401
|
Macedo-da-Silva J, Marinho CRF, Palmisano G, Rosa-Fernandes L. Lights and Shadows of TORCH Infection Proteomics. Genes (Basel) 2020; 11:E894. [PMID: 32764347 PMCID: PMC7464470 DOI: 10.3390/genes11080894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022] Open
Abstract
Congenital abnormalities cause serious fetal consequences. The term TORCH is used to designate the most common perinatal infections, where: (T) refers to toxoplasmosis, (O) means "others" and includes syphilis, varicella-zoster, parvovirus B19, zika virus (ZIKV), and malaria among others, (R) refers to rubella, (C) relates to cytomegalovirus infection, and (H) to herpes simplex virus infections. Among the main abnormalities identified in neonates exposed to congenital infections are central nervous system (CNS) damage, microcephaly, hearing loss, and ophthalmological impairment, all requiring regular follow-up to monitor its progression. Protein changes such as mutations, post-translational modifications, abundance, structure, and function may indicate a pathological condition before the onset of the first symptoms, allowing early diagnosis and understanding of a particular disease or infection. The term "proteomics" is defined as the science that studies the proteome, which consists of the total protein content of a cell, tissue or organism in a given space and time, including post-translational modifications (PTMs) and interactions between proteins. Currently, quantitative bottom-up proteomic strategies allow rapid and high throughput characterization of complex biological mixtures. Investigating proteome modulation during host-pathogen interaction helps in elucidating the mechanisms of infection and in predicting disease progression. This "molecular battle" between host and pathogen is a key to identify drug targets and diagnostic markers. Here, we conducted a survey on proteomic techniques applied to congenital diseases classified in the terminology "TORCH", including toxoplasmosis, ZIKV, malaria, syphilis, human immunodeficiency virus (HIV), herpes simplex virus (HSV) and human cytomegalovirus (HCVM). We have highlighted proteins and/or protein complexes actively involved in the infection. Most of the proteomic studies reported have been performed in cell line models, and the evaluation of tissues (brain, muscle, and placenta) and biofluids (plasma, serum and urine) in animal models is still underexplored. Moreover, there are a plethora of studies focusing on the pathogen or the host without considering the triad mother-fetus-pathogen as a dynamic and interconnected system.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- Glycoproteomics Laboratory, Department of Parasitology, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Claudio Romero Farias Marinho
- Laboratory of Experimental Immunoparasitology, Department of Parasitology, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Giuseppe Palmisano
- Glycoproteomics Laboratory, Department of Parasitology, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Livia Rosa-Fernandes
- Glycoproteomics Laboratory, Department of Parasitology, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
- Laboratory of Experimental Immunoparasitology, Department of Parasitology, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| |
Collapse
|
402
|
Meng XY, Fu HX, Zhu XL, Wang JZ, Liu X, Yan CH, Zhang YY, Mo XD, Wang Y, Han W, Chen YH, Chen DB, Liu HX, Chang YJ, Xu LP, Liu KY, Huang XJ, Zhang XH. Comparison of different cytomegalovirus diseases following haploidentical hematopoietic stem cell transplantation. Ann Hematol 2020; 99:2659-2670. [PMID: 32734550 DOI: 10.1007/s00277-020-04201-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
Cytomegalovirus (CMV) can cause end-organ diseases including pneumonia, gastroenteritis, retinitis, and encephalitis in hematopoietic stem cell transplantation recipients. Potential differences among different CMV diseases remain uncertain. This study aimed to compare the clinical characteristics, risk factors, and mortality among different CMV diseases. A retrospective nested case-control study was performed based on a cohort of 3862 patients who underwent haploidentical hematopoietic stem cell transplantation at a single-center. CMV diseases occurred in 113 (2.92%) of 3862 haplo-HSCT recipients, including probable CMV pneumonia (CMVP, n = 34), proven CMV gastroenteritis (CMVG, n = 34), CMV retinitis (CMVR, n = 31), probable CMV encephalitis (CMVE, n = 7), and disseminated CMV disease (Di-CMVD, n = 7). Most (91.2%) cases of CMVG developed within 100 days, while most (90.3%) cases of CMVR were late onset. Refractory CMV infection and CMV viral load at different levels were associated with an increased risk of CMVP, CMVG, and CMVR. Compared with patients without CMV diseases, significantly higher non-relapse mortality at 1 year after transplantation was observed in patients with CMVP and CMVR, rather than CMVG. Patients with CMVP, Di-CMVD, and CMVE had higher overall mortality after diagnosis than that of patients with CMVG and CMVR (61.7%, 57.1%, 40.0% vs 27.7%, 18.6%, P = 0.001). In conclusion, the onset time, viral dynamics, and mortality differ among different CMV diseases. The mortality of CMV diseases remains high, especially for CMVP, Di-CMVD, and CMVE.
Collapse
Affiliation(s)
- Xing-Ye Meng
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Hai-Xia Fu
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Lu Zhu
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Jing-Zhi Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao Liu
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Chen-Hua Yan
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Dong Mo
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yu Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Wei Han
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yu-Hong Chen
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Ding-Bao Chen
- Department of Pathology, Peking University People's Hospital, Beijing, China
| | - Hui-Xin Liu
- Department of Clinical Epidemiology and Biostatistics, Peking University People's Hospital, Beijing, China
| | - Ying-Jun Chang
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Lan-Ping Xu
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Kai-Yan Liu
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Jun Huang
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Hui Zhang
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China. .,Collaborative Innovation Center of Hematology, Peking University, Beijing, China. .,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China. .,National Clinical Research Center for Hematologic Disease, Beijing, China.
| |
Collapse
|
403
|
Lizaola-Mayo BC, Rodriguez EA. Cytomegalovirus infection after liver transplantation. World J Transplant 2020; 10:183-190. [PMID: 32844094 PMCID: PMC7416364 DOI: 10.5500/wjt.v10.i7.183] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/28/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (CMV) represents the most common opportunistic infection in liver transplant recipients. CMV infections in post liver transplant patients cause significant morbidity and mortality, directly affecting post-transplant outcomes. This review will provide the framework for the surveillance, diagnosis, prophylaxis and treatment of CMV in the liver transplant population.
Collapse
Affiliation(s)
- Blanca C Lizaola-Mayo
- Division of Gastroenterology and Hepatology, Mayo Clinic, Phoenix, AZ 85259, United States
| | - Eduardo A Rodriguez
- Division of Gastroenterology, Hepatology & Nutrition, University of Utah, Salt Lake City, UT 84132, United States
| |
Collapse
|
404
|
Merino AM, Kim H, Miller JS, Cichocki F. Unraveling exhaustion in adaptive and conventional NK cells. J Leukoc Biol 2020; 108:1361-1368. [PMID: 32726880 DOI: 10.1002/jlb.4mr0620-091r] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Immune exhaustion in T cells significantly impacts their ability to control malignancies and infections, and its discovery has led to revolutionary therapies for cancer in the form of checkpoint blockade. NK cells, like T cells, are lymphocytes that recognize virally infected and malignantly transformed cells. However, it remains unclear if NK cells are similarly susceptible to exhaustion. In this review, the aims are to summarize what is currently known and to identify key areas of variability that skew the scientific literature on NK cell exhaustion. A lack of consensus on the defining features of NK cell dysfunctional states such as senescence, suppression, and exhaustion has made a comparison between studies difficult. There are also significant differences in the biology of NK cell subsets with long-lived, adaptive NK cells sharing an epigenetic signature closer to memory CD8+ T cells than to conventional NK cells. Very different checkpoint receptor expression and effector functions have been shown in adaptive versus conventional NK cells chronically exposed to activating signals. Adaptive NK cells develop in individuals with cytomegalovirus (CMV) infection and well over half of the human population worldwide is CMV seropositive by adulthood. Despite this high prevalence, most studies do not account or control for this population. This may contribute to some of the variability reported in the literature on checkpoint receptor expression on NK cells. In this review, the protective role that exhaustion plays in T cells will also be discussed and the evidence for a similar phenomenon in NK cells will be examined.
