basal transcription machinery and acetylating histones. CBP is a critically important chromatin-modifying enzyme involved in regulating gene expression required for long-term plasticity and memory. However, the role of CBP in cocaine-induced behaviors remains largely unknown. We examined the role of CBP in drug-induced plasticity using CBP-FLOX genetically modified mice in combination with adeno-associated virus expressing Cre-recombinase to generate focal homozygous deletions of Cbp in the nucleus accumbens (NAc). A complete loss of CBP in NAc neurons results in decreased histone acetylation and significantly altered c-fos expression in response to cocaine. Furthermore, the deletion of CBP in the NAc correlates with significant impairments in cocaine sensitivity and context-cocaine associated memory. This is the first study to demonstrate a definitive role for CBP in modulating gene expression that may subserve drug-seeking behaviors.
Collapse
|
364
|
Day JJ, Sweatt JD. Epigenetic treatments for cognitive impairments. Neuropsychopharmacology 2012; 37:247-60. [PMID: 21593731 PMCID: PMC3238093 DOI: 10.1038/npp.2011.85] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/04/2011] [Accepted: 04/07/2011] [Indexed: 12/11/2022]
Abstract
Epigenetic mechanisms integrate signals from diverse intracellular transduction cascades and in turn regulate genetic readout. Accumulating evidence has revealed that these mechanisms are critical components of ongoing physiology and function in the adult nervous system, and are essential for many cognitive processes, including learning and memory. Moreover, a number of psychiatric disorders and syndromes that involve cognitive impairments are associated with altered epigenetic function. In this review, we will examine how epigenetic mechanisms contribute to cognition, consider how changes in these mechanisms may lead to cognitive impairments in a range of disorders and discuss the potential utility of therapeutic treatments that target epigenetic machinery. Finally, we will comment on a number of caveats associated with interpreting epigenetic changes and using epigenetic treatments, and suggest future directions for research in this area that will expand our understanding of the epigenetic changes underlying cognitive disorders.
Collapse
Affiliation(s)
- Jeremy J Day
- Department of Neurobiology and Evelyn F McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294-2182, USA.
| | | |
Collapse
|
365
|
Kong H, Xu M. Dopamine D1 and D3 Receptors Are Differentially Involved in Cocaine-Induced Reward Learning and Cell Signaling. ACTA ACUST UNITED AC 2012. [DOI: 10.4303/jdar/235577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
366
|
Girault JA. Integrating neurotransmission in striatal medium spiny neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:407-29. [PMID: 22351066 DOI: 10.1007/978-3-7091-0932-8_18] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The striatum is a major entry structure of the basal ganglia. Its role in information processing in close interaction with the cerebral cortex and thalamus has various behavioral consequences depending on the regions concerned, including control of body movements and motivation. A general feature of striatal information processing is the control by reward-related dopamine signals of glutamatergic striatal inputs and of their plasticity. This relies on specific sets of receptors and signaling proteins in medium-sized spiny neurons which belong to two groups, striatonigral and striatopallidal neurons. Some signaling pathways are activated only by dopamine or glutamate, but many provide multiple levels of interactions. For example, the cAMP pathway is mostly regulated by dopamine D1 receptors in striatonigral neurons, whereas the ERK pathway detects a combination of glutamate and dopamine signals and is essential for long-lasting modifications. These adaptations require changes in gene expression, and the signaling pathways linking synaptic activity to nuclear function and epigenetic changes are beginning to be deciphered. Their alteration underlies many aspects of striatal dysfunction in pathological conditions which include a decrease or an increase in dopamine transmission, as encountered in Parkinson's disease or exposure to addictive drugs, respectively.
Collapse
Affiliation(s)
- Jean-Antoine Girault
- Institut du Fer à Moulin, UMR-S 839, Inserm and Université Pierre et Marie Curie, 17 rue du Fer à Moulin, 75005 Paris, France.
| |
Collapse
|
367
|
Boks MP, de Jong NM, Kas MJH, Vinkers CH, Fernandes C, Kahn RS, Mill J, Ophoff RA. Current status and future prospects for epigenetic psychopharmacology. Epigenetics 2012; 7:20-8. [PMID: 22207355 DOI: 10.4161/epi.7.1.18688] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mounting evidence suggest that epigenetic regulation of brain functions is important in the etiology of psychiatric disorders. These epigenetic regulatory mechanisms, such as DNA methylation and histone acetylation, are influenced by many pharmaceutical compounds including psychiatric drugs. It is therefore of interest to investigate how psychiatric drugs are of influence and what the potential is of new epigenetic drugs for psychiatric disorders. With this targeted review we summarize the current state of knowledge in order to provide insight in this developing field. Several traditional psychiatric drugs have been found to alter the epigenome and in a variety of animal studies, experimental compounds with epigenetic targets have been investigated as potential psychiatric drugs. After discussion of the most relevant epigenetic mechanisms we present the evidence for epigenetic effects for the most relevant classes of drugs.
Collapse
Affiliation(s)
- Marco P Boks
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
368
|
Girault JA. Signaling in striatal neurons: the phosphoproteins of reward, addiction, and dyskinesia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:33-62. [PMID: 22340713 DOI: 10.1016/b978-0-12-396456-4.00006-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The striatum is a deep region of the forebrain involved in action selection, control of movement, and motivation. It receives a convergent excitatory glutamate input from the cerebral cortex and the thalamus, controlled by dopamine (DA) released in response to unexpected rewards and other salient stimuli. Striatal function and its dysfunction in drug addiction or Parkinson's disease depend on the interplay between these neurotransmitters. Signaling cascades in striatal medium-sized spiny neurons (MSNs) involve multiple kinases, phosphatases, and phosphoproteins, some of which are highly enriched in these neurons. They control the properties of ion channels and the plasticity of MSNs, in part through their effects on gene transcription. This chapter summarizes signaling in MSNs and focuses on the regulation of multiple protein phosphatases through DA and glutamate receptors and the role of ERK. It is hypothesized that these pathways are particularly adapted to the specific computing properties of MSNs and the function of the basal ganglia circuits in which they participate.
Collapse
|
369
|
Sillivan SE, Konradi C. Expression and function of dopamine receptors in the developing medial frontal cortex and striatum of the rat. Neuroscience 2011; 199:501-14. [PMID: 22015925 PMCID: PMC3253459 DOI: 10.1016/j.neuroscience.2011.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 12/16/2022]
Abstract
The timeline of dopamine (DA) system maturation and the signaling properties of DA receptors (DRs) during rat brain development are not fully characterized. We used in situ hybridization and quantitative PCR to map DR mRNA transcripts in the medial frontal cortex (mFC) and striatum (STR) of the rat from embryonic day (E) 15 to E21. The developmental trajectory of DR mRNAs revealed distinct patterns of DA receptors 1 and 2 (DRD1, DRD2) in these brain regions. Whereas the mFC had a steeper increase in DRD1 mRNA, the STR had a steeper increase in DRD2 mRNA. Both DR mRNAs were expressed at a higher level in the STR compared with the mFC. To identify the functional properties of DRs during embryonic development, the phosphorylation states of cyclic AMP response element binding protein, extracellular signal-regulated kinase 1/2, and glycogen synthase kinase 3 beta were examined after DR stimulation in primary neuronal cultures obtained from E15 and E18 embryos and cultured for 3 days to ensure a stable baseline level. DR-mediated signaling cascades were functional in E15 cultures in both brain regions. Because DA fibers do not reach the mFC by E15, and DA was not present in cultures, these data indicate that DRs can become functional in the absence of DA innervation. Because activation of DR signal transduction pathways can affect network organization of the developing brain, maternal exposure to drugs that affect DR activity may be liable to interfere with fetal brain development.
