401
|
Ren Q, Zhao S, Ren C. 6-Gingerol protects cardiocytes H9c2 against hypoxia-induced injury by suppressing BNIP3 expression. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2016-2023. [PMID: 31223035 DOI: 10.1080/21691401.2019.1610415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Qi Ren
- Department of Cardiology, Jining No.1 People’s Hospital, Jining, China
| | - Shaojun Zhao
- Department of Cardiology, Jining No.1 People’s Hospital, Jining, China
| | - Changjie Ren
- Department of Cardiology, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
402
|
Suppression of colorectal cancer cell growth by combined treatment of 6-gingerol and γ-tocotrienol via alteration of multiple signalling pathways. J Nat Med 2019; 73:745-760. [DOI: 10.1007/s11418-019-01323-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/20/2019] [Indexed: 12/26/2022]
|
403
|
de Lima RMT, Dos Reis AC, de Oliveira Santos JV, de Oliveira Ferreira JR, Lima Braga A, de Oliveira Filho JWG, de Menezes AAPM, da Mata AMOF, de Alencar MVOB, do Nascimento Rodrigues DC, Pinheiro Ferreira PM, de Jesus Aguiar Dos Santos Andrade T, Ramos Gonçalves JC, Carneiro da Silva FC, de Castro E Sousa JM, de Carvalho Melo Cavalcante AA. Toxic, cytogenetic and antitumor evaluations of [6]-gingerol in non-clinical in vitro studies. Biomed Pharmacother 2019; 115:108873. [PMID: 31003079 DOI: 10.1016/j.biopha.2019.108873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/28/2022] Open
Abstract
Gingerol - [6]-gingerol ((S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone; [6]-G) - is a phenolic compound with several pharmacological properties. Herein, the aim of the study was to evaluate the toxicogenic effects of [6]-G on Artemia salina nauplii, Allium cepa, HL-60 cell line and Sarcoma 180 (S-180) ascitic fluid cells.For toxic and genotoxic analysis, it was used [6]-G concentrations of 5, 10, 20 and 40 μg mL-1. For cytotoxic evaluation using the MTT test (3- [4,5-dimethyl-thiazol-2-yl] -2,5-diphenyl tetrazolium bromide), serial [6]-G dilutions (1.56-100 μg mL-1) were performed, and S-180, HL-60 and peripheral blood mononuclear cells (PBMC) were treated for 72 h. The IC50 of [6]-G were 1.14, 5.73 and 11.18 μg mL-1 for HL-60, S-180 and PBMC, respectively, indicating a possible selectivity against tumor cell lines. At higher concentrations (>10 μg mL-1), toxicity and genotoxicity were observed in the A. cepa test, especially at 40 μg mL-1. Mechanisms indicating apoptosis, such as toxicity, cytotoxicity and nuclear abnormalities (bridges, fragments, delays, loose chromosomes and micronuclei) suggest that [6]-G has potential for antitumor pharmaceutical formulations.
Collapse
Affiliation(s)
- Rosália Maria Tôrres de Lima
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Piauí, 64049-550, Brazil
| | - Antonielly Campinho Dos Reis
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Genetic Toxicology, Federal University of Piauí, Teresina, Piauí, 64049-550, Brazil
| | - José Victor de Oliveira Santos
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Genetic Toxicology, Federal University of Piauí, Teresina, Piauí, 64049-550, Brazil
| | | | - Antonio Lima Braga
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Genetic Toxicology, Federal University of Piauí, Teresina, Piauí, 64049-550, Brazil
| | | | - Ag-Anne Pereira Melo de Menezes
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Genetic Toxicology, Federal University of Piauí, Teresina, Piauí, 64049-550, Brazil
| | - Ana Maria Oliveira Ferreira da Mata
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Piauí, 64049-550, Brazil
| | | | | | - Paulo Michel Pinheiro Ferreira
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Piauí, 64049-550, Brazil; Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, Teresina, Piauí, 64049-550, Brazil
| | | | - Juan Carlos Ramos Gonçalves
- Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64049-550, Brazil
| | | | - João Marcelo de Castro E Sousa
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Piauí, 64049-550, Brazil; Postgraduate Program in Pharmaceutical Sciences, Laboratory of Genetic Toxicology, Federal University of Piauí, Teresina, Piauí, 64049-550, Brazil; Department of Biological Sciences, Federal University of Piauí, Picos, Piauí, 64607-670, Brazil.
| | - Ana Amélia de Carvalho Melo Cavalcante
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Piauí, 64049-550, Brazil; Postgraduate Program in Pharmaceutical Sciences, Laboratory of Genetic Toxicology, Federal University of Piauí, Teresina, Piauí, 64049-550, Brazil
| |
Collapse
|
404
|
Verma G, Khan MF, Akhtar W, Alam MM, Akhter M, Shaquiquzzaman M. A Review Exploring Therapeutic Worth of 1,3,4-Oxadiazole Tailored Compounds. Mini Rev Med Chem 2019; 19:477-509. [PMID: 30324877 DOI: 10.2174/1389557518666181015152433] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/27/2017] [Accepted: 09/30/2018] [Indexed: 02/01/2023]
Abstract
1,3,4-Oxadiazole, a five-membered aromatic ring can be seen in a number of synthetic molecules. The peculiar structural feature of 1,3,4-oxadiazole ring with pyridine type of nitrogen atom is beneficial for 1,3,4-oxadiazole derivatives to have effective binding with different enzymes and receptors in biological systems through numerous weak interactions, thereby eliciting an array of bioactivities. Research in the area of development of 1,3,4-oxadiazole-based derivatives has become an interesting topic for the scientists. A number of 1,3,4-oxadiazole based compounds with high therapeutic potency are being extensively used for the treatment of different ailments, contributing to enormous development value. This work provides a systematic and comprehensive review highlighting current developments of 1,3,4-oxadiazole based compounds in the entire range of medicinal chemistry such as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents. It is believed that this review will be of great help for new thoughts in the pursuit for rational designs for the development of more active and less toxic 1,3,4-oxadiazole based medicinal agents.
Collapse
Affiliation(s)
- Garima Verma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohemmed F Khan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Wasim Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mymoona Akhter
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Shaquiquzzaman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
405
|
Garcellano RC, Moinuddin SGA, Young RP, Zhou M, Bowden ME, Renslow RS, Yesiltepe Y, Thomas DG, Colby SM, Chouinard CD, Nagy G, Attah IK, Ibrahim YM, Ma R, Franzblau SG, Lewis NG, Aguinaldo AM, Cort JR. Isolation of Tryptanthrin and Reassessment of Evidence for Its Isobaric Isostere Wrightiadione in Plants of the Wrightia Genus. JOURNAL OF NATURAL PRODUCTS 2019; 82:440-448. [PMID: 30295480 DOI: 10.1021/acs.jnatprod.8b00567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A series of Wrightia hanleyi extracts was screened for activity against Mycobacterium tuberculosis H37Rv. One active fraction contained a compound that initially appeared to be either the isoflavonoid wrightiadione or the alkaloid tryptanthrin, both of which have been previously reported in other Wrightia species. Characterization by NMR and MS, as well as evaluation of the literature describing these compounds, led to the conclusion that wrightiadione (1) was misidentified in the first report of its isolation from W. tomentosa in 1992 and again in 2015 when reported in W. pubescens and W. religiosa. Instead, the molecule described in these reports and in the present work is almost certainly the isobaric (same nominal mass) and isosteric (same number of atoms, valency, and shape) tryptanthrin (2), a well-known quinazolinone alkaloid found in a variety of plants including Wrightia species. Tryptanthrin (2) is also accessible synthetically via several routes and has been thoroughly characterized. Wrightiadione (1) has been synthesized and characterized and may have useful biological activity; however, this compound can no longer be said to be known to exist in Nature. To our knowledge, this misidentification of wrightiadione (1) has heretofore been unrecognized.
Collapse
Affiliation(s)
- Rhea C Garcellano
- Graduate School , University of Santo Tomas , Manila 1015 , Philippines
- Palawan State University , Tiniguiban Heights, Puerto Princesa City 5300 , Palawan , Philippines
- Institute of Biological Chemistry , Washington State University , Pullman , Washington 99164-6340 , United States
| | - Syed G A Moinuddin
- Institute of Biological Chemistry , Washington State University , Pullman , Washington 99164-6340 , United States
| | - Robert P Young
- Earth and Biological Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Mowei Zhou
- Earth and Biological Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Mark E Bowden
- Earth and Biological Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Ryan S Renslow
- Earth and Biological Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Yasemin Yesiltepe
- Earth and Biological Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Dennis G Thomas
- Earth and Biological Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Sean M Colby
- Earth and Biological Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Christopher D Chouinard
- Earth and Biological Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Gabe Nagy
- Earth and Biological Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Isaac K Attah
- Earth and Biological Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Yehia M Ibrahim
- Earth and Biological Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Rui Ma
- Institute for Tuberculosis Research, College of Pharmacy , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Norman G Lewis
- Institute of Biological Chemistry , Washington State University , Pullman , Washington 99164-6340 , United States
| | - Alicia M Aguinaldo
- Graduate School , University of Santo Tomas , Manila 1015 , Philippines
- Phytochemistry Laboratory, Research Center for the Natural and Applied Sciences , University of Santo Tomas , Manila 1015 , Philippines
| | - John R Cort
- Institute of Biological Chemistry , Washington State University , Pullman , Washington 99164-6340 , United States
- Earth and Biological Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| |
Collapse
|
406
|
Cytotoxic Properties of Damiana ( Turnera diffusa) Extracts and Constituents and A Validated Quantitative UHPLC-DAD Assay. Molecules 2019; 24:molecules24050855. [PMID: 30823394 PMCID: PMC6429218 DOI: 10.3390/molecules24050855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 02/06/2023] Open
Abstract
In our continuing search for new cytotoxic agents, we assayed extracts, fractions, and pure compounds from damiana (Turnera diffusa) against multiple myeloma (NCI-H929, U266, and MM1S) cell lines. After a first liquid-liquid solvent extraction, the ethyl acetate layer of an acetone (70%) crude extract was identified as the most active fraction. Further separation of the active fraction led to the isolation of naringenin (1), three apigenin coumaroyl glucosides 2–4, and five flavone aglycones 5–9. Naringenin (1) and apigenin 7-O-(4″-O-p-E-coumaroyl)-glucoside (4) showed significant cytotoxic effects against the tested myeloma cell lines. Additionally, we established a validated ultra-high performance liquid chromatography diode array detector (UHPLC-DAD) method for the quantification of the isolated components in the herb and in traditional preparations of T. diffusa.