Collapse
Affiliation(s)
- Aimee M Merino
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hansol Kim
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
405
|
Forrest C, Gomes A, Reeves M, Male V. NK Cell Memory to Cytomegalovirus: Implications for Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8030394. [PMID: 32698362 PMCID: PMC7563466 DOI: 10.3390/vaccines8030394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells that recognize and eliminate virally-infected and cancerous cells. Members of the innate immune system are not usually considered to mediate immune memory, but over the past decade evidence has emerged that NK cells can do this in several contexts. Of these, the best understood and most widely accepted is the response to cytomegaloviruses, with strong evidence for memory to murine cytomegalovirus (MCMV) and several lines of evidence suggesting that the same is likely to be true of human cytomegalovirus (HCMV). The importance of NK cells in the context of HCMV infection is underscored by the armory of NK immune evasion genes encoded by HCMV aimed at subverting the NK cell immune response. As such, ongoing studies that have utilized HCMV to investigate NK cell diversity and function have proven instructive. Here, we discuss our current understanding of NK cell memory to viral infection with a focus on the response to cytomegaloviruses. We will then discuss the implications that this will have for the development of a vaccine against HCMV with particular emphasis on how a strategy that can harness the innate immune system and NK cells could be crucial for the development of a vaccine against this high-priority pathogen.
Collapse
Affiliation(s)
- Calum Forrest
- Institute of Immunity & Transplantation, UCL, Royal Free Campus, London NW3 2PF, UK; (C.F.); (A.G.)
| | - Ariane Gomes
- Institute of Immunity & Transplantation, UCL, Royal Free Campus, London NW3 2PF, UK; (C.F.); (A.G.)
| | - Matthew Reeves
- Institute of Immunity & Transplantation, UCL, Royal Free Campus, London NW3 2PF, UK; (C.F.); (A.G.)
- Correspondence: (M.R.); (V.M.)
| | - Victoria Male
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Campus, London SW10 9NH, UK
- Correspondence: (M.R.); (V.M.)
| |
Collapse
|
406
|
Cytomegalovirus and Inflammatory Bowel Diseases (IBD) with a Special Focus on the Link with Ulcerative Colitis (UC). Microorganisms 2020; 8:microorganisms8071078. [PMID: 32698383 PMCID: PMC7409252 DOI: 10.3390/microorganisms8071078] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022] Open
Abstract
Cytomegalovirus (CMV) infects approximately 40% of adults in France and persists lifelong as a latent agent in different organs, including gut. A close relationship is observed between inflammation that favors viral expression and viral replication that exacerbates inflammation. In this context, CMV colitis may impact the prognosis of patients suffering from inflammatory bowel diseases (IBDs), and notably those with ulcerative colitis (UC). In UC, the mucosal inflammation and T helper cell (TH) 2 cytokines, together with immunomodulatory drugs used for controlling flare-ups, favor viral reactivation within the gut, which, in turn, increases mucosal inflammation, impairs corticoid and immunosuppressor efficacy (the probability of steroid resistance is multiplied by more than 20 in the case of CMV colitis), and enhances the risk for colectomy. This review emphasizes the virological tools that are recommended for exploring CMV colitis during inflammatory bowel diseases (IBD) and underlines the interest of using ganciclovir for treating flare-ups associated to CMV colitis in UC patients.
Collapse
|
407
|
Theobald SJ, Kreer C, Khailaie S, Bonifacius A, Eiz-Vesper B, Figueiredo C, Mach M, Backovic M, Ballmaier M, Koenig J, Olbrich H, Schneider A, Volk V, Danisch S, Gieselmann L, Ercanoglu MS, Messerle M, von Kaisenberg C, Witte T, Klawonn F, Meyer-Hermann M, Klein F, Stripecke R. Repertoire characterization and validation of gB-specific human IgGs directly cloned from humanized mice vaccinated with dendritic cells and protected against HCMV. PLoS Pathog 2020; 16:e1008560. [PMID: 32667948 PMCID: PMC7363084 DOI: 10.1371/journal.ppat.1008560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) causes serious complications to immune compromised hosts. Dendritic cells (iDCgB) expressing granulocyte-macrophage colony-stimulating factor, interferon-alpha and HCMV-gB were developed to promote de novo antiviral adaptive responses. Mice reconstituted with a human immune system (HIS) were immunized with iDCgB and challenged with HCMV, resulting into 93% protection. Immunization stimulated the expansion of functional effector memory CD8+ and CD4+ T cells recognizing gB. Machine learning analyses confirmed bone marrow T/CD4+, liver B/IgA+ and spleen B/IgG+ cells as predictive biomarkers of immunization (≈87% accuracy). CD8+ and CD4+ T cell responses against gB were validated. Splenic gB-binding IgM-/IgG+ B cells were sorted and analyzed at a single cell level. iDCgB immunizations elicited human-like IgG responses with a broad usage of various IgG heavy chain V gene segments harboring variable levels of somatic hypermutation. From this search, two gB-binding human monoclonal IgGs were generated that neutralized HCMV infection in vitro. Passive immunization with these antibodies provided proof-of-concept evidence of protection against HCMV infection. This HIS/HCMV in vivo model system supported the validation of novel active and passive immune therapies for future clinical translation. Human cytomegalovirus (HCMV) is a ubiquitous pathogen. As long as the immune system is functional, T and B cells can control HCMV. Yet, for patients who have debilitated immune functions, HCMV infections and reactivations cause major complications. Vaccines or antibodies to prevent or treat HCMV are not yet approved. Novel animal models for testing new immunization approaches are emerging and are important tools to identify biomedical products with a reasonable chance to work in patients. Here, we used a model based on mice transplanted with human immune cells and infected with a traceable HCMV. We tested a cell vaccine (iDCgB) carrying gB, a potent HCMV antigen. The model showed that iDCgB halted the HCMV infection in more than 90% of the mice. We found that antibodies were key players mediating protection. Using state-of-the-art methods, we were able to use the sequences of the human antibodies generated in the mice to construct and produce monoclonal antibodies in the laboratory. Proof-of-concept experiments indicated that administration of these monoclonal antibodies into mice protected them against HCMV infection. In summary, this humanized mouse model was useful to test a vaccine and to generate and test novel antibodies that can be further developed for human use.
Collapse
Affiliation(s)
- Sebastian J. Theobald
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Cologne, Germany
| | - Sahamoddin Khailaie
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Michael Mach
- Institute of Virology, University Erlangen-Nürnberg, Erlangen, Germany
| | - Marija Backovic
- Structural Virology Unit, Department of Virology, Institut Pasteur, Paris, France; CNRS UMR 3569, Paris, France
| | - Matthias Ballmaier
- Research Facility Cell Sorting, Hannover Medical School, Hannover, Germany
| | - Johannes Koenig
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Henning Olbrich
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Andreas Schneider
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Valery Volk
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Simon Danisch
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Meryem Seda Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Cologne, Germany
| | - Martin Messerle
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- Instiute of Virology, Hannover Medical School, Hannover, Germany
| | - Constantin von Kaisenberg
- Department of Obstetrics, Clinic of Gynecology and Reproductive Medicine, and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Torsten Witte
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Frank Klawonn
- Biostatistics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Information Engineering, Ostfalia University, Wolfenbuettel, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Renata Stripecke
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- * E-mail:
| |
Collapse
|
408
|
Wang YQ, Zhao XY. Human Cytomegalovirus Primary Infection and Reactivation: Insights From Virion-Carried Molecules. Front Microbiol 2020; 11:1511. [PMID: 32765441 PMCID: PMC7378892 DOI: 10.3389/fmicb.2020.01511] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV), a ubiquitous beta-herpesvirus, is able to establish lifelong latency after initial infection. Periodical reactivation occurs after immunosuppression, remaining a major cause of death in immunocompromised patients. HCMV has to reach a structural and functional balance with the host at its earliest entry. Virion-carried mediators are considered to play pivotal roles in viral adaptation into a new cellular environment upon entry. Additionally, one clear difference between primary infection and reactivation is the idea that virion-packaged factors are already formed such that those molecules can be used swiftly by the virus. In contrast, virion-carried mediators have to be transcribed and translated; thus, they are not readily available during reactivation. Hence, understanding virion-carried molecules helps to elucidate HCMV reactivation. In this article, the impact of virion-packaged molecules on viral structure, biological behavior, and viral life cycle will be reviewed.