Collapse
Affiliation(s)
- Stephanie E. Sillivan
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee, 37232, USA
| | - Christine Konradi
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee, 37232, USA
- Departments of Pharmacology and Psychiatry, Vanderbilt University, Nashville, Tennessee, 37232, USA
- Center for Molecular Neuroscience, Vanderbilt University, Nashville, Tennessee, 37232, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, 37203, USA
| |
Collapse
|
370
|
Fukunaga K, Shioda N. Novel dopamine D2 receptor signaling through proteins interacting with the third cytoplasmic loop. Mol Neurobiol 2011; 45:144-52. [PMID: 22183739 DOI: 10.1007/s12035-011-8227-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/07/2011] [Indexed: 01/09/2023]
Abstract
The diverse activities of dopamine D2-like receptors, including D2, D3, and D4 receptors, are mediated by proteins that interact with the third cytoplasmic loop and regulate receptor signaling, receptor trafficking, and apoptosis. Such interacting proteins include calmodulin, the N-methyl-D: -aspartate receptor 2B subunit, calcium/calmodulin-dependent protein kinase II, prostate apoptosis response-4, and β-arrestins, which regulate receptor signaling and the pharmacological action through D2 receptor. The gene encoding the D2 receptor gives rise to two isoforms, termed the dopamine D2 receptor long isoform (D2L) and the dopamine D2 receptor short isoform; the latter lacks 29 amino acids of the D2L receptor within the third cytoplasmic loop. In this review, we first focus on novel functions of the hetero-oligomeric D1/D2 and D2/adenosine A(2A) receptors. We next discuss novel signaling through proteins interacting with the D2 receptor third cytoplasmic loop and define the function of a novel binding protein, heart-type fatty acid binding protein, which interacts with the D2L third cytoplasmic loop.
Collapse
Affiliation(s)
- Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki-Aoba Aoba-ku, Sendai 980-8578, Japan.
| | | |
Collapse
|
371
|
Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature 2011; 481:71-5. [DOI: 10.1038/nature10709] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 11/10/2011] [Indexed: 12/31/2022]
|
372
|
The PDE10A inhibitor, papaverine, differentially activates ERK in male and female rat striatal slices. Neuropharmacology 2011; 61:1275-81. [DOI: 10.1016/j.neuropharm.2011.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 07/12/2011] [Accepted: 07/20/2011] [Indexed: 12/15/2022]
|
373
|
Fasano S, Brambilla R. Ras-ERK Signaling in Behavior: Old Questions and New Perspectives. Front Behav Neurosci 2011; 5:79. [PMID: 22131969 PMCID: PMC3223382 DOI: 10.3389/fnbeh.2011.00079] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/03/2011] [Indexed: 11/13/2022] Open
Abstract
The role of Ras–ERK signaling in behavioral plasticity is well established. Inhibition studies using the blood–brain barrier permeable drug SL327 have conclusively demonstrated that this neuronal cell signaling cascade is a crucial component of the synaptic machinery implicated in the formation of various forms of long-term memory, from spatial learning to fear and operant conditioning. However, abnormal Ras–ERK signaling has also been linked to a number of neuropsychiatric conditions, including mental retardation syndromes (“RASopathies”), drug addiction, and l-DOPA induced dyskinesia (LID). The work recently done on these brain disorders has pointed to previously underappreciated roles of Ras–ERK in specific subsets of neurons, like GABAergic interneurons of the hippocampus or the cortex, as well as in the medium spiny neurons of the striatum. Here we will highlight the open questions related to Ras–ERK signaling in these behavioral manifestations and propose crucial experiments for the future.
Collapse
Affiliation(s)
- Stefania Fasano
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute and University Milano, Italy
| | | |
Collapse
|
374
|
Alterations of molecular and behavioral responses to cocaine by selective inhibition of Elk-1 phosphorylation. J Neurosci 2011; 31:14296-307. [PMID: 21976515 DOI: 10.1523/jneurosci.2890-11.2011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of the extracellular signal-regulated kinase (ERK) signaling pathway in the striatum is crucial for molecular adaptations and long-term behavioral alterations induced by cocaine. In response to cocaine, ERK controls the phosphorylation levels of both mitogen and stress-activated protein kinase 1 (MSK-1), a nuclear kinase involved in histone H3 (Ser10) and cAMP response element binding protein phosphorylation, and Elk-1, a transcription factor involved in serum response element (SRE)-driven gene regulations. We recently characterized the phenotype of msk-1 knock-out mice in response to cocaine. Herein, we wanted to address the role of Elk-1 phosphorylation in cocaine-induced molecular, morphological, and behavioral responses. We used a cell-penetrating peptide, named TAT-DEF-Elk-1 (TDE), which corresponds to the DEF docking domain of Elk-1 toward ERK and inhibits Elk-1 phosphorylation induced by ERKs without modifying ERK or MSK-1 in vitro. The peptide was injected in vivo before cocaine administration in mice. Immunocytochemical, molecular, morphological, and behavioral studies were performed. The TDE inhibited Elk-1 and H3 (Ser10) phosphorylation induced by cocaine, sparing ERK and MSK-1 activation. Consequently, TDE altered cocaine-induced regulation of genes bearing SRE site(s) in their promoters, including c-fos, zif268, ΔFosB, and arc/arg3.1 (activity-regulated cytoskeleton-associated protein). In a chronic cocaine administration paradigm, TDE reversed cocaine-induced increase in dendritic spine density. Finally, the TDE delayed the establishment of cocaine-induced psychomotor sensitization and conditioned-place preference. We conclude that Elk-1 phosphorylation downstream from ERK is a key molecular event involved in long-term neuronal and behavioral adaptations to cocaine.
Collapse
|
375
|
Differential regulation of motor control and response to dopaminergic drugs by D1R and D2R neurons in distinct dorsal striatum subregions. EMBO J 2011; 31:640-53. [PMID: 22068054 DOI: 10.1038/emboj.2011.400] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/12/2011] [Indexed: 12/17/2022] Open
Abstract
The dorsal striatum is critically involved in a variety of motor behaviours, including regulation of motor activity, motor skill learning and motor response to psychostimulant and neuroleptic drugs, but contribution of D(2)R-striatopallidal and D(1)R-striatonigral neurons in the dorsomedial (DMS, associative) and dorsolateral (DLS, sensorimotor) striatum to distinct functions remains elusive. To delineate cell type-specific motor functions of the DMS or the DLS, we selectively ablated D(2)R- and D(1)R-expressing striatal neurons with spatial resolution. We found that associative striatum exerts a population-selective control over locomotion and reactivity to novelty, striatopallidal and striatonigral neurons inhibiting and stimulating exploration, respectively. Further, DMS-striatopallidal neurons are involved only in early motor learning whereas gradual motor skill acquisition depends on striatonigral neurons in the sensorimotor striatum. Finally, associative striatum D(2)R neurons are required for the cataleptic effect of the typical neuroleptic drug haloperidol and for amphetamine motor response sensitization. Altogether, these data provide direct experimental evidence for cell-specific topographic functional organization of the dorsal striatum.