Collapse
|
407
|
Ahmad R. Steroidal glycoalkaloids from Solanum nigrum target cytoskeletal proteins: an in silico analysis. PeerJ 2019; 7:e6012. [PMID: 30627484 PMCID: PMC6321755 DOI: 10.7717/peerj.6012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/26/2018] [Indexed: 12/03/2022] Open
Abstract
Background Solanum nigrum (black nightshade; S. nigrum), a member of family Solanaceae, has been endowed with a heterogeneous array of secondary metabolites of which the steroidal glycoalkaloids (SGAs) and steroidal saponins (SS) have vast potential to serve as anticancer agents. Since there has been much controversy regarding safety of use of glycoalkaloids as anticancer agents, this area has remained more or less unexplored. Cytoskeletal proteins like actin play an important role in maintaining cell shape, synchronizing cell division, cell motility, etc. and along with their accessory proteins may also serve as important therapeutic targets for potential anticancer candidates. In the present study, glycoalkaloids and saponins from S. nigrum were screened for their interaction and binding affinity to cytoskeletal proteins, using molecular docking. Methods Bioactivity score and Prediction of Activity Spectra for Substances (PASS) analysis were performed using softwares Molinspiration and Osiris Data Explorer respectively, to assess the feasibility of selected phytoconstituents as potential drug candidates. The results were compared with two standard reference drugs doxorubicin hydrochloride (anticancer) and tetracycline (antibiotic). Multivariate data obtained were analyzed using principal component analysis (PCA). Results Docking analysis revealed that the binding affinities of the phytoconstituents towards the target cytoskeletal proteins decreased in the order coronin>villin>ezrin>vimentin>gelsolin>thymosin>cofilin. Glycoalkaloid solasonine displayed the greatest binding affinity towards the target proteins followed by alpha-solanine whereas amongst the saponins, nigrumnin-I showed maximum binding affinity. PASS Analysis of the selected phytoconstituents revealed 1 to 3 violations of Lipinski’s parameters indicating the need for modification of their structure-activity relationship (SAR) for improvement of their bioactivity and bioavailability. Glycoalkaloids and saponins all had bioactivity scores between −5.0 and 0.0 with respect to various receptor proteins and target enzymes. Solanidine, solasodine and solamargine had positive values of druglikeness which indicated that these compounds have the potential for development into future anticancer drugs. Toxicity potential evaluation revealed that glycoalkaloids and saponins had no toxicity, tumorigenicity or irritant effect(s). SAR analysis revealed that the number, type and location of sugar or the substitution of hydroxyl group on alkaloid backbone had an effect on the activity and that the presence of α-L-rhamnopyranose sugar at C-2 was critical for a compound to exhibit anticancer activity. Conclusion The present study revealed some cytoskeletal target(s) for S. nigrum phytoconstituents by docking analysis that have not been previously reported and thus warrant further investigations both in vitro and in vivo.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemisty, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
408
|
Almatroudi A, Alsahli MA, Alrumaihi F, Allemailem KS, Rahmani AH. Ginger: A Novel Strategy to Battle Cancer through Modulating Cell Signalling Pathways: A Review. Curr Pharm Biotechnol 2019; 20:5-16. [PMID: 30659535 DOI: 10.2174/1389201020666190119142331] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 12/24/2022]
Abstract
Numerous studies have been performed in understanding the development of cancer. Though, the mechanism of action of genes in the development of cancer remains to be explained. The current mode of treatment of cancer shows adverse effects on normal cells and also alter the cell signalling pathways. However, ginger and its active compound have fascinated research based on animal model and laboratories during the past decade due to its potentiality in killing cancer cells. Ginger is a mixture of various compounds including gingerol, paradol, zingiberene and shogaol and such compounds are the main players in diseases management. Most of the health-promoting effects of ginger and its active compound can be attributed due to its antioxidant and anti-tumour activity. Besides, the active compound of ginger has proven its role in cancer management through its modulatory effect on tumour suppressor genes, cell cycle, apoptosis, transcription factors, angiogenesis and growth factor. In this review, the role of ginger and its active compound in the inhibition of cancer growth through modulating cell signalling pathways will be reviewed and discussed.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Arshad H Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
409
|
Pan C, Lü H. Preparative separation of quercetin, ombuin and kaempferide fromGynostemma pentaphyllumby high-speed countercurrent chromatography. J Chromatogr Sci 2018; 57:265-271. [DOI: 10.1093/chromsci/bmy110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/22/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Conglei Pan
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, P. R. China
| | - Haitao Lü
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, P. R. China
| |
Collapse
|
410
|
Pazhanivel L, Gnanasambandam V. Design and synthesis of benzothiazole/thiophene-4 H-chromene hybrids. RSC Adv 2018; 8:41675-41680. [PMID: 35558789 PMCID: PMC9091940 DOI: 10.1039/c8ra08262f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/12/2018] [Indexed: 11/21/2022] Open
Abstract
A library of 4H-chromene derivatives with heterocyclic substituent's at the 3 and 4-positions was synthesized in a convenient DBU catalysed three component synthesis between salicylaldehyde, acetonitrile derivatives and thiazolidinedione to afford 2-amino-3-benzothiazole-4-heterocycle-4H-chromenes and 2-amino-3-thiophenoyl-4-heterocycle-4H-chromenes derivatives in ethanol and a mixture of ethanol and water (1 : 1) at room temperature. The significance of this protocol is the feasibility of incorporating substituents simultaneously at the 3 and 4 positions of 4H-chromenes in an efficient three component reaction.
Collapse
|
411
|
Anti-adipogenic effect of flavonoids from Chromolaena odorata leaves in 3T3-L1 adipocytes. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 16:427-434. [DOI: 10.1016/j.joim.2018.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/27/2018] [Indexed: 11/30/2022]
|
412
|
de Lima RMT, Dos Reis AC, de Menezes AAPM, Santos JVDO, Filho JWGDO, Ferreira JRDO, de Alencar MVOB, da Mata AMOF, Khan IN, Islam A, Uddin SJ, Ali ES, Islam MT, Tripathi S, Mishra SK, Mubarak MS, Melo-Cavalcante AADC. Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]-gingerol in cancer: A comprehensive review. Phytother Res 2018; 32:1885-1907. [PMID: 30009484 DOI: 10.1002/ptr.6134] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022]
Abstract
Natural dietary agents have attracted considerable attention due to their role in promoting health and reducing the risk of diseases including cancer. Ginger, one of the most ancient known spices, contains bioactive compounds with several health benefits. [6]-Gingerol constitutes the most pharmacologically active among such compounds. The aim of the present work was to review the literature pertaining to the use of ginger extract and [6]-gingerol against tumorigenic and oxidative and inflammatory processes associated with cancer, along with the underlying mechanisms of action involved in signaling pathways. This will shed some light on the protective or therapeutic role of ginger derivatives in oxidative and inflammatory regulations during metabolic disturbance and on the antiproliferative and anticancer properties. Data collected from experimental (in vitro or in vivo) and clinical studies discussed in this review indicate that ginger extract and [6]-gingerol exert their action through important mediators and pathways of cell signaling, including Bax/Bcl2, p38/MAPK, Nrf2, p65/NF-κB, TNF-α, ERK1/2, SAPK/JNK, ROS/NF-κB/COX-2, caspases-3, -9, and p53. This suggests that ginger derivatives, in the form of an extract or isolated compounds, exhibit relevant antiproliferative, antitumor, invasive, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Rosália Maria Tôrres de Lima
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Antonielly Campinho Dos Reis
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Ag-Anne Pereira Melo de Menezes
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - José Victor de Oliveira Santos
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - José Williams Gomes de Oliveira Filho
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - José Roberto de Oliveira Ferreira
- Laboratory of Experimental Cancerology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Marcus Vinícius Oliveira Barros de Alencar
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Ana Maria Oliveira Ferreira da Mata
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Ishaq N Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Amirul Islam
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, Bangladesh
| | - Eunüs S Ali
- Gaco Pharmaceuticals and Research Laboratory, Dhaka-1000, Bangladesh; College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Swati Tripathi
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory, School of Biological Sciences (Zoology), Dr. Harisingh Gour Central University, Sagar, India
| | | | - Ana Amélia de Carvalho Melo-Cavalcante
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
413
|
Hiraishi K, Kurahara LH, Sumiyoshi M, Hu YP, Koga K, Onitsuka M, Kojima D, Yue L, Takedatsu H, Jian YW, Inoue R. Daikenchuto (Da-Jian-Zhong-Tang) ameliorates intestinal fibrosis by activating myofibroblast transient receptor potential ankyrin 1 channel. World J Gastroenterol 2018; 24:4036-4053. [PMID: 30254408 PMCID: PMC6148431 DOI: 10.3748/wjg.v24.i35.4036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/06/2018] [Accepted: 07/21/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the anti-fibrotic effects of the traditional oriental herbal medicine Daikenchuto (DKT) associated with transient receptor potential ankyrin 1 (TRPA1) channels in intestinal myofibroblasts.
METHODS Inflammatory and fibrotic changes were detected in a 2,4,6-trinitrobenzenesulfonic acid (TNBS) chronic colitis model of wild-type and TRPA1-knockout (TRPA1-KO) mice via pathological staining and immunoblotting analysis. Ca2+ imaging experiments examined the effects of DKT and its components/ingredients on intestinal myofibroblast (InMyoFib) cell TRPA1 channel function. Pro-fibrotic factors and transforming growth factor (TGF)-β1-associated signaling were tested in an InMyoFib cell line by qPCR and immunoblotting experiments. Samples from non-stenotic and stenotic regions of the intestines of patients with Crohn’s disease (CD) were used for pathological analysis.
RESULTS Chronic treatment with TNBS caused more severe inflammation and fibrotic changes in TRPA1-KO than in wild-type mice. A one-week enema administration of DKT reduced fibrotic lesions in wild-type but not in TRPA1-KO mice. The active ingredients of DKT, i.e., hydroxy α-sanshool and 6-shogaol, induced Ca2+ influxes in InMyoFib, and this was antagonized by co-treatment with a selective TRPA1 channel blocker, HC-030031. DKT counteracted TGF-β1-induced expression of Type I collagen and α-smooth muscle actin (α-SMA), which were accompanied by a reduction in the phosphorylation of Smad-2 and p38-mitogen-activated protein kinase (p38-MAPK) and the expression of myocardin. Importantly, 24-h incubation with a DKT active component Japanese Pepper increased the mRNA and protein expression levels of TRPA1 in InMyoFibs, which in turn negatively regulated collagen synthesis. In the stenotic regions of the intestines of CD patients, TRPA1 expression was significantly enhanced.