Collapse
Affiliation(s)
- Yu-Qing Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,PKU-THU Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| |
Collapse
|
409
|
Mlera L, Moy M, Maness K, Tran LN, Goodrum FD. The Role of the Human Cytomegalovirus UL133-UL138 Gene Locus in Latency and Reactivation. Viruses 2020; 12:E714. [PMID: 32630219 PMCID: PMC7411667 DOI: 10.3390/v12070714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) latency, the means by which the virus persists indefinitely in an infected individual, is a major frontier of current research efforts in the field. Towards developing a comprehensive understanding of HCMV latency and its reactivation from latency, viral determinants of latency and reactivation and their host interactions that govern the latent state and reactivation from latency have been identified. The polycistronic UL133-UL138 locus encodes determinants of both latency and reactivation. In this review, we survey the model systems used to investigate latency and new findings from these systems. Particular focus is given to the roles of the UL133, UL135, UL136 and UL138 proteins in regulating viral latency and how their known host interactions contribute to regulating host signaling pathways towards the establishment of or exit from latency. Understanding the mechanisms underlying viral latency and reactivation is important in developing strategies to block reactivation and prevent CMV disease in immunocompromised individuals, such as transplant patients.
Collapse
Affiliation(s)
- Luwanika Mlera
- BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA;
| | - Melissa Moy
- Graduate Interdisciplinary Program in Cancer Biology, Tucson, AZ 85719, USA;
| | - Kristen Maness
- Immunobiology Department, University of Arizona, Tucson, AZ 85719, USA; (K.M.); (L.N.T.)
| | - Linh N. Tran
- Immunobiology Department, University of Arizona, Tucson, AZ 85719, USA; (K.M.); (L.N.T.)
| | - Felicia D. Goodrum
- BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA;
- Graduate Interdisciplinary Program in Cancer Biology, Tucson, AZ 85719, USA;
- Immunobiology Department, University of Arizona, Tucson, AZ 85719, USA; (K.M.); (L.N.T.)
| |
Collapse
|
410
|
Optimal pre-emptive cytomegalovirus therapy threshold in a patient population with high prevalence of seropositive status. Curr Res Transl Med 2020; 68:131-137. [PMID: 32620466 DOI: 10.1016/j.retram.2020.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/11/2020] [Accepted: 04/23/2020] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Preemptive therapy (PET) for cytomegalovirus (CMV) reactivation post allogeneic hematopoietic stem cell transplantation (SCT) was shown to decrease the incidence of CMV disease. However, the optimal PET threshold is elusive. PURPOSE OF THE STUDY To examine the efficacy of PET initiation at a viral threshold of 1000 copies/mL (1560 IU/mL) in a patient population with high prevalence of CMV seropositive status. PATIENTS AND METHODS A single center retrospective review of patients that underwent allogeneic SCT was done. RESULTS A total of 195 allogeneic SCT recipients were included with median follow up of 18.1 (0.7-95.6) months. A total of 178 (91 %) of patients had a positive CMV PCR with median days to initial reactivation post SCT of 17 (1-1187); 129 patients had peak CMV titer < 1000 copies/mL (low titer) whereas the remaining 49 patients had a peak titer ≥ 1000 copies/mL (high titer). 120 (93 %) of patients with low titers cleared spontaneously with median time to clearance of 40 days (4-188). One patient in the high titer group developed CMV disease. At multivariable analysis; age at SCT HR 1.02 (1.004-1.04; 0.017), malignant vs. benign condition HR 9.4 (2.47-61; 0.0005) and cGVHD HR 0.37 (0.2-0.65; 0.0005) were significant for OS. CONCLUSIONS CMV reactivation post SCT was very common in patients with high prevalence of seropositive status. A PET threshold of 1000 copies/mL (1560 IU/mL) appears desirable as it was associated with spontaneous clearance in over 90 % of patients while minimizing treatment related toxicity. Validation of these observations is warranted.
Collapse
|
411
|
Gorun F, Motoi S, Malita D, Navolan DB, Nemescu D, Olariu TR, Craina M, Vilibic-Cavlek T, Ciohat I, Boda D, Dobrescu A. Cytomegalovirus seroprevalence in pregnant women in the western region of Romania: A large-scale study. Exp Ther Med 2020; 20:2439-2443. [PMID: 32765730 PMCID: PMC7401893 DOI: 10.3892/etm.2020.8945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/19/2020] [Indexed: 11/10/2022] Open
Abstract
Cytomegalovirus (CMV) infection is the most common congenital infection worldwide, and remains a significant cause of the neurological deficiency and sensory deafness in developed countries. Maternal primary infection, reactivation or reinfection during pregnancy may lead to fetal infection and congenital CMV syndrome. The purpose of this study was to analyze the CMV seroprevalence according to demographic features of pregnant women in western Romania as well as the evolution of CMV immunity in two time intervals. IgG anti-CMV antibodies were tested in sera of 8,951 pregnant women during two successive intervals: 2008-2010 (n=1466) and 2015-2018 (n=7485). The CMV seroprevalence in women of reproductive age decreased from 94.6 to 91.80% in the last decade. The seroprevalence was higher in women from rural areas compared with those from urban areas. These results show that the western region of Romania has a low-risk profile for primary CMV infection during pregnancy due to a large number of seropositive women. However, this risk has increased in the last ten years, from 5.4 to 8.2%, which may show the need to implement a national screening program.
Collapse
Affiliation(s)
- Florin Gorun
- Department of Obstetrics and Gynecology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Sorin Motoi
- Department of Medical Imaging and Radiology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Daniel Malita
- Department of Medical Imaging and Radiology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Dan Bogdan Navolan
- Department of Obstetrics and Gynecology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Dragos Nemescu
- Department of Obstetrics and Gynecology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Tudor Rares Olariu
- Department of Parasitology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Marius Craina
- Department of Obstetrics and Gynecology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia, Antenatal Laboratory, Emergency Clinical City Hospital, 300202 Timisoara, Romania.,School of Medicine, University of Zagreb, 10000 Zagreb, Croatia, Romania
| | - Ioana Ciohat
- Antenatal Laboratory, Emergency Clinical City Hospital, 300202 Timisoara, Romania
| | - Daniel Boda
- Dermatology Research Laboratory, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Dermatology, 'Prof. N. Paulescu' National Institute of Diabetes, Nutrition and Metabolic Diseases, 79811 Bucharest, Romania
| | - Amadeus Dobrescu
- Departament of Surgery, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
412
|
Cox M, Adetifa JU, Noho-Konteh F, Njie-Jobe J, Sanyang LC, Drammeh A, Plebanski M, Whittle HC, Rowland-Jones SL, Robertson I, Flanagan KL. Limited Impact of Human Cytomegalovirus Infection in African Infants on Vaccine-Specific Responses Following Diphtheria-Tetanus-Pertussis and Measles Vaccination. Front Immunol 2020; 11:1083. [PMID: 32582177 PMCID: PMC7291605 DOI: 10.3389/fimmu.2020.01083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection has a profound effect on the human immune system, causing massive clonal expansion of CD8, and to a lesser extend CD4 T cells. The few human trials that have explored the effect of HCMV infection on responses to vaccination are conflicting, with some studies suggesting no effect whilst others suggest decreased or increased immune responses. Recent studies indicate substantial differences in overall immune system reactivity to vaccines based on age and sex, particularly cellular immunity. 225 nine-month old Gambian infants were immunized with diphtheria-tetanus-whole cell pertussis and/or measles vaccines. HCMV infection status was determined by the presence of CMV DNA by PCR of urine samples prior to vaccination. The effect of HCMV infection on either protective antibody immunity or vaccine-specific and overall cellular immune responses 4 weeks post-vaccination was determined, further stratified by sex. Tetanus toxoid-specific antibody responses were significantly lower in HCMV+ infants compared to their HCMV- counterparts, while pertussis, diphtheria and measles antibody responses were generally comparable between the groups. Responses to general T cell stimulation with anti-CD3/anti-CD28 as well as antigen-specific cytokine responses to purified protein derivative (PPD) were broadly suppressed in infants infected with HCMV but, perhaps surprisingly, there was only a minimal impact on antigen-specific cellular responses to vaccine antigens. There was evidence for subtle sex differences in the effects of HCMV infection, in keeping with the emerging evidence suggesting sex differences in homeostatic immunity and in responses to vaccines. This study reassuringly suggests that the high rates of HCMV infection in low income settings have little clinically significant impact on antibody and cellular responses to early life vaccines, while confirming the importance of sex stratification in such studies.
