351
|
The function and evolution of a genetic switch controlling sexually dimorphic eye differentiation in honeybees. Nat Commun 2023; 14:463. [PMID: 36709321 PMCID: PMC9884244 DOI: 10.1038/s41467-023-36153-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 01/18/2023] [Indexed: 01/30/2023] Open
Abstract
Animals develop sex-specific morphological structures that are diverse between organisms. However, understanding the developmental and evolutionary mechanisms governing these traits is still limited and largely restricted to DM domain genes, which are conserved, sex-specific developmental regulators identified in genetic models. Here, we report a sex-specific developmental regulator gene, glubschauge (glu) that selectively regulates sexually dimorphic eye differentiation in honeybees. We found that the sex determination gene feminizer (fem) controls sex-specific splicing of glu transcripts, establishing a genetic switch in which Glu proteins with a zinc finger (ZnF) domain are only expressed in females. We showed that female coding sequence was essential and sufficient for partial feminization. Comparative sequence and functional studies revealed that the evolutionary origination of the genetic switch was followed by the mutational origin of the essential ZnF domain. Our results demonstrate that glu is a newly evolved sex-specific genetic switch for region-specific regulation of a dimorphic character.
Collapse
|
352
|
Daly EZ, Chabrerie O, Massol F, Facon B, Hess MC, Tasiemski A, Grandjean F, Chauvat M, Viard F, Forey E, Folcher L, Buisson E, Boivin T, Baltora‐Rosset S, Ulmer R, Gibert P, Thiébaut G, Pantel JH, Heger T, Richardson DM, Renault D. A synthesis of biological invasion hypotheses associated with the introduction–naturalisation–invasion continuum. OIKOS 2023. [DOI: 10.1111/oik.09645] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ella Z. Daly
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
| | - Olivier Chabrerie
- Univ. de Picardie Jules Verne, UMR 7058 CNRS EDYSAN Amiens Cedex 1 France
| | - Francois Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Inst. Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille Lille France
| | - Benoit Facon
- CBGP, INRAE, CIRAD, IRD, Montpellier Institut Agro, Univ. Montpellier Montpellier France
| | - Manon C.M. Hess
- Inst. Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), UMR: Aix Marseille Univ., Avignon Université, CNRS, IRD France
- Inst. de Recherche pour la Conservation des zones Humides Méditerranéennes Tour du Valat, Le Sambuc Arles France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Inst. Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille Lille France
| | - Frédéric Grandjean
- Univ. de Poitiers, UMR CNRS 7267 EBI‐Ecologie et Biologie des Interactions, équipe EES Poitiers Cedex 09 France
| | | | | | - Estelle Forey
- Normandie Univ., UNIROUEN, INRAE, USC ECODIV Rouen France
| | - Laurent Folcher
- ANSES – Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Laboratoire de la Santé des Végétaux – Unité de Nématologie Le Rheu France
| | - Elise Buisson
- Inst. Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), UMR: Aix Marseille Univ., Avignon Université, CNRS, IRD France
| | - Thomas Boivin
- INRAE, UR629 Écologie des Forêts Méditerranéennes, Centre de Recherche Provence‐Alpes‐Côte d'Azur Avignon France
| | | | - Romain Ulmer
- Univ. de Picardie Jules Verne, UMR 7058 CNRS EDYSAN Amiens Cedex 1 France
| | - Patricia Gibert
- UMR 5558 CNRS – Univ. Claude Bernard Lyon 1, Biométrie et Biologie Evolutive, Bât. Gregor Mendel Villeurbanne Cedex France
| | - Gabrielle Thiébaut
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
| | - Jelena H. Pantel
- Ecological Modelling, Faculty of Biology, Univ. of Duisburg‐Essen Essen Germany
| | - Tina Heger
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Technical Univ. of Munich, Restoration Ecology Freising Germany
| | - David M. Richardson
- Centre for Invasion Biology, Dept. Botany & Zoology, Stellenbosch University Stellenbosch South Africa
- Inst. of Botany, Czech Academy of Sciences Průhonice Czech Republic
| | - David Renault
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
- Inst. Universitaire de France Paris Cedex 05 France
| |
Collapse
|
353
|
Bypassing Mendel's First Law: Transmission Ratio Distortion in Mammals. Int J Mol Sci 2023; 24:ijms24021600. [PMID: 36675116 PMCID: PMC9863905 DOI: 10.3390/ijms24021600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Mendel's law of segregation states that the two alleles at a diploid locus should be transmitted equally to the progeny. A genetic segregation distortion, also referred to as transmission ratio distortion (TRD), is a statistically significant deviation from this rule. TRD has been observed in several mammal species and may be due to different biological mechanisms occurring at diverse time points ranging from gamete formation to lethality at post-natal stages. In this review, we describe examples of TRD and their possible mechanisms in mammals based on current knowledge. We first focus on the differences between TRD in male and female gametogenesis in the house mouse, in which some of the most well studied TRD systems have been characterized. We then describe known TRD in other mammals, with a special focus on the farmed species and in the peculiar common shrew species. Finally, we discuss TRD in human diseases. Thus far, to our knowledge, this is the first time that such description is proposed. This review will help better comprehend the processes involved in TRD. A better understanding of these molecular mechanisms will imply a better comprehension of their impact on fertility and on genome evolution. In turn, this should allow for better genetic counseling and lead to better care for human families.
Collapse
|
354
|
Borger MJ, Richardson DS, Dugdale H, Burke T, Komdeur J. Testing the environmental buffering hypothesis of cooperative breeding in the Seychelles warbler. Acta Ethol 2023. [DOI: 10.1007/s10211-022-00408-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractSpecies are facing environmental challenges caused by rapidly changing environments. Globally, extreme weather events, like droughts or extreme rainfall, are increasing in frequency. Natural selection usually acts slowly, while adaptations through phenotypic plasticity are limited. Therefore, organisms may utilise other mechanisms to cope with such rapid change. Cooperative breeding is hypothesised to be one such mechanism, as helpers could increase survival probabilities of offspring, especially in harsh years. Rainfall is a cue for onset of breeding in many tropical species, to ensure young are born when food abundance is highest. Using 21 years of data, we investigate the effect of rainfall on social behaviour and life history in the insectivorous Seychelles warbler (Acrocephalus sechellensis), a facultative cooperative breeder. We found that low rainfall is associated with reduced reproductive output and possibly with decreased survival. However, there were no statistical differences in response between groups with helpers, groups with only non-helping subordinates, and breeding pairs without subordinates. With low rainfall, more sons (the sex less likely to help) were produced, and those subordinate males already present were less likely to help. Thus, in contrast to expectations, cooperative breeding does not seem to buffer against harsh environments in Seychelles warblers, indicating that group living may be costly and thus not a mechanism for coping with changing environments. Our study showed that the interaction between the environment and life histories, including social behaviour, is complex, but that this interaction is important to consider when studying the impact of changing environments on species survival.
Collapse
|
355
|
Chmilar SL, Laird RA. Effects of parental age on salt stress tolerance in an aquatic plant. OIKOS 2023. [DOI: 10.1111/oik.09218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Robert A. Laird
- Dept of Biological Sciences, Univ. of Lethbridge Lethbridge AB Canada
| |
Collapse
|
356
|
Sloan DB, Warren JM, Williams AM, Kuster SA, Forsythe ES. Incompatibility and Interchangeability in Molecular Evolution. Genome Biol Evol 2023; 15:evac184. [PMID: 36583227 PMCID: PMC9839398 DOI: 10.1093/gbe/evac184] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
There is remarkable variation in the rate at which genetic incompatibilities in molecular interactions accumulate. In some cases, minor changes-even single-nucleotide substitutions-create major incompatibilities when hybridization forces new variants to function in a novel genetic background from an isolated population. In other cases, genes or even entire functional pathways can be horizontally transferred between anciently divergent evolutionary lineages that span the tree of life with little evidence of incompatibilities. In this review, we explore whether there are general principles that can explain why certain genes are prone to incompatibilities while others maintain interchangeability. We summarize evidence pointing to four genetic features that may contribute to greater resistance to functional replacement: (1) function in multisubunit enzyme complexes and protein-protein interactions, (2) sensitivity to changes in gene dosage, (3) rapid rate of sequence evolution, and (4) overall importance to cell viability, which creates sensitivity to small perturbations in molecular function. We discuss the relative levels of support for these different hypotheses and lay out future directions that may help explain the striking contrasts in patterns of incompatibility and interchangeability throughout the history of molecular evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Jessica M Warren
- Center for Mechanisms of Evolution, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Alissa M Williams
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Shady A Kuster
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
357
|
Quicray M, Wilhelm L, Enriquez T, He S, Scheifler M, Visser B. The Drosophila-parasitizing wasp Leptopilina heterotoma: A comprehensive model system in ecology and evolution. Ecol Evol 2023; 13:e9625. [PMID: 36703713 PMCID: PMC9871341 DOI: 10.1002/ece3.9625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 01/25/2023] Open
Abstract
The parasitoid Leptopilina heterotoma has been used as a model system for more than 70 years, contributing greatly to diverse research areas in ecology and evolution. Here, we synthesized the large body of work on L. heterotoma with the aim to identify new research avenues that could be of interest also for researchers studying other parasitoids and insects. We start our review with a description of typical L. heterotoma characteristics, as well as that of the higher taxonomic groups to which this species belongs. We then continue discussing host suitability and immunity, foraging behaviors, as well as fat accumulation and life histories. We subsequently shift our focus towards parasitoid-parasitoid interactions, including L. heterotoma coexistence within the larger guild of Drosophila parasitoids, chemical communication, as well as mating and population structuring. We conclude our review by highlighting the assets of L. heterotoma as a model system, including its intermediate life history syndromes, the ease of observing and collecting natural hosts and wasps, as well as recent genomic advances.