CONCLUSION The effects of DKT on the expression and activation of the TRPA1 channel could be advantageous for suppressing intestinal fibrosis, and benefit inflammatory bowel disease treatment.
Collapse
Affiliation(s)
- Keizo Hiraishi
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan
| | - Lin-Hai Kurahara
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan
| | - Miho Sumiyoshi
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan
| | - Yao-Peng Hu
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan
| | - Kaori Koga
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka 8140180, Japan
| | - Miki Onitsuka
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka 8140180, Japan
| | - Daibo Kojima
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 8140180, Japan
| | - Lixia Yue
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, United States
| | - Hidetoshi Takedatsu
- Department of Gastroenterology and Medicine, Faculty of Medicine, Fukuoka University, Fukuoka 8140180, Japan
| | - Yu-Wen Jian
- College of Letters and Science, University of California, Davis, CA 95616, United States
| | - Ryuji Inoue
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan
| |
Collapse
|
414
|
Bonam SR, Wu YS, Tunki L, Chellian R, Halmuthur MSK, Muller S, Pandy V. What Has Come out from Phytomedicines and Herbal Edibles for the Treatment of Cancer? ChemMedChem 2018; 13:1854-1872. [PMID: 29927521 DOI: 10.1002/cmdc.201800343] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Several modern treatment strategies have been adopted to combat cancer with the aim of minimizing toxicity. Medicinal plant-based compounds with the potential to treat cancer have been widely studied in preclinical research and have elicited many innovations in cutting-edge clinical research. In parallel, researchers have eagerly tried to decrease the toxicity of current chemotherapeutic agents either by combining them with herbals or in using herbals alone. The aim of this article is to present an update of medicinal plants and their bioactive compounds, or mere changes in the bioactive compounds, along with herbal edibles, which display efficacy against diverse cancer cells and in anticancer therapy. It describes the basic mechanism(s) of action of phytochemicals used either alone or in combination therapy with other phytochemicals or herbal edibles. This review also highlights the remarkable synergistic effects that arise between certain herbals and chemotherapeutic agents used in oncology. The anticancer phytochemicals used in clinical research are also described; furthermore, we discuss our own experience related to semisynthetic derivatives, which are developed based on phytochemicals. Overall, this compilation is intended to facilitate research and development projects on phytopharmaceuticals for successful anticancer drug discovery.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Yuan Seng Wu
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lakshmi Tunki
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India
| | - Ranjithkumar Chellian
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mahabalarao Sampath Kumar Halmuthur
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sylviane Muller
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, 67000, France
| | - Vijayapandi Pandy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Pharmacology, Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur, Andhra Pradesh, 522034, India
| |
Collapse
|
415
|
Butt G, Romero MA, Tahir F, Farooqi AA. Emerging themes of regulation of oncogenic proteins by Solanum nigrum and its bioactive molecules in different cancers. J Cell Biochem 2018; 119:9640-9644. [PMID: 30076759 DOI: 10.1002/jcb.27258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/21/2018] [Indexed: 01/11/2023]
Abstract
Research over the decades has sequentially and systematically provided a near-complete resolution of multifaceted and therapeutically challenging nature of cancer. Drug discovery from plants has enjoyed a renaissance in the past few years. Natural products have provided many of the lead structures, which are currently being used as templates for the design and synthesis of novel compounds with biologically enhanced properties. With the maturity and diversification of technologies, there is a growing need to design high-throughput functional assays for the evaluation of the myriad of compounds being catalogued. This review sheds light on the tumor suppressive properties of Solanum nigrum and its bioactive ingredients. Several worthy of mention include uttroside B, solanine, solamargine, and physalins, which have been tested for efficacy in cancer cell lines and xenografted mice. We have summarized the most recent findings related to S. nigrum-mediated regulation of intracellular protein network in different cancers. α-Solanine, an active component of S. nigrum, is involved in the regulation of microRNA-21 (miRNA-21) (oncogenic) and miRNA-138 (tumor suppressor) in prostate cancer. However, this is the only available evidence that gives us a clue related to the tumor suppressive effects exerted by components of S. nigrum at a posttranscriptional level. More interestingly, S. nigrum and its components exerted inhibitory effects on different pathways including PI3K/AKT, JAK-STAT, VEGF/VEGFR, and matrix metalloproteinases in different cancers. We also provide an overview of new tools, methodologies, and approaches, which will allow researchers to extract as much information as possible out of the tremendous data sets currently being generated. The use of computational tools will be helpful in processing structurally complex natural products and also in prediction of their macromolecular targets.
Collapse
Affiliation(s)
| | - Mirna Azalea Romero
- Laboratorio de Investigación Clínica, Facultad de Medicina, Universidad Autónoma de Guerrero, Acapulco, Guerrero, México
| | | | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| |
Collapse
|
416
|
Abdel-Salam IM, Ashmawy AM, Hilal AM, Eldahshan OA, Ashour M. Chemical Composition of Aqueous Ethanol Extract of Luffa cylindrica Leaves and Its Effect on Representation of Caspase-8, Caspase-3, and the Proliferation Marker Ki67 in Intrinsic Molecular Subtypes of Breast Cancer in Vitro. Chem Biodivers 2018; 15:e1800045. [PMID: 29874411 DOI: 10.1002/cbdv.201800045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/05/2018] [Indexed: 01/26/2023]
Abstract
Breast cancer constitutes the second most prevalent cancer in Egypt, the problem needs more trends in treatment and treatment development either by regimen modification or introducing new drugs, and the main objective of this study is to screen the effects of the aqueous ethanol herbal extract of Luffa cylindrica leaves on different types of breast cancer cell lines representing different molecular subtypes of the disease. The major active constituents of the extract were tentatively identified by LC/MS which revealed the presence of phenolic compound derivatives and saponin that may be responsible in part for the activity of the extract. The emphasis was laid on the main apoptotic pathways as well as the extract effect on the normal cell line. Results of phytochemical investigation, cell cycle analysis, and molecular analysis of apoptotic and proliferative markers have shown effective anticancer activity against MCF-7, BT-474, and MDA-MB-231 cell lines which represent three subtypes of breast cancer, luminal A, luminal B, and triple negative, respectively. On the other hand, the effects on normal lung fibroblast cell line are less prominent at the dose used for treating breast cancer cell lines.
Collapse
Affiliation(s)
- Ibrahim M Abdel-Salam
- Department of Cancer Biology National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, 11796-, Cairo, Egypt
| | - Abeer M Ashmawy
- Department of Cancer Biology National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, 11796-, Cairo, Egypt
| | - Amany M Hilal
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbaseyya, 1156-, Cairo, Egypt
| | - Mohamed Ashour
- Medical Research Department, National Institute of Occupational Safety and Health, 156 - EL Hegas Street, Cairo-, 11351, Egypt
| |
Collapse
|
417
|
Luna-Dulcey L, Tomasin R, Naves MA, da Silva JA, Cominetti MR. Autophagy-dependent apoptosis is triggered by a semi-synthetic [6]-gingerol analogue in triple negative breast cancer cells. Oncotarget 2018; 9:30787-30804. [PMID: 30112107 PMCID: PMC6089392 DOI: 10.18632/oncotarget.25704] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023] Open
Abstract
Triple negative breast cancer (TNBC) is very aggressive and lacks specific therapeutic targets, having limited treatment options and poor prognosis. [6]-gingerol is the most abundant and studied compound in ginger, presenting diverse biological properties such as antitumor activity against several types of cancer, including breast cancer. In this study, we show that the semi-synthetic analogue SSi6, generated after chemical modification of the [6]-gingerol molecule, using acetone-2,4-dinitrophenylhydrazone (2,4-DNPH) reagent, enhanced selective cytotoxic effects on MDA-MB-231 cells. Remarkably, unlike the original [6]-gingerol molecule, SSi6 enabled autophagy followed by caspase-independent apoptosis in tumor cells. We found a time-dependent association between SSi6-induced oxidative stress, autophagy and apoptosis. Initial SSi6-induced reactive oxygen species (ROS) accumulation (1h) led to autophagy activation (2-6h), which was followed by caspase-independent apoptosis (14h) in TNBC cells. Additionally, our data showed that SSi6 induction of ROS plays a key role in the promotion of autophagy and apoptosis. In order to investigate whether the observed cell death induction was dependent on preceding autophagy in MDA-MB-231 cells, we used siRNA to knock down LC3B prior to SSi6 treatment. Our data show that LC3B downregulation decreased the number of apoptotic cells after treatment with SSi6, indicating that autophagy is a key initial step on SSi6-induced caspase-independent apoptosis. Overall, the results of this study show that structural modifications of natural compounds can be an interesting strategy for developing antitumor drugs, with distinct mechanisms of actions, which could possibly be used against triple negative breast cancer cells that are resistant to canonical apoptosis-inducing drugs.