Collapse
|
376
|
Rotllant D, Armario A. Brain pattern of histone H3 phosphorylation after acute amphetamine administration: its relationship to brain c-fos induction is strongly dependent on the particular brain area. Neuropharmacology 2011; 62:1073-81. [PMID: 22063717 DOI: 10.1016/j.neuropharm.2011.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 10/18/2011] [Accepted: 10/25/2011] [Indexed: 11/18/2022]
Abstract
Recent evidence strongly suggests a critical role of chromatin remodelling in the acute and chronic effects of addictive drugs. We reasoned that Immunohistochemical detection of certain histone modifications may be a more specific tool than induction of immediate early genes (i.e. c-fos) to detect brain areas and neurons that are critical for the action of addictive drugs. Thus, in the present work we studied in adult male rats the effects of a high dose of amphetamine on brain pattern of histone H3 phosphorylation in serine 10 (pH3S(10)) and c-fos expression. We firstly observed that amphetamine-induced an increase in the number of pH3S(10) positive neurons in a restricted number of brain areas, with maximum levels at 30 min after the drug administration that declined at 90 min in most areas. In a second experiment we studied colocalization of pH3S(10) immunoreactivity (pH3S(10)-IR) and c-fos expression. Amphetamine increased c-fos expression in medial prefrontal cortex (mPFC), dorsal striatum, nucleus accumbens (Acb), major Island of Calleja (ICjM), central amygdala (CeA), bed nucleus of stria terminalis lateral dorsal (BSTld) and paraventricular nucleus of the hypothalamus (PVN). Whereas no evidence for increase in pH3S(10) positive neurons was found in the mPFC and the PVN, in the striatum and the Acb basically all pH3S(10) positive neurons showed colocalization with c-fos. In ICjM, CeA and BSTld a notable degree of colocalization was found, but an important number of neurons expressing c-fos were negative for pH3S(10). The present results give support to the hypothesis that amphetamine-induced pH3S(10)-IR showed a more restricted pattern than brain c-fos induction, being this difference strongly dependent on the particular brain area studied. It is likely that those nuclei and neurons showing pH3S(10)-IR are more specifically associated to important effects of the drug, including neural plasticity. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- David Rotllant
- Institut de Neurociències, Red de Trastornos Adictivos and Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | |
Collapse
|
377
|
Haloperidol regulates the state of phosphorylation of ribosomal protein S6 via activation of PKA and phosphorylation of DARPP-32. Neuropsychopharmacology 2011; 36:2561-70. [PMID: 21814187 PMCID: PMC3194082 DOI: 10.1038/npp.2011.144] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Administration of typical antipsychotic drugs, such as haloperidol, promotes cAMP-dependent signaling in the medium spiny neurons (MSNs) of the striatum. In this study, we have examined the effect of haloperidol on the state of phosphorylation of the ribosomal protein S6 (rpS6), a component of the small 40S ribosomal subunit. We found that haloperidol increases the phosphorylation of rpS6 at the dual site Ser235/236, which is involved in the regulation of mRNA translation. This effect was exerted in the MSNs of the indirect pathway, which express specifically dopamine D2 receptors (D2Rs) and adenosine A2 receptors (A2ARs). The effect of haloperidol was decreased by blockade of A2ARs or by genetic attenuation of the Gα(olf) protein, which couples A2ARs to activation of adenylyl cyclase. Moreover, stimulation of cAMP-dependent protein kinase A (PKA) increased Ser235/236 phosphorylation in cultured striatal neurons. The ability of haloperidol to promote rpS6 phosphorylation was abolished in knock-in mice deficient for PKA activation of the protein phosphatase-1 inhibitor, dopamine- and cAMP-regulated phosphoprotein of 32 kDa. In contrast, pharmacological or genetic inactivation of p70 rpS6 kinase 1, or extracellular signal-regulated kinases did not affect haloperidol-induced rpS6 phosphorylation. These results identify PKA as a major rpS6 kinase in neuronal cells and suggest that regulation of protein synthesis through rpS6 may be a potential target of antipsychotic drugs.
Collapse
|
378
|
Dopamine-dependent long-term depression is expressed in striatal spiny neurons of both direct and indirect pathways: implications for Parkinson's disease. J Neurosci 2011; 31:12513-22. [PMID: 21880913 DOI: 10.1523/jneurosci.2236-11.2011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Striatal medium spiny neurons (MSNs) are divided into two subpopulations exerting distinct effects on motor behavior. Transgenic mice carrying bacterial artificial chromosome (BAC) able to confer cell type-specific expression of enhanced green fluorescent protein (eGFP) for dopamine (DA) receptors have been developed to characterize differences between these subpopulations. Analysis of these mice, in contrast with original pioneering studies, showed that striatal long-term depression (LTD) was expressed in indirect but not in the direct pathway MSNs. To address this mismatch, we applied a new approach using combined BAC technology and receptor immunohistochemistry. We demonstrate that, in physiological conditions, DA-dependent LTD is expressed in both pathways showing that the lack of synaptic plasticity found in D(1) eGFP mice is associated to behavioral deficits. Our findings suggest caution in the use of this tool and indicate that the "striatal segregation" hypothesis might not explain all synaptic dysfunctions in Parkinson's disease.
Collapse
|
379
|
Potter DN, Damez-Werno D, Carlezon WA, Cohen BM, Chartoff EH. Repeated exposure to the κ-opioid receptor agonist salvinorin A modulates extracellular signal-regulated kinase and reward sensitivity. Biol Psychiatry 2011; 70:744-753. [PMID: 21757186 PMCID: PMC3186866 DOI: 10.1016/j.biopsych.2011.05.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 04/28/2011] [Accepted: 05/21/2011] [Indexed: 11/15/2022]
Abstract
BACKGROUND Repeated exposure to drugs of abuse and stress increase dynorphin, a κ opioid receptor (KOR) ligand, in the nucleus accumbens (NAc). Acute KOR activation produces dysphoria that might contribute to addictive behavior. How repeated KOR activation modulates reward circuitry is not understood. METHODS We used intracranial self-stimulation (ICSS), a method that provides a behavioral index of reward sensitivity, to measure the effects of repeated administration of the KOR agonist salvinorin A (salvA) (2 mg/kg) on the reward-potentiating effects of cocaine (5.0 mg/kg). In separate rats, we measured the effects of salvA on activation of extracellular signal regulated kinase (ERK), cyclic adenosine monophosphate (cAMP) response element binding protein, and c-Fos within the NAc. RESULTS SalvA had biphasic effects on reward: an immediate effect was to decrease the rewarding impact of ICSS, whereas a delayed effect was to increase the rewarding impact of ICSS. Repeated salvA produced a net decrease in the reward-potentiating effects of cocaine. In the NAc, both acute and repeated salvA administration increased phosphorylated ERK, whereas only acute salvA increased c-Fos and repeated salvA increased phosphorylated cAMP response element binding protein. The KOR antagonist nor-binaltorphimine (20 mg/kg) blocked the immediate and delayed effects of salvA and prolonged the duration of cocaine effects in ICSS. CONCLUSIONS Repeated salvA might trigger opponent processes such that "withdrawal" from the dysphoric effects of KOR activation is rewarding and decreases the net rewarding valence of cocaine. The temporal effects of salvA on ERK signaling suggest KOR-mediated engagement of distinct signaling pathways within the NAc that might contribute to biphasic effects on reward sensitivity.
