351
|
Hu P, Yang Q, Wang Q, Shi C, Wang D, Armato U, Prà ID, Chiarini A. Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration. BURNS & TRAUMA 2019; 7:38. [PMID: 31890717 PMCID: PMC6933895 DOI: 10.1186/s41038-019-0178-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/19/2019] [Indexed: 04/13/2023]
Abstract
Cutaneous regeneration at the wound site involves several intricate and dynamic processes which require a series of coordinated interactions implicating various cell types, growth factors, extracellular matrix (ECM), nerves, and blood vessels. Mesenchymal stromal cells (MSCs) take part in all the skin wound healing stages playing active and beneficial roles in animal models and humans. Exosomes, which are among the key products MSCs release, mimic the effects of parental MSCs. They can shuttle various effector proteins, messenger RNA (mRNA) and microRNAs (miRNAs) to modulate the activity of recipient cells, playing important roles in wound healing. Moreover, using exosomes avoids many risks associated with cell transplantation. Therefore, as a novel type of cell-free therapy, MSC-exosome -mediated administration may be safer and more efficient than whole cell. In this review, we provide a comprehensive understanding of the latest studies and observations on the role of MSC-exosome therapy in wound healing and cutaneous regeneration. In addition, we address the hypothesis of MSCs microenvironment extracellular vesicles (MSCs-MEVs) or MSCs microenvironment exosomes (MSCs-MExos) that need to take stock of and solved urgently in the related research about MSC-exosomes therapeutic applications. This review can inspire investigators to explore new research directions of MSC-exosome therapy in cutaneous repair and regeneration.
Collapse
Affiliation(s)
- Peng Hu
- Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, Dalian Road 149, ZunYi City, 563000 Gui Zhou Province China
| | - Qinxin Yang
- Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, Dalian Road 149, ZunYi City, 563000 Gui Zhou Province China
| | - Qi Wang
- Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, Dalian Road 149, ZunYi City, 563000 Gui Zhou Province China
| | - Chenshuo Shi
- Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, Dalian Road 149, ZunYi City, 563000 Gui Zhou Province China
| | - Dali Wang
- Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, Dalian Road 149, ZunYi City, 563000 Gui Zhou Province China
| | - Ubaldo Armato
- Human Histology and Embryology Unit, University of Verona Medical School, Strada Le Grazie 8, 37134 Verona, Italy
| | - Ilaria Dal Prà
- Human Histology and Embryology Unit, University of Verona Medical School, Strada Le Grazie 8, 37134 Verona, Italy
| | - Anna Chiarini
- Human Histology and Embryology Unit, University of Verona Medical School, Strada Le Grazie 8, 37134 Verona, Italy
| |
Collapse
|
352
|
Specialized Pro-resolving Mediators Directs Cardiac Healing and Repair with Activation of Inflammation and Resolution Program in Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:45-64. [PMID: 31562621 DOI: 10.1007/978-3-030-21735-8_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
After myocardial infarction, splenic leukocytes direct biosynthesis of specialized pro-resolving mediators (SPMs) that are essential for the resolution of inflammation and tissue repair. In a laboratory environment, after coronary ligation of healthy risk free rodents (young adult mice) leukocytes biosynthesize SPMs with induced activity of lipoxygenases and cyclooxygenases, which facilitate cardiac repair. Activated monocytes/macrophages drive the biosynthesis of SPMs following experimental myocardial infarction in mice during the acute heart failure. In the presented review, we provided the recent updates on SPMs (resolvins, lipoxins and maresins) in cardiac repair that may serve as novel therapeutics for future heart failure therapy/management. We incorporated the underlying causes of non-resolving inflammation following cardiac injury if superimposed with obesity, hypertension, diabetes, disrupted circadian rhythm, co-medication (painkillers or oncological therapeutics), and/or aging that may delay or impair the biosynthesis of SPMs, intensifying pathological remodeling in heart failure.
Collapse
|
353
|
Mechanisms of Inflammasome Signaling, microRNA Induction and Resolution of Inflammation by Helicobacter pylori. Curr Top Microbiol Immunol 2019; 421:267-302. [PMID: 31123893 DOI: 10.1007/978-3-030-15138-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammasome-controlled transcription and subsequent cleavage-mediated activation of mature IL-1β and IL-18 cytokines exemplify a crucial innate immune mechanism to combat intruding pathogens. Helicobacter pylori represents a predominant persistent infection in humans, affecting approximately half of the population worldwide, and is associated with the development of chronic gastritis, peptic ulcer disease, and gastric cancer. Studies in knockout mice have demonstrated that the pro-inflammatory cytokine IL-1β plays a central role in gastric tumorigenesis. Infection by H. pylori was recently reported to stimulate the inflammasome both in cells of the mouse and human immune systems. Using mouse models and in vitro cultured cell systems, the bacterial pathogenicity factors and molecular mechanisms of inflammasome activation have been analyzed. On the one hand, it appears that H. pylori-stimulated IL-1β production is triggered by engagement of the immune receptors TLR2 and NLRP3, and caspase-1. On the other hand, microRNA hsa-miR-223-3p is induced by the bacteria, which controls the expression of NLRP3. This regulating effect by H. pylori on microRNA expression was also described for more than 60 additionally identified microRNAs, indicating a prominent role for inflammatory and other responses. Besides TLR2, TLR9 becomes activated by H. pylori DNA and further TLR10 stimulated by the bacteria induce the secretion of IL-8 and TNF, respectively. Interestingly, TLR-dependent pathways can accelerate both pro- and anti-inflammatory responses during H. pylori infection. Balancing from a pro-inflammation to anti-inflammation phenotype results in a reduction in immune attack, allowing H. pylori to persistently colonize and to survive in the gastric niche. In this chapter, we will pinpoint the role of H. pylori in TLR- and NLRP3 inflammasome-dependent signaling together with the differential functions of pro- and anti-inflammatory cytokines. Moreover, the impact of microRNAs on H. pylori-host interaction will be discussed, and its role in resolution of infection versus chronic infection, as well as in gastric disease development.
Collapse
|
354
|
Pietrasanta C, Pugni L, Ronchi A, Bottino I, Ghirardi B, Sanchez-Schmitz G, Borriello F, Mosca F, Levy O. Vascular Endothelium in Neonatal Sepsis: Basic Mechanisms and Translational Opportunities. Front Pediatr 2019; 7:340. [PMID: 31456998 PMCID: PMC6700367 DOI: 10.3389/fped.2019.00340] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
Neonatal sepsis remains a major health issue worldwide, especially for low-birth weight and premature infants, with a high risk of death and devastating sequelae. Apart from antibiotics and supportive care, there is an unmet need for adjunctive treatments to improve the outcomes of neonatal sepsis. Strong and long-standing research on adult patients has shown that vascular endothelium is a key player in the pathophysiology of sepsis and sepsis-associated organ failure, through a direct interaction with pathogens, leukocytes, platelets, and the effect of soluble circulating mediators, in part produced by endothelial cells themselves. Despite abundant evidence that the neonatal immune response to sepsis is distinct from that of adults, comparable knowledge on neonatal vascular endothelium is much more limited. Neonatal endothelial cells express lower amounts of adhesion molecules compared to adult ones, and present a reduced capacity to neutralize reactive oxygen species. Conversely, available evidence on biomarkers of endothelial damage in neonates is not as robust as in adult patients, and endothelium-targeted therapeutic opportunities for neonatal sepsis are almost unexplored. Here, we summarize current knowledge on the structure of neonatal vascular endothelium, its interactions with neonatal immune system and possible endothelium-targeted diagnostic and therapeutic tools for neonatal sepsis. Furthermore, we outline areas of basic and translational research worthy of further study, to shed light on the role of vascular endothelium in the context of neonatal sepsis.
Collapse
Affiliation(s)
- Carlo Pietrasanta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Lorenza Pugni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Andrea Ronchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Ilaria Bottino
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Beatrice Ghirardi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Francesco Borriello
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Division of Immunology, Boston Children's Hospital, Boston, MA, United States.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organisation Center of Excellence, Naples, Italy
| | - Fabio Mosca
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
355
|
Li Z, Liu S, Lou J, Mulholland M, Zhang W. LGR4 protects hepatocytes from injury in mouse. Am J Physiol Gastrointest Liver Physiol 2019; 316:G123-G131. [PMID: 30406697 PMCID: PMC6383381 DOI: 10.1152/ajpgi.00056.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Leucine-rich repeat G protein-coupled receptors (LGRs) and their endogenous ligands R-spondin1-4 (Rspo) are critical in embryonic development and in maintenance of stem cells. The functions of the Rspo-LGR system in differentiated cells remain uncharacterized. In this study, the expression profiles of LGRs and Rspos were characterized in mature hepatocytes. A liver-specific knockout of LGR4 in mouse was generated and used to study hepatic ischemia/reperfusion-induced injury (HIRI) as well as lipopolysaccharide/ D- galactosamine (LPS/D-Gal)-induced liver injury. We have demonstrated that, in adult liver, LGR4 is expressed in hepatocytes and responds to Rspo1 with internalization. Rspo1 is responsive to various nutritional states and to mTOR signaling. Activation of LGR4 by Rspo1 significantly reduced tumor necrosis factor-α (TNFα)-induced cell death, and levels of NF-κB-p65 and caspase-3 in cultured hepatocytes. Knockdown of hepatic LGR4 rendered hepatocytes more vulnerable to TNFα-induced damage in cultured primary cells and in the setting of HIRI and LPS/D-Gal-induced liver injury. Rspo1 potentiated both basal and Wnt3a-induced stabilization of β-catenin. Disruption of β-catenin signaling reversed the protective effects of Rspo1 on TNFα-induced hepatocyte toxicity. LGR4 knockdown increased nuclear translocation of NF-κB-p65 in response to acute injury. Overexpression of IKKβ attenuated the protective effects of Rspo1 on TNFα-induced cell death. In conclusion, the Rspo1-LGR4 system represents a novel pathway for cytoprotection and modulation of stress-induced tissue damage. NEW & NOTEWORTHY Functional LGR4 is present in mature hepatocytes. R-spodin1 protects hepatocytes from tumor necrosis factor-α-induced cell death. Liver-specific knockdown of LGR4 renders liver more susceptible to acute injury. LGR4 protects hepatocytes from injury by inhibition of NF-κB signaling.
Collapse
Affiliation(s)
- Ziru Li
- 1Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Shiying Liu
- 2Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Jianing Lou
- 3Department of Stomatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Michael Mulholland
- 1Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Weizhen Zhang
- 1Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan,2Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
356
|
Krishnan V, Booker D, Cunningham G, Jadapalli JK, Kain V, Pullen AB, Halade GV. Pretreatment of carprofen impaired initiation of inflammatory- and overlapping resolution response and promoted cardiorenal syndrome in heart failure. Life Sci 2018; 218:224-232. [PMID: 30597172 DOI: 10.1016/j.lfs.2018.12.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 12/22/2022]
Abstract
Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are commonly used to control pain, inflammation, and limit the cardinal signs of injury in humans. However, prolonged use of NSAIDs increases the risk of heart attack (myocardial infarction; MI) and the subsequent risk of heart and renal failure. The molecular and cellular mechanism of action for this adverse effect, particularly along the cardiorenal network, is incomplete. To define the mechanism, carprofen (CAP), an NSAID was administered at the dose of 5 mg/kg to C57BL/6 male mice for two weeks. After last dose of CAP treatment mice were subjected to permanent occlusion of coronary artery that induces irreversible cardiac remodeling while maintaining naive and MI-controls. After MI, cardiac pathology and dysfunction were confirmed, along with additional measurements of kidney function, histology, and injury markers, such as plasma creatinine. CAP treatment increased plasma creatinine levels and subsequently, myocardial structural disorganization increased. Kidney neutrophil gelatinase associated lipocalin (NGAL) and protein expression were increased post-MI. After two weeks CAP treatment, the expression of pyrogenic pro-inflammatory cytokines TNF-α and IL-1β was increased compared to non-CAP treated mice, indicative of amplified inflammatory response. There was also evidence that renal injury of both the post-CAP treatment controls and post-CAP MI were much greater than the non-CAP treated naïve controls, as serum creatinine and NGAL levels were elevated along with obvious structural impairment of the glomerulus. Therefore, CAP treatment tampers with the acute inflammatory response that promotes cardiorenal syndrome and non-resolving inflammation post-MI in acute heart failure.