Collapse
Affiliation(s)
- Maude Quicray
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Léonore Wilhelm
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Thomas Enriquez
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Shulin He
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| |
Collapse
|
358
|
Árnason E, Koskela J, Halldórsdóttir K, Eldon B. Sweepstakes reproductive success via pervasive and recurrent selective sweeps. eLife 2023; 12:80781. [PMID: 36806325 PMCID: PMC9940914 DOI: 10.7554/elife.80781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/28/2022] [Indexed: 02/22/2023] Open
Abstract
Highly fecund natural populations characterized by high early mortality abound, yet our knowledge about their recruitment dynamics is somewhat rudimentary. This knowledge gap has implications for our understanding of genetic variation, population connectivity, local adaptation, and the resilience of highly fecund populations. The concept of sweepstakes reproductive success, which posits a considerable variance and skew in individual reproductive output, is key to understanding the distribution of individual reproductive success. However, it still needs to be determined whether highly fecund organisms reproduce through sweepstakes and, if they do, the relative roles of neutral and selective sweepstakes. Here, we use coalescent-based statistical analysis of population genomic data to show that selective sweepstakes likely explain recruitment dynamics in the highly fecund Atlantic cod. We show that the Kingman coalescent (modelling no sweepstakes) and the Xi-Beta coalescent (modelling random sweepstakes), including complex demography and background selection, do not provide an adequate fit for the data. The Durrett-Schweinsberg coalescent, in which selective sweepstakes result from recurrent and pervasive selective sweeps of new mutations, offers greater explanatory power. Our results show that models of sweepstakes reproduction and multiple-merger coalescents are relevant and necessary for understanding genetic diversity in highly fecund natural populations. These findings have fundamental implications for understanding the recruitment variation of fish stocks and general evolutionary genomics of high-fecundity organisms.
Collapse
Affiliation(s)
- Einar Árnason
- Institute of Life- and environmental Sciences, University of IcelandReykjavikIceland,Department of Organismal and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Jere Koskela
- Department of Statistics, University of WarwickCoventryUnited Kingdom
| | - Katrín Halldórsdóttir
- Institute of Life- and environmental Sciences, University of IcelandReykjavikIceland
| | - Bjarki Eldon
- Leibniz Institute for Evolution and Biodiversity Science, Museum für NaturkundeBerlinGermany
| |
Collapse
|
359
|
Abstract
The landscape paradigm is revisited in the light of evolution in simple systems. A brief overview of different classes of fitness landscapes is followed by a more detailed discussion of the RNA model, which is currently the only evolutionary model that allows for a comprehensive molecular analysis of a fitness landscape. Neutral networks of genotypes are indispensable for the success of evolution. Important insights into the evolutionary mechanism are gained by considering the topology of sequence and shape spaces. The dynamic concept of molecular quasispecies is viewed in the light of the landscape paradigm. The distribution of fitness values in state space is mirrored by the population structures of mutant distributions. Two classes of thresholds for replication error or mutations are important: (i) the-conventional-genotypic error threshold, which separates ordered replication from random drift on neutral networks, and (ii) a phenotypic error threshold above which the molecular phenotype is lost. Empirical landscapes are reviewed and finally, the implications of the landscape concept for virus evolution are discussed.
Collapse
Affiliation(s)
- Peter Schuster
- Institut für Theoretische Chemie der Universität Wien, Währingerstraße 17, 1090, Wien, Austria.
| | - Peter F Stadler
- Institut für Informatik der Universität Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany.,The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
360
|
Domingo E, García-Crespo C, Soria ME, Perales C. Viral Fitness, Population Complexity, Host Interactions, and Resistance to Antiviral Agents. Curr Top Microbiol Immunol 2023; 439:197-235. [PMID: 36592247 DOI: 10.1007/978-3-031-15640-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fitness of viruses has become a standard parameter to quantify their adaptation to a biological environment. Fitness determinations for RNA viruses (and some highly variable DNA viruses) meet with several uncertainties. Of particular interest are those that arise from mutant spectrum complexity, absence of population equilibrium, and internal interactions among components of a mutant spectrum. Here, concepts, fitness measurements, limitations, and current views on experimental viral fitness landscapes are discussed. The effect of viral fitness on resistance to antiviral agents is covered in some detail since it constitutes a widespread problem in antiviral pharmacology, and a challenge for the design of effective antiviral treatments. Recent evidence with hepatitis C virus suggests the operation of mechanisms of antiviral resistance additional to the standard selection of drug-escape mutants. The possibility that high replicative fitness may be the driver of such alternative mechanisms is considered. New broad-spectrum antiviral designs that target viral fitness may curtail the impact of drug-escape mutants in treatment failures. We consider to what extent fitness-related concepts apply to coronaviruses and how they may affect strategies for COVID-19 prevention and treatment.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Carlos García-Crespo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040, Madrid, Spain.,Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
361
|
Waffender A, Henshaw JM. Long-term persistence of exaggerated ornaments under Fisherian runaway despite costly mate search. J Evol Biol 2023; 36:45-56. [PMID: 36514848 DOI: 10.1111/jeb.14127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022]
Abstract
Exaggerated ornaments often evolve due to the mating preferences of the opposite sex. Genetic correlations between preferences and ornaments can lead both traits to elaborate dramatically in tandem, in a process known as 'Fisherian runaway'. However, in most previous models of Fisherian runaway, elaborate ornaments are not expected to persist when preferences are consistently costly to the choosing sex. In contrast, we show here that exaggerated male ornaments can be maintained long term even when females must pay a cost to choose their mates. Preferences per se are not costly in our model, but females can only act on their preferences by investing resources in mate search. We predict that mate search effort should decrease with the cost of sampling additional mates and increase with the number of possible ornaments that females can choose from. The potential for multiple exaggerated ornaments to coexist depends on subtleties of their cost structure: strict trade-offs (additive costs) favour sequential ornament evolution, whereas looser trade-offs (multiplicative costs) allow for coexistence. Lastly, we show that pleiotropy affecting both ornaments and preferences makes it difficult for Fisherian runaway to initiate, increasing the evolutionary time until ornamentation. Our model highlights the important but neglected role of mate search effort in sexual selection.
Collapse
Affiliation(s)
- Anna Waffender
- Institute of Biology I, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
362
|
Stahlman WD, Catania AC. Faustian bargains: Short-term and long-term contingencies in phylogeny, ontogeny, and sociogeny. J Exp Anal Behav 2023; 119:192-202. [PMID: 36478575 PMCID: PMC10107318 DOI: 10.1002/jeab.812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022]
Abstract
Rachlin's interpretations of self-control depend on the short-term versus the long-term consequences of behavior. Sometimes these effects support each other (typing an abstract produces a written product now and is later read by others). Sometimes they conflict (procrastination now is incompatible with finishing the abstract by deadline). We usually reserve the language of self-control for human cases where long-term consequences are chosen over short-term ones. Rachlin made this distinction salient in ontogeny, but it also applies to selection in phylogeny (Darwinian evolution) and sociogeny (behavior passed from one organism to another). Our account examines relations between short-term and long-term consequences at each level of selection. For example, sexual selection has adaptive, short-term mating consequences but may drive species to extreme specializations that jeopardize long-term survival. In sociogeny, as in the Tragedy of the Commons, group members may get immediate economic benefits from exploiting resources but exhaust those resources over the long term. Whatever the level, when short-term and long-term consequences have opposing effects, adaptive behavior may depend on whether temporally extended contingencies exert more control than more immediate benefits.
Collapse
|
363
|
Pal S, Oliver B, Przytycka TM. Stochastic Modeling of Gene Expression Evolution Uncovers Tissue- and Sex-Specific Properties of Expression Evolution in the Drosophila Genus. J Comput Biol 2023; 30:21-40. [PMID: 36037023 PMCID: PMC9917317 DOI: 10.1089/cmb.2022.0121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gene expression evolution is typically modeled with the stochastic Ornstein-Uhlenbeck (OU) process. It has been suggested that the estimation of within-species variations using replicated data can increase the predictive power of such models, but this hypothesis has not been fully tested. We developed EvoGeneX, a computationally efficient implementation of the OU-based method that models within-species variation. Using extensive simulations, we show that modeling within-species variations and appropriate selection of species improve the performance of the model. Further, to facilitate a comparative analysis of expression evolution, we introduce a formal measure of evolutionary expression divergence for a group of genes using the rate and the asymptotic level of divergence. With these tools in hand, we performed the first-ever analysis of the evolution of gene expression across different body-parts, species, and sexes of the Drosophila genus. We observed that genes with adaptive expression evolution tend to be body-part specific, whereas the genes with constrained evolution tend to be shared across body-parts. Among the neutrally evolving gene expression patterns, gonads in both sexes have higher expression divergence relative to other tissues and the male gonads have even higher divergence than the female gonads. Among the evolutionarily constrained genes, the gonads show different divergence patterns, where the male gonads, and not the female gonads, show less constrained divergence than other body-parts. Finally, we show interesting examples of adaptive expression evolution, including adaptation of odor binding proteins.