Collapse
Affiliation(s)
- Liany Luna-Dulcey
- Laboratory of Biology of Aging, Department of Gerontology, Federal University of São Carlos, CEP 13565-905, São Carlos, SP, Brazil
| | - Rebeka Tomasin
- Laboratory of Biology of Aging, Department of Gerontology, Federal University of São Carlos, CEP 13565-905, São Carlos, SP, Brazil
| | - Marina A Naves
- Laboratory of Biology of Aging, Department of Gerontology, Federal University of São Carlos, CEP 13565-905, São Carlos, SP, Brazil
| | - James A da Silva
- Department of Pharmacy, Federal University of Sergipe, CEP 49400-000, São José, Lagarto, SE, Brazil
| | - Marcia R Cominetti
- Laboratory of Biology of Aging, Department of Gerontology, Federal University of São Carlos, CEP 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
418
|
Alajmi MF, Alam P, Rehman MT, Husain FM, Khan AA, Siddiqui NA, Hussain A, Kalam MA, Parvez MK. Interspecies Anticancer and Antimicrobial Activities of Genus Solanum and Estimation of Rutin by Validated UPLC-PDA Method. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:6040815. [PMID: 30057644 PMCID: PMC6051100 DOI: 10.1155/2018/6040815] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/17/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022]
Abstract
Solanaceae is one of the highly diverse plant families of which Solanum is the largest genera (1700 species) containing several pharmacological properties like anticancer and antimicrobial. This motivated us to explore the anticancer (against HepG2, HEK-293, and MCF-7 cells) and antimicrobial (against S. aureus, E. coli, P. aeruginosa, and C. albicans) properties of S. schimperianum, S. villosum, S. coagulans, S. glabratum, S. incanum, and S. nigrum along with rutin estimation by UPLC-PDA method. Of the studied Solanum extracts, S. nigrum exhibited significant cytotoxic property against HepG2 (IC50: 20.4 μg/mL) and MCF-7 (IC50: 30.1 μg/mL); S. coagulans showed toxicity against HepG2 (IC50: 28.4 μg/mL) and HEK-293 cells (IC50: 25.7 μg/mL) compared to 5-Fluorouracil (standard). Compared to these, extracts of S. coagulans and S. glabratum exhibited relatively high antimicrobial potency (MIC: 0.4-1.6 mg/mL). Nonetheless, all Solanum extracts significantly reduced the biofilm against PAO1-strain. Rutin was detected in all extracts with the highest content (53.79 μg/mg) in S. coagulans that supported its strong antimicrobial and anticancer properties. Molecular docking analysis showing strong binding of rutin with human DNA and proteins (DNA Topoisomerase IIα and E. coli DNA gyrase B) supported the anticancer and antimicrobial activities of Solanum species.
Collapse
Affiliation(s)
- Mohamed Fahad Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Azmat Ali Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Nasir Ali Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohd. Abul Kalam
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
419
|
Haris P, Mary V, Sudarsanakumar C. Probing the interaction of the phytochemical 6-gingerol from the spice ginger with DNA. Int J Biol Macromol 2018; 113:124-131. [PMID: 29454952 DOI: 10.1016/j.ijbiomac.2018.02.099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/11/2022]
Abstract
6-Gingerol [5-hydroxy-1-(4-hydroxy-3-methoxyphenyl) decan-3-one], the bio-active ingredient of the popular Indian spice ginger (Zingiber officinale Roscoe), is well-known for its pharmacological and physiological actions. The potent antioxidant, antiemetic, antiulcer, antimicrobial, analgesic, hypoglycemic, antihypertensive, antihyperlipidemic, immunostimulant, anti-inflammatory, cardiotonic, and cancer prevention activities of 6-Gingerol has been investigated and explored. 6-Gingerol is a good candidate for the treatment of various cancers including prostrate, pancreatic, breast, skin, gastrointestinal, pulmonary, and renal cancer. In this study we report for the first time the molecular recognition of 6-Gingerol with calf thymus DNA (ctDNA) through experimental and molecular modeling techniques confirming a minor groove binding mode of 6-Gingerol with ctDNA. Fluorescence and UV-vis spectroscopic studies confirm the complex formation of 6-gingerol with ctDNA. The energetics and thermodynamics of the interaction of 6-Gingerol with ctDNA was explored by Isothermal Titration Calorimetry (ITC) and Differential Scanning Calorimetry (DSC). The ctDNA helix melting upon 6-Gingerol binding was examined by melting temperature Tm analysis. Further the electrophoretic mobility shift assay confirms a possible groove binding of 6-Gingerol with ctDNA. Molecular docking and Molecular dynamics (MD) studies provide a detailed understanding on the interaction of 6-Gingerol binding in the minor groove of DNA which supports experimental results.
Collapse
Affiliation(s)
- Poovvathingal Haris
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Varughese Mary
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Chellappanpillai Sudarsanakumar
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560, India; Center for High Performance Computing, Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| |
Collapse
|
420
|
Nguyen Tien C, Le Thi Thu H, Nguyen Van T, Vu Quoc T, Vu Quoc M, Pham Chien T, Van Meervelt L. Crystal structure of ( E) -N'-[1-(4-amino-phen-yl)ethyl-idene]-2-hy-droxy-5-iodo-benzohydrazide methanol monosolvate. Acta Crystallogr E Crystallogr Commun 2018; 74:910-914. [PMID: 30002884 PMCID: PMC6038649 DOI: 10.1107/s2056989018008204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 11/27/2022]
Abstract
In the title compound, C15H14IN3O2·CH3OH, two aromatic rings are linked by an N-substituted hydrazide function. The dihedral angle between the aromatic rings is 10.53 (8)°. The stereochemistry about the imine function is E. The methanol mol-ecule forms an O-H⋯O hydrogen bond to the hydrazide O atom. In the crystal, chains of mol-ecules running along the c-axis direction are formed by O-H⋯O hydrogen bonds. Adjacent chains are linked through N-H⋯O hydrogen bonds and π-π stacking inter-actions. The inter-molecular inter-actions in the crystal packing were investigated using Hirshfeld surface analysis, which indicated that the most significant contacts are H⋯H (38.2%), followed by C⋯H/H⋯C (20.6%), O⋯H/H⋯O (11.1%) and I⋯H/H⋯I (9.7%).
Collapse
Affiliation(s)
- Cong Nguyen Tien
- Faculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam
| | - Huong Le Thi Thu
- Faculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam
| | - Thin Nguyen Van
- School of Natural Sciences Education, Vinh University, 182 Le Duan St., Vinh City, Vietnam
| | - Trung Vu Quoc
- Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Manh Vu Quoc
- Faculty of Foundation Science, College of Printing Industry, Phuc Dien, Bac Tu Liem, Hanoi, Vietnam
| | - Thang Pham Chien
- Department of Chemistry, Hanoi University of Science, 19 Le Thanh Tong Street, Hai Ba Trung District, Hanoi, Vietnam
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
| |
Collapse
|
421
|
Nguyen Tien C, Nguyen Van T, Le Duc G, Vu Quoc M, Vu Quoc T, Pham Chien T, Nguyen Huy H, Dang Thi Tuyet A, Nguyen Van T, Van Meervelt L. Synthesis, structure and in vitro cytotoxicity testing of some 1,3,4-oxadiazoline derivatives from 2-hydroxy-5-iodobenzoic acid. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:839-846. [PMID: 29973423 DOI: 10.1107/s2053229618008719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/13/2018] [Indexed: 11/10/2022]
Abstract
The syntheses of nine new 5-iodosalicylic acid-based 1,3,4-oxadiazoline derivatives starting from methyl salicylate are described. These compounds are 2-[4-acetyl-5-methyl-5-(3-nitrophenyl)-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6a), 2-[4-acetyl-5-methyl-5-(4-nitrophenyl)-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6b), 2-(4-acetyl-5-methyl-5-phenyl-4,5-dihydro-1,3,4-oxadiazol-2-yl)-4-iodophenyl acetate, C19H17IN2O4 (6c), 2-[4-acetyl-5-(4-fluorophenyl)-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate, C19H16FIN2O4 (6d), 2-[4-acetyl-5-(4-chlorophenyl)-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate, C19H16ClIN2O4 (6e), 2-[4-acetyl-5-(3-bromophenyl)-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6f), 2-[4-acetyl-5-(4-bromophenyl)-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6g), 2-[4-acetyl-5-methyl-5-(4-methylphenyl)-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6h) and 2-[5-(4-acetamidophenyl)-4-acetyl-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6i). The compounds were characterized by mass, 1H NMR and 13C NMR spectroscopies. Single-crystal X-ray diffraction studies were also carried out for 6c, 6d and 6e. Compounds 6c and 6d are isomorphous, with the 1,3,4-oxadiazoline ring having an envelope conformation, where the disubstituted C atom is the flap. The packing is determined by C-H...O, C-H...π and I...π interactions. For 6e, the 1,3,4-oxadiazoline ring is almost planar. In the packing, Cl...π interactions are observed, while the I atom is not involved in short interactions. Compounds 6d, 6e, 6f and 6h show good inhibiting abilities on the human cancer cell lines KB and Hep-G2, with IC50 values of 0.9-4.5 µM.
Collapse
Affiliation(s)
- Cong Nguyen Tien
- Faculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam
| | - Thin Nguyen Van
- School of Natural Sciences Education, Vinh University, 182 Le Duan St., Vinh City, Vietnam
| | - Giang Le Duc
- School of Natural Sciences Education, Vinh University, 182 Le Duan St., Vinh City, Vietnam
| | - Manh Vu Quoc
- Faculty of Foundation Science, College of Printing Industry, Phuc Dien, Bac Tu Liem, Hanoi, Vietnam
| | - Trung Vu Quoc
- Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Thang Pham Chien
- Department of Inorganic Chemistry, VNU University of Science, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Hung Nguyen Huy
- Department of Inorganic Chemistry, VNU University of Science, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Anh Dang Thi Tuyet
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam
| | - Tuyen Nguyen Van
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
| |
Collapse
|
422
|
Ahmad Hidayat AF, Chan CK, Mohamad J, Abdul Kadir H. Dioscorea bulbifera induced apoptosis through inhibition of ERK 1/2 and activation of JNK signaling pathways in HCT116 human colorectal carcinoma cells. Biomed Pharmacother 2018; 104:806-816. [PMID: 29860114 DOI: 10.1016/j.biopha.2018.05.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/19/2018] [Accepted: 05/15/2018] [Indexed: 11/15/2022] Open
Abstract
Dioscorea bulbifera, also known as air potato, has been cultivated as food crop mainly in tropical countries in Asia and Australia. The tubers are edible and have often been used in Traditional Chinese Medicine (TCM) and Ayurvedic medicine to treat cancer, diabetes, thyroid disease, and inflammation. This study aimed to investigate the effects of D. bulbifera on HCT116 human colorectal carcinoma cells and to unravel the plausible mechanisms underlying its apoptotic effects. The ethanol crude and fractions (hexane, ethyl acetate and water) of D. bulbifera were subjected to cell viability MTT assay against various cancer cell lines. The lowest IC50 of the extract and fractions on selected cancer cells were selected for further apoptosis assay and western blot analysis. HCT116 cancer cells were treated with D. bulbifera and stained with Annexin/PI or Hoechst 33342/PI for preliminary confirmation of apoptosis. The dissipation of mitochondria membrane potential (MMP) was determined by flow cytometry. The protein expressions of apoptosis-related proteins such as Bcl-2 family, caspases, Fas, PARP, ERK1/2 and JNK were detected by western blot analysis. Moreover, the HCT116 cells were treated with UO126 and SP600125 inhibitors to verify the involvement of ERK1/2 and JNK protein expressions in inducing apoptotic cell death. Based on the result, D. bulbifera ethyl acetate fraction (DBEAF) exhibited the most compelling cytotoxicity on HCT116 cells with an IC50 of 37.91 ± 1.30 µg/mL. The induction of apoptosis was confirmed by phosphatidylserine externalization and chromatin condensation. Depolarization of MMP further conferred the induction of apoptosis was through the regulation of Bcl-2 family proteins. Activation of caspase cascades (caspase-3, -9, -8 and -10) was elicited followed by the observation of cleaved PARP accumulation in DBEAF-treated cells. Furthermore, death receptor, Fas was activated upon exposure to DBEAF. Collective apoptotic evidences suggested the involvement of intrinsic and extrinsic pathways by DBEAF in HCT116 cells. Interestingly, the attenuation of ERK1/2 phosphorylation accompanied by the activation of JNK was detected in DBEAF-treated cells. In conclusion, the findings revealed that DBEAF induced apoptosis through intrinsic and extrinsic pathways involving ERK1/2 and JNK.