Collapse
Affiliation(s)
- Veena Krishnan
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - David Booker
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Gabrielle Cunningham
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Jeevan Kumar Jadapalli
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Amanda B Pullen
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
357
|
Abstract
Chronic, noncommunicable, and inflammation-associated diseases remain the largest cause of morbidity and mortality globally and within the United States. This is mainly due to our limited understanding of the molecular mechanisms that underlie these complex pathologies. The available evidence indicates that studies of epigenetics (traditionally defined as the heritable changes to gene expression that are independent of changes to DNA) are significantly advancing our knowledge of these inflammatory conditions. This review will focus on epigenetic studies of three diseases, that are among the most burdensome globally: cardiovascular disease, the number one cause of deaths worldwide, type 2 diabetes and, Alzheimer’s disease. The current status of epigenetic research, including the ability to predict disease risk, and key pathophysiological defects are discussed. The significance of defining the contribution of epigenetic defects to nonresolving inflammation and aging, each associated with these diseases, is highlighted, as these are likely to provide new insights into inflammatory disease pathogenesis.
Collapse
Affiliation(s)
- Eleni Stylianou
- Consultant Biomedical Scientist and Bioinformaticist, North Royalton, OH, USA,
| |
Collapse
|
358
|
Deuterated Arachidonic Acids Library for Regulation of Inflammation and Controlled Synthesis of Eicosanoids: An In Vitro Study. Molecules 2018; 23:molecules23123331. [PMID: 30558277 PMCID: PMC6321560 DOI: 10.3390/molecules23123331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022] Open
Abstract
The synthesis of signal lipids, including eicosanoids, is not fully understood, although it is key to the modulation of various inflammatory states. Recently, isotopologues of essential polyunsaturated fatty acids (PUFAs) deuterated at bis-allylic positions (D-PUFAs) have been proposed as inhibitors of non-enzymatic lipid peroxidation (LPO) in various disease models. Arachidonic acid (AA, 20:4 n-6) is the main precursor to several classes of eicosanoids, which are produced by cyclooxygenases (COX) and lipoxygenases (LOX). In this study we analyzed the relative activity of human recombinant enzymes COX-2, 5-LOX, and 15-LOX-2 using a library of arachidonic acids variably deuterated at the bis-allylic (C7, C10, and C13) positions. Kinetic parameters (KM, Vmax) and isotope effects calculated from kH/kD for seven deuterated arachidonic acid derivatives were obtained. Spectroscopic methods have shown that deuteration at the 13th position dramatically affects the kinetic parameters of COX-2 and 15-LOX-2. The activity of 5-LOX was evaluated by measuring hydroxyeicosatetraenoic acids (8-HETE and 5-HETE) using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Deuteration at the seventh and 10th positions affects the performance of the 5-LOX enzyme. A flowchart is proposed suggesting how to modulate the synthesis of selected eicosanoids using the library of deuterated isotopologues to potentially fine-tune various inflammation stages.
Collapse
|
359
|
Patten DA, Shetty S. More Than Just a Removal Service: Scavenger Receptors in Leukocyte Trafficking. Front Immunol 2018; 9:2904. [PMID: 30631321 PMCID: PMC6315190 DOI: 10.3389/fimmu.2018.02904] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Scavenger receptors are a highly diverse superfamily of proteins which are grouped by their inherent ability to bind and internalize a wide array of structurally diverse ligands which can be either endogenous or exogenous in nature. Consequently, scavenger receptors are known to play important roles in host homeostasis, with common endogenous ligands including apoptotic cells, and modified low density lipoproteins (LDLs); additionally, scavenger receptors are key regulators of inflammatory diseases, such as atherosclerosis. Also, as a consequence of their affinity for a wide range of microbial products, their role in innate immunity is also being increasingly studied. However, in this review, a secondary function of a number of endothelial-expressed scavenger receptors is discussed. There is increasing evidence that some endothelial-expressed scavenger receptors are able to directly bind leukocyte-expressed ligands and subsequently act as adhesion molecules in the trafficking of leukocytes in lymphatic and vascular tissues. Here, we cover the current literature on this alternative role for endothelial-expressed scavenger receptors and also speculate on their therapeutic potential.
Collapse
Affiliation(s)
- Daniel A Patten
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
360
|
Sun G, Lu Y, Zhao L, Xia W, Zhang H, Wang L, Zhang L, Wen A. Hemin impairs resolution of inflammation via microRNA-144-3p-dependent downregulation of ALX/FPR2. Transfusion 2018; 59:196-206. [PMID: 30499593 DOI: 10.1111/trf.14991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 07/03/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND The pathomechanisms of complications due to blood transfusion are not fully understood. Elevated levels of heme derived from stored RBCs are thought to be associated with transfusion reactions, especially inflammatory responses. Recently, the proinflammatory effect of heme has been widely studied. However, it is still unknown whether heme can influence the resolution of inflammation, a key step of inflammatory response. STUDY DESIGN AND METHODS A murine model of self-limited peritonitis was used, and resolution was assessed by resolution indices. Western blot, quantitative reverse transcriptase polymerase chain reaction, chemotaxis assay, luciferase reporter assay, and lentivirus infections were used to investigate possible mediating mechanisms in neutrophils. RESULTS The administration of hemin by intraperitoneal injection significantly increased the leukocyte infiltration and prolonged the resolution interval by approximately 7 hours in mouse peritonitis. In vitro, hemin significantly downregulated ALX/FPR2 protein levels (p < 0.05), a key resolution receptor, leading to the suppression of proresolution responses triggered by the proresolution ligand resolvin D1. Subsequently, miR-144-3p, selected by prediction databases, was found to be significantly upregulated by hemin (p < 0.05). The inhibition of miR-144-3p attenuated the inhibitory effect of hemin on lipoxin A4 receptor (ALX)/formyl peptide receptor 2 (FPR2) protein expression (p < 0.05). Luciferase reporter assay confirmed that miR-144-3p directly bound ALX/FPR2 3'-UTR. MiR-144-3p overexpression significantly downregulated ALX/FPR2 protein levels, whereas miR-144-3p inhibition led to a significant increase in ALX/FPR2 (p < 0.05). CONCLUSION Our results suggest that hemin prolongs resolution in self-limited inflammation, and this action is associated with downregulation of ALX/FPR2 mediated by hemin-induced miR-144-3p. These findings demonstrate a novel mechanism of hemin derived from stored RBCs for inflammatory response.
Collapse
Affiliation(s)
- Guixiang Sun
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yao Lu
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lu Zhao
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wenjun Xia
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Han Zhang
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Linfeng Wang
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Linjing Zhang
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Aiqing Wen
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
361
|
Console L, Scalise M, Indiveri C. Exosomes in inflammation and role as biomarkers. Clin Chim Acta 2018; 488:165-171. [PMID: 30419221 DOI: 10.1016/j.cca.2018.11.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022]
Abstract
Exosomes are endosomal-derived nano-vesicles. They are considered vehicles through which donor cells transfer proteins, lipids and nucleic acids to target cells thus influencing their metabolism. Exosomes are involved in inflammatory processes that play a pivotal role in a large number of pathologic states including cancer, inflammatory bowel diseases, type 2 diabetes, obesity, rheumatoid arthritis and neurodegenerative diseases. The association between inflammation and change in nature or expression level of some exosomal cargos is the fundamental step for identifying possible novel biomarkers of inflammatory-based diseases. A novel interesting exosome cargo is the SLC22A5 transport protein whose level in exosomes is regulated by the pro-inflammatory cytokine INF-γ. The advantage of using exosomes as a biomarker vehicle consists of their ease of collection from body fluids such as urine and saliva as they may represent a non-invasive means for screening human pathology.
Collapse
Affiliation(s)
- Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci cubo 4C, 87036 Arcavacata di Rende, CS, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci cubo 4C, 87036 Arcavacata di Rende, CS, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci cubo 4C, 87036 Arcavacata di Rende, CS, Italy.
| |
Collapse
|
362
|
Combining Calcium Phosphates with Polysaccharides: A Bone-Inspired Material Modulating Monocyte/Macrophage Early Inflammatory Response. Int J Mol Sci 2018; 19:ijms19113458. [PMID: 30400326 PMCID: PMC6274876 DOI: 10.3390/ijms19113458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/08/2018] [Accepted: 11/01/2018] [Indexed: 11/17/2022] Open
Abstract
The use of inorganic calcium/phosphate supplemented with biopolymers has drawn lots of attention in bone regenerative medicine. While inflammation is required for bone healing, its exacerbation alters tissue regeneration/implants integration. Inspired by bone composition, a friendly automated spray-assisted system was used to build bioactive and osteoinductive calcium phosphate/chitosan/hyaluronic acid substrate (CaP-CHI-HA). Exposing monocytes to CaP-CHI-HA resulted in a secretion of pro-healing VEGF and TGF-β growth factors, TNF-α, MCP-1, IL-6 and IL-8 pro-inflammatory mediators but also IL-10 anti-inflammatory cytokine along with an inflammatory index below 1.5 (versus 2.5 and 7.5 following CaP and LPS stimulation, respectively). Although CD44 hyaluronic acid receptor seems not to be involved in the inflammatory regulation, results suggest a potential role of chemical composition and calcium release from build-up substrates, in affecting the intracellular expression of a calcium-sensing receptor. Herein, our findings indicate a great potential of CaP-CHI-HA in providing required inflammation-healing balance, favorable for bone healing/regeneration.
Collapse
|
363
|
|
364
|
Ferhat MH, Robin A, Barbier L, Thierry A, Gombert JM, Barbarin A, Herbelin A. The Impact of Invariant NKT Cells in Sterile Inflammation: The Possible Contribution of the Alarmin/Cytokine IL-33. Front Immunol 2018; 9:2308. [PMID: 30374349 PMCID: PMC6197076 DOI: 10.3389/fimmu.2018.02308] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/17/2018] [Indexed: 01/13/2023] Open
Abstract
Although the contribution of iNKT cells to induction of sterile inflammation is now well-established, the nature of the endogenous compounds released early after cellular stress or damage that drive their activation and recruitment remains poorly understood. More precisely, iNKT cells have not been described as being reactive to endogenous non-protein damage-associated molecular-pattern molecules (DAMPs). A second subset of DAMPs, called alarmins, are tissue-derived nuclear proteins, constitutively expressed at high levels in epithelial barrier tissues and endothelial barriers. These potent immunostimulants, immediately released after tissue damage, include the alarmin IL-33. This factor has aroused interest due to its singular action as an alarmin during infectious, allergic responses and acute tissue injury, and as a cytokine, contributing to the latter resolutive/repair phase of sterile inflammation. IL-33 targets iNKT cells, inducing their recruitment in an inflammatory state, and amplifying their regulatory and effector functions. In the present review, we introduce the new concept of a biological axis of iNKT cells and IL-33, involved in alerting and controlling the immune cells in experimental models of sterile inflammation. This review will focus on acute organ injury models, especially ischemia-reperfusion injury, in the kidneys, liver and lungs, where iNKT cells and IL-33 have been presumed to mediate and/or control the injury mechanisms, and their potential relevance in human pathophysiology.