Collapse
Affiliation(s)
- Soumitra Pal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian Oliver
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA.,Address correspondence to: Dr. Brian Oliver, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD 20892, USA
| | - Teresa M. Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA.,Address correspondence to: Dr. Teresa M. Przytycka, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| |
Collapse
|
364
|
Worden R. The evolution of language by sexual selection. Front Psychol 2022; 13:1060510. [PMID: 36619053 PMCID: PMC9815550 DOI: 10.3389/fpsyg.2022.1060510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Most accounts of the evolution of language assume that language and greater intelligence are beneficial adaptations, leading to increases in survival fitness. These accounts emphasise natural selection, with language as an adaptation to the habitat, placing less emphasis on sexual selection and reproductive fitness. An account of language evolution by natural selection alone faces problems in accounting for the prodigious power and expressivity of human language. Modern language (and its recent antecedents) would appear to offer only small incremental benefits over simpler language, which would require a smaller brain with smaller metabolic costs. Accounts by natural selection also face problems in accounting for the uniqueness of human language and intelligence. I therefore consider a hybrid account, in which both natural selection and sexual selection played a role in the evolution of language and intelligence, probably at different times. Specifically, in this account, early language was driven by natural selection to collaborate. Then later humans became subject to sexual selection for superior intelligence, with language acting as the main display mechanism for intelligence. It is hard to determine the relative roles of natural and sexual selection over the time course of the evolution of language. In the later stages, sexual selection to display intelligence drove a runaway selection process towards powerful modern language. This hybrid account retains the benefits of accounts by natural selection, while also accounting for the prodigious power of human language and intelligence, and for its uniqueness compared to other primates. Sexual selection often leads to traits which are unique to a species, and are exaggerated beyond natural needs. On this account, the capability for language may have evolved in the order: (1) pragmatics and a theory of mind; (2) using single words and constructions; (3) learning and using syntax. In this model, relevance-based pragmatics evolved before language; then, single words and constructions came into use; and later, syntax condensed out of pragmatics, as a codification of some pragmatic rules of inference. This order requires only incremental extensions of primate cognition, and agrees with the order in which children learn language.
Collapse
|
365
|
Vande Zande P, Wittkopp PJ. Network Topology Can Explain Differences in Pleiotropy Between Cis- and Trans-regulatory Mutations. Mol Biol Evol 2022; 39:6889454. [PMID: 36508350 PMCID: PMC9791367 DOI: 10.1093/molbev/msac266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
A mutation's degree of pleiotropy (i.e., the number of traits it alters) is predicted to impact the probability of the mutation being detrimental to fitness. For mutations that impact gene expression, mutations acting in cis have been hypothesized to generally be less pleiotropic than mutations affecting the same gene's expression in trans, suggesting that cis-regulatory mutations should be less deleterious and more likely to fix over evolutionary time. Here, we use expression and fitness data from Saccharomyces cerevisiae gene deletion strains to test these hypotheses. By treating deletion of each gene as a cis-regulatory mutation affecting its own expression and deletions of other genes affecting expression of this focal gene as trans-regulatory mutations, we find that cis-acting mutations do indeed tend to be less pleiotropic than trans-acting mutations affecting expression of the same gene. This pattern was observed for the vast majority of genes in the data set and could be explained by the topology of the regulatory network controlling gene expression. Comparing the fitness of cis- and trans-acting mutations affecting expression of the same gene also confirmed that trans-acting deletions tend to be more deleterious. These findings provide strong support for pleiotropy playing a role in the preferential fixation of cis-regulatory alleles over evolutionary time.
Collapse
Affiliation(s)
- Pétra Vande Zande
- Corresponding author: E-mail: .; Present address: Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Patricia J Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
366
|
Rughetti M, Ferloni M. Reproductive cost in female European and mountain hares. J Zool (1987) 2022. [DOI: 10.1111/jzo.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- M. Rughetti
- Dipartimento di Scienze Veterinarie Università degli Studi di Torino Grugliasco Italy
| | - M. Ferloni
- Ufficio Faunistico ‐ Provincia di Sondrio Sondrio Italy
| |
Collapse
|
367
|
Recent speciation associated with range expansion and a shift to self-fertilization in North American Arabidopsis. Nat Commun 2022; 13:7564. [PMID: 36481740 PMCID: PMC9732334 DOI: 10.1038/s41467-022-35368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
The main processes classically evoked for promoting reproductive isolation and speciation are geographic separation reducing gene flow among populations, divergent selection, and chance genomic change. In a case study, we present evidence that the additional factors of climate change, range expansion and a shift in mating towards inbreeding can initiate the processes leading to parapatric speciation. At the end of the last Pleistocene glaciation cycle, the North American plant Arabidopsis lyrata expanded its range and concomitantly lost its reproductive mode of outcrossing multiple times. We show that in one of the newly colonized areas, the self-fertilizing recolonization lineage of A. lyrata gave rise to selfing A. arenicola, which expanded its range to subarctic and arctic Canada and Greenland, while the parental species remained restricted to temperate North America. Despite the vast range expansion by the new species, mutational load did not increase, probably because of selfing and quasi-clonal selection. We conclude that such peripheral parapatric speciation combined with range expansion and inbreeding may be an important but so far overlooked mode of speciation.
Collapse
|
368
|
Davidović S, Marinković S, Hribšek I, Patenković A, Stamenković-Radak M, Tanasković M. Sex ratio and relatedness in the Griffon vulture ( Gyps fulvus) population of Serbia. PeerJ 2022; 10:e14477. [PMID: 36523455 PMCID: PMC9745909 DOI: 10.7717/peerj.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Background Once a widespread species across the region of Southeast Europe, the Griffon vulture is now confined to small and isolated populations across the Balkan Peninsula. The population from Serbia represents its biggest and most viable population that can serve as an important reservoir of genetic diversity from which the birds can be used for the region's reintroduction programmes. The available genetic data for this valuable population are scarce and as a protected species that belongs to the highly endangered vulture group, it needs to be well described so that it can be properly managed and used as a restocking population. Considering the serious recent bottleneck event that the Griffon vulture population from Serbia experienced we estimated the overall relatedness among the birds from this population. Sex ratio, another important parameter that shows the vitality and strength of the population was evaluated as well. Methods During the annual monitoring that was performed in the period from 2013-2021, we collected blood samples from individual birds that were marked in the nests. In total, 169 samples were collected and each was used for molecular sexing while 58 presumably unrelated birds from different nests were used for inbreeding and relatedness analyses. The relatedness was estimated using both biparentally (10 microsatellite loci) and uniparentally (Cytb and D-loop I of mitochondrial DNA) inherited markers. Results The level of inbreeding was relatively high and on average it was 8.3% while the mean number of relatives for each bird was close to three. The sex ratio was close to 1:1 and for the analysed period of 9 years, it didn't demonstrate a statistically significant deviation from the expected ratio of 1:1, suggesting that this is a stable and healthy population. Our data suggest that, even though a relatively high level of inbreeding can be detected among the individual birds, the Griffon vulture population from Serbia can be used as a source population for restocking and reintroduction programmes in the region. These data combined with previously observed genetic differentiation between the populations from the Iberian and Balkan Peninsulas suggest that the introduction of foreign birds should be avoided and that local birds should be used instead.
Collapse
Affiliation(s)
- Slobodan Davidović
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia,Birds of Prey Protection Foundation, Belgrade, Serbia
| | - Saša Marinković
- Birds of Prey Protection Foundation, Belgrade, Serbia,Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Irena Hribšek
- Birds of Prey Protection Foundation, Belgrade, Serbia,Natural History Museum Belgrade, Belgrade, Serbia
| | - Aleksandra Patenković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marina Stamenković-Radak
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia,Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
369
|
Linder RA, Zabanavar B, Majumder A, Hoang HCS, Delgado VG, Tran R, La VT, Leemans SW, Long AD. Adaptation in Outbred Sexual Yeast is Repeatable, Polygenic and Favors Rare Haplotypes. Mol Biol Evol 2022; 39:msac248. [PMID: 36366952 PMCID: PMC9728589 DOI: 10.1093/molbev/msac248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We carried out a 200 generation Evolve and Resequence (E&R) experiment initiated from an outbred diploid recombined 18-way synthetic base population. Replicate populations were evolved at large effective population sizes (>105 individuals), exposed to several different chemical challenges over 12 weeks of evolution, and whole-genome resequenced. Weekly forced outcrossing resulted in an average between adjacent-gene per cell division recombination rate of ∼0.0008. Despite attempts to force weekly sex, roughly half of our populations evolved cheaters and appear to be evolving asexually. Focusing on seven chemical stressors and 55 total evolved populations that remained sexual we observed large fitness gains and highly repeatable patterns of genome-wide haplotype change within chemical challenges, with limited levels of repeatability across chemical treatments. Adaptation appears highly polygenic with almost the entire genome showing significant and consistent patterns of haplotype change with little evidence for long-range linkage disequilibrium in a subset of populations for which we sequenced haploid clones. That is, almost the entire genome is under selection or drafting with selected sites. At any given locus adaptation was almost always dominated by one of the 18 founder's alleles, with that allele varying spatially and between treatments, suggesting that selection acts primarily on rare variants private to a founder or haplotype blocks harboring multiple mutations.