Collapse
Affiliation(s)
- Ahmad Fadhlurrahman Ahmad Hidayat
- (a)Biomolecular Research Group, Biochemistry Program, Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chim Kei Chan
- (a)Biomolecular Research Group, Biochemistry Program, Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jamaludin Mohamad
- (b)Biohealth Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Habsah Abdul Kadir
- (a)Biomolecular Research Group, Biochemistry Program, Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
423
|
Lu S, Lin C, Cheng X, Hua H, Xiang T, Huang Y, Huang X. Cardamonin reduces chemotherapy resistance of colon cancer cells via the TSP50/NF-κB pathway in vitro. Oncol Lett 2018; 15:9641-9646. [PMID: 29928339 PMCID: PMC6004643 DOI: 10.3892/ol.2018.8580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 10/13/2017] [Indexed: 12/20/2022] Open
Abstract
It has previously been reported that cardamonin is able to regulate glycometabolism and vasodilation whilst also exhibiting anti-inflammatory and antitumor properties. The antitumor effect of cardamonin is multifaceted, and so it is necessary to investigate the antitumor mechanisms of cardamonin at the molecular level. Cardamonin alters chemotherapy-resistant colon cancer cell growth; however, the underlying mechanism is unknown. The present study was conducted to investigate the effect of cardamonin on chemotherapy-resistant colon cancer cells and the possible mechanisms of action. Cardamonin significantly suppressed the growth of chemotherapy-resistant colon cancer cells, induced apoptosis and promoted caspase-3/9 activity and Bax protein expression in 5-fluorouracil (5-FU)-resistant HCT-116 cells. Cardamonin significantly suppressed c-MYC, octamer-binding transcription factor 4, cyclin E, testes-specific protease 50 and nuclear factor-κB protein expression in 5-FU-resistant HCT-116 cells. The findings of the present study demonstrate that cardamonin suppresses chemotherapy-colon cancer cell via the NF-κB pathway in vitro.
Collapse
Affiliation(s)
- Sen Lu
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310005, P.R. China
| | - Caizhao Lin
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310005, P.R. China
| | - Xiaobin Cheng
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310005, P.R. China
| | - Hanju Hua
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310005, P.R. China
| | - Tao Xiang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310005, P.R. China
| | - Yu Huang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310005, P.R. China
| | - Xi Huang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310005, P.R. China
| |
Collapse
|
424
|
Saikia M, Retnakumari AP, Anwar S, Anto NP, Mittal R, Shah S, Pillai KS, Balachandran VS, Peter V, Thomas R, Anto RJ. Heteronemin, a marine natural product, sensitizes acute myeloid leukemia cells towards cytarabine chemotherapy by regulating farnesylation of Ras. Oncotarget 2018; 9:18115-18127. [PMID: 29719594 PMCID: PMC5915061 DOI: 10.18632/oncotarget.24771] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/23/2018] [Indexed: 12/25/2022] Open
Abstract
Cytarabine is a conventionally used chemotherapeutic agent for treating acute myeloid leukemia (AML). However, chemoresistance, toxic side-effects and poor patient survival rates retard the efficacy of its performance. The current study deals with the chemosensitization of AML cells using heteronemin, a marine natural product towards cytarabine chemotherapy. Heteronemin could effectively sensitize HL-60 cells towards sub-toxic concentration of cytarabine resulting in synergistic toxicity as demonstrated by MTT assay and [3H] thymidine incorporation studies, while being safe towards healthy blood cells. Flow cytometry for Annexin-V/PI and immunoblotting for caspase cleavage proved that the combination induces enhancement in apoptosis. Heteronemin being a farnesyl transferase inhibitor (FTI) suppressed cytarabine-induced, farnesyl transferase-mediated activation of Ras, as assessed by Ras pull-down assay. Upon pre-treating cells with a commercial FTI, L-744,832, the synergism was completely lost in the combination, confirming the farnesyl transferase inhibitory activity of heteronemin as assessed by thymidine incorporation assay. Heteronemin effectively down-regulated cytarabine-induced activation of MAPK, AP-1, NF-κB and c-myc, the down-stream targets of Ras signaling, which again validated the role of Ras in regulating the synergism. Hence we believe that the efficacy of cytarabine chemotherapy can be improved to a significant extent by combining sub-toxic concentrations of cytarabine and heteronemin.
Collapse
Affiliation(s)
- Minakshi Saikia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Research Scholar, University of Kerala, India
| | - Archana P Retnakumari
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Shabna Anwar
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Research Scholar, University of Kerala, India
| | - Nikhil P Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Rashmi Mittal
- Department of Biotechnology, Maharishi Markandeshwar University, Haryana, India
| | - Shabna Shah
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Research Scholar, University of Kerala, India
| | - Kavya S Pillai
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Research Scholar, University of Kerala, India
| | - Vinod S Balachandran
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Vidya Peter
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Reeba Thomas
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
425
|
Anisha C, Sachidanandan P, Radhakrishnan EK. Endophytic Paraconiothyrium sp. from Zingiber officinale Rosc. Displays Broad-Spectrum Antimicrobial Activity by Production of Danthron. Curr Microbiol 2018; 75:343-352. [PMID: 29101453 DOI: 10.1007/s00284-017-1387-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/30/2017] [Indexed: 01/15/2023]
Abstract
The bioactivity spectrum of fungal endophytes isolated from Zingiber officinale was analyzed against clinical pathogens and against the phytopathogen Pythium myriotylum, which causes Pythium rot in ginger. One of the isolates GFM13 showed broad bioactivity against various pathogens tested including P. myriotylum. The spore suspension as well as the culture filtrate of the endophytic fungal isolate was found to effectively protect ginger rhizomes from Pythium rot. By molecular identification, the fungal endophyte was identified as Paraconiothyrium sp. The bioactive compound produced by the isolate was separated by bioactivity-guided fractionation and was identified by GC-MS as danthron, an anthraquinone derivative. PCR amplification showed the presence of non-reducing polyketide synthase gene (NR-PKS) in the endophyte GFM13, which is reported to be responsible for the synthesis of anthraquinones in fungi. This is the first report of danthron being produced as the biologically active component of Paraconiothyrium sp. Danthron is reported to have wide pharmaceutical and agronomic applications which include its use as a fungicide in agriculture. The broad-spectrum antimicrobial activity of danthron and the endophytic origin of Paraconiothyrium sp. offer immense applications of the study.
Collapse
Affiliation(s)
- C Anisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686 560, India
| | | | - E K Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686 560, India.
| |
Collapse
|
426
|
Elgazar AA, Selim NM, Abdel-Hamid NM, El-Magd MA, El Hefnawy HM. Isolates from Alpinia officinarum Hance attenuate LPS-induced inflammation in HepG2: Evidence from in silico and in vitro studies. Phytother Res 2018; 32:1273-1288. [PMID: 29468851 DOI: 10.1002/ptr.6056] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 01/31/2023]
Abstract
In an attempt to connect the legacy of centuries of invaluable knowledge from traditional medicine and the current understanding to the molecular mechanism of diseases, we took the advantage of the emergence of in silico screening as a promising tool for identification of potential leads from libraries of natural products. Traditional Chinese Medicine database was subjected to structure based virtual screening for identification of anti-inflammatory compounds using the 3D crystal structure of p38 alpha mitogen activated protein kinase. The molecular docking studies revealed the potential activity of several classes of compounds known to be the constituents of the rhizomes of Alpinia officinarum Hance (Lesser galangal). Five compounds, galangin, kaempferide, isorhamnetin, and two diarylheptanoids, were isolated from the rhizomes of the plant using vacuum liquid chromatography and flash chromatography techniques. The anti-inflammatory activity of these compounds was investigated on HepG2 cells stimulated by lipopolysaccharide. The latter induced the gene expression of proinflammatory cytokines; interleukin-1β, interleukin-6, tumor necrosis factor alpha. Addition of the 5 isolated compounds downregulated this increased gene expression in a dose dependent manner. Thus, these results indicate that the isolated compounds from A. officinarum could be used as a beneficial source for preventing and treating inflammatory diseases.
Collapse
Affiliation(s)
- Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Nabil M Selim
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nabil M Abdel-Hamid
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Mohammed A El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Hala M El Hefnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
427
|
Lü Y, Han B, Yu H, Cui Z, Li Z, Wang J. Berberine regulates the microRNA-21-ITGΒ4-PDCD4 axis and inhibits colon cancer viability. Oncol Lett 2018; 15:5971-5976. [PMID: 29564000 DOI: 10.3892/ol.2018.7997] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/16/2017] [Indexed: 12/12/2022] Open
Abstract
Berberine is sourced from multiple medicinal herb resources and is easy to extract. With the advantages of low price, safety and convenience, berberine may have potential for wide clinical use. The present study aimed to investigate whether berberine inhibited the viability of colon cancer and whether it regulated the three-gene network microRNA (miR)-21-integrin β4 (ITGβ4)-programmed cell death 4 (PDCD4). It was demonstrated that berberine treatment suppressed colon cancer cell viability, and induced apoptosis and activated caspase-3 activity in the human colon carcinoma HCT116 cell line. Berberine inhibited miR-21 expression and promoted ITGβ4 and PDCD4 protein expression in the HCT116 cell line. Overexpression of miR-21 reduced the anti-cancer effects of berberine on cell viability, apoptosis rate and caspase-3 activity of the HCT116 cell line. However, it was revealed that the overexpression of miR-21 also suppressed ITGβ4 and PDCD4 protein expression in the HCT116 cell line. In conclusion, miR-21, ITGβ4 and PDCD4 are involved in the anti-cancer effects of berberine on cell viability and apoptosis in the HCT116 cell line.