Collapse
Affiliation(s)
| | | | - Louise Barbier
- Service de Chirurgie Digestive, Oncologique, Endocrinienne et Transplantation Hépatique, CHU Trousseau, Université de Tours, Tours, France
| | - Antoine Thierry
- INSERM U1082 - IRATI Group, Poitiers, France.,Service de Néphrologie, Hémodialyse et Transplantation Rénale, CHU de Poitiers, Poitiers, France
| | - Jean-Marc Gombert
- INSERM U1082 - IRATI Group, Poitiers, France.,Service d'Immunologie et d'Inflammation, CHU de Poitiers, Poitiers, France
| | | | | |
Collapse
|
365
|
A Metabolism-Based Quorum Sensing Mechanism Contributes to Termination of Inflammatory Responses. Immunity 2018; 49:654-665.e5. [DOI: 10.1016/j.immuni.2018.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/26/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022]
|
366
|
Philot Pavão B, Demarque KC, Meuser Batista M, Melo de Oliveira G, França da Silva C, Guedes da Silva FH, Gonçalves Caputo LF, Machado Cascabulho C, Barcinski MA, Correia Soeiro MDN. Impact of autologous whole blood administration upon experimental mouse models of acute Trypanosoma cruzi infection. J Venom Anim Toxins Incl Trop Dis 2018; 24:25. [PMID: 30186314 PMCID: PMC6117903 DOI: 10.1186/s40409-018-0157-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/01/2018] [Indexed: 01/03/2023] Open
Abstract
Background Autologous whole blood (AWB) administration is described as alternative/complementary medical practice widely employed in medical and veterinary therapy against infections, chronic pathologies and neoplasias. Our aim is to investigate in vivo biological effect of AWB using healthy murine models under the course of Trypanosoma cruzi acute infection. Methods The first set of studies consisted of injecting different volumes of AWB and saline (SAL) into the posterior region of quadriceps muscle of healthy male Swiss mice under distinct therapeutic schemes evaluating: animal behavior, body and organ weight, hemogram, plasmatic biochemical markers for tissue damage and inflammatory cytokine levels and profile. To assess the impact on the experimental T. cruzi infection, different schemes (prior and post infection) and periods of AWB administration (from one up to 10 days) were conducted, also employing heterologous whole blood (HWB) and evaluating plasma cytokine profile. Results No major adverse events were observed in healthy AWB-treated mice, except gait impairment in animals that received three doses of 20 μL AWB in the same hind limb. AWB and SAL triggered an immediate polymorphonuclear response followed by mononuclear infiltrate. Although SAL triggered an inflammatory response, the kinetics and intensity of the histological profile and humoral mediator levels were different from AWB, the latter occurring earlier and more intensely with concomitant elevation of plasma IL-6. Inflammatory peak response of SAL, mainly composed of mononuclear cells with IL-10, was increased at 24 h. According to the mouse model of acute T. cruzi infection, only minor decreases (< 30%) in the parasitemia levels were produced by AWB and HWB given before and after infection, without protecting against mortality. Rises in IFN-gamma, TNF-alpha and IL-6 were detected at 9 dpi in all infected animals as compared to uninfected mice but only Bz displayed a statistically significant diminution (p = 0.02) in TNF-alpha levels than infected and untreated mice. Conclusions This study revealed that the use of autologous whole blood (AWB) in the acute model employed was unable to reduce the parasitic load of infected mice, providing only a minor decrease in parasitemia levels (up to 30%) but without protecting against animal mortality. Further in vivo studies will be necessary to elucidate the effective impact of this procedure.
Collapse
Affiliation(s)
- Beatriz Philot Pavão
- 1Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ Brazil
| | - Kelly Cristina Demarque
- 1Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ Brazil
| | - Marcos Meuser Batista
- 1Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ Brazil
| | - Gabriel Melo de Oliveira
- 1Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ Brazil
| | - Cristiane França da Silva
- 1Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ Brazil
| | | | - Luzia Fátima Gonçalves Caputo
- 2Laboratório de Patologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ Brazil
| | - Cynthia Machado Cascabulho
- 3Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ Brazil
| | - Marcello André Barcinski
- 1Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ Brazil
| | - Maria de Nazaré Correia Soeiro
- 1Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ Brazil
| |
Collapse
|
367
|
Integrated proteomic analysis of tumor necrosis factor α and interleukin 1β-induced endothelial inflammation. J Proteomics 2018; 192:89-101. [PMID: 30153514 DOI: 10.1016/j.jprot.2018.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/15/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022]
Abstract
The vascular endothelium provides a unique interaction plane for plasma proteins and leukocytes in inflammation. The pro-inflammatory cytokines Tumor Necrosis Factor α (TNFα) and interleukin 1β (IL-1β) have a profound effect on endothelial cells, which includes increased levels of adhesion molecules and a disrupted barrier function. To assess the endothelial response to these cytokines at the protein level, we evaluated changes in the whole proteome, cell surface proteome and phosphoproteome after 24 h of cytokine treatment. The effects of TNFα and IL-1β on endothelial cells were strikingly similar and included changes in proteins not previously associated with endothelial inflammation. Temporal profiling revealed time-dependent proteomic changes, including a limited number of early responsive proteins such as adhesion receptors ICAM1 and SELE. In addition, this approach uncovered a greater number of late responsive proteins, including proteins related to self-antigen peptide presentation, and a transient increase in ferritin. Peptide-based cell surface proteomics revealed extensive changes at the cell surface, which were in agreement with the whole proteome. In addition, site-specific changes within ITGA5 and ICAM1 were detected. Combined, our integrated proteomic data provide detailed information on endothelial inflammation, emphasize the role of the extracellular matrix therein, and include potential targets for therapeutic intervention. SIGNIFICANCE: Pro-inflammatory cytokines induce the expression of cell adhesion molecules in vascular endothelial cells. These molecules mediate the adhesion and migration of immune cells across the vessel wall, which is a key process to resolve infections in the underlying tissue. Dysregulation of endothelial inflammation can contribute to vascular diseases and the vascular endothelium is therefore an attractive target to control inflammation. Current strategies targeting endothelial adhesion molecules, including PECAM, CD99, ICAM1 and VCAM1 do not completely prevent transmigration. To identify additional therapeutic targets, we mapped the endothelial proteome after pro-inflammatory cytokine treatment. In addition to the whole proteome, we assessed the surface proteome to focus on cell adhesion molecules, and the phosphoproteome to uncover protein activation states. Here, we present an integrated overview of affected processes which further improves our understanding of endothelial inflammation and may eventually aid in therapeutic intervention of imbalanced inflammation.
Collapse
|
368
|
Çolakoğlu M, Tunçer S, Banerjee S. Emerging cellular functions of the lipid metabolizing enzyme 15-Lipoxygenase-1. Cell Prolif 2018; 51:e12472. [PMID: 30062726 DOI: 10.1111/cpr.12472] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/22/2018] [Indexed: 02/06/2023] Open
Abstract
The oxygenation of polyunsaturated fatty acids such as arachidonic and linoleic acid through lipoxygenases (LOXs) and cyclooxygenases (COXs) leads to the production of bioactive lipids that are important both in the induction of acute inflammation and its resolution. Amongst the several isoforms of LOX that are expressed in mammals, 15-LOX-1 was shown to be important both in the context of inflammation, being expressed in cells of the immune system, and in epithelial cells where the enzyme has been shown to crosstalk with a number of important signalling pathways. This review looks into the latest developments in understanding the role of 15-LOX-1 in different disease states with emphasis on the emerging role of the enzyme in the tumour microenvironment as well as a newly re-discovered form of cell death called ferroptosis. We also discuss future perspectives on the feasibility of use of this protein as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Melis Çolakoğlu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Sinem Tunçer
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
369
|
Bhutta MF, Thornton RB, Kirkham LAS, Kerschner JE, Cheeseman MT. Understanding the aetiology and resolution of chronic otitis media from animal and human studies. Dis Model Mech 2018; 10:1289-1300. [PMID: 29125825 PMCID: PMC5719252 DOI: 10.1242/dmm.029983] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inflammation of the middle ear, known clinically as chronic otitis media, presents in different forms, such as chronic otitis media with effusion (COME; glue ear) and chronic suppurative otitis media (CSOM). These are highly prevalent diseases, especially in childhood, and lead to significant morbidity worldwide. However, much remains unclear about this disease, including its aetiology, initiation and perpetuation, and the relative roles of mucosal and leukocyte biology, pathogens, and Eustachian tube function. Chronic otitis media is commonly modelled in mice but most existing models only partially mimic human disease and many are syndromic. Nevertheless, these models have provided insights into potential disease mechanisms, and have implicated altered immune signalling, mucociliary function and Eustachian tube function as potential predisposing mechanisms. Clinical studies of chronic otitis media have yet to implicate a particular molecular pathway or mechanism, and current human genetic studies are underpowered. We also do not fully understand how existing interventions, such as tympanic membrane repair, work, nor how chronic otitis media spontaneously resolves. This Clinical Puzzle article describes our current knowledge of chronic otitis media and the existing research models for this condition. It also identifies unanswered questions about its pathogenesis and treatment, with the goal of advancing our understanding of this disease to aid the development of novel therapeutic interventions. Summary: Chronic middle ear inflammation is a common disease. Animal models, and in particular mouse models, have been used to elucidate some potential mechanisms, including dysfunction in immune signalling, mucociliary function or Eustachian tube function.
Collapse
Affiliation(s)
- Mahmood F Bhutta
- Department of ENT, Brighton and Sussex University Hospitals NHS Trust, Brighton, BN2 5BE, England .,Division of Paediatrics, University of Western Australia, Subiaco, WA 6008, Australia
| | - Ruth B Thornton
- Division of Paediatrics, University of Western Australia, Subiaco, WA 6008, Australia.,Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Subiaco, WA 6008, Australia
| | - Lea-Ann S Kirkham
- Division of Paediatrics, University of Western Australia, Subiaco, WA 6008, Australia.,Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Subiaco, WA 6008, Australia
| | - Joseph E Kerschner
- Office of the Dean, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael T Cheeseman
- Division of Developmental Biology, Roslin Institute, University of Edinburgh, Midlothian, EH23 9RG, Scotland
| |
Collapse
|
370
|
Santin JR, Machado ID, Drewes CC, de Vinci Kanda Kupa L, Soares RM, Cavalcanti DM, da Rocha Pitta I, Farsky SHP. Role of an indole-thiazolidiene PPAR pan ligand on actions elicited by G-protein coupled receptor activated neutrophils. Biomed Pharmacother 2018; 105:947-955. [PMID: 30021389 DOI: 10.1016/j.biopha.2018.06.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023] Open
Abstract
Neutrophils are the first line of defence during inflammatory processes; nevertheless, exacerbated influx and actions of neutrophils in terms of uncontrolled inflammation are harmful to the host. Hence, neutrophil activity is the target of drugs seeking to address undesired inflammation. Here, we investigated the mechanisms of action of a ligand of the three isoforms of peroxisome proliferator-activated receptors (PPAR; (5Z)-5-[(5-bromo-1H-indole-3-yl)methylene]-3-(4-chlorobenzyl)-thiazolidine-2,4-dione), dubbed LYSO-7, on neutrophils activated by N-formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLP), an agonist of G-protein coupled receptors (GPCRs) that binds to membrane-formylated peptide and activates intracellular inflammation pathways. Neutrophils were collected from the peritoneal cavity of male Wistar rats four hours after oyster glycogen injection. Afterwards, the neutrophils were incubated with saline or LYSO-7 (1 or 10 μM, 30 min), washed and stimulated with fMLP (10-7 μM, 1 h). LYSO-7 treatment inhibited gene and protein expression of adhesion molecules, CD62 L and CD18, abolished adhesion of neutrophils to endothelial cells, impaired chemotaxis, blocked the enhancement of intracellular calcium levels, induced the expression of PPARγ as well as PPARβδ and reduced nuclear translocation of nuclear factor κB (NF-κB). Moreover, topical application of LYSO-7 (10 mM) prior to local application of fMLP (10-7 μM) diminished the in vivo leukocyte-endothelial interactions in the mesentery microcirculation of rats. Together, our data highlight the effectiveness of anti-inflammatory actions of LYSO-7 on neutrophils activated by GPCRs, depending, at least in part, on impaired of NF-κB activation and induction of PPAR expression.