Collapse
Affiliation(s)
- Momodou Cox
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia.,School of Health & Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Jane U Adetifa
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Fatou Noho-Konteh
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Jainaba Njie-Jobe
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Lady C Sanyang
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Abdoulie Drammeh
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Magdalena Plebanski
- School of Health & Biomedical Science, RMIT University, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Hilton C Whittle
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia.,Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sarah L Rowland-Jones
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia.,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Iain Robertson
- School of Medicine and School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Katie L Flanagan
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia.,School of Health & Biomedical Science, RMIT University, Melbourne, VIC, Australia.,School of Medicine and School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| |
Collapse
|
413
|
GÜZEL M. Gebe kadınlarda Toxoplasma, Rubella, Sitomegalovirüs ve Herpes Simpleks Virus Tip 2 serum antikorlarının sıklığı. DÜZCE ÜNIVERSITESI SAĞLIK BILIMLERI ENSTITÜSÜ DERGISI 2020. [DOI: 10.33631/duzcesbed.655225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
414
|
Management of Congenital Cytomegalovirus-Related Hearing Loss. CURRENT OTORHINOLARYNGOLOGY REPORTS 2020. [DOI: 10.1007/s40136-020-00291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
415
|
Moss P. "The ancient and the new": is there an interaction between cytomegalovirus and SARS-CoV-2 infection? IMMUNITY & AGEING 2020; 17:14. [PMID: 32501397 PMCID: PMC7251217 DOI: 10.1186/s12979-020-00185-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/18/2020] [Indexed: 02/01/2023]
Abstract
The SARS-CoV-2 pandemic represents one of the greatest infectious challenges to humanity in recent history. One of the striking features of infection is the heterogeneous clinical response with worse outcomes observed in older patients and those with underlying health conditions. To date the potential impact of previous infection history has been poorly investigated as a potential determinant of risk. Cytomegalovirus (CMV), a persistent herpesvirus infection whose prevalence increases with age, is a major modulator of immune function and several observations suggest that infection might act to influence clinical outcome following SARS-CoV-2 infection. In particular, CMV is associated with the acceleration of immune senescence and has been linked to a range of cardiovascular and metabolic disorders. This review addresses mechanisms by which cytomegalovirus infection may act to worsen the clinical outcome of SARS-CoV-2 infection, discusses how these potential links could be investigated, and assesses the potential significance of any findings that emerge.
Collapse
Affiliation(s)
- Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham and Birmingham Health Partners, University Hospitals NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
416
|
Mhandire DZ, Mhandire K, Magadze M, Wonkam A, Kengne AP, Dandara C. Genetic variation in toll like receptors 2, 7, 9 and interleukin-6 is associated with cytomegalovirus infection in late pregnancy. BMC MEDICAL GENETICS 2020; 21:113. [PMID: 32450795 PMCID: PMC7247288 DOI: 10.1186/s12881-020-01044-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/06/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Maternal cytomegalovirus (CMV) infection and/or reactivation in pregnancy is associated with a myriad of adverse infant outcomes. However, the role of host genetic polymorphisms in modulating maternal CMV status is inconclusive. This study investigated the possible association of single nucleotide polymorphisms in toll-like receptor (TLR) and cytokine genes with maternal plasma CMV DNA status in black Zimbabweans. METHODS In a cross-sectional study, 110 women in late gestation who included 36 CMV infected cases and 74 CMV uninfected, age and HIV status matched controls were enrolled. Twenty single nucleotide polymorphisms in 10 genes which code for proteins involved in immunity against CMV were genotyped using Iplex GOLD SNP genotyping protocol on the Agena MassARRAY® system. Statistical analyses were performed using Stata SE and the 'Genetics' and 'SNPassoc' packages of the statistical package R. RESULTS The TLR7 rs179008A > T (p < 0.001) polymorphism was associated while the TLR9 rs352139T > C (p = 0.049) polymorphism was on the borderline for association with CMV positive (CMV+) status. In contrast, the interleukin (IL)-6 rs10499563T > C (p < 0.001) and TLR2 rs1816702C > T (p = 0.001) polymorphisms were associated with CMV negative (CMV-) status. Furthermore, allele frequencies of SNPs in TLR2, TLR4, TLR9, TLR7, IL-6, IL-10, IL-28B, IL-1A and interferon AR1 (IFNAR1) genes are being reported here for the first time in a Zimbabwean population. The allele frequencies in the Zimbabwean population are generally comparable to other African populations but different when compared to European and Asian populations. CONCLUSIONS Toll-like receptor and interleukin genetic polymorphisms influence CMV status in late gestation among black Zimbabweans. This is attributable to possible modulation of immune responses to CMV reactivation in a population previously exposed to CMV infection.
Collapse
Affiliation(s)
- Doreen Z Mhandire
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Kudakwashe Mhandire
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Mulalo Magadze
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Andre P Kengne
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Non-Communicable Diseases Research Unit, South African Medical research Council, Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
417
|
Where do we Stand after Decades of Studying Human Cytomegalovirus? Microorganisms 2020; 8:microorganisms8050685. [PMID: 32397070 PMCID: PMC7284540 DOI: 10.3390/microorganisms8050685] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/26/2022] Open
Abstract
Human cytomegalovirus (HCMV), a linear double-stranded DNA betaherpesvirus belonging to the family of Herpesviridae, is characterized by widespread seroprevalence, ranging between 56% and 94%, strictly dependent on the socioeconomic background of the country being considered. Typically, HCMV causes asymptomatic infection in the immunocompetent population, while in immunocompromised individuals or when transmitted vertically from the mother to the fetus it leads to systemic disease with severe complications and high mortality rate. Following primary infection, HCMV establishes a state of latency primarily in myeloid cells, from which it can be reactivated by various inflammatory stimuli. Several studies have shown that HCMV, despite being a DNA virus, is highly prone to genetic variability that strongly influences its replication and dissemination rates as well as cellular tropism. In this scenario, the few currently available drugs for the treatment of HCMV infections are characterized by high toxicity, poor oral bioavailability, and emerging resistance. Here, we review past and current literature that has greatly advanced our understanding of the biology and genetics of HCMV, stressing the urgent need for innovative and safe anti-HCMV therapies and effective vaccines to treat and prevent HCMV infections, particularly in vulnerable populations.