Collapse
Affiliation(s)
- David N. Potter
- Behavioral Genetics Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA,Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA
| | - Diane Damez-Werno
- Molecular Pharmacology Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA,Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA
| | - William A. Carlezon
- Behavioral Genetics Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA,Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA
| | - Bruce M. Cohen
- Molecular Pharmacology Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA,Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA
| | - Elena H. Chartoff
- Behavioral Genetics Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA,Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA
| |
Collapse
|
380
|
Abstract
Investigations of long-term changes in brain structure and function that accompany chronic exposure to drugs of abuse suggest that alterations in gene regulation contribute substantially to the addictive phenotype. Here, we review multiple mechanisms by which drugs alter the transcriptional potential of genes. These mechanisms range from the mobilization or repression of the transcriptional machinery - including the transcription factors ΔFOSB, cyclic AMP-responsive element binding protein (CREB) and nuclear factor-κB (NF-κB) - to epigenetics - including alterations in the accessibility of genes within their native chromatin structure induced by histone tail modifications and DNA methylation, and the regulation of gene expression by non-coding RNAs. Increasing evidence implicates these various mechanisms of gene regulation in the lasting changes that drugs of abuse induce in the brain, and offers novel inroads for addiction therapy.
Collapse
|
381
|
Abstract
A major challenge in understanding substance-use disorders lies in uncovering why some individuals become addicted when exposed to drugs, whereas others do not. Although genetic, developmental, and environmental factors are recognized as major contributors to a person's risk of becoming addicted, the neurobiological processes that underlie this vulnerability are still poorly understood. Imaging studies suggest that individual variations in key dopamine-modulated brain circuits, including circuits involved in reward, memory, executive function, and motivation, contribute to some of the differences in addiction vulnerability. A better understanding of the main circuits affected by chronic drug use and the influence of social stressors, developmental trajectories, and genetic background on these circuits is bound to lead to a better understanding of addiction and to more effective strategies for the prevention and treatment of substance-use disorders.
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse (NIDA), National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
382
|
Luo Z, Volkow ND, Heintz N, Pan Y, Du C. Acute cocaine induces fast activation of D1 receptor and progressive deactivation of D2 receptor striatal neurons: in vivo optical microprobe [Ca2+]i imaging. J Neurosci 2011; 31:13180-90. [PMID: 21917801 PMCID: PMC3214624 DOI: 10.1523/jneurosci.2369-11.2011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/18/2011] [Accepted: 07/21/2011] [Indexed: 01/04/2023] Open
Abstract
Cocaine induces fast dopamine increases in brain striatal regions, which are recognized to underlie its rewarding effects. Both dopamine D1 and D2 receptors are involved in cocaine's reward but the dynamic downstream consequences of cocaine effects in striatum are not fully understood. Here we used transgenic mice expressing EGFP under the control of either the D1 receptor (D1R) or the D2 receptor (D2R) gene and microprobe optical imaging to assess the dynamic changes in intracellular calcium ([Ca(2+)](i)) responses (used as marker of neuronal activation) to acute cocaine in vivo separately for D1R- versus D2R-expressing neurons in striatum. Acute cocaine (8 mg/kg, i.p.) rapidly increased [Ca(2+)](i) in D1R-expressing neurons (10.6 ± 3.2%) in striatum within 8.3 ± 2.3 min after cocaine administration after which the increases plateaued; these fast [Ca(2+)](i) increases were blocked by pretreatment with a D1R antagonist (SCH23390). In contrast, cocaine induced progressive decreases in [Ca(2+)](i) in D2R-expressing neurons (10.4 ± 5.8%) continuously throughout the 30 min that followed cocaine administration; these slower [Ca(2+)](i) decreases were blocked by pretreatment with a D2R antagonist (raclopride). Since activation of striatal D1R-expressing neurons (direct-pathway) enhances cocaine reward, whereas activation of D2R-expressing neurons suppresses it (indirect-pathway) (Lobo et al., 2010), this suggests that cocaine's rewarding effects entail both its fast stimulation of D1R (resulting in abrupt activation of direct-pathway neurons) and a slower stimulation of D2R (resulting in longer-lasting deactivation of indirect-pathway neurons). We also provide direct in vivo evidence of D2R and D1R interactions in the striatal responses to acute cocaine administration.
Collapse
Affiliation(s)
| | - Nora D. Volkow
- National Institute of Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland 20892
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, and
| | | | - Congwu Du
- Anesthesiology, Stony Brook University, Stony Brook, New York 11794
- Medical Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
383
|
Yger M, Girault JA. DARPP-32, Jack of All Trades… Master of Which? Front Behav Neurosci 2011; 5:56. [PMID: 21927600 PMCID: PMC3168893 DOI: 10.3389/fnbeh.2011.00056] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 08/16/2011] [Indexed: 02/03/2023] Open
Abstract
DARPP-32 (PPP1R1B) was discovered as a substrate of cAMP-dependent protein kinase (PKA) enriched in dopamine-innervated brain areas. It is one of three related, PKA-regulated inhibitors of protein phosphatase-1 (PP1). These inhibitors seem to have appeared in early vertebrate ancestors, possibly Gnathostomes. DARPP-32 has additional important biochemical properties including inhibition of PKA when phosphorylated by Cdk5 and regulation by casein kinases 1 and 2. It is highly enriched in specific neuronal populations, especially striatal medium-size spiny neurons. As PP1 inhibitor DARPP-32 amplifies and/or mediates many actions of PKA at the plasma membrane and in the cytoplasm, with a broad spectrum of potential targets and functions. DARPP-32 also undergoes a continuous and tightly regulated cytonuclear shuttling. This trafficking is controlled by phosphorylation of Ser-97, which is necessary for nuclear export. When phosphorylated on Thr-34 and dephosphorylated on Ser-97, DARPP-32 can inhibit PP1 in the nucleus and modulate signaling pathways involved in the regulation of chromatin response. Recent work with multiple transgenic and knockout mutant mice has allowed the dissection of DARPP-32 function in striato-nigral and striato-pallidal neurons. It is implicated in the action of therapeutic and abused psychoactive drugs, in prefrontal cortex function, and in sexual behavior. However, the contribution of DARPP-32 in human behavior remains poorly understood. Post-mortem studies in humans suggest possible alterations of DARPP-32 levels in schizophrenia and bipolar disorder. Genetic studies have revealed a polymorphism with possible association with psychological and psychopathological traits. In addition, a short isoform of DARPP-32, t-DARPP, plays a role in cancer, indicating additional signaling properties. Thus, DARPP-32 is a non-essential but tightly regulated signaling hub molecule which may improve the general performance of the neuronal circuits in which it is expressed.