Collapse
Affiliation(s)
- José Roberto Santin
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Isabel Daufenback Machado
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carine C Drewes
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Léonard de Vinci Kanda Kupa
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Marcondes Soares
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Danielle Maia Cavalcanti
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ivan da Rocha Pitta
- Department of Chemistry, Federal University of Pernambuco, Pernambuco, Recife, Brazil
| | - Sandra H P Farsky
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
371
|
Hildebrand D, Eberle ME, Wölfle SM, Egler F, Sahin D, Sähr A, Bode KA, Heeg K. Hsa-miR-99b/let-7e/miR-125a Cluster Regulates Pathogen Recognition Receptor-Stimulated Suppressive Antigen-Presenting Cells. Front Immunol 2018; 9:1224. [PMID: 29967604 PMCID: PMC6015902 DOI: 10.3389/fimmu.2018.01224] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/15/2018] [Indexed: 01/14/2023] Open
Abstract
Antigen-presenting cells (APCs) regulate the balance of our immune response toward microbes. Whereas immunogenic APCs boost inflammation and activate lymphocytes, the highly plastic cells can switch into a tolerogenic/suppressive phenotype that dampens and resolves the response. Thereby the initially mediated inflammation seems to prime the switch of APCs while the strength of activation determines the grade of the suppressive phenotype. Recently, we showed that pathogen recognition receptor-mediated pro-inflammatory cytokines reprogram differentiating human blood monocytes in vitro toward an immunosuppressive phenotype through prolonged activation of signal transducer and activator of transcription (STAT) 3. The TLR7/8 ligand R848 (Resiquimod) triggers the high release of cytokines from GM-CSF/IL-4-treated monocytes. These cytokines subsequently upregulate T cell suppressive factors, such as programmed death-ligand 1 (PD-L1) and indolamin-2,3-dioxygenase (IDO) through cytokine receptor-mediated STAT3 activation. Here, we reveal an essential role for the microRNA (miR, miRNA) hsa-miR-99b/let-7e/miR-125a cluster in stabilizing the suppressive phenotype of R848-stimulated APCs on different levels. On the one hand, the miR cluster boosts R848-stimulated cytokine production through regulation of MAPkinase inhibitor Tribbles pseudokinase 2, thereby enhancing cytokine-stimulated activation of STAT3. One the other hand, the STAT3 inhibitor suppressor of cytokine signaling-1 is targeted by the miR cluster, stabilizing the STAT3-induced expression of immunosuppressive factors PD-L1 and IDO. Finally, hsa-miR-99b/let-7e/miR-125a cluster regulates generation of the suppressive tryptophan (Trp) metabolite kynurenine by targeting the tryptophanyl-tRNA synthetase WARS, the direct competitor of IDO in terms of availability of Trp. In summary, our results reveal the hsa-miR-99b/let-7e/miR-125a cluster as an important player in the concerted combination of mechanisms that stabilizes STAT3 activity and thus regulate R848-stimulated suppressive APCs.
Collapse
Affiliation(s)
- Dagmar Hildebrand
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Mariel-Esther Eberle
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine Marie Wölfle
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Franziska Egler
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Delal Sahin
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Aline Sähr
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Konrad A Bode
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Klaus Heeg
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Infection Research (DZIF), Brunswick, Germany
| |
Collapse
|
372
|
Konarska K, Cieszkowski J, Warzecha Z, Ceranowicz P, Chmura A, Kuśnierz-Cabala B, Gałązka K, Kowalczyk P, Miskiewicz A, Konturek TJ, Pędziwiatr M, Dembiński A. Treatment with Obestatin-A Ghrelin Gene-Encoded Peptide-Reduces the Severity of Experimental Colitis Evoked by Trinitrobenzene Sulfonic Acid. Int J Mol Sci 2018; 19:ijms19061643. [PMID: 29865176 PMCID: PMC6032262 DOI: 10.3390/ijms19061643] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
Obestatin is a 23-amino acid peptide derived from proghrelin, a common prohormone for ghrelin and obestatin. Previous studies showed that obestatin exhibited some protective and therapeutic effects in the gut. The aim of our presented study was to examine the effect of treatment with obestatin on trinitrobenzene sulfonic acid (TNBS)-induced colitis. In rats anesthetized with ketamine, colitis was induced through intrarectal administration of 25 mg of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Obestatin was administered intraperitoneally at doses of 4, 8, or 16 nmol/kg, twice per day for four consecutive days. The first dose of obestatin was given one day before the induction of colitis, and the last one was given two days after administration of TNBS. Fourteen days after the induction of colitis, rats were anesthetized again with ketamine, and the severity of colitis was determined. The administration of obestatin had no effect on the parameters tested in rats without the induction of colitis. In rats with colitis, administration of obestatin at doses of 8 or 16 nmol/kg reduced the area of colonic damage, and improved mucosal blood flow in the colon. These effects were accompanied by a reduction in the colitis-evoked increase in the level of blood leukocytes, and mucosal concentration of pro-inflammatory interleukin-1β. Moreover, obestatin administered at doses of 8 or 16 nmol/kg reduced histological signs of colonic damage. The administration of obestatin at a dose of 4 nmol/kg failed to significantly affect the parameters tested. Overall, treatment with obestatin reduced the severity of TNBS-induced colitis in rats. This effect was associated with an improvement in mucosal blood flow in the colon, and a decrease in local and systemic inflammatory processes.
Collapse
Affiliation(s)
- Katarzyna Konarska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Jakub Cieszkowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Zygmunt Warzecha
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Piotr Ceranowicz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Anna Chmura
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Beata Kuśnierz-Cabala
- Department of Clinical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Cracow, Poland.
| | - Krystyna Gałązka
- Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna, Poland.
| | - Andrzej Miskiewicz
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 00-246 Warsaw, Poland.
| | - Thomas Jan Konturek
- Department of Medicine, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA.
| | - Michał Pędziwiatr
- Second Department of General Surgery, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Cracow, Poland.
| | - Artur Dembiński
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| |
Collapse
|
373
|
Fruchon S, Poupot R. The ABP Dendrimer, a Drug-Candidate against Inflammatory Diseases That Triggers the Activation of Interleukin-10 Producing Immune Cells. Molecules 2018; 23:E1272. [PMID: 29799517 PMCID: PMC6100262 DOI: 10.3390/molecules23061272] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
The ABP dendrimer, which is built on a phosphorus-based scaffold and bears twelve azabisphosphonate groups at its surface, is one of the dendrimers that has been shown to display immuno-modulatory and anti-inflammatory effects towards the human immune system. Its anti-inflammatory properties have been successfully challenged in animal models of inflammatory disorders. In this review, we trace the discovery and the evaluation of the therapeutic effects of the ABP dendrimer in three different animal models of both acute and chronic inflammatory diseases. We emphasize that its therapeutic effects rely on the enhancement of the production of Interleukin-10, the paradigm of anti-inflammatory cytokines, by different subsets of immune cells, such as monocytes/macrophages and CD4+ T lymphocytes.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/chemical synthesis
- Anti-Inflammatory Agents/pharmacology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- Dendrimers/chemical synthesis
- Dendrimers/pharmacology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Expression
- Humans
- Interleukin-10/genetics
- Interleukin-10/immunology
- Lymphocyte Activation/drug effects
- Mice
- Monocytes/drug effects
- Monocytes/immunology
- Receptors, Interleukin-1/deficiency
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/immunology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Séverine Fruchon
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France.
| | - Rémy Poupot
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France.
| |
Collapse
|
374
|
Rahtes A, Geng S, Lee C, Li L. Cellular and molecular mechanisms involved in the resolution of innate leukocyte inflammation. J Leukoc Biol 2018; 104:535-541. [PMID: 29688584 DOI: 10.1002/jlb.3ma0218-070r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a host response to infection or damage and is vital for clearing pathogens and host debris. When this resolution fails to occur, chronic inflammation ensues. Chronic inflammation is typically characterized as a low-grade, persistent inflammatory process that can last for months or even years. This differs from acute inflammation, which is typically a fast, robust response to a stimulus followed by resolution with return to homeostasis. Inflammation resolution occurs through a variety of cellular processes and signaling components that act as "brakes" to keep inflammation in check. In cases of chronic inflammation, these "brakes" are often dysfunctional. Due to its prevalent association with chronic diseases, there is growing interest in characterizing these negative regulators and their cellular effects in innate leukocytes. In this review, we aim to describe key cellular and molecular homeostatic regulators of innate leukocytes, with particular attention to the emerging regulatory processes of autophagy and lysosomal fusion during inflammation resolution.
Collapse
Affiliation(s)
- Allison Rahtes
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Christina Lee
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
375
|
Abstract
Preeclampsia (PE) is one of the leading causes of maternal morbidity and mortality worldwide. This disease is believed to occur in two stages with placental dysfunction in early pregnancy leading to maternal clinical findings after 20 weeks of gestation, as consequence of systemic inflammation, oxidative stress, and endothelial dysfunction. Much evidence suggests that PE women display an overshooting inflammatory response throughout pregnancy due to an unbalanced regulation of innate and adaptive immune responses. Recently, it has been suggested that dysregulation of endogenous protective pathways might be associated with PE etiopathogenesis. Resolution of inflammation is an active process coordinated by mediators from diverse nature that regulate key cellular events to restore tissue homeostasis. Inadequate or insufficient resolution of inflammation is believed to play an important role in the development of chronic inflammatory diseases, like PE. In this narrative review, we discuss possible pro-resolution pathways that might be compromised in PE women, which could be targets to novel therapeutic strategies in this disease.
Collapse
|
376
|
Moges R, De Lamache DD, Sajedy S, Renaux BS, Hollenberg MD, Muench G, Abbott EM, Buret AG. Anti-Inflammatory Benefits of Antibiotics: Tylvalosin Induces Apoptosis of Porcine Neutrophils and Macrophages, Promotes Efferocytosis, and Inhibits Pro-Inflammatory CXCL-8, IL1α, and LTB 4 Production, While Inducing the Release of Pro-Resolving Lipoxin A 4 and Resolvin D1. Front Vet Sci 2018; 5:57. [PMID: 29696149 PMCID: PMC5905233 DOI: 10.3389/fvets.2018.00057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/12/2018] [Indexed: 12/19/2022] Open
Abstract
Excessive accumulation of neutrophils and their uncontrolled death by necrosis at the site of inflammation exacerbates inflammatory responses and leads to self-amplifying tissue injury and loss of organ function, as exemplified in a variety of respiratory diseases. In homeostasis, neutrophils are inactivated by apoptosis, and non phlogistically removed by neighboring macrophages in a process known as efferocytosis, which promotes the resolution of inflammation. The present study assessed the potential anti-inflammatory and pro-resolution benefits of tylvalosin, a recently developed broad-spectrum veterinary macrolide derived from tylosin. Recent findings indicate that tylvalosin may modulate inflammation by suppressing NF-κB activation. Neutrophils and monocyte-derived macrophages were isolated from fresh blood samples obtained from 12- to 22-week-old pigs. Leukocytes exposed to vehicle or to tylvalosin (0.1, 1.0, or 10 µg/mL; 0.096-9.6 µM) were assessed at various time points for apoptosis, necrosis, efferocytosis, and changes in the production of cytokines and lipid mediators. The findings indicate that tylvalosin increases porcine neutrophil and macrophage apoptosis in a concentration- and time-dependent manner, without altering levels of necrosis or reactive oxygen species production. Importantly, tylvalosin increased the release of pro-resolving Lipoxin A4 (LXA4) and Resolvin D1 (RvD 1 ) while inhibiting the production of pro-inflammatory Leukotriene B4 (LTB4) in Ca2+ ionophore-stimulated porcine neutrophils. Tylvalosin increased neutrophil phospholipase C activity, an enzyme involved in releasing arachidonic acid from membrane stores. Tylvalosin also inhibited pro-inflammatory chemokine (C-X-C motif) ligand 8 (CXCL-8, also known as Interleukin-8) and interleukin-1 alpha (IL-1α) protein secretion in bacterial lipopolysaccharide-stimulated macrophages. Together, these data illustrate that tylvalosin has potent immunomodulatory effects in porcine leukocytes in addition to its antimicrobial properties.