Collapse
Affiliation(s)
- Yanfeng Lü
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Bingbing Han
- Microcirculation Laboratory, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Hualong Yu
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhenghua Cui
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhiwen Li
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jianxin Wang
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
428
|
Bansal M, Singh N, Pal S, Dev I, Ansari KM. Chemopreventive Role of Dietary Phytochemicals in Colorectal Cancer. ADVANCES IN MOLECULAR TOXICOLOGY 2018. [DOI: 10.1016/b978-0-444-64199-1.00004-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
429
|
Cai S, Kong Y, Xiao D, Chen Y, Wang Q. Primary aminomethyl derivatives of kaempferol: hydrogen bond-assisted synthesis, anticancer activity and spectral properties. Org Biomol Chem 2018; 16:1921-1931. [DOI: 10.1039/c7ob02927f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Primary aminomethyl derivatives of kaempferol with anticancer activity were synthesized by a combination strategy involving a hydrogen bond-assisted process.
Collapse
Affiliation(s)
- Shuanglian Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Yangyang Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Dan Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Yun Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Qiuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| |
Collapse
|
430
|
Functionalized diterpene parvifloron D-loaded hybrid nanoparticles for targeted delivery in melanoma therapy. Ther Deliv 2017; 7:521-44. [PMID: 27444493 DOI: 10.4155/tde-2016-0027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM Parvifloron D is a natural diterpene with a broad and not selective cytotoxicity toward human tumor cells. In order to develop a targeted antimelanoma drug delivery platform for Parvifloron D, hybrid nanoparticles were prepared with biopolymers and functionalized with α-melanocyte stimulating hormone. Results/methodology: Nanoparticles were produced according to a solvent displacement method and the physicochemical properties were assessed. It was shown that Parvifloron D is cytotoxic and can induce, both as free and as encapsulated drug, cell death in melanoma cells (human A375 and mouse B16V5). Parvifloron D-loaded nanoparticles showed a high encapsulation efficiency (87%) and a sustained release profile. In vitro experiments showed the nanoparticles' uptake and cell internalization. CONCLUSION Hybrid nanoparticles appear to be a promising platform for long-term drug release, presenting the desired structure and a robust performance for targeted anticancer therapy.
Collapse
|
431
|
Cen Y, Xiao A, Chen X, Liu L. Screening and separation of α-amylase inhibitors from Solanum nigrum
with amylase-functionalized magnetic graphene oxide combined with high-speed counter-current chromatography. J Sep Sci 2017; 40:4780-4787. [DOI: 10.1002/jssc.201700333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/19/2017] [Accepted: 10/11/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Yin Cen
- College of Chemistry and Chemical Engineering; Central South University; Changsha China
| | - Aiping Xiao
- Institute of Bast Fiber Crops; Chinese Academy of Agricultural Sciences; Changsha China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering; Central South University; Changsha China
| | - Liangliang Liu
- Institute of Bast Fiber Crops; Chinese Academy of Agricultural Sciences; Changsha China
| |
Collapse
|
432
|
Dileep K, Polepalli S, Jain N, Buddana SK, Prakasham RS, Murty MSR. Synthesis of novel tetrazole containing hybrid ciprofloxacin and pipemidic acid analogues and preliminary biological evaluation of their antibacterial and antiproliferative activity. Mol Divers 2017; 22:83-93. [PMID: 29138963 DOI: 10.1007/s11030-017-9795-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/30/2017] [Indexed: 12/01/2022]
Abstract
A series of 1-substituted-1H-tetrazole-5-thiol building blocks were synthesized and introduced to the N-4 piperazinyl group at C-7 position of the quinolone core, and these novel compounds (5a-g and 8a-g) were screened for their antibacterial and antiproliferative activities. Bioactive assay studies manifested that most of new compounds exhibited significant antibacterial activity against the tested strains, including multi-drug-resistant MRSA in comparison with reference drugs ciprofloxacin, streptomycin B and pipemidic acid. Among the synthesized compounds, only ciprofloxacin (5a-g) derivatives displayed significant activity ([Formula: see text]) compared to reference drugs. In addition, these compounds were evaluated for their in vitro inhibition of human cancer cell lines viz human cervical carcinoma cell line (SiHA), breast adenocarcinoma (MDA-MB-235) and human pancreas carcinoma (PANC-1) cell lines by using the SRB assay method. Most of the target compounds showed broad potent growth inhibition activity ([Formula: see text]) against all the tested cancer cell lines compared with reference drug. The most promising active compounds in this series were 5c, 5d, 8c, 8d and 8f endowed with excellent antiproliferative activity. A new class of compounds was designed rationally by introducing tetrazole building block on N-4 piperazinyl group at C-7 position of quinolones core. The titled compounds were evaluated for their preliminary antibacterial and antiproliferative activities.
Collapse
Affiliation(s)
- Kommula Dileep
- Medicinal Chemistry and Pharmacology Division, Discovery Laboratory, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Sowjanya Polepalli
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Nishant Jain
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Sudheer Kumar Buddana
- Bioengineering and Environmental Sciences, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - R S Prakasham
- Bioengineering and Environmental Sciences, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - M S R Murty
- Medicinal Chemistry and Pharmacology Division, Discovery Laboratory, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.
| |
Collapse
|
433
|
Selective fractionation of supercritical extracts from leaves of Baccharis dracunculifolia. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.03.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
434
|
Srinivasan K. Antimutagenic and cancer preventive potential of culinary spices and their bioactive compounds. PHARMANUTRITION 2017. [DOI: 10.1016/j.phanu.2017.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
435
|
Martin ACBM, Fuzer AM, Becceneri AB, da Silva JA, Tomasin R, Denoyer D, Kim SH, McIntyre KA, Pearson HB, Yeo B, Nagpal A, Ling X, Selistre-de-Araújo HS, Vieira PC, Cominetti MR, Pouliot N. [10]-gingerol induces apoptosis and inhibits metastatic dissemination of triple negative breast cancer in vivo. Oncotarget 2017; 8:72260-72271. [PMID: 29069785 PMCID: PMC5641128 DOI: 10.18632/oncotarget.20139] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/29/2017] [Indexed: 11/25/2022] Open
Abstract
There is increasing interest in the use of non-toxic natural products for the treatment of various pathologies, including cancer. In particular, biologically active constituents of the ginger oleoresin (Zingiber officinale Roscoe) have been shown to mediate anti-tumour activity and to contribute to the anti-inflammatory, antioxidant, antimicrobial, and antiemetic properties of ginger. Here we report on the inhibitory properties of [10]-gingerol against metastatic triple negative breast cancer (TNBC) in vitro and in vivo. We show that [10]-gingerol concentration-dependently induces apoptotic death in mouse and human TNBC cell lines in vitro. In addition, [10]-gingerol is well tolerated in vivo, induces a marked increase in caspase-3 activation and inhibits orthotopic tumour growth in a syngeneic mouse model of spontaneous breast cancer metastasis. Importantly, using both spontaneous and experimental metastasis assays, we show for the first time that [10]-gingerol significantly inhibits metastasis to multiple organs including lung, bone and brain. Remarkably, inhibition of brain metastasis was observed even when treatment was initiated after surgical removal of the primary tumour. Taken together, these results indicate that [10]-gingerol may be a safe and useful complementary therapy for the treatment of metastatic breast cancer and warrant further investigation of its efficacy, either alone or in combination with standard systemic therapies, in pre-clinical models of metastatic breast cancer and in patients.
Collapse
Affiliation(s)
| | - Angelina M Fuzer
- Department of Gerontology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Amanda B Becceneri
- Department of Gerontology, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | - Rebeka Tomasin
- Department of Gerontology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Delphine Denoyer
- Metals in Medicine Laboratory, Centre for Cellular and Molecular Biology (CCMB), Melbourne Burwood Campus, Deakin University, VIC, Australia
| | - Soo-Hyun Kim
- Department of Pathology and University of Melbourne, VIC, Australia
| | - Katherine A McIntyre
- Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Australia
| | - Helen B Pearson
- European Cancer Stem Cell Research Institute, Cardiff University, Cathays, Cardiff, UK
| | - Belinda Yeo
- Matrix Microenvironment and Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Australia
| | - Aadya Nagpal
- Matrix Microenvironment and Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Australia
| | - Xiawei Ling
- Department of Pathology and University of Melbourne, VIC, Australia
| | | | - Paulo Cézar Vieira
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Marcia R Cominetti
- Department of Gerontology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Normand Pouliot
- Department of Pathology and University of Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Australia.,Matrix Microenvironment and Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Australia
| |
Collapse
|
436
|
Lin C, Tu C, Ma Y, Ye P, Shao X, Yang Z, Fang Y. Curcumin analog EF24 induces apoptosis and downregulates the mitogen activated protein kinase/extracellular signal-regulated signaling pathway in oral squamous cell carcinoma. Mol Med Rep 2017; 16:4927-4933. [PMID: 28791378 DOI: 10.3892/mmr.2017.7189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/20/2017] [Indexed: 11/06/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies worldwide. Diphenyldifluoroketone (EF24) is a curcumin analog that has been demonstrated to improve anticancer activity; however, its therapeutic potential and mechanisms in oral cancer remain unknown. In the present study, the effect of EF24 on apoptosis induction and its potential underlying mechanism in the CAL‑27 human OSCC cell line was investigated. To achieve this, various concentrations of cisplatin or EF24 were administrated to CAL‑27 cells for 24 h, and cell viability, apoptotic DNA fragmentation, and cleaved caspase 3 and 9 levels were evaluated. To investigate the potential underlying mechanism, the levels of mitogen‑activated protein kinase kinase 1 (MEK1) and extracellular signal‑regulated kinase (ERK), two key proteins in the mitogen‑activated protein kinase/ERK signaling pathway, were additionally examined. The results indicated that EF24 and cisplatin treatment decreased cell viability. EF24 treatment increased the levels of activated caspase 3 and 9, and decreased the phosphorylated forms of MEK1 and ERK. Sequential treatments of EF24 and 12‑phorbol‑13‑myristate acetate, a MAPK/ERK activator, resulted in a significant increase of activated MEK1 and ERK, and reversed cell viability. These results suggested that EF24 has potent anti‑tumor activity in OSCC via deactivation of the MAPK/ERK signaling pathway. Further analyses using animal models are required to confirm these findings in vivo.