Collapse
Affiliation(s)
- Marion Yger
- INSERM UMR-S 839Paris, France
- Université Pierre et Marie CurieParis, France
- Institut du Fer à MoulinParis, France
| | - Jean-Antoine Girault
- INSERM UMR-S 839Paris, France
- Université Pierre et Marie CurieParis, France
- Institut du Fer à MoulinParis, France
| |
Collapse
|
384
|
Crittenden JR, Graybiel AM. Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 2011; 5:59. [PMID: 21941467 PMCID: PMC3171104 DOI: 10.3389/fnana.2011.00059] [Citation(s) in RCA: 300] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/18/2011] [Indexed: 11/24/2022] Open
Abstract
The striatum is composed principally of GABAergic, medium spiny striatal projection neurons (MSNs) that can be categorized based on their gene expression, electrophysiological profiles, and input–output circuits. Major subdivisions of MSN populations include (1) those in ventromedial and dorsolateral striatal regions, (2) those giving rise to the direct and indirect pathways, and (3) those that lie in the striosome and matrix compartments. The first two classificatory schemes have enabled advances in understanding of how basal ganglia circuits contribute to disease. However, despite the large number of molecules that are differentially expressed in the striosomes or the extra-striosomal matrix, and the evidence that these compartments have different input–output connections, our understanding of how this compartmentalization contributes to striatal function is still not clear. A broad view is that the matrix contains the direct and indirect pathway MSNs that form parts of sensorimotor and associative circuits, whereas striosomes contain MSNs that receive input from parts of limbic cortex and project directly or indirectly to the dopamine-containing neurons of the substantia nigra, pars compacta. Striosomes are widely distributed within the striatum and are thought to exert global, as well as local, influences on striatal processing by exchanging information with the surrounding matrix, including through interneurons that send processes into both compartments. It has been suggested that striosomes exert and maintain limbic control over behaviors driven by surrounding sensorimotor and associative parts of the striatal matrix. Consistent with this possibility, imbalances between striosome and matrix functions have been reported in relation to neurological disorders, including Huntington’s disease, L-DOPA-induced dyskinesias, dystonia, and drug addiction. Here, we consider how signaling imbalances between the striosomes and matrix might relate to symptomatology in these disorders.
Collapse
Affiliation(s)
- Jill R Crittenden
- Brain and Cognitive Sciences Department and McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | | |
Collapse
|
385
|
Richard JM, Berridge KC. Nucleus accumbens dopamine/glutamate interaction switches modes to generate desire versus dread: D(1) alone for appetitive eating but D(1) and D(2) together for fear. J Neurosci 2011; 31:12866-79. [PMID: 21900565 PMCID: PMC3174486 DOI: 10.1523/jneurosci.1339-11.2011] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 07/22/2011] [Accepted: 07/22/2011] [Indexed: 12/31/2022] Open
Abstract
The medial shell of nucleus accumbens (NAc) and its mesolimbic dopamine inputs mediate forms of fearful as well as of incentive motivation. For example, either appetitive and/or actively fearful behaviors are generated in a keyboard pattern by localized glutamate disruptions in NAc (via microinjection of the AMPA receptor antagonist DNQX) at different anatomical locations along a rostrocaudal gradient within the medial shell of rats. Rostral glutamate disruptions produce intense increases in eating, but more caudally placed disruptions produce increasingly fearful behaviors: distress vocalizations and escape attempts to human touch, and a spontaneous and directed antipredator response called defensive treading/burying. Local endogenous dopamine is required for either intense motivation to be generated by AMPA disruptions. Here we report that only endogenous local signaling at D(1) dopamine receptors is needed for rostral generation of excessive eating, potentially implicating a direct output pathway contribution. In contrast, fear generation at caudal sites requires both D(1) and D(2) signaling simultaneously, potentially implicating an indirect output pathway contribution. Finally, when motivation valence generated by AMPA disruptions at intermediate sites was flipped by manipulating environmental ambience, from mostly appetitive in a comfortable home environment to mostly fearful in a stressful environment, the roles of local D(1) and D(2) signaling in dopamine/glutamate interaction at microinjection sites also switched dynamically to match the motivation valence generated at the moment. Thus, NAc D(1) and D(2) receptors, and their associated neuronal circuits, play different and dynamic roles in enabling desire and dread to be generated by localized NAc glutamate disruptions in medial shell.
Collapse
Affiliation(s)
- Jocelyn M Richard
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, USA.
| | | |
Collapse
|
386
|
Abstract
Although the critical role for epigenetic mechanisms in development and cell differentiation has long been appreciated, recent evidence reveals that these mechanisms are also employed in postmitotic neurons as a means of consolidating and stabilizing cognitive-behavioral memories. In this review, we discuss evidence for an "epigenetic code" in the central nervous system that mediates synaptic plasticity, learning, and memory. We consider how specific epigenetic changes are regulated and may interact with each other during memory formation and how these changes manifest functionally at the cellular and circuit levels. We also describe a central role for mitogen-activated protein kinases in controlling chromatin signaling in plasticity and memory. Finally, we consider how aberrant epigenetic modifications may lead to cognitive disorders that affect learning and memory, and we review the therapeutic potential of epigenetic treatments for the amelioration of these conditions.
Collapse
Affiliation(s)
- Jeremy J Day
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294-2182, USA
| | | |
Collapse
|
387
|
Kreitzer AC, Berke JD. Investigating striatal function through cell-type-specific manipulations. Neuroscience 2011; 198:19-26. [PMID: 21867745 DOI: 10.1016/j.neuroscience.2011.08.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/03/2011] [Accepted: 08/06/2011] [Indexed: 12/17/2022]
Abstract
The striatum integrates convergent input from the cortex, thalamus, and midbrain, and has a powerful influence over motivated behavior via outputs to downstream basal ganglia nuclei. Although the anatomy and physiology of distinct classes of striatal neurons have been intensively studied, the specific functions of these cell subpopulations have been more difficult to address. Recently, application of new methodologies for perturbing activity and signaling in different cell types in vivo has begun to allow direct tests of the causal roles of striatal neurons in behavior.
Collapse
Affiliation(s)
- A C Kreitzer
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.
| | | |
Collapse
|
388
|
Hervé D. Identification of a specific assembly of the g protein golf as a critical and regulated module of dopamine and adenosine-activated cAMP pathways in the striatum. Front Neuroanat 2011; 5:48. [PMID: 21886607 PMCID: PMC3155884 DOI: 10.3389/fnana.2011.00048] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 07/20/2011] [Indexed: 11/16/2022] Open
Abstract
In the principal neurons of striatum (medium spiny neurons, MSNs), cAMP pathway is primarily activated through the stimulation of dopamine D1 and adenosine A2A receptors, these receptors being mainly expressed in striatonigral and striatopallidal MSNs, respectively. Since cAMP signaling pathway could be altered in various physiological and pathological circumstances, including drug addiction and Parkinson’s disease, it is of crucial importance to identify the molecular components involved in the activation of this pathway. In MSNs, cAMP pathway activation is not dependent on the classical Gs GTP-binding protein but requires a specific G protein subunit heterotrimer containing Gαolf/β2/γ7 in particular association with adenylyl cyclase type 5. This assembly forms an authentic functional signaling unit since loss of one of its members leads to defects of cAMP pathway activation in response to D1 or A2A receptor stimulation, inducing dramatic impairments of behavioral responses dependent on these receptors. Interestingly, D1 receptor (D1R)-dependent cAMP signaling is modulated by the neuronal levels of Gαolf, indicating that Gαolf represents the rate-limiting step in this signaling cascade and could constitute a critical element for regulation of D1R responses. In both Parkinsonian patients and several animal models of Parkinson’s disease, the lesion of dopamine neurons produces a prolonged elevation of Gαolf levels. This observation gives an explanation for the cAMP pathway hypersensitivity to D1R stimulation, occurring despite an unaltered D1R density. In conclusion, alterations in the highly specialized assembly of Gαolf/β2/γ7 subunits can happen in pathological conditions, such as Parkinson’s disease, and it could have important functional consequences in relation to changes in D1R signaling in the striatum.