Collapse
Affiliation(s)
- Ruth Moges
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.,Inflammation Research Network, University of Calgary, Calgary, AB, Canada
| | - Dimitri Desmonts De Lamache
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.,Inflammation Research Network, University of Calgary, Calgary, AB, Canada
| | - Saman Sajedy
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Bernard S Renaux
- Inflammation Research Network, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Morley D Hollenberg
- Inflammation Research Network, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Gregory Muench
- University of Calgary Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.,Inflammation Research Network, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
377
|
Kuret T, Lakota K, Mali P, Čučnik S, Praprotnik S, Tomšič M, Sodin-Semrl S. Naturally occurring antibodies against serum amyloid A reduce IL-6 release from peripheral blood mononuclear cells. PLoS One 2018; 13:e0195346. [PMID: 29617422 PMCID: PMC5884545 DOI: 10.1371/journal.pone.0195346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
Serum amyloid A (SAA) is a sensitive inflammatory marker rapidly increased in response to infection, injury or trauma during the acute phase. Resolution of the acute phase and SAA reduction are well documented, however the exact mechanism remains elusive. Two inducible SAA proteins, SAA1 and SAA2, with their variants could contribute to systemic inflammation. While unconjugated human variant SAA1α is already commercially available, the variants of SAA2 are not. Antibodies against SAA have been identified in apparently healthy blood donors (HBDs) in smaller, preliminary studies. So, our objective was to detect anti-SAA and anti-SAA1α autoantibodies in the sera of 300 HBDs using ELISA, characterize their specificity and avidity. Additionally, we aimed to determine the presence of anti-SAA and anti-SAA1α autoantibodies in intravenous immunoglobulin (IVIg) preparations and examine their effects on released IL-6 from SAA/SAA1α-treated peripheral blood mononuclear cells (PBMCs). Autoantibodies against SAA and SAA1α had a median (IQR) absorbance OD (A450) of 0.655 (0.262–1.293) and 0.493 (0.284–0.713), respectively. Both anti-SAA and anti-SAA1α exhibited heterogeneous to high avidity and reached peak levels between 41–50 years, then diminished with age in the oldest group (51–67 years). Women consistently exhibited significantly higher levels than men. Good positive correlation was observed between anti-SAA and anti-SAA1α. Both anti-SAA and anti-SAA1α were detected in IVIg, their fractions subsequently isolated, and shown to decrease IL-6 protein levels released from SAA/SAA1α-treated PBMCs. In conclusion, naturally occurring antibodies against SAA and anti-SAA1α could play a physiological role in down-regulating their antigen and proinflammatory cytokines leading to the resolution of the acute phase and could be an important therapeutic option in patients with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Tadeja Kuret
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katja Lakota
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Science and Information Technologies, University of Primorska, Koper, Slovenia
| | - Polonca Mali
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Saša Čučnik
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sonja Praprotnik
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Snezna Sodin-Semrl
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Science and Information Technologies, University of Primorska, Koper, Slovenia
- * E-mail:
| |
Collapse
|
378
|
Varga G, Foell D. Anti-inflammatory monocytes-interplay of innate and adaptive immunity. Mol Cell Pediatr 2018; 5:5. [PMID: 29616417 PMCID: PMC5882470 DOI: 10.1186/s40348-018-0083-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/26/2018] [Indexed: 12/22/2022] Open
Abstract
Monocytes are central to our health as they contribute to both hemispheres of our immune system, the innate and the adaptive arm. Sensing signals from the outside world, monocytes govern the innate immunity by initiating inflammation, e.g., through production of IL-1β. Uncontrolled and sustained inflammation, however, leads to auto-inflammatory syndromes and sometimes to autoimmune diseases. Monocytes can be a driving force for the establishment of such diseases when their ability to also contribute to the resolution of inflammation is impaired. It is therefore of vast importance to gain knowledge about the anti-inflammatory mechanisms monocytes can use to participate in downregulation and resolution of inflammation. Here, we summarize some of the known anti-inflammatory mechanisms and features of regulatory monocytes and shed light on their importance in governing innate and adaptive immune responses. Considering anti-inflammatory mechanisms of monocytes will also help to develop new strategies to use monocytes as therapeutic targets in the future.
Collapse
Affiliation(s)
- Georg Varga
- Department of Pediatric Rheumatology and Immunology, University Hospital Muenster, University of Muenster, Domagkstr. 3, 48149, Münster, Germany.
| | - Dirk Foell
- Department of Pediatric Rheumatology and Immunology, University Hospital Muenster, University of Muenster, Domagkstr. 3, 48149, Münster, Germany
| |
Collapse
|
379
|
Wu P, Zhang B, Shi H, Qian H, Xu W. MSC-exosome: A novel cell-free therapy for cutaneous regeneration. Cytotherapy 2018; 20:291-301. [DOI: 10.1016/j.jcyt.2017.11.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/22/2017] [Accepted: 11/01/2017] [Indexed: 02/08/2023]
|
380
|
Rehal S, Stephens M, Roizes S, Liao S, von der Weid PY. Acute small intestinal inflammation results in persistent lymphatic alterations. Am J Physiol Gastrointest Liver Physiol 2018; 314:G408-G417. [PMID: 29351397 DOI: 10.1152/ajpgi.00340.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) has a complex pathophysiology with limited treatments. Structural and functional changes in the intestinal lymphatic system have been associated with the disease, with increased risk of IBD occurrence linked to a history of acute intestinal injury. To examine the potential role of the lymphatic system in inflammation recurrence, we evaluated morphological and functional changes in mouse mucosal and mesenteric lymphatic vessels, and within the mesenteric lymph nodes during acute ileitis caused by a 7-day treatment with dextran sodium sulfate (DSS). We monitored whether the changes persisted during a 14-day recovery period and determined their potential consequences on dendritic cell (DC) trafficking between the mucosa and lymphoid tissues. DSS administration was associated with marked lymphatic abnormalities and dysfunctions exemplified by lymphangiectasia and lymphangiogenesis in the ileal mucosa and mesentery, increased mesenteric lymphatic vessel leakage, and lymphadenopathy. Lymphangiogenesis and lymphadenopathy were still evident after recovery from intestinal inflammation and correlated with higher numbers of DCs in mucosal and lymphatic tissues. Specifically, a deficit in CD103+ DCs observed during acute DSS in the lamina propria was reversed and further enhanced during recovery. We concluded that an acute intestinal insult caused alterations of the mesenteric lymphatic system, including lymphangiogenesis, which persisted after resolution of inflammation. These morphological and functional changes could compromise DC function and movement, increasing susceptibility to further gastrointestinal disease. Elucidation of the changes in mesenteric and intestinal lymphatic function should offer key insights for new therapeutic strategies in gastrointestinal disorders such as IBD. NEW & NOTEWORTHY Lymphatic integrity plays a critical role in small intestinal homeostasis. Acute intestinal insult in a mouse model of acute ileitis causes morphological and functional changes in mesenteric and intestinal lymphatic vessels. While some of the changes significantly regressed during inflammation resolution, others persisted, including lymphangiogenesis and altered dendritic cell function and movement, potentially increasing susceptibility to the recurrence of gastrointestinal inflammation.
Collapse
Affiliation(s)
- Sonia Rehal
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Matthew Stephens
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Simon Roizes
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Shan Liao
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Pierre-Yves von der Weid
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
381
|
Galvão I, Tavares LP, Corrêa RO, Fachi JL, Rocha VM, Rungue M, Garcia CC, Cassali G, Ferreira CM, Martins FS, Oliveira SC, Mackay CR, Teixeira MM, Vinolo MAR, Vieira AT. The Metabolic Sensor GPR43 Receptor Plays a Role in the Control of Klebsiella pneumoniae Infection in the Lung. Front Immunol 2018. [PMID: 29515566 PMCID: PMC5826235 DOI: 10.3389/fimmu.2018.00142] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pneumonia is one of the leading causes of death and mortality worldwide. The inflammatory responses that follow respiratory infections are protective leading to pathogen clearance but can also be deleterious if unregulated. The microbiota is known to be an important protective barrier against infections, mediating both direct inhibitory effects against the potential pathogen and also regulating the immune responses contributing to a proper clearance of the pathogen and return to homeostasis. GPR43 is one receptor for acetate, a microbiota metabolite shown to induce and to regulate important immune functions. Here, we addressed the role of GPR43 signaling during pulmonary bacterial infections. We have shown for the first time that the absence of GPR43 leads to increased susceptibility to Klebsiella pneumoniae infection, which was associated to both uncontrolled proliferation of bacteria and to increased inflammatory response. Mechanistically, we showed that GPR43 expression especially in neutrophils and alveolar macrophages is important for bacterial phagocytosis and killing. In addition, treatment with the GPR43 ligand, acetate, is protective during bacterial lung infection. This was associated to reduction in the number of bacteria in the airways and to the control of the inflammatory responses. Altogether, GPR43 plays an important role in the “gut–lung axis” as a sensor of the host gut microbiota activity through acetate binding promoting a proper immune response in the lungs.
Collapse
Affiliation(s)
- Izabela Galvão
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luciana P Tavares
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Renan O Corrêa
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, Brazil
| | - José Luís Fachi
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Vitor Melo Rocha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcela Rungue
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana C Garcia
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Geovanni Cassali
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Caroline M Ferreira
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Flaviano S Martins
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sergio C Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Charles R Mackay
- Department of Immunology, Monash University, Melborne, VIC, Australia
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marco Aurélio R Vinolo
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Angélica T Vieira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
382
|
Triantafyllou E, Pop OT, Possamai LA, Wilhelm A, Liaskou E, Singanayagam A, Bernsmeier C, Khamri W, Petts G, Dargue R, Davies SP, Tickle J, Yuksel M, Patel VC, Abeles RD, Stamataki Z, Curbishley SM, Ma Y, Wilson ID, Coen M, Woollard KJ, Quaglia A, Wendon J, Thursz MR, Adams DH, Weston CJ, Antoniades CG. MerTK expressing hepatic macrophages promote the resolution of inflammation in acute liver failure. Gut 2018; 67:333-347. [PMID: 28450389 PMCID: PMC5868289 DOI: 10.1136/gutjnl-2016-313615] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/24/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Acute liver failure (ALF) is characterised by overwhelming hepatocyte death and liver inflammation with massive infiltration of myeloid cells in necrotic areas. The mechanisms underlying resolution of acute hepatic inflammation are largely unknown. Here, we aimed to investigate the impact of Mer tyrosine kinase (MerTK) during ALF and also examine how the microenvironmental mediator, secretory leucocyte protease inhibitor (SLPI), governs this response. DESIGN Flow cytometry, immunohistochemistry, confocal imaging and gene expression analyses determined the phenotype, functional/transcriptomic profile and tissue topography of MerTK+ monocytes/macrophages in ALF, healthy and disease controls. The temporal evolution of macrophage MerTK expression and its impact on resolution was examined in APAP-induced acute liver injury using wild-type (WT) and Mer-deficient (Mer-/-) mice. SLPI effects on hepatic myeloid cells were determined in vitro and in vivo using APAP-treated WT mice. RESULTS We demonstrate a significant expansion of resolution-like MerTK+HLA-DRhigh cells in circulatory and tissue compartments of patients with ALF. Compared with WT mice which show an increase of MerTK+MHCIIhigh macrophages during the resolution phase in ALF, APAP-treated Mer-/- mice exhibit persistent liver injury and inflammation, characterised by a decreased proportion of resident Kupffer cells and increased number of neutrophils. Both in vitro and in APAP-treated mice, SLPI reprogrammes myeloid cells towards resolution responses through induction of a MerTK+HLA-DRhigh phenotype which promotes neutrophil apoptosis and their subsequent clearance. CONCLUSIONS We identify a hepatoprotective, MerTK+, macrophage phenotype that evolves during the resolution phase following ALF and represents a novel immunotherapeutic target to promote resolution responses following acute liver injury.