Collapse
Affiliation(s)
- Robert A Linder
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Behzad Zabanavar
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Arundhati Majumder
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Hannah Chiao-Shyan Hoang
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Vanessa Genesaret Delgado
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Ryan Tran
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Vy Thoai La
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Simon William Leemans
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine
| | - Anthony D Long
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| |
Collapse
|
370
|
Lidsky PV, Yuan J, Rulison JM, Andino-Pavlovsky R. Is Aging an Inevitable Characteristic of Organic Life or an Evolutionary Adaptation? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1413-1445. [PMID: 36717438 PMCID: PMC9839256 DOI: 10.1134/s0006297922120021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 09/27/2022] [Accepted: 11/04/2022] [Indexed: 01/15/2023]
Abstract
Aging is an evolutionary paradox. Several hypotheses have been proposed to explain it, but none fully explains all the biochemical and ecologic data accumulated over decades of research. We suggest that senescence is a primitive immune strategy which acts to protect an individual's kin from chronic infections. Older organisms are exposed to pathogens for a longer period of time and have a higher likelihood of acquiring infectious diseases. Accordingly, the parasitic load in aged individuals is higher than in younger ones. Given that the probability of pathogen transmission is higher within the kin, the inclusive fitness cost of infection might exceed the benefit of living longer. In this case, programmed lifespan termination might be an evolutionarily stable strategy. Here, we discuss the classical evolutionary hypotheses of aging and compare them with the pathogen control hypothesis, discuss the consistency of these hypotheses with existing empirical data, and present a revised conceptual framework to understand the evolution of aging.
Collapse
Affiliation(s)
- Peter V Lidsky
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA.
| | - Jing Yuan
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA
| | - Jacob M Rulison
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA
- University of California Berkeley, CA, USA
| | - Raul Andino-Pavlovsky
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA.
| |
Collapse
|
371
|
Tóth A, Székvölgyi L, Vellai T. The genome loading model for the origin and maintenance of sex in eukaryotes. Biol Futur 2022; 73:345-357. [PMID: 36534301 DOI: 10.1007/s42977-022-00148-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Understanding why sexual reproduction-which involves syngamy (union of gametes) and meiosis-emerged and how it has subsisted for millions of years remains a fundamental problem in biology. Considered as the essence of sex, meiotic recombination is initiated by a DNA double-strand break (DSB) that forms on one of the pairing homologous chromosomes. This DNA lesion is subsequently repaired by gene conversion, the non-reciprocal transfer of genetic information from the intact homolog. A major issue is which of the pairing homologs undergoes DSB formation. Accumulating evidence shows that chromosomal sites where the pairing homologs locally differ in size, i.e., are heterozygous for an insertion or deletion, often display disparity in gene conversion. Biased conversion tends to duplicate insertions and lose deletions. This suggests that DSB is preferentially formed on the "shorter" homologous region, which thereby acts as the recipient for DNA transfer. Thus, sex primarily functions as a genome (re)loading mechanism. It ensures the restoration of formerly lost DNA sequences (deletions) and allows the efficient copying and, mainly in eukaryotes, subsequent spreading of newly emerged sequences (insertions) arising initially in an individual genome, even if they confer no advantage to the host. In this way, sex simultaneously repairs deletions and increases genetic variability underlying adaptation. The model explains a remarkable increase in DNA content during the evolution of eukaryotic genomes.
Collapse
Affiliation(s)
- András Tóth
- Department of Genetics, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary
| | - Lóránt Székvölgyi
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
372
|
Vedder O, Moiron M, Bichet C, Bauch C, Verhulst S, Becker PH, Bouwhuis S. Telomere length is heritable and genetically correlated with lifespan in a wild bird. Mol Ecol 2022; 31:6297-6307. [PMID: 33460462 DOI: 10.1111/mec.15807] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023]
Abstract
Telomeres are protective caps at the end of eukaryotic chromosomes that shorten with age and in response to stressful or resource-demanding conditions. Their length predicts individual health and lifespan across a wide range of animals, but whether the observed positive association between telomere length and lifespan is environmentally induced, or set at conception due to a shared genetic basis, has not been tested in wild animals. We applied quantitative genetic "animal models" to longitudinal telomere measurements collected over a 10-year period from individuals of a wild seabird (common tern; Sterna hirundo) with known pedigree. We found no variation in telomere shortening with age among individuals at the phenotypic and genetic level, and only a small permanent environmental effect on adult telomere length. Instead, we found telomere length to be highly heritable and strongly positively genetically correlated with lifespan. Such heritable differences between individuals that are set at conception may present a hitherto underappreciated component of variation in somatic state.
Collapse
Affiliation(s)
- Oscar Vedder
- Institute of Avian Research, Wilhelmshaven, Germany.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Maria Moiron
- Institute of Avian Research, Wilhelmshaven, Germany.,CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | | | - Christina Bauch
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | | | | |
Collapse
|
373
|
Cirne D, Campos PRA. Rate of environmental variation impacts the predictability in evolution. Phys Rev E 2022; 106:064408. [PMID: 36671169 DOI: 10.1103/physreve.106.064408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
In the two last decades, we have improved our understanding of the adaptive evolution of natural populations under constant and stable environments. For instance, experimental methods from evolutionary biology have allowed us to explore the structure of fitness landscapes and survey how the landscape properties can constrain the adaptation process. However, understanding how environmental changes can affect adaptation remains challenging. Very little progress has been made with respect to time-varying fitness landscapes. Using the adaptive-walk approximation, we survey the evolutionary process of populations under a scenario of environmental variation. In particular, we investigate how the rate of environmental variation influences the predictability in evolution. We observe that the rate of environmental variation not only changes the duration of adaptive walks towards fitness peaks of the fitness landscape, but also affects the degree of repeatability of both outcomes and evolutionary paths. In general, slower environmental variation increases the predictability in evolution. The accessibility of endpoints is greatly influenced by the ecological dynamics. The dependence of these quantities on the genome size and number of traits is also addressed. To our knowledge, this contribution is the first to use the predictive approach to quantify and understand the impact of the speed of environmental variation on the degree of parallelism of the evolutionary process.
Collapse
Affiliation(s)
- Diego Cirne
- Departamento de Física, Universidade Federal de Pernambuco, 50740-560 Recife-PE, Brazil
| | - Paulo R A Campos
- Departamento de Física, Universidade Federal de Pernambuco, 50740-560 Recife-PE, Brazil
| |
Collapse
|
374
|
Schneemann H, Munzur AD, Thompson KA, Welch JJ. The diverse effects of phenotypic dominance on hybrid fitness. Evolution 2022; 76:2846-2863. [PMID: 36221216 PMCID: PMC10092378 DOI: 10.1111/evo.14645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/14/2022] [Indexed: 01/22/2023]
Abstract
When divergent populations interbreed, their alleles are brought together in hybrids. In the initial F1 cross, most divergent loci are heterozygous. Therefore, F1 fitness can be influenced by dominance effects that could not have been selected to function well together. We present a systematic study of these F1 dominance effects by introducing variable phenotypic dominance into Fisher's geometric model. We show that dominance often reduces hybrid fitness, which can generate optimal outbreeding followed by a steady decline in F1 fitness, as is often observed. We also show that "lucky" beneficial effects sometimes arise by chance, which might be important when hybrids can access novel environments. We then show that dominance can lead to violations of Haldane's Rule (reduced fitness of the heterogametic F1) but strengthens Darwin's Corollary (F1 fitness differences between cross directions). Taken together, results show that the effects of dominance on hybrid fitness can be surprisingly difficult to isolate, because they often resemble the effects of uniparental inheritance or expression. Nevertheless, we identify a pattern of environment-dependent heterosis that only dominance can explain, and for which there is some suggestive evidence. Our results also show how existing data set upper bounds on the size of dominance effects. These bounds could explain why additive models often provide good predictions for later-generation recombinant hybrids, even when dominance qualitatively changes outcomes for the F1.
Collapse
Affiliation(s)
- Hilde Schneemann
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, UK
| | - Aslı D Munzur
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Ken A Thompson
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.,Current address: Department of Biology, Stanford University & Department of Plant Biology, Carnegie Institution for Science, Stanford, USA
| | - John J Welch
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|
375
|
Sinclair-Waters M, Nome T, Wang J, Lien S, Kent MP, Sægrov H, Florø-Larsen B, Bolstad GH, Primmer CR, Barson NJ. Dissecting the loci underlying maturation timing in Atlantic salmon using haplotype and multi-SNP based association methods. Heredity (Edinb) 2022; 129:356-365. [PMID: 36357776 PMCID: PMC9709158 DOI: 10.1038/s41437-022-00570-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022] Open
Abstract
Characterizing the role of different mutational effect sizes in the evolution of fitness-related traits has been a major goal in evolutionary biology for a century. Such characterization in a diversity of systems, both model and non-model, will help to understand the genetic processes underlying fitness variation. However, well-characterized genetic architectures of such traits in wild populations remain uncommon. In this study, we used haplotype-based and multi-SNP Bayesian association methods with sequencing data for 313 individuals from wild populations to test the mutational composition of known candidate regions for sea age at maturation in Atlantic salmon (Salmo salar). We detected an association at five loci out of 116 candidates previously identified in an aquaculture strain with maturation timing in wild Atlantic salmon. We found that at four of these five loci, variation explained by the locus was predominantly driven by a single SNP suggesting the genetic architecture of this trait includes multiple loci with simple, non-clustered alleles and a locus with potentially more complex alleles. This highlights the diversity of genetic architectures that can exist for fitness-related traits. Furthermore, this study provides a useful multi-SNP framework for future work using sequencing data to characterize genetic variation underlying phenotypes in wild populations.