Collapse
|
418
|
Past and ongoing adaptation of human cytomegalovirus to its host. PLoS Pathog 2020; 16:e1008476. [PMID: 32384127 PMCID: PMC7239485 DOI: 10.1371/journal.ppat.1008476] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/20/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
Cytomegaloviruses (order Herpesvirales) display remarkable species-specificity as a result of long-term co-evolution with their mammalian hosts. Human cytomegalovirus (HCMV) is exquisitely adapted to our species and displays high genetic diversity. We leveraged information on inter-species divergence of primate-infecting cytomegaloviruses and intra-species diversity of clinical isolates to provide a genome-wide picture of HCMV adaptation across different time-frames. During adaptation to the human host, core viral genes were commonly targeted by positive selection. Functional characterization of adaptive mutations in the primase gene (UL70) indicated that selection favored amino acid replacements that decrease viral replication in human fibroblasts, suggesting evolution towards viral temperance. HCMV intra-species diversity was largely governed by immune system-driven selective pressure, with several adaptive variants located in antigenic domains. A significant excess of positively selected sites was also detected in the signal peptides (SPs) of viral proteins, indicating that, although they are removed from mature proteins, SPs can contribute to viral adaptation. Functional characterization of one of these SPs indicated that adaptive variants modulate the timing of cleavage by the signal peptidase and the dynamics of glycoprotein intracellular trafficking. We thus used evolutionary information to generate experimentally-testable hypotheses on the functional effect of HCMV genetic diversity and we define modulators of viral phenotypes. Human cytomegalovirus (HCMV), which represents the most common infectious cause of birth defects, is perfectly adapted to infect humans. We performed a two-tier analysis of HCMV evolution, by describing selective events that occurred during HCMV adaptation to our species and by identifying more recently emerged adaptive variants in clinical isolates. We show that distinct viral genes were targeted by natural selection over different time frames and we generate a catalog of adaptive variants that represent candidate determinants of viral phenotypic variation. As a proof of concept, we show that adaptive changes in the viral primase modulate viral growth in vitro and that selected variants in the UL144 signal peptide affect glycoprotein intracellular trafficking.
Collapse
|
419
|
Nenna R, Zhai J, Packard SE, Spangenberg A, Sherrill DL, Martinez FD, Halonen M, Guerra S. High cytomegalovirus serology and subsequent COPD-related mortality: a longitudinal study. ERJ Open Res 2020; 6:00062-2020. [PMID: 32363208 PMCID: PMC7184115 DOI: 10.1183/23120541.00062-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Background Positive serology for cytomegalovirus (CMV) has been associated with all-cause mortality risk but its role in COPD mortality is unknown. The objective of the present study was to assess the relationship between CMV serology and COPD mortality. Methods We analysed data from 806 participants in the Tucson Epidemiological Study of Airway Obstructive Disease who, at enrolment, were aged 28–70 years and had completed lung function tests. We tested CMV serology in sera from enrolment and defined “high CMV serology” as being in the highest tertile. Vital status, date and cause of death were assessed through death certificates and/or linkage with the National Death Index up to January 2017. The association of CMV serology with all-cause and cause-specific mortality risk was tested in Cox models adjusted for age, sex, level of education, body mass index, smoking status and pack-years. Results High CMV serology was marginally associated with all-cause mortality (p=0.071) but the effect was inversely dependent on age, with the association being much stronger among participants <55 years than among participants ≥55 years at enrolment (p-value for CMV-by-age interaction <0.001). Compared with low CMV serology, high CMV serology was associated with mortality from COPD among all subjects (adjusted hazard ratio (HR) 2.38, 95% CI 1.11–5.08; p=0.025) and particularly in subjects <55 years old at enrolment (HR 5.40, 95% CI 1.73–16.9; p=0.004). Consistent with these results, high CMV serology also predicted mortality risk among subjects who already had airflow limitation at enrolment (HR 2.10, 95% CI 1.20–3.68; p=0.009). Conclusions We report a strong relationship between CMV serology and the risk of dying from COPD, and thus identify a novel risk factor for COPD mortality. Using a 45-year longitudinal population-based cohort, it was demonstrated for the first time that high CMV serology predicts COPD mortality risk, particularly in younger subjects, identifying a novel and early risk factor for COPD mortalityhttp://bit.ly/32odP0Q
Collapse
Affiliation(s)
- Raffaella Nenna
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA.,Dept of Pediatrics, "Sapienza" University of Rome, Rome, Italy
| | - Jing Zhai
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Samuel E Packard
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Amber Spangenberg
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Duane L Sherrill
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Fernando D Martinez
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Marilyn Halonen
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA.,Dept of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Stefano Guerra
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA.,ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| |
Collapse
|
420
|
Cagliani R, Forni D, Mozzi A, Sironi M. Evolution and Genetic Diversity of Primate Cytomegaloviruses. Microorganisms 2020; 8:E624. [PMID: 32344906 PMCID: PMC7285053 DOI: 10.3390/microorganisms8050624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/30/2022] Open
Abstract
Cytomegaloviruses (CMVs) infect many mammals, including humans and non-human primates (NHPs). Human cytomegalovirus (HCMV) is an important opportunistic pathogen among immunocompromised patients and represents the most common infectious cause of birth defects. HCMV possesses a large genome and very high genetic diversity. NHP-infecting CMVs share with HCMV a similar genomic organization and coding content, as well as the course of viral infection. Recent technological advances have allowed the sequencing of several HCMV strains from clinical samples and provided insight into the diversity of NHP-infecting CMVs. The emerging picture indicates that, with the exclusion of core genes (genes that have orthologs in all herpesviruses), CMV genomes are relatively plastic and diverse in terms of gene content, both at the inter- and at the intra-species level. Such variability most likely underlies the strict species-specificity of these viruses, as well as their ability to persist lifelong and with relatively little damage to their hosts. However, core genes, despite their strong conservation, also represented a target of adaptive evolution and subtle changes in their coding sequence contributed to CMV adaptation to different hosts. Indubitably, important knowledge gaps remain, the most relevant of which concerns the role of viral genetics in HCMV-associated human disease.
Collapse
Affiliation(s)
| | | | | | - Manuela Sironi
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| |
Collapse
|
421
|
Yin Z, Yu GP, Xu N, Jiang L, Huang F, Fan ZP, Wang ZX, Xuan L, Liu QF, Sun J. [Clinical observation of cidofovir in salvage therapy for cytomegalovirus infection in patients with haploid hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:326-330. [PMID: 32447939 PMCID: PMC7364930 DOI: 10.3760/cma.j.issn.0253-2727.2020.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Z Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - G P Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - N Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - L Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - F Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Z P Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Z X Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - L Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Q F Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - J Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
422
|
Cytomegalovirus in Pediatric Sepsis: Should We Care? Pediatr Crit Care Med 2020; 21:396-397. [PMID: 32251188 DOI: 10.1097/pcc.0000000000002209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
423
|
Almaghrabi MK, Alwadei AD, Alyahya NM, Alotaibi FM, Alqahtani AH, Alahmari KA, Alqahtani MS, Alayed AS, Moosa R, Ali AS. Seroprevalence of Human Cytomegalovirus in Pregnant Women in the Asir Region, Kingdom of Saudi Arabia. Intervirology 2020; 62:205-209. [PMID: 32208395 DOI: 10.1159/000506051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/18/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) infection spreads easily by interpersonal contact. OBJECTIVE This study determined the prevalence of seropositivity of cytomegalovirus immunoglobulin G (IgG) in the Asir Region, Kingdom of Saudi Arabia. METHODS The study evaluated the seropositivity for cytomegalovirus-specific IgG in 460 females. Collected samples were processed and tested using enzyme-linked immunosorbent assay and specific HCMV IgG. RESULTS The study showed that all the respondents aged 15-20 years were seropositive for the HCMV. HCMV seropositive status was recorded in 99.2% of the older patients (>40 years of age). In the remaining age groups, the rate of seropositivity ranged from 95.7 (age range 20-25 years) to 98.9% (age range 30 years). CONCLUSIONS In all age groups of females tested, the prevalence of seropositive for HCMV was high, i.e., in the range of 95.7-100%.