Collapse
Affiliation(s)
- Evangelos Triantafyllou
- Institute of Liver Studies, King's College Hospital, King's College London, London, UK,Division of Digestive Diseases, St Mary's Hospital, Imperial College London, London, UK,National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Oltin T Pop
- Institute of Liver Studies, King's College Hospital, King's College London, London, UK
| | - Lucia A Possamai
- Division of Digestive Diseases, St Mary's Hospital, Imperial College London, London, UK
| | - Annika Wilhelm
- Division of Digestive Diseases, St Mary's Hospital, Imperial College London, London, UK
| | - Evaggelia Liaskou
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Arjuna Singanayagam
- Institute of Liver Studies, King's College Hospital, King's College London, London, UK,Division of Digestive Diseases, St Mary's Hospital, Imperial College London, London, UK
| | - Christine Bernsmeier
- Institute of Liver Studies, King's College Hospital, King's College London, London, UK
| | - Wafa Khamri
- Division of Digestive Diseases, St Mary's Hospital, Imperial College London, London, UK
| | - Gemma Petts
- Division of Digestive Diseases, St Mary's Hospital, Imperial College London, London, UK
| | - Rebecca Dargue
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Scott P Davies
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Joseph Tickle
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Muhammed Yuksel
- Institute of Liver Studies, King's College Hospital, King's College London, London, UK
| | - Vishal C Patel
- Institute of Liver Studies, King's College Hospital, King's College London, London, UK
| | - Robin D Abeles
- Institute of Liver Studies, King's College Hospital, King's College London, London, UK
| | - Zania Stamataki
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Stuart M Curbishley
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Yun Ma
- Institute of Liver Studies, King's College Hospital, King's College London, London, UK
| | - Ian D Wilson
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Muireann Coen
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Kevin J Woollard
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, UK
| | - Alberto Quaglia
- Institute of Liver Studies, King's College Hospital, King's College London, London, UK
| | - Julia Wendon
- Institute of Liver Studies, King's College Hospital, King's College London, London, UK
| | - Mark R Thursz
- Division of Digestive Diseases, St Mary's Hospital, Imperial College London, London, UK
| | - David H Adams
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Chris J Weston
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Charalambos G Antoniades
- Institute of Liver Studies, King's College Hospital, King's College London, London, UK,Division of Digestive Diseases, St Mary's Hospital, Imperial College London, London, UK,National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
383
|
Magalhaes GS, Barroso LC, Reis AC, Rodrigues-Machado MG, Gregório JF, Motta-Santos D, Oliveira AC, Perez DA, Barcelos LS, Teixeira MM, Santos RAS, Pinho V, Campagnole-Santos MJ. Angiotensin-(1-7) Promotes Resolution of Eosinophilic Inflammation in an Experimental Model of Asthma. Front Immunol 2018; 9:58. [PMID: 29434591 PMCID: PMC5797293 DOI: 10.3389/fimmu.2018.00058] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/09/2018] [Indexed: 01/31/2023] Open
Abstract
Defective apoptosis of eosinophils, the main leukocyte in the pathogenesis of asthma, and delay in its removal lead to lung damage and loss of pulmonary function due to failure in the resolution of inflammation. Here, we investigated the ability of angiotensin-(1-7) [Ang-(1-7)], a pivotal peptide of the renin-angiotensin system, to promote resolution of an allergic lung inflammatory response. Balb/c mice were sensitized and challenged with ovalbumin and treated with Ang-(1-7) at the peak of the inflammatory process. Bronchoalveolar lavage (BAL) fluid and lungs were collected 24 h after treatment. Different lung lobes were processed for histology to evaluate inflammatory cell infiltration, airway and pulmonary remodeling, total collagen staining, and measurements of (i) collagen I and III mRNA expression by qRT-PCR; (ii) ERK1/2, IκB-α, and GATA3 protein levels by Western blotting; and (iii) eosinophilic peroxidase activity. Total number of inflammatory cells, proportion of apoptotic eosinophils and immunofluorescence for caspase 3 and NF-κB in leukocytes were evaluated in the BAL. Mas receptor immunostaining was evaluated in mouse and human eosinophils. Engulfment of human polimorphonuclear cells by macrophages, efferocytosis, was evaluated in vivo. Ang-(1-7) reduced eosinophils in the lung and in the BAL, increased the number of apoptotic eosinophils, shown by histology criteria and by increase in caspase 3 immunostaining. Furthermore, Ang-(1-7) decreased NF-kB immunostaining in eosinophils, reduced GATA3, ERK1/2, and IκB-α expression in the lung and decreased pulmonary remodeling and collagen deposition. Importantly, Ang-(1-7) increased efferocytosis. Our results demonstrate, for the first time, Ang-(1-7) activates events that are crucial for resolution of the inflammatory process of asthma and promotion of the return of lung homeostasis, indicating Ang-(1-7) as novel endogenous inflammation-resolving mediator.
Collapse
Affiliation(s)
- Giselle S Magalhaes
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lívia C Barroso
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alesandra C Reis
- Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maria G Rodrigues-Machado
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana F Gregório
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daisy Motta-Santos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Aline C Oliveira
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Denise A Perez
- Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucíola S Barcelos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robson A S Santos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maria Jose Campagnole-Santos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
384
|
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018; 9:7204-7218. [PMID: 29467962 PMCID: PMC5805548 DOI: 10.18632/oncotarget.23208] [Citation(s) in RCA: 2399] [Impact Index Per Article: 399.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a biological response of the immune system that can be triggered by a variety of factors, including pathogens, damaged cells and toxic compounds. These factors may induce acute and/or chronic inflammatory responses in the heart, pancreas, liver, kidney, lung, brain, intestinal tract and reproductive system, potentially leading to tissue damage or disease. Both infectious and non-infectious agents and cell damage activate inflammatory cells and trigger inflammatory signaling pathways, most commonly the NF-κB, MAPK, and JAK-STAT pathways. Here, we review inflammatory responses within organs, focusing on the etiology of inflammation, inflammatory response mechanisms, resolution of inflammation, and organ-specific inflammatory responses.
Collapse
Affiliation(s)
- Linlin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
385
|
Villacorta L, Minarrieta L, Salvatore SR, Khoo NK, Rom O, Gao Z, Berman RC, Jobbagy S, Li L, Woodcock SR, Chen YE, Freeman BA, Ferreira AM, Schopfer FJ, Vitturi DA. In situ generation, metabolism and immunomodulatory signaling actions of nitro-conjugated linoleic acid in a murine model of inflammation. Redox Biol 2018; 15:522-531. [PMID: 29413964 PMCID: PMC5881417 DOI: 10.1016/j.redox.2018.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 12/17/2022] Open
Abstract
Conjugated linoleic acid (CLA) is a prime substrate for intra-gastric nitration giving rise to the formation of nitro-conjugated linoleic acid (NO2-CLA). Herein, NO2-CLA generation is demonstrated within the context of acute inflammatory responses both in vitro and in vivo. Macrophage activation resulted in dose- and time-dependent CLA nitration and also in the production of secondary electrophilic and non-electrophilic derivatives. Both exogenous NO2-CLA as well as that generated in situ, attenuated NF-κB-dependent gene expression, decreased pro-inflammatory cytokine production and up-regulated Nrf2-regulated proteins. Importantly, both CLA nitration and the corresponding downstream anti-inflammatory actions of NO2-CLA were recapitulated in a mouse peritonitis model where NO2-CLA administration decreased pro-inflammatory cytokines and inhibited leukocyte recruitment. Taken together, our results demonstrate that the formation of NO2-CLA has the potential to function as an adaptive response capable of not only modulating inflammation amplitude but also protecting neighboring tissues via the expression of Nrf2-dependent genes.
Collapse
Affiliation(s)
- Luis Villacorta
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, USA.
| | - Lucia Minarrieta
- Cátedra de Inmunología, Facultad de Química y Ciencias, Universidad de la República, Montevideo, Uruguay; Institute of Infection Immunology, TWINCORE, Hannover, Germany
| | - Sonia R Salvatore
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas K Khoo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oren Rom
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Zhen Gao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Rebecca C Berman
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Soma Jobbagy
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lihua Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven R Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Eugene Chen
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana M Ferreira
- Cátedra de Inmunología, Facultad de Química y Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dario A Vitturi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
386
|
Barbosa M, Lopes G, Ferreres F, Andrade PB, Pereira DM, Gil-Izquierdo Á, Valentão P. Phlorotannin extracts from Fucales: Marine polyphenols as bioregulators engaged in inflammation-related mediators and enzymes. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
387
|
Barroso LC, Magalhaes GS, Galvão I, Reis AC, Souza DG, Sousa LP, Santos RAS, Campagnole-Santos MJ, Pinho V, Teixeira MM. Angiotensin-(1-7) Promotes Resolution of Neutrophilic Inflammation in a Model of Antigen-Induced Arthritis in Mice. Front Immunol 2017; 8:1596. [PMID: 29209329 PMCID: PMC5701946 DOI: 10.3389/fimmu.2017.01596] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/06/2017] [Indexed: 12/29/2022] Open
Abstract
Defective resolution of inflammation may be crucial for the initiation and development of chronic inflammatory diseases, such as arthritis. Therefore, it has been suggested that therapeutic strategies based on molecules that facilitate inflammation resolution present great potential for the treatment of chronic inflammatory diseases. In this study, we investigated the effects and role of angiotensin-(1-7) [Ang-(1-7)] in driving resolution of neutrophilic inflammation in a model of arthritis. For this purpose, male C57BL/6 mice were subjected to antigen-induced arthritis and treated with Ang-(1-7) at the peak of the inflammatory process. Analysis of the number of inflammatory cells, apoptosis, and immunofluorescence for NF-κB was performed in the exudate collected from the knee cavity. Neutrophil accumulation in periarticular tissue was measured by assaying myeloperoxidase activity. Apoptosis of human neutrophil after treatment with Ang-(1-7) was evaluated morphologically and by flow cytometry, and NF-κB phosphorylation by immunofluorescence. Efferocytosis was evaluated in vivo. Therapeutic treatment with Ang-(1-7) at the peak of inflammation promoted resolution, an effect associated with caspase-dependent neutrophils apoptosis and NF-κB inhibition. Importantly, Ang-(1-7) was also able to induce apoptosis of human neutrophils, an effect associated with NF-κB inhibition. The pro-resolving effects of Ang-(1-7) were inhibited by the Mas receptor antagonist A779. Finally, we showed that Ang-(1-7) increased the efferocytic ability of murine macrophages. Our results clearly demonstrate that Ang-(1-7) resolves neutrophilic inflammation in vivo acting in two key step of resolution: apoptosis of neutrophils and their removal by efferocytosis. Ang-(1-7) is a novel mediator of resolution of inflammation.
Collapse
Affiliation(s)
- Lívia C Barroso
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Giselle S Magalhaes
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Galvão
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alessandra C Reis
- Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daniella G Souza
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robson A S Santos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maria Jose Campagnole-Santos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
388
|
Sugimoto MA, de Jesus Amazonas da Silva M, Froede Brito L, Dos Santos Borges R, Amaral FA, de Araujo Boleti AP, Ordoñez ME, Carlos Tavares J, Pires Sousa L, Lima ES. Anti-Inflammatory Potential of 1-Nitro-2-Phenylethylene. Molecules 2017; 22:molecules22111977. [PMID: 29140265 PMCID: PMC6150367 DOI: 10.3390/molecules22111977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 11/16/2022] Open
Abstract
Inflammation is a reaction of the host to infectious or sterile stimuli and has the physiological purpose of restoring tissue homeostasis. However, uncontrolled or unresolved inflammation can lead to tissue damage, giving rise to a plethora of chronic inflammatory diseases, including metabolic syndrome and autoimmunity pathologies with eventual loss of organ function. Beta-nitrostyrene and its derivatives are known to have several biological activities, including anti-edema, vasorelaxant, antiplatelet, anti-inflammatory, and anticancer. However, few studies have been carried out regarding the anti-inflammatory effects of this class of compounds. Thereby, the aim of this study was to evaluate the anti-inflammatory activity of 1-nitro-2-phenylethene (NPe) using in vitro and in vivo assays. Firstly, the potential anti-inflammatory activity of NPe was evaluated by measuring TNF-α produced by human macrophages stimulated with lipopolysaccharide (LPS). NPe at non-toxic doses opposed the inflammatory effects induced by LPS stimulation, namely production of the inflammatory cytokine TNF-α and activation of NF-κB and ERK pathways (evaluated by phosphorylation of inhibitor of kappa B-alpha [IκB-α] and extracellular signal-regulated kinase 1/2 [ERK1/2], respectively). In a well-established model of acute pleurisy, pretreatment of LPS-challenged mice with NPe reduced neutrophil accumulation in the pleural cavity. This anti-inflammatory effect was associated with reduced activation of NF-κB and ERK1/2 pathways in NPe treated mice as compared to untreated animals. Notably, NPe was as effective as dexamethasone in both, reducing neutrophil accumulation and inhibiting ERK1/2 and IκB-α phosphorylation. Taken together, the results suggest a potential anti-inflammatory activity for NPe via inhibition of ERK1/2 and NF-κB pathways on leukocytes.