Collapse
Affiliation(s)
- Marion Sinclair-Waters
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences University of Helsinki, Helsinki, Finland.
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| | - Torfinn Nome
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jing Wang
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Key laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China
| | - Sigbjørn Lien
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Matthew P Kent
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Geir H Bolstad
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Nicola J Barson
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
376
|
Yuan ML, Westeen EP, Wogan GOU, Wang IJ. Female dewlap ornaments are evolutionarily labile and associated with increased diversification rates in Anolis lizards. Proc Biol Sci 2022; 289:20221871. [PMID: 36382524 PMCID: PMC9667357 DOI: 10.1098/rspb.2022.1871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2023] Open
Abstract
The evolution of costly signalling traits has largely focused on male ornaments. However, our understanding of ornament evolution is necessarily incomplete without investigating the causes and consequences of variation in female ornamentation. Here, we study the Anolis lizard dewlap, a trait extensively studied as a male secondary sexual characteristic but present in females of several species. We characterized female dewlaps for 339 species to test hypotheses about their evolution. Our results did not support the hypothesis that female dewlaps are selected against throughout the anole phylogeny. Rather, we found that female dewlaps were evolutionary labile. We also did not find support for the adaptive hypothesis that interspecific competition drove the evolution of female dewlaps. However, we did find support for the pleiotropy hypothesis as species with larger females and reduced sexual size dimorphism were more likely to possess female dewlaps. Lastly, we found that female dewlap presence influenced diversification rates in anoles, but only secondarily to a hidden state. Our results demonstrate that female ornamentation is widespread in anoles and the traditional hypothesis of divergent selection between the sexes does not fully explain their evolution. Instead, female ornamentation is likely to be subject to complex adaptive and non-adaptive evolutionary forces.
Collapse
Affiliation(s)
- Michael L. Yuan
- Center for Population Biology, University of California, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Erin P. Westeen
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| | - Guinevere O. U. Wogan
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ian J. Wang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
377
|
Maisonneuve L, Elias M, Smadi C, Llaurens V. The limits of evolutionary convergence in sympatry: reproductive interference and historical constraints leading to local diversity in warning traits. Am Nat 2022; 201:E110-E126. [PMID: 37130234 DOI: 10.1086/723625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
AbstractMutualistic interactions between defended species represent a striking case of evolutionary convergence in sympatry, driven by the increased protection against predators brought by mimicry in warning traits. However, such convergence is often limited: sympatric defended species frequently display different or imperfectly similar warning traits. The phylogenetic distance between sympatric species may indeed prevent evolution toward the exact same signal. Moreover, warning traits are also involved in mate recognition, so trait convergence might result in heterospecific courtship and mating. Here, we develop a mathematical model to investigate the strength and direction of the evolution of warning traits in defended species with different ancestral traits. Specifically, we determine the effect of phenotypic distances between ancestral trait states of sympatric defended species and of the costs of heterospecific sexual interactions on imperfect mimicry and trait divergence. Our analytical results confirm that reproductive interference and historical constraints limit the convergence of warning traits, leading to either complete divergence or imperfect mimicry. Our model reveals that imperfect mimicry evolves only when ancestral trait values differ between species because of historical constraints and highlights the importance of female and predator discrimination in the evolution of such imperfect mimicry. Our study thus provides new predictions on how reproductive interference interacts with historical constraints and may promote the emergence of novel warning traits, enhancing mimetic diversity.
Collapse
|
378
|
Souza LS, Irie Y, Eda S. Black Queen Hypothesis, partial privatization, and quorum sensing evolution. PLoS One 2022; 17:e0278449. [PMID: 36449503 PMCID: PMC9710793 DOI: 10.1371/journal.pone.0278449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Microorganisms produce costly cooperative goods whose benefit is partially shared with nonproducers, called 'mixed' goods. The Black Queen Hypothesis predicts that partial privatization has two major evolutionary implications. First, to favor strains producing several types of mixed goods over nonproducing strains. Second, to favor the maintenance of cooperative traits through different strains instead of having all cooperative traits present in a single strain (metabolic specialization). Despite the importance of quorum sensing regulation of mixed goods, it is unclear how partial privatization affects quorum sensing evolution. Here, we studied the influence of partial privatization on the evolution of quorum sensing. We developed a mathematical population genetics model of an unstructured microbial population considering four strains that differ in their ability to produce an autoinducer (quorum sensing signaling molecule) and a mixed good. Our model assumes that the production of the autoinducers and the mixed goods is constitutive and/or depends on quorum sensing. Our results suggest that, unless autoinducers are costless, partial privatization cannot favor quorum sensing. This result occurs because with costly autoinducers: (1) a strain that produces both autoinducer and goods (fully producing strain) cannot persist in the population; (2) the strain only producing the autoinducer and the strain producing mixed goods in response to the autoinducers cannot coexist, i.e., metabolic specialization cannot be favored. Together, partial privatization might have been crucial to favor a primordial form of quorum sensing-where autoinducers were thought to be a metabolic byproduct (costless)-but not the transition to nowadays costly autoinducers.
Collapse
Affiliation(s)
- Lucas Santana Souza
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Yasuhiko Irie
- Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Shigetoshi Eda
- Department of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
379
|
Bolotin E, Melamed D, Livnat A. Genes that are Used Together are More Likely to be Fused Together in Evolution by Mutational Mechanisms: A Bioinformatic Test of the Used-Fused Hypothesis. Evol Biol 2022; 50:30-55. [PMID: 36816837 PMCID: PMC9925542 DOI: 10.1007/s11692-022-09579-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 09/11/2022] [Indexed: 12/05/2022]
Abstract
Cases of parallel or recurrent gene fusions in evolution as well as in genetic disease and cancer are difficult to explain, because unlike point mutations, they can require the repetition of a similar configuration of multiple breakpoints rather than the repetition of a single point mutation. The used-together-fused-together hypothesis holds that genes that are used together repeatedly and persistently in a specific context are more likely to undergo fusion mutation in the course of evolution for mechanistic reasons. This hypothesis offers to explain gene fusion in both evolution and disease under one umbrella. Using bioinformatic data, we tested this hypothesis against alternatives, including that all gene pairs can fuse by random mutation, but among pairs thus fused, those that had interacted previously are more likely to be favored by selection. Results show that across multiple measures of gene interaction, human genes whose orthologs are fused in one or more species are more likely to interact with each other than random pairs of genes of the same genomic distance between pair members; that an overlap exists between genes that fused in the course of evolution in non-human species and genes that undergo fusion in human cancers; and that across six primate species studied, fusions predominate over fissions and exhibit substantial evolutionary parallelism. Together, these results support the used-together-fused-together hypothesis over its alternatives. Multiple implications are discussed, including the relevance of mutational mechanisms to the evolution of genome organization, to the distribution of fitness effects of mutation, to evolutionary parallelism and more. Supplementary Information The online version contains supplementary material available at 10.1007/s11692-022-09579-9.
Collapse
Affiliation(s)
- Evgeni Bolotin
- Department of Evolutionary and Environmental Biology, University of Haifa, 3498838 Haifa, Israel
- Institute of Evolution, University of Haifa, Haifa, 3498838 Israel
| | - Daniel Melamed
- Department of Evolutionary and Environmental Biology, University of Haifa, 3498838 Haifa, Israel
- Institute of Evolution, University of Haifa, Haifa, 3498838 Israel
| | - Adi Livnat
- Department of Evolutionary and Environmental Biology, University of Haifa, 3498838 Haifa, Israel
- Institute of Evolution, University of Haifa, Haifa, 3498838 Israel
| |
Collapse
|
380
|
Higham JP. Kin selection spreads. eLife 2022; 11:84142. [DOI: 10.7554/elife.84142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
By spending more time around infants which physically resemble their own, mandrill mothers may increase how frequently their offspring interact with their paternal half siblings.
Collapse
|
381
|
Lvov DK, Alkhovsky SV, Zhirnov OP. [130th anniversary of virology]. Vopr Virusol 2022; 67:357-384. [PMID: 36515283 DOI: 10.36233/0507-4088-140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 06/17/2023]
Abstract
130 years ago, in 1892, our great compatriot Dmitry Iosifovich Ivanovsky (18641920) discovered a new type of pathogen viruses. Viruses have existed since the birth of life on Earth and for more than three billion years, as the biosphere evolved, they are included in interpopulation interactions with representatives of all kingdoms of life: archaea, bacteria, protozoa, algae, fungi, plants, invertebrates, and vertebrates, including the Homo sapiens (Hominidae, Homininae). Discovery of D.I. Ivanovsky laid the foundation for a new science virology. The rapid development of virology in the 20th century was associated with the fight against emerging and reemerging infections, epidemics (epizootics) and pandemics (panzootics) of which posed a threat to national and global biosecurity (tick-borne and other encephalitis, hemorrhagic fevers, influenza, smallpox, poliomyelitis, HIV, parenteral hepatitis, coronaviral and other infections). Fundamental research on viruses created the basis for the development of effective methods of diagnostics, vaccine prophylaxis, and antiviral drugs. Russian virologists continue to occupy leading positions in some priority areas of modern virology in vaccinology, environmental studies oz zoonotic viruses, studies of viral evolution in various ecosystems, and several other areas. A meaningful combination of theoretical approaches to studying the evolution of viruses with innovative methods for studying their molecular genetic properties and the creation of new generations of vaccines and antiviral drugs on this basis will significantly reduce the consequences of future pandemics or panzootics. The review presents the main stages in the formation and development of virology as a science in Russia with an emphasis on the most significant achievements of soviet and Russian virologists in the fight against viral infectious diseases.