Collapse
Affiliation(s)
- Mohammed K Almaghrabi
- Department of Microbiology and Clinical Parasitology, King Khalid University, Abha, Saudi Arabia,
| | | | - Nawaf M Alyahya
- College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | | | | | | | | | - Riyad Moosa
- College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
424
|
Gaur P, Ffrench-Constant S, Kachramanoglou C, Lyall H, Jan W. Is it not time for international guidelines to combat congenital cytomegalovirus infection? A review of central nervous system manifestations. Clin Radiol 2020; 75:644.e7-644.e16. [PMID: 32216960 DOI: 10.1016/j.crad.2020.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/18/2020] [Indexed: 12/31/2022]
Abstract
Cytomegalovirus (CMV) is the most commonly transmitted virus in utero with a prevalence of up to 1.5%. The infection has potentially debilitating and devastating consequences for the infected fetus, being a leading cause for neurological disability worldwide. Once acquired, it often goes undetected with only an assumed 10% of infected neonates displaying the classic clinical or imaging features. Viral DNA polymerase chain reaction (PCR) of saliva or urine obtained within the first 21 days of life is required to make the diagnosis. As the majority of infected neonates are initially asymptomatic, diagnosis is often delayed. An abnormal routine neonatal hearing test and characteristic antenatal cranial ultrasound imaging findings may raise the suspicion of congenital CMV (cCMV) in the asymptomatic group. Ultimately, the aim is to facilitate early diagnosis and timely treatment. In this article, we highlight diagnostic and treatment challenges of the commonest congenital infection, we present the current available central nervous system imaging severity grading systems, and highlight the need for an internationally agreed diagnostic grading system that can aid treatment decision-making.
Collapse
Affiliation(s)
- P Gaur
- Imperial College Healthcare NHS Trust, St Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - S Ffrench-Constant
- Imperial College Healthcare NHS Trust, St Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - C Kachramanoglou
- Imperial College Healthcare NHS Trust, St Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - H Lyall
- Imperial College Healthcare NHS Trust, St Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - W Jan
- Imperial College Healthcare NHS Trust, St Mary's Hospital, Praed Street, London, W2 1NY, UK.
| |
Collapse
|
425
|
Bonate PL, Van Sant C, Cho K, Zook EC, Smith LR, Boutsaboualoy S, Ye M, Wang X, Wu R, Koester A, Rammelsberg D, Goldwater R, Marbury TC. Pharmacokinetics and Immunogenicity of ASP0113 in CMV-Seronegative Dialysis Patients and CMV-Seronegative and -Seropositive Healthy Subjects. Clin Pharmacol Drug Dev 2020; 9:444-455. [PMID: 32202705 DOI: 10.1002/cpdd.792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/12/2020] [Indexed: 11/11/2022]
Abstract
Cytomegalovirus (CMV) infection causes significant morbidity and mortality in immunocompromised transplant patients. ASP0113, a first-in-class DNA vaccine containing plasmids encoding CMV phosphoprotein 65 and glycoprotein B (gB), was evaluated in a phase 1b, subject-blinded study in CMV-seropositive (n = 13) and CMV-seronegative (n = 12) healthy and CMV-seronegative dialysis subjects (n = 12) randomized to ASP0113 or placebo. End points included pharmacokinetics, anti-gB antibody levels, phosphoprotein 65-specific T-cell responses measured by ex vivo enzyme-linked immune absorbent spot (ELISpot) assay and 10-day cultured ELISpot and Stat T-cell activation assays, and safety. ASP0113 concentrations peaked at 2-10 and 24-48 hours; the pharmacokinetics were similar across groups. No group demonstrated significant anti-gB antibody responses. T-cell responder rates in the cultured ELISpot assay were 8/12 (66.7%, 95%CI 35% to 90%) and 4/12 (33.3%, 95%CI 10% to 65%) in CMV-seronegative healthy subjects and dialysis patients, respectively, whereas ex vivo ELISpot assay response rates were 4/11 (36.4%, 95%CI 11% to 69%) and 0/12, respectively. Responses peaked at week 27, with lower magnitude observed in CMV-seronegative dialysis patients versus CMV-seronegative healthy subjects. No serious adverse events occurred; the most common adverse event in ASP0113-vaccinated patients was injection-site pain (64.9%). Some CMV-seronegative healthy subjects and dialysis patients had T-cell responses; no humoral responses were detected.
Collapse
Affiliation(s)
- Peter L Bonate
- Astellas Pharma Global Development, Inc, Northbrook, Illinois, USA
| | - Charles Van Sant
- Astellas Research Institute of America, Northbrook, Illinois, USA
| | - Kathy Cho
- Astellas Pharma Global Development, Inc, Northbrook, Illinois, USA
| | - Erin C Zook
- Astellas Pharma Global Development, Inc, Northbrook, Illinois, USA
| | | | | | - Ming Ye
- Vical Inc, San Diego, California, USA
| | - Xuegong Wang
- Astellas Pharma Global Development, Inc, Northbrook, Illinois, USA
| | - Ruishan Wu
- Astellas Pharma Global Development, Inc, Northbrook, Illinois, USA
| | | | | | | | | |
Collapse
|
426
|
Takao M, Yoshioka N, Hagiya H, Deguchi M, Kagita M, Tsukamoto H, Hidaka Y, Tomono K, Tobe T. Risk for the occupational infection by cytomegalovirus among health-care workers. J Infect Chemother 2020; 26:681-684. [PMID: 32169323 DOI: 10.1016/j.jiac.2020.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) are ubiquitously distributed worldwide, causing a wide range of clinical manifestations from congenital infection to a life-threatening disease in immunocompromised individuals. CMV can be transmitted via human-to-human contact through body fluids; however, the risk of CMV infection among healthcare workers (HCWs) has not been fully evaluated. AIM This study aimed to assess the risk of CMV infection among HCWs through daily medical practices. METHODS Serum samples from HCWs at Osaka University Hospital (Japan) were analysed. Initially, we compared CMV IgG seropositivity among HCWs (medical doctors, nurses, and others) in 2017, which was examined after 1 year to evaluate seroconversion rates among those with seronegative results. Then, we examined CMV seroconversion rates in HCWs who were exposed to blood and body fluids. FINDINGS We analysed 1153 samples of HCWs (386 medical doctors, 468 nurses, and 299 others), of which CMV seropositivity rates were not significantly different (68.9%, 70.3%, and 70.9%, respectively). Of these, 63.9% (221/346) of CMV seronegative HCWs were followed after 1 year, with CMV seroconversion rates of 3.2% (7/221). Among 72 HCWs who tested negative for CMV IgG when exposed to blood and body fluids, the CMV seroconversion rate was 2.8% (2/72). The CMV seroconversion rates between the two situations were not significantly different. CONCLUSION Our study indicated that CMV infection through daily patient care seems quite rare. Further well-designed studies with a large sample size are warranted to verify our finding.
Collapse
Affiliation(s)
- Miyuki Takao
- Division of Infection Control and Prevention, Osaka University Hospital, Japan; Laboratory for Clinical Investigation, Osaka University Hospital, Japan; Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nori Yoshioka
- Division of Infection Control and Prevention, Osaka University Hospital, Japan; Laboratory for Clinical Investigation, Osaka University Hospital, Japan
| | - Hideharu Hagiya
- Division of Infection Control and Prevention, Osaka University Hospital, Japan; Department of General Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Matsuo Deguchi
- Division of Infection Control and Prevention, Osaka University Hospital, Japan; Laboratory for Clinical Investigation, Osaka University Hospital, Japan
| | - Masanori Kagita
- Division of Infection Control and Prevention, Osaka University Hospital, Japan; Laboratory for Clinical Investigation, Osaka University Hospital, Japan
| | - Hiroko Tsukamoto
- Laboratory for Clinical Investigation, Osaka University Hospital, Japan
| | - Yoh Hidaka
- Laboratory for Clinical Investigation, Osaka University Hospital, Japan
| | - Kazunori Tomono
- Division of Infection Control and Prevention, Osaka University Hospital, Japan
| | - Toru Tobe
- Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
427
|
Abstract
: The use of cytomegalovirus (CMV) as a vaccine vector to express antigens against multiple infectious diseases, including simian immunodeficiency virus, Ebola virus, plasmodium, and mycobacterium tuberculosis, in rhesus macaques has generated extraordinary levels of protective immunity against subsequent pathogenic challenge. Moreover, the mechanisms of immune protection have altered paradigms about viral vector-mediated immunity against ectopically expressed vaccine antigens. Further optimization of CMV-vectored vaccines, particularly as this approach moves to human clinical trials will be augmented by a more complete understanding of how CMV engenders mechanisms of immune protection. This review summarizes the particulars of the specific CMV vaccine vector that has been used to date (rhesus CMV strain 68-1) in relation to CMV natural history.