Collapse
|
389
|
Ena S, de Kerchove d'Exaerde A, Schiffmann SN. Unraveling the differential functions and regulation of striatal neuron sub-populations in motor control, reward, and motivational processes. Front Behav Neurosci 2011; 5:47. [PMID: 21847377 PMCID: PMC3148764 DOI: 10.3389/fnbeh.2011.00047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/18/2011] [Indexed: 12/15/2022] Open
Abstract
The striatum, the major input structure of the basal ganglia, is critically involved in motor control and learning of habits and skills, and is also involved in motivational and reward processes. The dorsal striatum, caudate–putamen, is primarily implicated in motor functions whereas the ventral striatum, the nucleus accumbens, is essential for motivation and drug reinforcement. Severe basal ganglia dysfunction occurs in movement disorders as Parkinson's and Huntington's disease, and in psychiatric disorders such as schizophrenia and drug addiction. The striatum is essentially composed of GABAergic medium-sized spiny neurons (MSNs) that are output neurons giving rise to the so-called direct and indirect pathways and are targets of the cerebral cortex and mesencephalic dopaminergic neurons. Although the involvement of striatal sub-areas in motor control and motivation has been thoroughly characterized, major issues remained concerning the specific and respective functions of the two MSNs sub-populations, D2R-striatopallidal (dopamine D2 receptor-positive) and D1R-striatonigral (dopamine D1 receptor-positive) neurons, as well as their specific regulation. Here, we review recent advances that gave new insight in the understanding of the differential roles of striatopallidal and striatonigral neurons in the basal ganglia circuit. We discuss innovative techniques developed in the last decade which allowed a much precise evaluation of molecular pathways implicated in motivational processes and functional roles of striatopallidal and striatonigral neurons in motor control and in the establishment of reward-associated behavior.
Collapse
Affiliation(s)
- Sabrina Ena
- Laboratory of Neurophysiology, School of Medicine, Université Libre de Bruxelles Brussels, Belgium
| | | | | |
Collapse
|
390
|
Lobo MK, Nestler EJ. The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front Neuroanat 2011; 5:41. [PMID: 21811439 PMCID: PMC3140647 DOI: 10.3389/fnana.2011.00041] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/05/2011] [Indexed: 12/16/2022] Open
Abstract
The striatum plays a key role in mediating the acute and chronic effects of addictive drugs, with drugs of abuse causing long-lasting molecular and cellular alterations in both dorsal striatum and nucleus accumbens (ventral striatum). Despite the wealth of research on the biological actions of abused drugs in striatum, until recently, the distinct roles of the striatum’s two major subtypes of medium spiny neurons (MSNs) in drug addiction remained elusive. Recent advances in cell-type-specific technologies, including fluorescent reporter mice, transgenic, or knockout mice, and viral-mediated gene transfer, have advanced the field toward a more comprehensive understanding of the two MSN subtypes in the long-term actions of drugs of abuse. Here we review progress in defining the distinct molecular and functional contributions of the two MSN subtypes in mediating addiction.
Collapse
Affiliation(s)
- Mary Kay Lobo
- Fishberg Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine New York, NY, USA
| | | |
Collapse
|
391
|
Nishi A, Kuroiwa M, Shuto T. Mechanisms for the modulation of dopamine d(1) receptor signaling in striatal neurons. Front Neuroanat 2011; 5:43. [PMID: 21811441 PMCID: PMC3140648 DOI: 10.3389/fnana.2011.00043] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 07/07/2011] [Indexed: 01/11/2023] Open
Abstract
In the striatum, dopamine D(1) receptors are preferentially expressed in striatonigral neurons, and increase the neuronal excitability, leading to the increase in GABAergic inhibitory output to substantia nigra pars reticulata. Such roles of D(1) receptors are important for the control of motor functions. In addition, the roles of D(1) receptors are implicated in reward, cognition, and drug addiction. Therefore, elucidation of mechanisms for the regulation of dopamine D(1) receptor signaling is required to identify therapeutic targets for Parkinson's disease and drug addiction. D(1) receptors are coupled to G(s/olf)/adenylyl cyclase/PKA signaling, leading to the phosphorylation of PKA substrates including DARPP-32. Phosphorylated form of DARPP-32 at Thr34 has been shown to inhibit protein phosphatase-1, and thereby controls the phosphorylation states and activity of many downstream physiological effectors. Roles of DARPP-32 and its phosphorylation at Thr34 and other sites in D(1) receptor signaling are extensively studied. In addition, functional roles of the non-canonical D(1) receptor signaling cascades that coupled to G(q)/phospholipase C or Src family kinase become evident. We have recently shown that phosphodiesterases (PDEs), especially PDE10A, play a pivotal role in regulating the tone of D(1) receptor signaling relatively to that of D(2) receptor signaling. We review the current understanding of molecular mechanisms for the modulation of D(1) receptor signaling in the striatum.
Collapse
Affiliation(s)
- Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine Kurume, Fukuoka, Japan
| | | | | |
Collapse
|
392
|
Durieux PF, Schiffmann SN, de Kerchove d'Exaerde A. Targeting neuronal populations of the striatum. Front Neuroanat 2011; 5:40. [PMID: 21811438 PMCID: PMC3139926 DOI: 10.3389/fnana.2011.00040] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/03/2011] [Indexed: 12/30/2022] Open
Abstract
The striatum is critically involved in motor and motivational functions. The dorsal striatum, caudate–putamen, is primarily implicated in motor control and the learning of habits and skills, whereas the ventral striatum, the nucleus accumbens, is essential for motivation and drug reinforcement. The GABA medium-sized spiny neurons (MSNs, about 95% of striatal neurons), which are targets of the cerebral cortex and the midbrain dopaminergic neurons, form two pathways. The dopamine D1 receptor-positive (D1R) striatonigral MSNs project to the medial globus pallidus and substantia nigra pars reticulata (direct pathway) and co-express D1R and substance P, whereas dopamine D2 receptor-positive (D2R) striatopallidal MSNs project to the lateral globus pallidus (indirect pathway) and co-express D2R, adenosine A2A receptor (A2AR) and enkephalin (Enk). The specific role of the two efferent pathways in motor and motivational control remained poorly understood until recently. Indeed, D1R striatonigral and D2R striatopallidal neurons, are intermingled and morphologically indistinguishable, and, hence, cannot be functionally dissociated with techniques such as chemical lesions or surgery. In view of the still debated respective functions of projection D2R striatopallidal and D1R striatonigral neurons and striatal interneurons, both in motor control and learning but also in more cognitive processes such as motivation, the present review sum up the development of new models and techniques (bacterial artificial chromosome transgenesis, optogenetic, viral transgenesis) allowing the selective targeting of these striatal neuronal populations in adult animal brain to understand their specific roles.