Collapse
Affiliation(s)
- Chongxiang Lin
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chengwei Tu
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yike Ma
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Pengcheng Ye
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xia Shao
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhaoan Yang
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yiming Fang
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
437
|
Bernard MM, McConnery JR, Hoskin DW. [10]-Gingerol, a major phenolic constituent of ginger root, induces cell cycle arrest and apoptosis in triple-negative breast cancer cells. Exp Mol Pathol 2017; 102:370-376. [PMID: 28315687 DOI: 10.1016/j.yexmp.2017.03.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 11/30/2022]
Abstract
The ginger rhizome is rich in bioactive compounds, including [6]-gingerol, [8]-gingerol, and [10]-gingerol; however, to date, most research on the anti-cancer activities of gingerols have focused on [6]-gingerol. In this study, we compared [10]-gingerol with [8]-gingerol and [6]-gingerol in terms of their ability to inhibit the growth of human and mouse mammary carcinoma cells. A colorimetric assay based on the enzymatic reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide revealed that [10]-gingerol was more potent than [6]-gingerol and at least as potent as [8]-gingerol for the inhibition of triple-negative human (MDA-MB-231, MDA-MB-468) and mouse (4T1, E0771) mammary carcinoma cell growth. Further investigation of [10]-gingerol showed that it suppressed the growth of estrogen receptor-bearing (MCF-7, T47D) and HER2-overexpressing (SKBR3) breast cancer cells. The inhibitory effect of [10]-gingerol on the growth of MDA-MB-231 cells was associated with a reduction in the number of rounds of cell division and evidence of S phase-cell cycle arrest, as well as induction of apoptosis due to mitochondrial outer membrane permeabilization and the release of proapoptotic mitochondrial cytochrome c and SMAC/DIABLO into the cytoplasm. Surprisingly, killing of MDA-MB-231 cells by [10]-gingerol was not affected by a pan-caspase inhibitor (zVAD-fmk) or an anti-oxidant (N-acetylcysteine), suggesting that the cytotoxic effect of [10]-gingerol did not require caspase activation or the accumulation of reactive oxygen species. These findings suggest that further investigation of [10]-gingerol is warranted for its possible use in the treatment of breast cancer.
Collapse
Affiliation(s)
- Megan M Bernard
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jason R McConnery
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - David W Hoskin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Surgery, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
438
|
Srinivasan K. Ginger rhizomes (Zingiber officinale): A spice with multiple health beneficial potentials. PHARMANUTRITION 2017. [DOI: 10.1016/j.phanu.2017.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
439
|
Yang G, Gao X, Jiang L, Sun X, Liu X, Chen M, Yao X, Sun Q, Wang S. 6-Gingerol prevents MEHP-induced DNA damage in human umbilical vein endothelia cells. Hum Exp Toxicol 2016; 36:1177-1185. [PMID: 28988496 DOI: 10.1177/0960327116681650] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mono (2-ethylhexyl) phthalate (MEHP) is the principal metabolite of di (2-etylhexyl) phthalate, which is widely used as a plasticizer, especially in medical devices. MEHP has toxic effects on cardiovascular system. The aim of this study was to investigate the possibility that 6-gingerol may inhibit the oxidative DNA damage of MEHP in human umbilical vein endothelial cells (HUVECs) and the potential mechanism. The comet assay was used to monitor DNA strand breaks. We have shown that 6-gingerol significantly reduced the DNA strand breaks caused by MEHP. MEHP increased the levels of reactive oxygen species and malondialdehyde, decreased the level of glutathione and activity of superoxide dismutase, and altered the mitochondrial membrane potential. In addition, DNA damage-associated proteins (p53 and p-Chk2 (T68)) were significantly increased by the treatment of MEHP. Those effects can all be protected by 6-gingerol. The results firmly indicate that 6-gingerol may have a strong protective ability against the DNA damage caused by MEHP in HUVECs, and the mechanism may relate to the antioxidant activity.
Collapse
Affiliation(s)
- G Yang
- 1 Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - X Gao
- 2 Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - L Jiang
- 3 Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, China
| | - X Sun
- 3 Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, China
| | - X Liu
- 1 Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - M Chen
- 1 Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - X Yao
- 3 Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, China
| | - Q Sun
- 4 Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, USA
| | - S Wang
- 2 Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
440
|
Nath LR, Gorantla JN, Thulasidasan AKT, Vijayakurup V, Shah S, Anwer S, Joseph SM, Antony J, Veena KS, Sundaram S, Marelli UK, Lankalapalli RS, Anto RJ. Evaluation of uttroside B, a saponin from Solanum nigrum Linn, as a promising chemotherapeutic agent against hepatocellular carcinoma. Sci Rep 2016; 6:36318. [PMID: 27808117 PMCID: PMC5093766 DOI: 10.1038/srep36318] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/11/2016] [Indexed: 02/08/2023] Open
Abstract
We report, for the first time, the remarkable efficacy of uttroside B, a potent saponin from Solanum nigrum Linn, against liver cancer. The compound has been isolated and characterized from the leaves of Solanum nigrum Linn, a plant widely used in traditional medicine and is a rich resource of several anticancer molecules. Uttroside B, that comprises of β-D-glucopyranosyl unit at C-26 of the furostanol and β-lycotetraosyl unit at C-3, is ten times more cytotoxic to the liver cancer cell line, HepG2 (IC50: 0.5 μM) than sorafenib (IC50: 5.8 μM), the only FDA-approved drug for liver cancer. Moreover, it induces cytotoxicity in all liver cancer cell lines, irrespective of their HBV status, while being non-toxic to normal immortalized hepatocytes. It induces apoptosis in HepG2 cells by down-regulating mainly the activation of MAPK and mTOR pathways. The drastic reduction in HepG2-xenograft tumor size achieved by uttroside B in NOD-SCID mice and substantiation of its biological safety through both acute and chronic toxicity studies in Swiss albino mice warrants clinical validation of the molecule against hepatic cancer, for which, the chemotherapeutic armamentarium currently has limited weapons.
Collapse
Affiliation(s)
- Lekshmi R. Nath
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| | - Jaggaiah N. Gorantla
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram-695019, Kerala, India
| | - Arun Kumar T. Thulasidasan
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| | - Vinod Vijayakurup
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| | - Shabna Shah
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| | - Shabna Anwer
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| | - Sophia M. Joseph
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| | - Jayesh Antony
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| | - Kollery Suresh Veena
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram-695019, Kerala, India
| | - Sankar Sundaram
- Department of Pathology, Government Medical College, Thiruvananthapuram-695011, Kerala, India
| | - Udaya K. Marelli
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
| | - Ravi S. Lankalapalli
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram-695019, Kerala, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| |
Collapse
|
441
|
Al-Harthy T, Zoghaib WM, Pflüger M, Schöpel M, Önder K, Reitsammer M, Hundsberger H, Stoll R, Abdel-Jalil R. Design, Synthesis, and Cytotoxicity of 5-Fluoro-2-methyl-6-(4-aryl-piperazin-1-yl) Benzoxazoles. Molecules 2016; 21:molecules21101290. [PMID: 27689973 PMCID: PMC6274350 DOI: 10.3390/molecules21101290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 11/20/2022] Open
Abstract
To design new compounds suitable as starting points for anticancer drug development, we have synthesized a novel series of benzoxazoles with pharmaceutically advantageous piperazine and fluorine moieties attached to them. The newly synthesized benzoxazoles and their corresponding precursors were evaluated for cytotoxicity on human A-549 lung carcinoma cells and non-cancer HepaRG hepatocyes. Some of these new benzoxazoles show potential anticancer activity, while two of the intermediates show lung cancer selective properties at low concentrations where healthy cells are unaffected, indicating a selectivity window for anticancer compounds.
Collapse
Affiliation(s)
- Thuraya Al-Harthy
- Chemistry Department, College of Science, Sultan Qaboos University, Muscat 123, Oman.
| | - Wajdi Michel Zoghaib
- Chemistry Department, College of Science, Sultan Qaboos University, Muscat 123, Oman.
| | - Maren Pflüger
- IMC Fachhochschule Krems University of Applied Sciences Krems, Piaristengasse 1, Krems A-3500, Austria.
| | - Miriam Schöpel
- Biomolecular NMR, Ruhr University of Bochum, Bochum 44780, Germany.
| | - Kamil Önder
- Research Program for Rational Drug Design in Dermatology and Rheumatolog, Department of Dermatology, General Hospital of Salzburg, Paracelsus Medical, University of Salzburg, Müllner Hauptstraße 48, Salzburg A-5020, Austria.
| | - Maria Reitsammer
- Research Program for Rational Drug Design in Dermatology and Rheumatolog, Department of Dermatology, General Hospital of Salzburg, Paracelsus Medical, University of Salzburg, Müllner Hauptstraße 48, Salzburg A-5020, Austria.
| | - Harald Hundsberger
- IMC Fachhochschule Krems University of Applied Sciences Krems, Piaristengasse 1, Krems A-3500, Austria.
| | - Raphael Stoll
- Biomolecular NMR, Ruhr University of Bochum, Bochum 44780, Germany.
| | - Raid Abdel-Jalil
- Chemistry Department, College of Science, Sultan Qaboos University, Muscat 123, Oman.
| |
Collapse
|
442
|
Rasool S, Aziz-ur-Rehman, Abbasi MA, Siddiqui SZ, Shah SAA. Synthesis, spectral analysis and pharmacological study of N'- substituted-2-(5-((2,4-dimethylphenoxy)methyl)-1,3,4-oxadiazol-2-ylthio)acetohydrazides. BRAZ J PHARM SCI 2016. [DOI: 10.1590/s1984-82502016000300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
443
|
Wang S, Sun X, Jiang L, Liu X, Chen M, Yao X, Sun Q, Yang G. 6-Gingerol induces autophagy to protect HUVECs survival from apoptosis. Chem Biol Interact 2016; 256:249-56. [PMID: 27451028 DOI: 10.1016/j.cbi.2016.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/29/2016] [Accepted: 07/18/2016] [Indexed: 12/12/2022]
Abstract
6-Gingerol, the major pharmacologically-active component of ginger, has the potential to prevent heart disease. However, the mechanisms are not well understood. In this study, the protective effect of 6-gingerol against hydrogen peroxide-induced apoptosis in human umbilical vein endothelial cells (HUVECs) was investigated. Apoptosis was detected by Hoechst 33342 and Flow cytometry analysis. To further elucidate the crosstalk between apoptosis and autophagy, we tested the expression of autophagy related proteins, LC3B, Bcl-2, Beclin1, AKT, p-AKT, mechanistic target of rapamycin (mTOR), and p-mTOR. Furthermore, mitochondrial membrane potential and the intracellular generation of reactive oxygen species (ROS) were also investigated. Our data revealed that 6-gingerol significantly reduced apoptosis by inducing autophagy. It has been demonstrated that 6-gingerol suppressed the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling pathway, increased the expression of Beclin1 to promote autophagy, and increased Bcl-2 expression to inhibit apoptosis. In addition, the damage of mitochondrial was protected, and ROS level was decreased by 6-gingerol. These firmly indicate 6-gingerol has a strong protective ability against the apoptosis caused by oxidative stress in HUVECs, and the mechanism may relate to the induction of autophagy. Our data suggest 6-gingerol may be beneficial in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Shaopeng Wang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, No. 222. Zhongshan Road, Dalian 116011 China
| | - Xiance Sun
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian 116044, China
| | - Liping Jiang
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian 116044, China
| | - Xiaofang Liu
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian 116044, China
| | - Min Chen
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian 116044, China
| | - Xiaofeng Yao
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian 116044, China
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA.