Collapse
Affiliation(s)
- D K Lvov
- D.I. Ivanovsky Institute of Virology of N.F Gamaleya National Research Center of Epidemiology and Microbiology of Ministry of Health of the Russian Federation
| | - S V Alkhovsky
- D.I. Ivanovsky Institute of Virology of N.F Gamaleya National Research Center of Epidemiology and Microbiology of Ministry of Health of the Russian Federation
| | - O P Zhirnov
- D.I. Ivanovsky Institute of Virology of N.F Gamaleya National Research Center of Epidemiology and Microbiology of Ministry of Health of the Russian Federation
| |
Collapse
|
382
|
Schacht R, Beissinger SR, Wedekind C, Jennions MD, Geffroy B, Liker A, Kappeler PM, Weissing FJ, Kramer KL, Hesketh T, Boissier J, Uggla C, Hollingshaus M, Székely T. Adult sex ratios: causes of variation and implications for animal and human societies. Commun Biol 2022; 5:1273. [PMID: 36402823 PMCID: PMC9675760 DOI: 10.1038/s42003-022-04223-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
Converging lines of inquiry from across the social and biological sciences target the adult sex ratio (ASR; the proportion of males in the adult population) as a fundamental population-level determinant of behavior. The ASR, which indicates the relative number of potential mates to competitors in a population, frames the selective arena for competition, mate choice, and social interactions. Here we review a growing literature, focusing on methodological developments that sharpen knowledge of the demographic variables underlying ASR variation, experiments that enhance understanding of the consequences of ASR imbalance across societies, and phylogenetic analyses that provide novel insights into social evolution. We additionally highlight areas where research advances are expected to make accelerating contributions across the social sciences, evolutionary biology, and biodiversity conservation.
Collapse
Affiliation(s)
- Ryan Schacht
- Department of Anthropology, East Carolina University, Greenville, NC, USA.
| | - Steven R Beissinger
- Department of Environmental Science, Policy and Management and Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720, USA
| | - Claus Wedekind
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Michael D Jennions
- Ecology & Evolution, Research School of Biology, The Australian National University, Acton, Canberra, 2601, Australia
| | - Benjamin Geffroy
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - András Liker
- ELKH-PE Evolutionary Ecology Research Group, University of Pannonia, 8210, Veszprém, Hungary
- Behavioural Ecology Research Group, Center for Natural Sciences, University of Pannonia, 8210, Veszprém, Hungary
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute of Primate Biology, 37077, Göttingen, Germany
- Department of Sociobiology/Anthropology, University of Göttingen, 37077, Göttingen, Germany
| | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Karen L Kramer
- Department of Anthropology, University of Utah, Salt Lake City, UT, USA
| | - Therese Hesketh
- Institute of Global Health, University College London, London, UK
- Centre for Global Health, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Jérôme Boissier
- IHPE Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| | - Caroline Uggla
- Stockholm University Demography Unit, Sociology Department, Stockholm University, 106 91, Stockholm, Sweden
| | - Mike Hollingshaus
- Kem C. Gardner Policy Institute, David Eccles School of Business, University of Utah, Salt Lake City, UT, USA
| | - Tamás Székely
- Milner Centre for Evolution, University of Bath, Bath, BA2 7AY, UK.
- ELKH-DE Reproductive Strategies Research Group, Department of Zoology and Human Biology, University of Debrecen, H-4032, Debrecen, Hungary.
| |
Collapse
|
383
|
Ameline C, Voegtli F, Andras J, Dexter E, Engelstädter J, Ebert D. Genetic slippage after sex maintains diversity for parasite resistance in a natural host population. SCIENCE ADVANCES 2022; 8:eabn0051. [PMID: 36399570 PMCID: PMC9674289 DOI: 10.1126/sciadv.abn0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Although parasite-mediated selection is a major driver of host evolution, its influence on genetic variation for parasite resistance is not yet well understood. We monitored resistance in a large population of the planktonic crustacean Daphnia magna over 8 years, as it underwent yearly epidemics of the bacterial pathogen Pasteuria ramosa. We observed cyclic dynamics of resistance: Resistance increased throughout the epidemics, but susceptibility was restored each spring when hosts hatched from sexual resting stages. Host resting stages collected across the year showed that largely resistant host populations can produce susceptible sexual offspring. A genetic model of resistance developed for this host-parasite system, based on multiple loci and strong epistasis, is in partial agreement with our findings. Our results reveal that, despite strong selection for resistance in a natural host population, genetic slippage after sexual reproduction can be a strong factor for the maintenance of genetic diversity of host resistance.
Collapse
Affiliation(s)
- Camille Ameline
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Felix Voegtli
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Jason Andras
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Eric Dexter
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| |
Collapse
|
384
|
Path probability selection in nature and path integral. Sci Rep 2022; 12:19044. [PMID: 36351916 PMCID: PMC9646751 DOI: 10.1038/s41598-022-20235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
Understanding of any biological evolutions, such as speciation, adaptation behavior and biodiversity pattern, is based on a fundamental concept of fitness, in which natural selection implies the improvement and progress of fitness in either direct/indirect benefit or genetic transmission to the next generation. However, this basic idea of biological evolution, which is mathematically described by Price equation or its relations, has not fully considered feedback effects from the environment or other generations. They lost the global dynamics of the evolutions consequently. Drawing on the idea of modern physics, we introduce the path integral by iterating the Price equation step by step to characterize the evolutionary path in which the stationary fitness is replaced by the path probability. The evolutionary selection therefore will depend on path probability instead of fitness advantage. In such a framework of the evolutionary path, the intermediate process of evolution is not always pointing to the fitness-maximizing equilibrium and multiple evolutionary paths could thus coexist without fitness advantage discrimination. This mechanism could potentially explain fitness evolutionary strategies with the diversified fitness (e.g., coexistence of altruism and selfishness) and thus species diversity.
Collapse
|
385
|
Pemberton JM, Kruuk LE, Clutton-Brock T. The Unusual Value of Long-Term Studies of Individuals: The Example of the Isle of Rum Red Deer Project. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2022. [DOI: 10.1146/annurev-ecolsys-012722-024041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Long-term studies of individuals enable incisive investigations of questions across ecology and evolution. Here, we illustrate this claim by reference to our long-term study of red deer on the Isle of Rum, Scotland. This project has established many of the characteristics of social organization, selection, and population ecology typical of large, polygynous, seasonally breeding mammals, with wider implications for our understanding of sexual selection and the evolution of sex differences, as well as for their population dynamics and population management. As molecular genetic techniques have developed, the project has pivoted to investigate evolutionary genetic questions, also breaking new ground in this field. With ongoing advances in genomics and statistical approaches and the development of increasingly sophisticated ways to assay new phenotypic traits, the questions that long-term studies such as the red deer study can answer become both broader and ever more sophisticated. They also offer powerful means of understanding the effects of ongoing climate change on wild populations.
Collapse
Affiliation(s)
- Josephine M. Pemberton
- Institute of Ecology and Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Loeske E.B. Kruuk
- Institute of Ecology and Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tim Clutton-Brock
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
386
|
Jensen AJ, Hagen IJ, Czorlich Y, Bolstad GH, Bremset G, Finstad B, Hindar K, Skaala Ø, Karlsson S. Large-effect loci mediate rapid adaptation of salmon body size after river regulation. Proc Natl Acad Sci U S A 2022; 119:e2207634119. [PMID: 36279467 PMCID: PMC9636922 DOI: 10.1073/pnas.2207634119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/20/2022] [Indexed: 02/18/2024] Open
Abstract
Understanding the potential of natural populations to adapt to altered environments is becoming increasingly relevant in evolutionary research. Currently, our understanding of adaptation to human alteration of the environment is hampered by lack of knowledge on the genetic basis of traits, lack of time series, and little or no information on changes in optimal trait values. Here, we used time series data spanning nearly a century to investigate how the body mass of Atlantic salmon (Salmo salar) adapts to river regulation. We found that the change in body mass followed the change in waterflow, both decreasing to ∼1/3 of their original values. Allele frequency changes at two loci in the regions of vgll3 and six6 predicted more than 80% of the observed body mass reduction. Modeling the adaptive dynamics revealed that the population mean lagged behind its optimum before catching up approximately six salmon generations after the initial waterflow reduction. Our results demonstrate rapid adaptation mediated by large-effect loci and provide insight into the temporal dynamics of evolutionary rescue following human disturbance.