Collapse
Affiliation(s)
- Michelle A Sugimoto
- Laboratory of Inflammation Signaling, Department of Clinical Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| | - Márcia de Jesus Amazonas da Silva
- Laboratory of Biological Activity, Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus 69067-005, AM, Brazil.
| | - Larissa Froede Brito
- Laboratory of Inflammation Signaling, Department of Clinical Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| | - Rosivaldo Dos Santos Borges
- Nucleus of Studies and Selection of Bioactive Molecules, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil.
| | - Flávio Almeida Amaral
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| | - Ana Paula de Araujo Boleti
- Nucleus of Studies and Selection of Bioactive Molecules, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil.
| | - Maritza Echevarria Ordoñez
- Nucleus of Studies and Selection of Bioactive Molecules, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil.
| | - Jose Carlos Tavares
- Laboratory of Research in Drugs, Department of Biological Sciences and Health, Federal University of Amapá, Macapá 68903-419, AP, Brazil.
| | - Lirlandia Pires Sousa
- Laboratory of Inflammation Signaling, Department of Clinical Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| | - Emerson Silva Lima
- Laboratory of Biological Activity, Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus 69067-005, AM, Brazil.
| |
Collapse
|
389
|
Pankevich EV, Astakhova AA, Chistyakov DV, Sergeeva MG. Antiinflammatory effect of rosiglitazone via modulation of mRNA stability of interleukin 10 and cyclooxygenase 2 in astrocytes. BIOCHEMISTRY (MOSCOW) 2017; 82:1276-1284. [DOI: 10.1134/s0006297917110050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
390
|
Cavalcante-Silva LHA, Lima ÉDA, Carvalho DCM, de Sales-Neto JM, Alves AKDA, Galvão JGFM, da Silva JSDF, Rodrigues-Mascarenhas S. Much More than a Cardiotonic Steroid: Modulation of Inflammation by Ouabain. Front Physiol 2017; 8:895. [PMID: 29176951 PMCID: PMC5686084 DOI: 10.3389/fphys.2017.00895] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/24/2017] [Indexed: 12/22/2022] Open
Abstract
Since the discovery of ouabain as a cardiotonic steroid hormone present in higher mammals, research about it has progressed rapidly and several of its physiological and pharmacological effects have been described. Ouabain can behave as a stress hormone and adrenal cortex is its main source. Direct effects of ouabain are originated due to the binding to its receptor, the Na+/K+-ATPase, on target cells. This interaction can promote Na+ transport blockade or even activation of signaling transduction pathways (e.g., EGFR/Src-Ras-ERK pathway activation), independent of ion transport. Besides the well-known effect of ouabain on the cardiovascular system and blood pressure control, compelling evidence indicates that ouabain regulates a number of immune functions. Inflammation is a tightly coordinated immunological function that is also affected by ouabain. Indeed, this hormone can modulate many inflammatory events such as cell migration, vascular permeability, and cytokine production. Moreover, ouabain also interferes on neuroinflammation. However, it is not clear how ouabain controls these events. In this brief review, we summarize the updates of ouabain effect on several aspects of peripheral and central inflammation, bringing new insights into ouabain functions on the immune system.
Collapse
Affiliation(s)
- Luiz H A Cavalcante-Silva
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Éssia de Almeida Lima
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Deyse C M Carvalho
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - José M de Sales-Neto
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Anne K de Abreu Alves
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - José G F M Galvão
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Juliane S de França da Silva
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil.,Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
391
|
Ungaro F, Tacconi C, Massimino L, Corsetto PA, Correale C, Fonteyne P, Piontini A, Garzarelli V, Calcaterra F, Della Bella S, Spinelli A, Carvello M, Rizzo AM, Vetrano S, Petti L, Fiorino G, Furfaro F, Mavilio D, Maddipati KR, Malesci A, Peyrin-Biroulet L, D'Alessio S, Danese S. MFSD2A Promotes Endothelial Generation of Inflammation-Resolving Lipid Mediators and Reduces Colitis in Mice. Gastroenterology 2017; 153:1363-1377.e6. [PMID: 28827082 DOI: 10.1053/j.gastro.2017.07.048] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Alterations in signaling pathways that regulate resolution of inflammation (resolving pathways) contribute to pathogenesis of ulcerative colitis (UC). The resolution process is regulated by lipid mediators, such as those derived from the ω-3 docosahexaenoic acid (DHA), whose esterified form is transported by the major facilitator superfamily domain containing 2A (MFSD2A) through the endothelium of brain, retina, and placenta. We investigated if and how MFSD2A regulates lipid metabolism of gut endothelial cells to promote resolution of intestinal inflammation. METHODS We performed lipidomic and functional analyses of MFSD2A in mucosal biopsies and primary human intestinal microvascular endothelial cells (HIMECs) isolated from surgical specimens from patients with active, resolving UC and healthy individuals without UC (controls). MFSD2A was knocked down in HIMECs with small hairpin RNAs or overexpressed from a lentiviral vector. Human circulating endothelial progenitor cells that overexpress MFSD2A were transferred to CD1 nude mice with dextran sodium sulfate-induced colitis, with or without oral administration of DHA. RESULTS Colonic biopsies from patients with UC had reduced levels of inflammation-resolving DHA-derived epoxy metabolites compared to healthy colon tissues or tissues with resolution of inflammation. Production of these metabolites by HIMECs required MFSD2A, which is required for DHA retention and metabolism in the gut vasculature. In mice with colitis, transplanted endothelial progenitor cells that overexpressed MFSD2A not only localized to the inflamed mucosa but also restored the ability of the endothelium to resolve intestinal inflammation, compared with mice with colitis that did not receive MFSD2A-overexpressing endothelial progenitors. CONCLUSIONS Levels of DHA-derived epoxides are lower in colon tissues from patients with UC than healthy and resolving mucosa. Production of these metabolites by gut endothelium requires MFSD2A; endothelial progenitor cells that overexpress MFSD2A reduce colitis in mice. This pathway might be induced to resolve intestinal inflammation in patients with colitis.
Collapse
Affiliation(s)
- Federica Ungaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Pharmacogenomics, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Luca Massimino
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | | | - Carmen Correale
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Philippe Fonteyne
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Andrea Piontini
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Valeria Garzarelli
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Francesca Calcaterra
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Silvia Della Bella
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy; Colon and Rectal Surgery Unit, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Michele Carvello
- Colon and Rectal Surgery Unit, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Angela Maria Rizzo
- Departments of Pharmacology and Biomolecular Science, University of Milan, Milan, Italy
| | - Stefania Vetrano
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Luciana Petti
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Gionata Fiorino
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Federica Furfaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Krishna Rao Maddipati
- Department of Pathology, Lipdomics Core Facility, Wayne State University, Detroit, Michigan
| | - Alberto Malesci
- Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy; Department of Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Institut National de la Santé et de la Recherche Médicale U954 and Department of Gastroenterology, Nancy University Hospital, Lorraine University, France
| | - Silvia D'Alessio
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.
| | - Silvio Danese
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy.
| |
Collapse
|
392
|
Ungaro F, Rubbino F, Danese S, D'Alessio S. Actors and Factors in the Resolution of Intestinal Inflammation: Lipid Mediators As a New Approach to Therapy in Inflammatory Bowel Diseases. Front Immunol 2017; 8:1331. [PMID: 29109724 PMCID: PMC5660440 DOI: 10.3389/fimmu.2017.01331] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/29/2017] [Indexed: 12/15/2022] Open
Abstract
In the last few decades, the pathogenesis of inflammatory bowel disease (IBD) in genetically predisposed subjects susceptible to specific environmental factors has been attributed to disturbance of both the immune and non-immune system and/or to the imbalanced interactions with microbes. However, increasing evidences support the idea that defects in pro-resolving pathways might strongly contribute to IBD onset. The resolution of inflammation is now recognized as a dynamic event coordinated by specialized pro-resolving lipid mediators (LMs), which dampen inflammation-sustaining events, such as angiogenesis, release of pro-inflammatory cytokines, clearance of apoptotic cells, and microorganisms. Among these pro-resolving molecules, those derived from essential polyunsaturated fatty acids (PUFAs) have been shown to induce favorable effects on a plethora of human inflammatory disorders, including IBD. Here, we offer a summary of mechanisms involving both cellular and molecular components of the immune response and underlying the anti-inflammatory and pro-resolving properties of PUFAs and their derivatives in the gut, focusing on both ω-3 and ω-6 LMs. These fatty acids may influence IBD progression by: reducing neutrophil transmigration across the intestinal vasculature and the epithelium, preventing the release of pro-inflammatory cytokines and the up-regulation of adhesion molecules, and finally by promoting the production of other pro-resolving molecules. We also discuss the numerous attempts in using pro-resolving PUFAs to ameliorate intestinal inflammation, both in patients with IBD and mouse models. Although their effects in reducing inflammation is incontestable, results from previous works describing the effects of PUFA administration to prevent or treat IBD are controversial. Therefore, more efforts are needed not only to identify and explain the physiological functions of PUFAs in the gut, but also to unveil novel biosynthetic pathways of these pro-resolving LMs that may be dysregulated in these gut-related disorders. We suppose that either PUFAs or new medications specifically promoting resolution-regulating mediators and pathways will be much better tolerated by patients with IBD, with the advantage of avoiding immune suppression.
Collapse
Affiliation(s)
- Federica Ungaro
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Federica Rubbino
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy.,Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, IBD Center, Rozzano, Italy
| | - Silvia D'Alessio
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| |
Collapse
|
393
|
Colarusso C, Terlizzi M, Molino A, Pinto A, Sorrentino R. Role of the inflammasome in chronic obstructive pulmonary disease (COPD). Oncotarget 2017; 8:81813-81824. [PMID: 29137224 PMCID: PMC5669850 DOI: 10.18632/oncotarget.17850] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/19/2017] [Indexed: 01/05/2023] Open
Abstract
Inflammation is central to the development of chronic obstructive pulmonary disease (COPD), a pulmonary disorder characterized by chronic bronchitis, chronic airway obstruction, emphysema, associated to progressive and irreversible decline of lung function. Emerging genetic and pharmacological evidence suggests that IL-1-like cytokines are highly detected in the sputum and broncho-alveolar lavage (BAL) of COPD patients, implying the involvement of the multiprotein complex inflammasome. So far, scientific evidence has focused on nucleotide-binding oligomerization domain-like receptors protein 3 (NLRP3) inflammasome, a specialized inflammatory signaling platform that governs the maturation and secretion of IL-1-like cytokines through the regulation of caspase-1-dependent proteolytic processing. Some studies revealed that it is involved during airway inflammation typical of COPD. Based on the influence of cigarette smoke in various respiratory diseases, including COPD, in this view we report its effects in inflammatory and immune responses in COPD mouse models and in human subjects affected by COPD. In sharp contrast to what reported on experimental and clinical studies, randomized clinical trials show that indirect inflammasome inhibitors did not have any beneficial effect in moderate to severe COPD patients.
Collapse
Affiliation(s)
- Chiara Colarusso
- Department of Pharmacy, University of Salerno, ImmunePharma s.r.l., Fisciano, Salerno, Italy
| | - Michela Terlizzi
- Department of Pharmacy, University of Salerno, ImmunePharma s.r.l., Fisciano, Salerno, Italy
| | - Antonio Molino
- Department of Medicine and Surgery, Respiratory Division, University of Naples “Federico II”, Naples, Italy
| | - Aldo Pinto
- Department of Pharmacy, University of Salerno, ImmunePharma s.r.l., Fisciano, Salerno, Italy
| | - Rosalinda Sorrentino
- Department of Pharmacy, University of Salerno, ImmunePharma s.r.l., Fisciano, Salerno, Italy
| |
Collapse
|
394
|
Afonina IS, Zhong Z, Karin M, Beyaert R. Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol 2017; 18:861-869. [PMID: 28722711 DOI: 10.1038/ni.3772] [Citation(s) in RCA: 531] [Impact Index Per Article: 75.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/17/2017] [Indexed: 11/09/2022]
Abstract
A properly mounted immune response is indispensable for recognizing and eliminating danger arising from foreign invaders and tissue trauma. However, the 'inflammatory fire' kindled by the host response must be tightly controlled to prevent it from spreading and causing irreparable damage. Accordingly, acute inflammation is self-limiting and is normally attenuated after elimination of noxious stimuli, restoration of homeostasis and initiation of tissue repair. However, unresolved inflammation may lead to the development of chronic autoimmune and degenerative diseases and cancer. Here, we discuss the key molecular mechanisms that contribute to the self-limiting nature of inflammatory signaling, with emphasis on the negative regulation of the NF-κB pathway and the NLRP3 inflammasome. Understanding these negative regulatory mechanisms should facilitate the development of much-needed therapeutic strategies for treatment of inflammatory and autoimmune pathologies.