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
444
|
Wang D, Lu C, Sun F, Cui M, Mu H, Duan J, Geng H. A tanshinone I derivative enhances the activities of antibiotics against Staphylococcus aureus in vitro and in vivo. Res Microbiol 2016; 168:46-54. [PMID: 27545500 DOI: 10.1016/j.resmic.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/26/2016] [Accepted: 08/05/2016] [Indexed: 11/28/2022]
Abstract
Infections caused by Staphylococcus aureus are prevalent. The dramatically reduced discovery of new antibiotics, as well as the persistent emergence of resistant bacteria, represents a major health problem in both hospital and community settings. Using antibiotic enhancers to rescue existing classes of antibiotics is an attractive strategy. In this study, 16-aldehyde tanshinone I (ALT) was synthesized and bacteriostatic activity was explored. In addition, synergistic or additive activity between ALT and aminoglycoside antibiotics or β-lactam antibiotics in vitro was identified. Moreover, ALT was documented to augment clearance of streptomycin (STR) and ampicillin (AMP) against S. aureus in a murine infection model. Primary mechanistic insight indicated that ALT could damage the bacterial cell membrane, leading to accumulation of antibiotics inside bacterial cells. This finding might be useful for treating infections caused by S. aureus and expand the scope of application of tanshinones.
Collapse
Affiliation(s)
- Dongdong Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunbo Lu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Feifei Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingxu Cui
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haibo Mu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinyou Duan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Huiling Geng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
445
|
Zheng J, Zhou Y, Li Y, Xu DP, Li S, Li HB. Spices for Prevention and Treatment of Cancers. Nutrients 2016; 8:E495. [PMID: 27529277 PMCID: PMC4997408 DOI: 10.3390/nu8080495] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/22/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022] Open
Abstract
Spices have been widely used as food flavorings and folk medicines for thousands of years. Numerous studies have documented the antioxidant, anti-inflammatory and immunomodulatory effects of spices, which might be related to prevention and treatment of several cancers, including lung, liver, breast, stomach, colorectum, cervix, and prostate cancers. Several spices are potential sources for prevention and treatment of cancers, such as Curcuma longa (tumeric), Nigella sativa (black cumin), Zingiber officinale (ginger), Allium sativum (garlic), Crocus sativus (saffron), Piper nigrum (black pepper) and Capsicum annum (chili pepper), which contained several important bioactive compounds, such as curcumin, thymoquinone, piperine and capsaicin. The main mechanisms of action include inducing apoptosis, inhibiting proliferation, migration and invasion of tumors, and sensitizing tumors to radiotherapy and chemotherapy. This review summarized recent studies on some spices for prevention and treatment of cancers, and special attention was paid to bioactive components and mechanisms of action.
Collapse
Affiliation(s)
- Jie Zheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
446
|
Saxena R, Rida PCG, Kucuk O, Aneja R. Ginger augmented chemotherapy: A novel multitarget nontoxic approach for cancer management. Mol Nutr Food Res 2016; 60:1364-73. [PMID: 26842968 DOI: 10.1002/mnfr.201500955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 01/22/2023]
Abstract
Cancer, referred to as the 'disease of civilization', continues to haunt humanity due to its dreadful manifestations and limited success of therapeutic interventions such as chemotherapy in curing the disease. Although effective, chemotherapy has repeatedly demonstrated inadequacy in disease management due to its debilitating side effects arising from its deleterious nonspecific effects on normal healthy cells. In addition, development of chemoresistance due to mono-targeting often results in cessation of chemotherapy. This urgently demands development and implementation of multitargeted alternative therapies with mild or no side effects. One extremely promising strategy that yet remains untapped in the clinic is augmenting chemotherapy with dietary phytochemicals or extracts. Ginger, depository of numerous bioactive molecules, not only targets cancer cells but can also mitigate chemotherapy-associated side effects. Consequently, combination therapy involving ginger extract and chemotherapeutic agents may offer the advantage of being efficacious with reduced toxicity. Here we discuss the remarkable and often overlooked potential of ginger extract to manage cancer, the possibility of developing ginger-based combinational therapies, and the major roadblocks along with strategies to overcome them in clinical translation of such inventions. We are optimistic that clinical implementation of such combination regimens would be a much sought after modality in cancer management.
Collapse
Affiliation(s)
- Roopali Saxena
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | | | - Omer Kucuk
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
447
|
Synthesis and biological evaluation of novel resveratrol-oxadiazole hybrid heterocycles as potential antiproliferative agents. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1514-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
448
|
Singh N, Srivastava S, Sharma A. Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach. Gene 2016; 575:570-576. [PMID: 26392033 DOI: 10.1016/j.gene.2015.09.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/20/2015] [Accepted: 09/16/2015] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are a large family of endogenous small RNAs derived from the non-protein coding genes. miRNA regulates the gene expression at the post-transcriptional level and plays an important role in plant development. Zingiber officinale is an important medicinal plant having numerous therapeutic properties. Its bioactive compound gingerol and essential oil posses important pharmacological and physiological activities. In this study, we used a homology search based computational approach for identifying miRNAs in Z. officinale. A total of 16 potential miRNA families (miR167, miR407, miR414, miR5015, miR5021, miR5644, miR5645, miR5656, miR5658, miR5664, miR827, miR838, miR847, miR854, miR862 and miR864) were predicted in ginger. Phylogenetic and conserved analyses were performed for predicted miRNAs. Thirteen miRNA families were found to regulate 300 target transcripts and play an important role in cell signaling, reproduction, metabolic process and stress. To understand the miRNA mediated gene regulatory control and to validate miRNA target predictions, a biological network was also constructed. Gene ontology and pathway analyses were also done. miR5015 was observed to regulate the biosynthesis of gingerol by inhibiting phenyl ammonia lyase (PAL), a precursor enzyme in the biosynthesis of gingerol. Our results revealed that most of the predicted miRNAs were involved in the regulation of rhizome development. miR5021, miR854 and miR838 were identified to regulate the rhizome development and the essential oil biosynthesis in ginger.
Collapse
Affiliation(s)
- Noopur Singh
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015 UP, India
| | - Swati Srivastava
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015 UP, India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015 UP, India.
| |
Collapse
|
449
|
Kapoor V, Aggarwal S, Das SN. 6-Gingerol Mediates its Anti Tumor Activities in Human Oral and Cervical Cancer Cell Lines through Apoptosis and Cell Cycle Arrest. Phytother Res 2016; 30:588-95. [PMID: 26749462 DOI: 10.1002/ptr.5561] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 11/26/2015] [Accepted: 12/04/2015] [Indexed: 11/08/2022]
Abstract
6-Gingerol, a potent nutraceutical, has been shown to have antitumor activity in different tumors, although its mechanism of action is not well understood. In this study, we evaluated antitumor activities of 6-gingerol on human oral (SCC4, KB) and cervical cancer (HeLa) cell lines with or without wortmannin, rapamycin, and cisplatin. Tumor cell proliferation was observed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium, inner salt assay, cell cycle analysis by propidium iodide labeling and flow cytometry, apoptosis by Annexin-V binding assay, and caspase activity by chemiluminescence assay. 6-Gingerol showed dose-dependent cytotoxicity in all three cell lines. Combinations of 6-gingerol with wortmannin and cisplatin showed additive effects, while with rapamycin, it showed 50% cytotoxicity that was equivalent to IC50 of 6-gingerol alone. Treatment with 6-gingerol resulted in G2-phase arrest in KB and HeLa cells and S-phase arrest in SCC4 cells. 6-Gingerol, wortmannin, and rapamycin treatment showed almost two-fold higher expression of caspase 3 in all cell lines. The results imply that 6-gingerol either alone or in combination with PI-3 K inhibitor and cisplatin may provide better therapeutic effects in oral and cervical carcinoma. Thus, 6-gingerol appears to be a safe and potent chemotherapeutic/chemopreventive compound acting through cell cycle arrest and induction of apoptosis in human oral and cervical tumor cells.
Collapse
Affiliation(s)
- Vaishali Kapoor
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sadhna Aggarwal
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Satya N Das
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
450
|
Mohd Yusof YA. Gingerol and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:177-207. [PMID: 27771925 DOI: 10.1007/978-3-319-41342-6_8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Since antiquity, ginger or Zingiber officinale, has been used by humans for medicinal purposes and as spice condiments to enhance flavor in cooking. Ginger contains many phenolic compounds such as gingerol, shogaol and paradol that exhibit antioxidant, anti-tumor and anti-inflammatory properties. The role of ginger and its constituents in ameliorating diseases has been the focus of study in the past two decades by many researchers who provide strong scientific evidence of its health benefit. This review discusses research findings and works devoted to gingerols, the major pungent constituent of ginger, in modulating and targeting signaling pathways with subsequent changes that ameliorate, reverse or prevent chronic diseases in human studies and animal models. The physical, chemical and biological properties of gingerols are also described. The use of ginger and especially gingerols as medicinal food derivative appears to be safe in treating or preventing chronic diseases which will benefit the common population, clinicians, patients, researchers, students and industrialists.
Collapse
Affiliation(s)
- Yasmin Anum Mohd Yusof
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Level 17, Pre-Clinical Building, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|