Collapse
Affiliation(s)
- Arne J. Jensen
- Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway
| | - Ingerid J. Hagen
- Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway
| | - Yann Czorlich
- Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway
| | - Geir H. Bolstad
- Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway
| | | | - Bengt Finstad
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Kjetil Hindar
- Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway
| | | | - Sten Karlsson
- Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway
| |
Collapse
|
387
|
Mudrik EA, Ilyashenko EI, Postelnykh KA, Goroshko OA, Politov DV. Sex Ratio in the Offspring of Monogamous Bird Species (Demoiselle Crane Anthropoides virgo). RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
388
|
Hoey JA, Able KW, Pinsky ML. Genetic decline and recovery of a demographically rebuilt fishery species. Mol Ecol 2022; 31:5684-5698. [PMID: 36114805 PMCID: PMC9828022 DOI: 10.1111/mec.16697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 01/13/2023]
Abstract
The demographic history of a population is important for conservation and evolution, but this history is unknown for many populations. Methods that use genomic data have been developed to infer demography, but they can be challenging to implement and interpret, particularly for large populations. Thus, understanding if and when genetic estimates of demography correspond to true population history is important for assessing the performance of these genetic methods. Here, we used double-digest restriction-site associated DNA (ddRAD) sequencing data from archived collections of larval summer flounder (Paralichthys dentatus, n = 279) from three cohorts (1994-1995, 1997-1998 and 2008-2009) along the U.S. East coast to examine how contemporary effective population size and genetic diversity responded to changes in abundance in a natural population. Despite little to no detectable change in genetic diversity, coalescent-based demographic modelling from site frequency spectra revealed that summer flounder effective population size declined dramatically in the early 1980s. The timing and direction of change corresponded well with the observed decline in spawning stock census abundance in the late 1980s from independent fish surveys. Census abundance subsequently recovered and achieved the prebottleneck size. Effective population size also grew following the bottleneck. Our results for summer flounder demonstrate that genetic sampling and site frequency spectra can be useful for detecting population dynamics, even in species with large effective sizes.
Collapse
Affiliation(s)
- Jennifer A. Hoey
- Ecology, Evolution, & Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA,Institute for Biodiversity Science and SustainabilityCalifornia Academy of SciencesSan FranciscoCaliforniaUSA
| | - Kenneth W. Able
- Marine Field Station, Department of Marine and Coastal Sciences, Rutgers UniversityTuckertonNew JerseyUSA
| | - Malin L. Pinsky
- Ecology, Evolution, & Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
| |
Collapse
|
389
|
Teles JN, França NFC, Mossolin EC, Mantelatto FL. Population structure and genetic connectivity of the freshwater shrimp Potimirim brasiliana Villalobos, 1959 inhabiting a continental island. J NAT HIST 2022. [DOI: 10.1080/00222933.2022.2119896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Jeniffer N. Teles
- Laboratory of Bioecology and Crustacean Systematics (LBSC), Department of Biology, Faculty of Philosophy, Science and Letters at Ribeirão Preto (FFCLRP), University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Nielson F. C. França
- Laboratory of Bioecology and Crustacean Systematics (LBSC), Department of Biology, Faculty of Philosophy, Science and Letters at Ribeirão Preto (FFCLRP), University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Emerson C. Mossolin
- Laboratory of Invertebrates (LABIN), Biological Science Department, Federal University of Catalão (UFCAT), Catalão, Brazil
| | - Fernando L. Mantelatto
- Laboratory of Bioecology and Crustacean Systematics (LBSC), Department of Biology, Faculty of Philosophy, Science and Letters at Ribeirão Preto (FFCLRP), University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
390
|
Offspring sex ratios are male-biased reflecting sex-biased dispersal in Idaho, USA, wolves. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
391
|
Moccia KA, Baccus JT, Small MF, Simpson TR. SECONDARY AND TERTIARY SEX RATIOS IN WHITE-WINGED DOVES (ZENAIDA ASIATICA) IN TEXAS. SOUTHWEST NAT 2022. [DOI: 10.1894/0038-4909-66.3.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Katie A. Moccia
- Department of Biology, Wildlife Ecology Program, Texas State University, San Marcos, TX 79666
| | - John T. Baccus
- Department of Biology, Wildlife Ecology Program, Texas State University, San Marcos, TX 79666
| | - Michael F. Small
- Department of Biology, Wildlife Ecology Program, Texas State University, San Marcos, TX 79666
| | - Thomas R. Simpson
- Department of Biology, Wildlife Ecology Program, Texas State University, San Marcos, TX 79666
| |
Collapse
|
392
|
Falk JJ, Rubenstein DR, Rico-Guevara A, Webster MS. Intersexual social dominance mimicry drives female hummingbird polymorphism. Proc Biol Sci 2022; 289:20220332. [PMID: 36069013 PMCID: PMC9449474 DOI: 10.1098/rspb.2022.0332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022] Open
Abstract
Female-limited polymorphisms, where females have multiple forms but males have only one, have been described in a variety of animals, yet are difficult to explain because selection typically is expected to decrease rather than maintain diversity. In the white-necked jacobin (Florisuga mellivora), all males and approximately 20% of females express an ornamented plumage type (androchromic), while other females are non-ornamented (heterochromic). Androchrome females benefit from reduced social harassment, but it remains unclear why both morphs persist. Female morphs may represent balanced alternative behavioural strategies, but an alternative hypothesis is that androchrome females are mimicking males. Here, we test a critical prediction of these hypotheses by measuring morphological, physiological and behavioural traits that relate to resource-holding potential (RHP), or competitive ability. In all these traits, we find little difference between female types, but higher RHP in males. These results, together with previous findings in this species, indicate that androchrome females increase access to food resources through mimicry of more aggressive males. Importantly, the mimicry hypothesis provides a clear theoretical pathway for polymorphism maintenance through frequency-dependent selection. Social dominance mimicry, long suspected to operate between species, can therefore also operate within species, leading to polymorphism and perhaps similarities between sexes more generally.
Collapse
Affiliation(s)
- Jay J. Falk
- Department of Neurobiology and Behavior, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, República de Panamá
- Department of Biology, University of Washington, Life Sciences Building, Box 351800, Seattle, WA 98105, USA
| | - Dustin R. Rubenstein
- Department of Ecology, Evolution and Environmental Biology and Center for Integrative Animal Behavior, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027, USA
| | - Alejandro Rico-Guevara
- Department of Biology, University of Washington, Life Sciences Building, Box 351800, Seattle, WA 98105, USA
- Burke Museum of Natural History and Culture, Ornithology Division, 4300 15th Avenue NE, Seattle, WA 98105, USA
| | - Michael S. Webster
- Department of Neurobiology and Behavior, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| |
Collapse
|
393
|
Newman SA. Inherency and agency in the origin and evolution of biological functions. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Although discussed by 20th century philosophers in terms drawn from the sciences of non-living systems, in recent decades biological function has been considered in relationship to organismal capability and purpose. Bringing two phenomena generally neglected in evolutionary theory (i.e. inherency and agency) to bear on questions of function leads to a rejection of the adaptationist ‘selected effects’ notion of biological function. I review work showing that organisms such as the placozoans can thrive with almost no functional embellishments beyond those of their constituent cells and physical properties of their simple tissues. I also discuss work showing that individual tissue cells and their artificial aggregates exhibit agential behaviours that are unprecedented in the histories of their respective lineages. I review findings on the unique metazoan mechanism of developmental gene expression that has recruited, during evolution, inherent ancestral cellular functionalities into specialized cell types and organs of the different animal groups. I conclude that most essential functions in animal species are inherent to the cells from which they evolved, not selected effects, and that many of the others are optional ‘add-ons’, a status inimical to fitness-based models of evolution positing that traits emerge from stringent cycles of selection to meet external challenges.
Collapse
Affiliation(s)
- Stuart A Newman
- Department of Cell Biology & Anatomy, New York Medical College , Valhalla, NY 10595 , USA
| |
Collapse
|
394
|
Liu Y, Erbilgin N, Ratcliffe B, Klutsch JG, Wei X, Ullah A, Cappa EP, Chen C, Thomas BR, El-Kassaby YA. Pest defences under weak selection exert a limited influence on the evolution of height growth and drought avoidance in marginal pine populations. Proc Biol Sci 2022; 289:20221034. [PMID: 36069017 PMCID: PMC9449467 DOI: 10.1098/rspb.2022.1034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While droughts, intensified by climate change, have been affecting forests worldwide, pest epidemics are a major source of uncertainty for assessing drought impacts on forest trees. Thus far, little information has documented the adaptability and evolvability of traits related to drought and pests simultaneously. We conducted common-garden experiments to investigate how several phenotypic traits (i.e. height growth, drought avoidance based on water-use efficiency inferred from δ13C and pest resistance based on defence traits) interact in five mature lodgepole pine populations established in four progeny trials in western Canada. The relevance of interpopulation variation in climate sensitivity highlighted that seed-source warm populations had greater adaptive capability than cold populations. In test sites, warming generated taller trees with higher δ13C and increased the evolutionary potential of height growth and δ13C across populations. We found, however, no pronounced gradient in defences and their evolutionary potential along populations or test sites. Response to selection was weak in defences across test sites, but high for height growth particularly at warm test sites. Response to the selection of δ13C varied depending on its selective strength relative to height growth. We conclude that warming could promote the adaptability and evolvability of growth response and drought avoidance with a limited evolutionary influence from pest (biotic) pressures.