Collapse
Affiliation(s)
- Inna S Afonina
- Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Zhenyu Zhong
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA.,Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA.,Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
395
|
Zhang Z, Ma Q, Shah B, Mackensen GB, Lo DC, Mathew JP, Podgoreanu MV, Terrando N. Neuroprotective Effects of Annexin A1 Tripeptide after Deep Hypothermic Circulatory Arrest in Rats. Front Immunol 2017; 8:1050. [PMID: 28912778 PMCID: PMC5582068 DOI: 10.3389/fimmu.2017.01050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/14/2017] [Indexed: 01/01/2023] Open
Abstract
Resolution agonists, including lipid mediators and peptides such as annexin A1 (ANXA1), are providing novel approaches to treat inflammatory conditions. Surgical trauma exerts a significant burden on the immune system that can affect and impair multiple organs. Perioperative cerebral injury after cardiac surgery is associated with significant adverse neurological outcomes such as delirium and postoperative cognitive dysfunction. Using a clinically relevant rat model of cardiopulmonary bypass (CPB) with deep hypothermic circulatory arrest (DHCA), we tested the pro-resolving effects of a novel bioactive ANXA1 tripeptide (ANXA1sp) on neuroinflammation and cognition. Male rats underwent 2 h CPB with 1 h DHCA at 18°C, and received vehicle or ANXA1sp followed by timed reperfusion up to postoperative day 7. Immortalized murine microglial cell line BV2 were treated with vehicle or ANXA1sp and subjected to 2 h oxygen-glucose deprivation followed by timed reoxygenation. Microglial activation, cell death, neuroinflammation, and NF-κB activation were assessed in tissue samples and cell cultures. Rats exposed to CPB and DHCA had evident neuroinflammation in various brain areas. However, in ANXA1sp-treated rats, microglial activation and cell death (apoptosis and necrosis) were reduced at 24 h and 7 days after surgery. This was associated with a reduction in key pro-inflammatory cytokines due to inhibition of NF-κB activation in the brain and systemically. Treated rats also had improved neurologic scores and shorter latency in the Morris water maze. In BV2 cells treated with ANXA1sp, similar protective effects were observed including decreased pro-inflammatory cytokines and cell death. Notably, we also found increased expression of ANXA1, which binds to NF-κB p65 and thereby inhibits its transcriptional activity. Our findings provide evidence that treatment with a novel pro-resolving ANXA1 tripeptide is neuroprotective after cardiac surgery in rats by attenuating neuroinflammation and may prevent postoperative neurologic complications.
Collapse
Affiliation(s)
- Zhiquan Zhang
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Qing Ma
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Bijal Shah
- Center for Drug Discovery, Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| | - G. Burkhard Mackensen
- Department of Anesthesiology & Pain Medicine, University of Washington Medical Center, Seattle, WA, United States
| | - Donald C. Lo
- Center for Drug Discovery, Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| | - Joseph P. Mathew
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Mihai V. Podgoreanu
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
396
|
Perucci LO, Sugimoto MA, Gomes KB, Dusse LM, Teixeira MM, Sousa LP. Annexin A1 and specialized proresolving lipid mediators: promoting resolution as a therapeutic strategy in human inflammatory diseases. Expert Opin Ther Targets 2017; 21:879-896. [PMID: 28786708 DOI: 10.1080/14728222.2017.1364363] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The timely resolution of inflammation is essential to restore tissue homeostasis and to avoid chronic inflammatory diseases. Resolution of inflammation is an active process modulated by various proresolving mediators, including annexin A1 (AnxA1) and specialized proresolving lipid mediators (SPMs), which counteract excessive inflammatory responses and stimulate proresolving mechanisms. Areas covered: The protective effects of AnxA1 and SPMs have been extensively explored in pre-clinical animal models. However, studies investigating the function of these molecules in human diseases are just emerging. This review highlights recent advances on the role of proresolving mediators, and pharmacological opportunities of promoting resolution pathways in preclinical models and patients with various human diseases. Expert opinion: Dysregulation or 'failure' in proresolving mechanisms might be involved in the pathogenesis of chronic inflammatory diseases. Altered levels of proresolving mediators were found in a wide range of human diseases. In some cases, AnxA1 and SPMs are up-regulated in human blood and tissues but fail to engage in proresolving signaling and, hence, to regulate excessive inflammation. Thus, the new concept of 'resolution pharmacology' could be applied to compensate deficiency of endogenous proresolving mediators' generation and/or possible failures in the engagement of resolution pathways observed in many chronic inflammatory diseases.
Collapse
Affiliation(s)
- Luiza Oliveira Perucci
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Michelle Amantéa Sugimoto
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Karina Braga Gomes
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Luci Maria Dusse
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Mauro Martins Teixeira
- d Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Lirlândia Pires Sousa
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
397
|
Giesbrecht K, Eberle ME, Wölfle SJ, Sahin D, Sähr A, Oberhardt V, Menne Z, Bode KA, Heeg K, Hildebrand D. IL-1β As Mediator of Resolution That Reprograms Human Peripheral Monocytes toward a Suppressive Phenotype. Front Immunol 2017; 8:899. [PMID: 28824627 PMCID: PMC5540955 DOI: 10.3389/fimmu.2017.00899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/13/2017] [Indexed: 11/13/2022] Open
Abstract
During infection pathogen-associated molecular patterns activate immune cells to initiate a cascade of reactions leading to inflammation and the activation of the adaptive immune response culminating in the elimination of foreign pathogens. However, shortly after activation of the host defense machinery, a return to homeostasis is preferred to prevent inflammation-induced tissue damage. This switch from the initial immunogenic to the subsequent tolerogenic phase after clearance of the infection can be mediated through highly plastic peripheral monocytes. Our studies reveal that an early encounter with toll-like receptor 7/8-ligand R848 mediates a strong pro-inflammatory monocytic phenotype that primes its own reprogramming toward an immunosuppressive one. Previously, we showed that these R848-treated antigen-presenting cells (APCs) fail to activate allogeneic T cells and induce regulatory T cells (Tregs) through signal transducer and activator of transcription 3 (STAT3)-dependent PD-L1. Here, we further demonstrate that R848-treated APCs suppress CD3/CD28-mediated and dendritic cell-mediated T cell activation and that adenosine and indoleamine 2,3-dioxygenase/kynurenin pathways are involved in tolerance induction. Reprogramming of monocytes after R848 stimulation requires the pro-inflammatory cytokine IL-1β and a boosted IL-6 release. The subsequent autocrine prolonged activation of STAT3 induces direct upregulation of tolerogenic factors which finally downregulate proliferation of activated T cells and mediate Tregs. Thereby our study suggests that inflammatory cytokines, such as IL-1β and IL-6, should be considered as mediators of resolution of inflammation.
Collapse
Affiliation(s)
- Katharina Giesbrecht
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany.,DZIF German Center for Infection Research, Brunswick, Germany
| | - Mariel-Esther Eberle
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine J Wölfle
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Delal Sahin
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Aline Sähr
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Valerie Oberhardt
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Zach Menne
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Konrad A Bode
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Klaus Heeg
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany.,DZIF German Center for Infection Research, Brunswick, Germany
| | - Dagmar Hildebrand
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
398
|
Kalinec GM, Lomberk G, Urrutia RA, Kalinec F. Resolution of Cochlear Inflammation: Novel Target for Preventing or Ameliorating Drug-, Noise- and Age-related Hearing Loss. Front Cell Neurosci 2017; 11:192. [PMID: 28736517 PMCID: PMC5500902 DOI: 10.3389/fncel.2017.00192] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 06/20/2017] [Indexed: 12/11/2022] Open
Abstract
A significant number of studies support the idea that inflammatory responses are intimately associated with drug-, noise- and age-related hearing loss (DRHL, NRHL and ARHL). Consequently, several clinical strategies aimed at reducing auditory dysfunction by preventing inflammation are currently under intense scrutiny. Inflammation, however, is a normal adaptive response aimed at restoring tissue functionality and homeostasis after infection, tissue injury and even stress under sterile conditions, and suppressing it could have unintended negative consequences. Therefore, an appropriate approach to prevent or ameliorate DRHL, NRHL and ARHL should involve improving the resolution of the inflammatory process in the cochlea rather than inhibiting this phenomenon. The resolution of inflammation is not a passive response but rather an active, highly controlled and coordinated process. Inflammation by itself produces specialized pro-resolving mediators with critical functions, including essential fatty acid derivatives (lipoxins, resolvins, protectins and maresins), proteins and peptides such as annexin A1 and galectins, purines (adenosine), gaseous mediators (NO, H2S and CO), as well as neuromodulators like acetylcholine and netrin-1. In this review article, we describe recent advances in the understanding of the resolution phase of inflammation and highlight therapeutic strategies that might be useful in preventing inflammation-induced cochlear damage. In particular, we emphasize beneficial approaches that have been tested in pre-clinical models of inflammatory responses induced by recognized ototoxic drugs such as cisplatin and aminoglycoside antibiotics. Since these studies suggest that improving the resolution process could be useful for the prevention of inflammation-associated diseases in humans, we discuss the potential application of similar strategies to prevent or mitigate DRHL, NRHL and ARHL.
Collapse
Affiliation(s)
- Gilda M Kalinec
- Laboratory of Auditory Cell Biology, Department of Head and Neck Surgery, David Geffen School of Medicine, University of CaliforniaLos Angeles, Los Angeles, CA, United States
| | - Gwen Lomberk
- Epigenetics and Chromatin Dynamics Laboratory, Translational Epigenomic Program, Center for Individualized Medicine (CIM) Mayo ClinicRochester, MN, United States
| | - Raul A Urrutia
- Epigenetics and Chromatin Dynamics Laboratory, Translational Epigenomic Program, Center for Individualized Medicine (CIM) Mayo ClinicRochester, MN, United States
| | - Federico Kalinec
- Laboratory of Auditory Cell Biology, Department of Head and Neck Surgery, David Geffen School of Medicine, University of CaliforniaLos Angeles, Los Angeles, CA, United States
| |
Collapse
|
399
|
Gallo J, Raska M, Kriegova E, Goodman SB. Inflammation and its resolution and the musculoskeletal system. J Orthop Translat 2017; 10:52-67. [PMID: 28781962 PMCID: PMC5541893 DOI: 10.1016/j.jot.2017.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 02/08/2023] Open
Abstract
Inflammation, an essential tissue response to extrinsic/intrinsic damage, is a very dynamic process in terms of complexity and extension of cellular and metabolic involvement. The aim of the inflammatory response is to eliminate the pathogenic initiator with limited collateral damage of the inflamed tissue, followed by a complex tissue repair to the preinflammation phenotype. Persistent inflammation is a major contributor to the pathogenesis of many musculoskeletal diseases including ageing-related pathologies such as osteoporosis, osteoarthritis, and sarcopaenia. Understanding the mechanisms of inflammation and its resolution is therefore critical for the development of effective regenerative, and therapeutic strategies in orthopaedics.
Collapse
Affiliation(s)
- Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, I.P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Pavilion C, Redwood City, CA 94063-6342, USA
| |
Collapse
|
400
|
ANXA1Ac2–26 peptide, a possible therapeutic approach in inflammatory ocular diseases. Gene 2017; 614:26-36. [DOI: 10.1016/j.gene.2017.02.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/14/2017] [Accepted: 02/27/2017] [Indexed: 02/08/2023]
|