Collapse
Affiliation(s)
- Pierre F Durieux
- Laboratory of Neurophysiology, School of Medicine, Université Libre de Bruxelles Brussels, Belgium
| | | | | |
Collapse
|
393
|
Bonito-Oliva A, Feyder M, Fisone G. Deciphering the Actions of Antiparkinsonian and Antipsychotic Drugs on cAMP/DARPP-32 Signaling. Front Neuroanat 2011; 5:38. [PMID: 21808606 PMCID: PMC3136733 DOI: 10.3389/fnana.2011.00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/27/2011] [Indexed: 02/06/2023] Open
Abstract
The basal ganglia are affected by several neuropsychiatric and neurodegenerative diseases, many of which are treated with drugs acting on the dopamine system. For instance, the loss of dopaminergic input to the striatum, which is the main pathological feature of Parkinson’s disease, is counteracted by administering the dopamine precursor, L-DOPA. Furthermore, psychotic disorders, including schizophrenia, are treated with drugs that act as antagonists at the D2-type of dopamine receptor (D2R). The use of L-DOPA and typical antipsychotic drugs, such as haloperidol, is limited by the emergence of motor side-effects, particularly after prolonged use. Striatal medium spiny neurons (MSNs) represent an ideal tool to investigate the molecular changes implicated in these conditions. MSNs receive a large glutamatergic innervation from cortex, thalamus, and limbic structures, and are controlled by dopaminergic projections originating in the midbrain. There are two large populations of striatal MSNs, which differ based on their connectivity to the output nuclei of the basal ganglia and on their ability to express dopamine D1 receptors (D1Rs) or D2Rs. Administration of L-DOPA promotes cAMP signaling and activates the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) in the D1R-expressing MSNs, which form the striatonigral, or direct pathway. Conversely, haloperidol activates the cAMP/DARPP-32 cascade in D2R-expressing MSNs, which form the striatopallidal, or indirect pathway. This review describes the effects produced on downstream effector proteins by stimulation of cAMP/DARPP-32 signaling in these two groups of MSNs. Particular emphasis is given to the regulation of the GluR1 subunit of the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate glutamate receptor, the extracellular signal-regulated protein kinases 1 and 2, focusing on functional role and potential pathological relevance.
Collapse
|
394
|
Matamales M, Girault JA. Signaling from the cytoplasm to the nucleus in striatal medium-sized spiny neurons. Front Neuroanat 2011; 5:37. [PMID: 21779236 PMCID: PMC3133824 DOI: 10.3389/fnana.2011.00037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 06/13/2011] [Indexed: 12/13/2022] Open
Abstract
Striatal medium-sized spiny neurons (MSNs) receive massive glutamate inputs from the cerebral cortex and thalamus and are a major target of dopamine projections. Interaction between glutamate and dopamine signaling is crucial for the control of movement and reward-driven learning, and its alterations are implicated in several neuropsychiatric disorders including Parkinson's disease and drug addiction. Long-lasting forms of synaptic plasticity are thought to depend on transcription of gene products that alter the structure and/or function of neurons. Although multiple signal transduction pathways regulate transcription, little is known about signal transmission between the cytoplasm and the nucleus of striatal neurons and its regulation. Here we review the current knowledge of the signaling cascades that target the nucleus of MSNs, most of which are activated by cAMP and/or Ca(2+). We outline the mechanisms by which signals originating at the plasma membrane and amplified in the cytoplasm are relayed to the nucleus, through the regulation of several protein kinases and phosphatases and transport through the nuclear pore. We also summarize the identified mechanisms of transcription regulation and chromatin remodeling in MSNs that appear to be important for behavioral adaptations, and discuss their relationships with epigenetic regulation.
Collapse
Affiliation(s)
- Miriam Matamales
- UMR-S 839, InsermParis, France
- Université Pierre et Marie CurieParis, France
- Institut du Fer à MoulinParis, France
| | - Jean-Antoine Girault
- UMR-S 839, InsermParis, France
- Université Pierre et Marie CurieParis, France
- Institut du Fer à MoulinParis, France
| |
Collapse
|
395
|
Hasbi A, O'Dowd BF, George SR. Dopamine D1-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance. Mol Brain 2011; 4:26. [PMID: 21663703 PMCID: PMC3138392 DOI: 10.1186/1756-6606-4-26] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/13/2011] [Indexed: 01/09/2023] Open
Abstract
Dopamine is an important catecholamine neurotransmitter modulating many physiological functions, and is linked to psychopathology of many diseases such as schizophrenia and drug addiction. Dopamine D1 and D2 receptors are the most abundant dopaminergic receptors in the striatum, and although a clear segregation between the pathways expressing these two receptors has been reported in certain subregions, the presence of D1-D2 receptor heteromers within a unique subset of neurons, forming a novel signaling transducing functional entity has been shown. Recently, significant progress has been made in elucidating the signaling pathways activated by the D1-D2 receptor heteromer and their potential physiological relevance.
Collapse
Affiliation(s)
- Ahmed Hasbi
- Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | | | | |
Collapse
|
396
|
Ade KK, Wan Y, Chen M, Gloss B, Calakos N. An Improved BAC Transgenic Fluorescent Reporter Line for Sensitive and Specific Identification of Striatonigral Medium Spiny Neurons. Front Syst Neurosci 2011; 5:32. [PMID: 21713123 PMCID: PMC3113108 DOI: 10.3389/fnsys.2011.00032] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/09/2011] [Indexed: 11/26/2022] Open
Abstract
The development of BAC transgenic mice expressing promoter-specific fluorescent reporter proteins has been a great asset for neuroscience by enabling detection of neuronal subsets in live tissue. For the study of basal ganglia physiology, reporters driven by type 1 and 2 dopamine receptors have been particularly useful for distinguishing the two classes of striatal projection neurons – striatonigral and striatopallidal. However, emerging evidence suggests that some of the transgenic reporter lines may have suboptimal features. The ideal transgenic reporter line should (1) express a reporter with high sensitivity and specificity for detecting the cellular subset of interest and that does not otherwise alter the biology of the cells in which it is expressed, and (2) involve a genetic manipulation that does not cause any additional genetic effects other than expression of the reporter. Here we introduce a new BAC transgenic reporter line, Drd1a-tdTomato line 6, with features that approximate these ideals, offering substantial benefits over existing lines. In this study, we investigate the integrity of dopamine-sensitive behaviors and test the sensitivity and specificity of tdTomato fluorescence for identifying striatonigral projection neurons in mice. Behaviorally, hemizygous Drd1a-tdTomato line 6 mice are similar to littermate controls; while hemizygous Drd2-EGFP mice are not. In characterizing the sensitivity and specificity of line 6 mice, we find that both are high. The results of this characterization indicate that line 6 Drd1a-tdTomato+/− mice offer a useful alternative approach to identify both striatonigral and striatopallidal neurons in a single transgenic line with a high degree of accuracy.
Collapse
Affiliation(s)
- Kristen K Ade
- Division of Neurology, Center for Translational Neuroscience, Duke University Durham, NC, USA
| | | | | | | | | |
Collapse
|
397
|
Kim J, Park BH, Lee JH, Park SK, Kim JH. Cell type-specific alterations in the nucleus accumbens by repeated exposures to cocaine. Biol Psychiatry 2011; 69:1026-34. [PMID: 21377654 DOI: 10.1016/j.biopsych.2011.01.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 12/23/2010] [Accepted: 01/12/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND The nucleus accumbens (NAc) is a brain region critically involved in psychostimulant-induced neuroadaptations. A major proportion of NAc neurons consists of medium spiny neurons (MSNs), commonly divided into two major subsets on the basis of their expression of D1 dopamine receptors (D1R-MSNs) or D2 dopamine receptors (D2R-MSNs). Although NAc MSNs are known to undergo extensive alterations in their characteristics upon exposure to drugs of abuse, the functional and structural changes specific to each type of MSN have yet to be fully resolved. METHODS We repeatedly injected cocaine into transgenic mice expressing enhanced green fluorescent protein under the control of promoters for either D1R or D2R and then analyzed the physiological characteristics of each type of MSN by whole-cell recording. We also analyzed cocaine-induced changes of spine densities of individual MSNs with recombinant lentivirus in a cell type-specific manner and corroborated findings by use of a pathway-specific labeling using recombinant rabies virus. RESULTS The D1R-MSNs exhibited decreased membrane excitability but increased frequency of miniature excitatory postsynaptic currents after repeated cocaine administration, whereas D2R-MSNs displayed a decrease in miniature excitatory postsynaptic current frequency with no change in excitability. Interestingly, miniature inhibitory postsynaptic currents decreased in D1R-MSNs but were unaffected in D2R-MSNs. Moreover, morphological analyses revealed a selective increase in spine density in D1R-MSNs after chronic cocaine exposure. CONCLUSIONS This study provides the first experimental evidence that NAc MSNs differentially contribute to psychostimulant-induced neuroadaptations by changing their intrinsic, synaptic, and structural characteristics in a cell type-specific fashion.