Collapse
Affiliation(s)
- Yang Liu
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.,McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3DZ, UK.,Wolfson College, University of Cambridge, Barton Road, Cambridge CB3 9BB, UK
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta T6G 2E3, Canada
| | - Blaise Ratcliffe
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jennifer G Klutsch
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta T6G 2E3, Canada
| | - Xiaojing Wei
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta T6G 2E3, Canada
| | - Aziz Ullah
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta T6G 2E3, Canada
| | - Eduardo Pablo Cappa
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Recursos Biológicos, Centro de Investigación en Recursos Naturales, De Los Reseros y Doctor Nicolás Repetto s/n, 1686, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Charles Chen
- Department of Biochemistry and Molecular Biology, 246 Noble Research Center, Oklahoma State University, Stillwater, OK 74078, USA
| | - Barb R Thomas
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta T6G 2E3, Canada
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
395
|
Moutinho AF, Eyre-Walker A, Dutheil JY. Strong evidence for the adaptive walk model of gene evolution in Drosophila and Arabidopsis. PLoS Biol 2022; 20:e3001775. [PMID: 36099311 PMCID: PMC9470001 DOI: 10.1371/journal.pbio.3001775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/01/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding the dynamics of species adaptation to their environments has long been a central focus of the study of evolution. Theories of adaptation propose that populations evolve by “walking” in a fitness landscape. This “adaptive walk” is characterised by a pattern of diminishing returns, where populations further away from their fitness optimum take larger steps than those closer to their optimal conditions. Hence, we expect young genes to evolve faster and experience mutations with stronger fitness effects than older genes because they are further away from their fitness optimum. Testing this hypothesis, however, constitutes an arduous task. Young genes are small, encode proteins with a higher degree of intrinsic disorder, are expressed at lower levels, and are involved in species-specific adaptations. Since all these factors lead to increased protein evolutionary rates, they could be masking the effect of gene age. While controlling for these factors, we used population genomic data sets of Arabidopsis and Drosophila and estimated the rate of adaptive substitutions across genes from different phylostrata. We found that a gene’s evolutionary age significantly impacts the molecular rate of adaptation. Moreover, we observed that substitutions in young genes tend to have larger physicochemical effects. Our study, therefore, provides strong evidence that molecular evolution follows an adaptive walk model across a large evolutionary timescale. This study uses population genomic datasets from Arabidopsis and Drosophila to show that young genes adapt faster and are subject to mutations of larger fitness effects, providing strong evidence that molecular evolution follows an adaptive walk model across a large evolutionary timescale.
Collapse
Affiliation(s)
- Ana Filipa Moutinho
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- * E-mail:
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Julien Y. Dutheil
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Unité Mixte de Recherche 5554 Institut des Sciences de l’Evolution, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
396
|
Dong H, Birhan T, Abajebel N, Wakjira M, Mitiku T, Lemke C, Vadez V, Paterson AH, Bantte K. Natural variation further increases resilience of sorghum bred for chronically drought-prone environments. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5730-5744. [PMID: 35605043 DOI: 10.1093/jxb/erac217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Drought stress is one of the major constraints for crop production in the Sahel region of Africa. Here, we explore the potential to use natural genetic variation to build on the inherent drought tolerance of an elite sorghum cultivar, Teshale, that has been bred for Ethiopian conditions including chronic drought. We evaluated a backcross nested-association mapping population using 12 diverse founder lines crossed with Teshale under three drought-prone environments in Ethiopia. All 12 populations averaged higher head exsertion and lower leaf senescence than the recurrent parent in the two most stressful environments, reflecting new drought resilience mechanisms from the donors. A total of 154 quantitative trait loci (QTLs) were detected for eight drought-responsive traits, and their validity was supported by the fact that 113 (73.4%) overlapped with QTLs previously detected for the same traits, concentrated in regions previously associated with 'stay-green' traits. Allele effects showed that some favourable alleles are already present in the Ethiopian cultivar; however, the exotic donors offer rich scope for increasing drought resilience. Using model-selected SNPs associated with the eight traits identified in this study and three in a companion study, phenotypic prediction accuracies for grain yield were equivalent to genome-wide SNPs and were significantly better than random SNPs, indicating that the selected traits are predictive of sorghum grain yield.
Collapse
Affiliation(s)
- Hongxu Dong
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, USA
| | - Techale Birhan
- Department of Horticulture and Plant Science, Jimma University, Ethiopia
| | - Nezif Abajebel
- Department of Horticulture and Plant Science, Jimma University, Ethiopia
| | - Misganu Wakjira
- Department of Horticulture and Plant Science, Jimma University, Ethiopia
| | - Tesfaye Mitiku
- Department of Horticulture and Plant Science, Jimma University, Ethiopia
| | - Cornelia Lemke
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, USA
| | | | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, USA
| | - Kassahun Bantte
- Department of Horticulture and Plant Science, Jimma University, Ethiopia
| |
Collapse
|
397
|
Levinson SC. The interaction engine: cuteness selection and the evolution of the interactional base for language. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210108. [PMID: 35876196 PMCID: PMC9310178 DOI: 10.1098/rstb.2021.0108] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
The deep structural diversity of languages suggests that our language capacities are not based on any single template but rather on an underlying ability and motivation for infants to acquire a culturally transmitted system. The hypothesis is that this ability has an interactional base that has discernable precursors in other primates. In this paper, I explore a specific evolutionary route for the most puzzling aspect of this interactional base in humans, namely the development of an empathetic intentional stance. The route involves a generalization of mother-infant interaction patterns to all adults via a process (cuteness selection) analogous to, but distinct from, RA Fisher's runaway sexual selection. This provides a cornerstone for the carrying capacity for language. This article is part of the theme issue 'Revisiting the human 'interaction engine': comparative approaches to social action coordination'.
Collapse
Affiliation(s)
- Stephen C. Levinson
- Language and Cognition, Max Planck Institute for Psycholinguistics, Nijmegen, Gelderland, The Netherlands
| |
Collapse
|
398
|
Analysis of the leaf metabolome in Arabidopsis thaliana mutation accumulation lines reveals association of metabolic disruption and fitness consequence. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
399
|
Nomura S, Sota T. Evolutionary changes in gene expression profiles associated with the coevolution of male and female genital parts among closely related ground beetle species. BMC Genomics 2022; 23:637. [PMID: 36076166 PMCID: PMC9454128 DOI: 10.1186/s12864-022-08865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Background The coevolutionary dynamics of corresponding male and female sexual traits, including genitalia, may be driven by complex genetic mechanisms. Carabus (Ohomopterus) ground beetles show correlated evolution in the size of their functionally corresponding male and female genital parts. To reveal the genetic mechanisms involved in the evolution of size, we investigated interspecific differences in gene expression profiles in four closely related species (two species each with long and short genital parts) using transcriptome data from genital tissues in the early and late pupal stages. Results We detected 1536 and 1306 differentially expressed genes (DEGs) among the species in males and 546 and 1959 DEGs in females in the two pupal stages, respectively. The DEGs were clustered by species-specific expression profiles for each stage and sex to identify candidate gene clusters for genital size based on the expression patterns among the species and gene ontology. We identified one and two gene clusters in females and males, respectively, all from the late pupal stage; one cluster of each sex showed similar expression profiles in species with similar genital size, which implies a common gene expression change associated with similar genital size in each sex. However, the remaining male cluster showed different expression profiles between species with long genital parts, which implies species-specific gene expression changes. These clusters did not show sex-concordant expression profiles for genital size differences. Conclusion Our study demonstrates that sex-independent and partly species-specific gene expression underlies the correlated evolution of male and female genital size. These results may reflect the complex evolutionary history of male and female genitalia. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08865-2.
Collapse
Affiliation(s)
- Shota Nomura
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Sakyo, 606-8502, Japan. .,Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38, Nishigonaka, Okazaki, Myodaiji, 444- 8585, Japan.
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Sakyo, 606-8502, Japan.
| |
Collapse
|
400
|
Proulx SR, Teotónio H. Selection on modifiers of genetic architecture under migration load. PLoS Genet 2022; 18:e1010350. [PMID: 36070315 PMCID: PMC9484686 DOI: 10.1371/journal.pgen.1010350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 09/19/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Gene flow between populations adapting to differing local environmental conditions might be costly because individuals can disperse to habitats where their survival is low or because they can reproduce with locally maladapted individuals. The amount by which the mean relative population fitness is kept below one creates an opportunity for modifiers of the genetic architecture to spread due to selection. Prior work that separately considered modifiers changing dispersal, recombination rates, or altering dominance or epistasis, has typically focused on the direction of selection rather than its absolute magnitude. We here develop methods to determine the strength of selection on modifiers of the genetic architecture, including modifiers of the dispersal rate, in populations that have previously evolved local adaptation. We consider scenarios with up to five loci contributing to local adaptation and derive a new model for the deterministic spread of modifiers. We find that selection for modifiers of epistasis and dominance is stronger than selection for decreased recombination, and that selection for partial reductions in recombination are extremely weak, regardless of the number of loci contributing to local adaptation. The spread of modifiers that reduce dispersal depends on the number of loci, epistasis and extent of local adaptation in the ancestral population. We identify a novel effect, that modifiers of dominance are more strongly selected when they are unlinked to the locus that they modify. These findings help explain population differentiation and reproductive isolation and provide a benchmark to compare selection on modifiers under finite population sizes and demographic stochasticity. When populations of a species are spread over different habitats the populations can adapt to their local conditions, provided dispersal between habitats is low enough. Natural selection allows the populations to maintain local adaptation, but dispersal and gene flow create a cost called the migration load. The migration load measures how much fitness is lost because of dispersal between different habitats, and also creates an opportunity for selection to act on the arrangement and interaction between genes that are involved in local adaptation. Modifier genes can spread in these linked populations and cause functional, local adaptation genes, to become more closely linked on a chromosome, or change the way that these genes are expressed so that the locally adapted gene copy becomes dominant. We modeled this process and found that selection on modifiers that create tighter linkage between locally adapted genes is generally weak, and modifiers that cause gene interactions are more strongly selected. Even after these gene interactions have begun to evolve, further selection for increased gene interaction is still strong. Our results show that populations are more likely to adapt to local conditions by evolving new gene interactions than by evolving tightly linked gene clusters.
Collapse
Affiliation(s)
- Stephen R. Proulx
- Department of Ecology, Evolution, and Marine Biology, UC Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| | | |
Collapse
|