Collapse
|
428
|
Mullane KM. Human Cytomegalovirus Prophylaxis and Treatment in Lung Transplantation in the Current Era. CURRENT PULMONOLOGY REPORTS 2020. [DOI: 10.1007/s13665-020-00246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
429
|
Koenig J, Theobald SJ, Stripecke R. Modeling Human Cytomegalovirus in Humanized Mice for Vaccine Testing. Vaccines (Basel) 2020; 8:vaccines8010089. [PMID: 32079250 PMCID: PMC7157227 DOI: 10.3390/vaccines8010089] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Human cytomegalovirus (HCMV or HHV-5) is a globally spread pathogen with strictly human tropism that establishes a life-long persistence. After primary infection, high levels of long-term T and B cell responses are elicited, but the virus is not cleared. HCMV persists mainly in hematopoietic reservoirs, whereby occasional viral reactivation and spread are well controlled in immunocompetent hosts. However, when the immune system cannot control viral infections or reactivations, such as with newborns, patients with immune deficiencies, or immune-compromised patients after transplantations, the lytic outbursts can be severely debilitating or lethal. The development of vaccines for immunization of immune-compromised hosts has been challenging. Several vaccine candidates did not reach the potency expected in clinical trials and were not approved. Before anti-HCMV vaccines can be tested pre-clinically in immune-compromised hosts, reliable in vivo models recapitulating HCMV infection might accelerate their clinical translation. Therefore, immune-deficient mouse strains implanted with human cells and tissues and developing a human immune system (HIS) are being explored to test anti-HCMV vaccines. HIS-mice resemble immune-compromised hosts as they are equipped with antiviral human T and B cells, but the immune reactivity is overall low. Several groups have independently shown that HCMV infections and reactivations can be mirrored in HIS mice. However, these models and the analyses employed varied widely. The path forward is to improve human immune reconstitution and standardize the analyses of adaptive responses so that HIS models can be forthrightly used for testing novel generations of anti-HCMV vaccines in the preclinical pipeline.
Collapse
Affiliation(s)
- Johannes Koenig
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, 30625 Hannover, Germany; (J.K.); (S.J.T.)
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30625 Hannover, Germany
| | - Sebastian J. Theobald
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, 30625 Hannover, Germany; (J.K.); (S.J.T.)
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30625 Hannover, Germany
| | - Renata Stripecke
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, 30625 Hannover, Germany; (J.K.); (S.J.T.)
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-(511)-532-6999; Fax: +49-(511)-532-6975
| |
Collapse
|
430
|
Griffiths P. The direct and indirect consequences of cytomegalovirus infection and potential benefits of vaccination. Antiviral Res 2020; 176:104732. [PMID: 32081353 DOI: 10.1016/j.antiviral.2020.104732] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 12/25/2022]
Abstract
Active infection with cytomegalovirus (CMV) occurs in patients who are immunocompromised and may produce the high viral loads required to cause end-organ disease. Such patients have complex medical histories and many experienced physicians have speculated that CMV may, additionally, contribute to adverse clinical outcomes. In 1989, Dr Bob Rubin coined the term "indirect effects" to describe this potential relationship between virus and patient. Examples include accelerated atherosclerosis in patients after heart transplant or with underlying HIV infection, the number of days patients require ventilation after admission to intensive care units, the development of immunosenescence in the elderly and mortality in many groups of patients, including the general population. It is difficult to distinguish between CMV acting as causal contributor to such diverse pathology or simply having a benign bystander effect. However, recruitment of patients into placebo-controlled randomised trials of antiviral drugs with activity against CMV offers such a potential. This article describes the studies that have been conducted to date and emphasises that mortality after stem cell transplant (not attributed to CMV end-organ disease) has recently become the first proven indirect effect of CMV now that letermovir has significantly reduced non-relapse deaths. The implications for CMV vaccines are then discussed. Vaccines are already predicted to be highly cost-effective if they can reduce CMV end-organ disease. Health planners should now consider that cost effectiveness is likely to be enhanced further through reduction of the indirect effects of CMV. A prototype scheme for assessing this possibility is provided in order to stimulate discussion within the field. This article forms part of an online symposium on the prevention and therapy of DNA virus infections, dedicated to the memory of Mark Prichard.
Collapse
Affiliation(s)
- Paul Griffiths
- Institute for Immunity & Transplantation, Royal Free Campus, University College London, London, NW3 2PF, United Kingdom.
| |
Collapse
|
431
|
Bussé AML, Hoeve HLJ, Nasserinejad K, Mackey AR, Simonsz HJ, Goedegebure A. Prevalence of permanent neonatal hearing impairment: systematic review and Bayesian meta-analysis. Int J Audiol 2020; 59:475-485. [DOI: 10.1080/14992027.2020.1716087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Andrea M. L. Bussé
- Department of Otorhinolaryngology and Head and Neck Surgery and Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hans L. J. Hoeve
- Department of Otorhinolaryngology and Head and Neck Surgery and Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | - Huibert J. Simonsz
- Department of Otorhinolaryngology and Head and Neck Surgery and Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - André Goedegebure
- Department of Otorhinolaryngology and Head and Neck Surgery and Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
432
|
Schleiss MR. Breast Milk-Acquired Cytomegalovirus in Premature Infants: Uncertain Consequences and Unsolved Biological Questions. JAMA Pediatr 2020; 174:121-123. [PMID: 31790538 DOI: 10.1001/jamapediatrics.2019.4538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Mark R Schleiss
- Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis
| |
Collapse
|
433
|
Sharpley FA, De-Silva D, Mahmood S, Sachchithanantham S, Ramsay I, Garcia Mingo A, Worthington S, Hughes D, Mehta A, Kyriakou C, Griffiths PD, Wechalekar AD. Cytomegalovirus reactivation after bortezomib treatment for multiple myeloma and light chain amyloidosis. Eur J Haematol 2020; 104:230-235. [PMID: 31815313 DOI: 10.1111/ejh.13366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Cytomegalovirus (CMV) is an opportunistic herpesvirus, and reactivation of infection is possible in immunocompromised patients. Historically, the risk for haematology patients is restricted to those treated with an allogeneic transplant or T-cell depleting agents. Bortezomib is a highly efficacious proteasome inhibitor widely used to treat multiple myeloma and light chain (AL) amyloidosis patients. The objective of this small prospective study was to quantify the risk of CMV reactivation associated with bortezomib treatment. METHODS Fifty-seven consecutive multiple myeloma or AL amyloidosis patients commencing bortezomib-based therapy were included. Viral copy numbers were established at baseline and then at fortnightly intervals during treatment. Pre-emptive anti-viral treatment was initiated in patients with a viral load >7500 copies/mL. RESULTS Reactivation of CMV was detected in 39% (n = 12/31) of seropositive bortezomib treated patients compared with 0% of CMV seronegative patients. Detectable DNAemia developed during the first two cycles of treatment in 83% (n = 10/12) patients. Anti-viral treatment was initiated in 42% (n = 5/12), but no cases of active CMV disease were seen. CONCLUSION This study suggests that there is a substantial risk of CMV reactivation in CMV-seropositive plasma cell dyscrasia patients treated with bortezomib.