Collapse
Affiliation(s)
- Juhyun Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, Gyungbuk, Republic of Korea
| | | | | | | | | |
Collapse
|
398
|
Perreault ML, Hasbi A, O'Dowd BF, George SR. The dopamine d1-d2 receptor heteromer in striatal medium spiny neurons: evidence for a third distinct neuronal pathway in Basal Ganglia. Front Neuroanat 2011; 5:31. [PMID: 21747759 PMCID: PMC3130461 DOI: 10.3389/fnana.2011.00031] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/16/2011] [Indexed: 12/23/2022] Open
Abstract
Dopaminergic signaling within the basal ganglia has classically been thought to occur within two distinct neuronal pathways; the direct striatonigral pathway which contains the dopamine D1 receptor and the neuropeptides dynorphin (DYN) and substance P, and the indirect striatopallidal pathway which expresses the dopamine D2 receptor and enkephalin (ENK). A number of studies have also shown, however, that D1 and D2 receptors can co-exist within the same medium spiny neuron and emerging evidence indicates that these D1/D2-coexpressing neurons, which also express DYN and ENK, may comprise a third neuronal pathway, with representation in both the striatonigral and striatopallidal projections of the basal ganglia. Furthermore, within these coexpressing neurons it has been shown that the dopamine D1 and D2 receptor can form a novel and pharmacologically distinct receptor complex, the dopamine D1–D2 receptor heteromer, with unique signaling properties. This is indicative of a functionally unique role for these neurons in brain. The aim of this review is to discuss the evidence in support of a novel third pathway coexpressing the D1 and D2 receptor, to discuss the potential relevance of this pathway to basal ganglia signaling, and to address its potential value, and that of the dopamine D1–D2 receptor heteromer, in the search for new therapeutic strategies for disorders involving dopamine neurotransmission.
Collapse
Affiliation(s)
- Melissa L Perreault
- Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | | | | | | |
Collapse
|
399
|
Simpson EH, Kellendonk C, Ward RD, Richards V, Lipatova O, Fairhurst S, Kandel ER, Balsam PD. Pharmacologic rescue of motivational deficit in an animal model of the negative symptoms of schizophrenia. Biol Psychiatry 2011; 69:928-35. [PMID: 21414604 PMCID: PMC3170714 DOI: 10.1016/j.biopsych.2011.01.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 01/12/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Deficits in incentive motivation, the energizing of behavior in pursuit of a goal, occur in many psychiatric disorders including schizophrenia. We previously reported deficits in both cognition and incentive motivation in a transgenic mouse model of increased striatal-specific dopamine D2 receptor (D2R) density (D2R-OE mice). This molecular alteration is observed in patients with schizophrenia, making D2R-OE mice a suitable system to study the cellular and molecular mechanisms of motivation and avolition, as well as a tool for testing potential therapies against motivational deficits. METHODS Behavioral studies using operant conditioning methods were performed both to further characterize the incentive motivation deficit in D2R-OE mice and test a novel pharmacological treatment target that arose from an unbiased expression study performed using gene chips and was validated by quantitative reverse transcription polymerase chain reaction, in situ hybridization, and immunohistochemistry. RESULTS The reluctance of D2R-OE mice to work is due neither to intolerance for low rates of reward, decreased reactivity to reward, nor increased sensitivity to satiety or fatigue but to a difference in willingness to work for reward. As in patients with schizophrenia, this deficit was not ameliorated by D2R blockade, suggesting that reversal of the motivational deficit by switching off the transgene results from molecular changes downstream of D2R overexpression. We observed a reversible increase in serotonin subtype 2C (5-HT2C) receptor expression in D2R-OE mice. Systemic injection of a 5-HT2C receptor antagonist increased incentive motivation in D2R-OE and control mice. CONCLUSIONS We propose that targeting 5-HT2C receptors may be a useful approach to modulate incentive motivation in psychiatric illness.
Collapse
Affiliation(s)
- Eleanor H. Simpson
- Dept. Psychiatry Columbia University
,New York State Psychiatric Institute
| | | | - Ryan D. Ward
- Dept. Psychiatry Columbia University
,New York State Psychiatric Institute
| | | | | | - Stephen Fairhurst
- Dept. Psychiatry Columbia University
,New York State Psychiatric Institute
| | - Eric R. Kandel
- Dept. Psychiatry Columbia University
,Dept. Neuroscience, Columbia University
,New York State Psychiatric Institute
,Howard Hughes Medical Institute
,Kavli Institute for Brain Science
| | - Peter D. Balsam
- Dept. Psychiatry Columbia University
,Dept. Psychology, Barnard College
,New York State Psychiatric Institute
| |
Collapse
|
400
|
Iñiguez SD, Charntikov S, Baella SA, Herbert MS, Bolaños-Guzmán CA, Crawford CA. Post-training cocaine exposure facilitates spatial memory consolidation in C57BL/6 mice. Hippocampus 2011; 22:802-13. [PMID: 21542053 DOI: 10.1002/hipo.20941] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2011] [Indexed: 01/07/2023]
Abstract
In this study, we examined the ability of post-training injections of cocaine to facilitate spatial memory performance using the Morris water maze (MWM). We also investigated the role that hippocampal protein kinase A (PKA) and extracellular signal-regulated kinase 1/2 (ERK) signaling may play in cocaine-mediated spatial memory consolidation processes. Male and female C57BL/6 mice were first trained in a MWM task (eight consecutive trials) then injected with cocaine (0, 1.25, 2.5, 5, or 20 mg/kg), and memory for the platform location was retested after a 24 h delay. Cocaine had a dose-dependent effect on spatial memory performance because only the mice receiving 2.5 mg/kg cocaine displayed a significant reduction in latency to locate the platform. No sex differences in MWM performance were observed; however, females showed higher hippocampal levels of PKA when compared with males. A second experiment demonstrated that 2.5 mg/kg cocaine enhanced MWM performance only when administered within 2, but not 4 h after spatial training. We also found that cocaine (2.5 mg/kg) increased ERK2 phosphorylation within the hippocampus and one of its downstream targets (ribosomal S6 kinase), a mechanism that may be responsible, at least in part, for the enhanced cocaine-mediated spatial memory performance. Overall, these data demonstrate that a low dose of cocaine (2.5 mg/kg) administered within 2 h after training facilitates MWM spatial memory performance in C57BL/6 mice.
Collapse
Affiliation(s)
- Sergio D Iñiguez
- Department of Psychology, California State University, San Bernardino, California 92407, USA
| | | | | | | | | | | |
Collapse
|