Collapse
Affiliation(s)
- Faye A Sharpley
- National Amyloidosis Centre, University College London, London, UK
| | - Dunnya De-Silva
- Department of Haematology, University College London Hospitals, London, UK
| | - Shameem Mahmood
- National Amyloidosis Centre, University College London, London, UK.,Department of Haematology, University College London Hospitals, London, UK.,Department of Virology, Royal Free London NHS Foundation Trust, London, UK
| | - Sajitha Sachchithanantham
- National Amyloidosis Centre, University College London, London, UK.,Department of Haematology, University College London Hospitals, London, UK.,Department of Virology, Royal Free London NHS Foundation Trust, London, UK
| | - Isobel Ramsay
- Department of Virology, Royal Free London NHS Foundation Trust, London, UK
| | - Ana Garcia Mingo
- Department of Virology, Royal Free London NHS Foundation Trust, London, UK
| | - Sarah Worthington
- Department of Haematology, University College London Hospitals, London, UK
| | - Derralynn Hughes
- Department of Haematology, Royal Free London NHS Foundation Trust, London, UK
| | - Atul Mehta
- Department of Haematology, Royal Free London NHS Foundation Trust, London, UK
| | | | - Paul D Griffiths
- Department of Virology, Royal Free London NHS Foundation Trust, London, UK
| | - Ashutosh D Wechalekar
- National Amyloidosis Centre, University College London, London, UK.,Department of Haematology, University College London Hospitals, London, UK.,Department of Virology, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
434
|
Min CK, Shakya AK, Lee BJ, Streblow DN, Caposio P, Yurochko AD. The Differentiation of Human Cytomegalovirus Infected-Monocytes Is Required for Viral Replication. Front Cell Infect Microbiol 2020; 10:368. [PMID: 32850474 PMCID: PMC7411144 DOI: 10.3389/fcimb.2020.00368] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
Viral dissemination is a key mechanism responsible for persistence and disease following human cytomegalovirus (HCMV) infection. Monocytes play a pivotal role in viral dissemination to organ tissue during primary infection and following reactivation from latency. For example, during primary infection, infected monocytes migrate into tissues and differentiate into macrophages, which then become a source of viral replication. In addition, because differentiated macrophages can survive for months to years, they provide a potential persistent infection source in various organ systems. We broadly note that there are three phases to infection and differentiation of HCMV-infected monocytes: (1) Virus enters and traffics to the nucleus through a virus receptor ligand engagement event that activates a unique signalsome that initiates the monocyte-to-macrophage differentiation process. (2) Following initial infection, HCMV undergoes a "quiescence-like state" in monocytes lasting for several weeks and promotes monocyte differentiation into macrophages. While, the initial event is triggered by the receptor-ligand engagement, the long-term cellular activation is maintained by chronic viral-mediated signaling events. (3) Once HCMV infected monocytes differentiate into macrophages, the expression of immediate early viral (IE) genes is detectable, followed by viral replication and long term infectious viral particles release. Herein, we review the detailed mechanisms of each phase during infection and differentiation into macrophages and discuss the biological significance of the differentiation of monocytes in the pathogenesis of HCMV.
Collapse
Affiliation(s)
- Chan-Ki Min
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Akhalesh K Shakya
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Byeong-Jae Lee
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Center of Excellence in Arthritis and Rheumatology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
435
|
Munro M, Yadavalli T, Fonteh C, Arfeen S, Lobo-Chan AM. Cytomegalovirus Retinitis in HIV and Non-HIV Individuals. Microorganisms 2019; 8:microorganisms8010055. [PMID: 31905656 PMCID: PMC7022607 DOI: 10.3390/microorganisms8010055] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/18/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023] Open
Abstract
Cytomegalovirus retinitis (CMVR) is a severe, vision-threatening disease that primarily affects immunosuppressed patients. CMVR is the most common ocular opportunistic infection in human immunodeficiency virus (HIV) infected patients and is the leading cause of blindness in this group; however, the incidence of CMVR in HIV patients has dramatically decreased with antiretroviral therapy. Other causes of immunosuppression, including organ transplantation, hematologic malignancies, and iatrogenic immunosuppression, can also lead to the development of CMVR. Herein, we describe the pathogenesis of CMVR and compare clinical features, epidemiology, and risk factors in HIV and non-HIV infected individuals with CMVR.
Collapse
Affiliation(s)
- Monique Munro
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Cheryl Fonteh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Safa Arfeen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ann-Marie Lobo-Chan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
436
|
Rickard J, Beilman G, Forrester J, Sawyer R, Stephen A, Weiser TG, Valenzuela J. Surgical Infections in Low- and Middle-Income Countries: A Global Assessment of the Burden and Management Needs. Surg Infect (Larchmt) 2019; 21:478-494. [PMID: 31816263 DOI: 10.1089/sur.2019.142] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: The burden of surgical infections in low- and middle-income countries (LMICs) remains poorly defined compared with high-income countries. Although there are common infections necessitating surgery prevalent across the world, such as appendicitis and peptic ulcer disease, other conditions are more localized geographically. To date, comprehensive assessment of the burden of surgically treatable infections or sequelae of surgical infections in LMICs is lacking. Methods: We reviewed the literature to define the burden of surgical infections in LMICs and characterize the needs and challenges of addressing this issue. Results: Surgical infections comprise a broad range of diseases including intra-abdominal, skin and soft tissue, and healthcare-associated infections and other infectious processes. Treatment of surgical infections requires a functional surgical ecosystem, microbiology services, and appropriate and effective antimicrobial therapy. Systems must be developed and maintained to evaluate screening, prevention, and treatment strategies. Solutions and interventions are proposed focusing on reducing the burden of disease, improving surveillance, strengthening antibiotic stewardship, and enhancing the management of surgical infections. Conclusions: Surgical infections constitute a large burden of disease globally. Challenges to management in LMICs include a shortage of trained personnel and material resources. The increasing rate of antimicrobial drug resistance, likely related to antibiotic misuse, adds to the challenges. Development of surveillance, infection prevention, and antimicrobial stewardship programs are initial steps forward. Education is critical and should begin early in training, be an active process, and be sustained through regular programs.
Collapse
Affiliation(s)
- Jennifer Rickard
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory Beilman
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joseph Forrester
- Department of Surgery, Stanford University, Stanford, California, USA
| | - Robert Sawyer
- Department of Surgery, Homer Stryker MD School of Medicine, Western Michigan University, Kalamazoo, Michigan, USA
| | - Andrew Stephen
- Department of Surgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Thomas G Weiser
- Department of Surgery, Stanford University, Stanford, California, USA
| | - Julie Valenzuela
- Department of Surgery, Northwell Health, New Hyde Park, New York, USA
| |
Collapse
|
437
|
Xuan L, Ren L, Han F, Gong L, Wan Z, Yang S, Liu H, Lv Y, Liu L. Cytomegalovirus Infection Exacerbates Experimental Colitis by Promoting IL-23 Production. Inflammation 2019; 43:326-335. [PMID: 31701354 DOI: 10.1007/s10753-019-01122-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Many studies have demonstrated an association between cytomegalovirus (CMV) infection and inflammatory bowel disease (IBD). Moreover, CMV infection is more common in patients with severe or steroid-refractory IBD. However, it is not clarified whether CMV worsens IBD or if it is merely a surrogate marker for IBD. Here, we used the dextran sodium sulfate (DSS)-induced colitis model to investigate if CMV infection exacerbates colitis. The mice were injected intraperitoneally with 10 MOI of murine CMV (MCMV) and thereafter, chronic colitis was induced by one cycle of DSS exposure. Anti-IL-23R mAb at 20 μg/mice and pyrrolidine dithiocarbamate (PDTC), an effective NF-κB inhibitor, at 50 mg/kg were administrated to the mice. The MCMV-infected mice had a shorter colon length and a higher histopathology score than the mock inoculum-treated mice, while anti-IL-23R mAb administration ameliorated the pathological changes. Expression of IL-23, phospho-NF-κB p65, and phospho-IκBα was upregulated in colon tissues of the MCMV-infected mice compared to mock inoculum-treated mice, while treatment with PDTC attenuated colonic IL-23 production. These data demonstrated that CMV infection could accelerate IBD development. This effect may be due to its activation on NF-κB signaling pathway and subsequently IL-23 production.
Collapse
Affiliation(s)
- Lingling Xuan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Lulu Ren
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Feifei Han
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Lili Gong
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Zirui Wan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Song Yang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - He Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Yali Lv
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China.
| | - Lihong Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China.
| |
Collapse
|
438
|
La Y, Kwon DE, Yoo SG, Lee KH, Han SH, Song YG. Human cytomegalovirus seroprevalence and titres in solid organ transplant recipients and transplant donors in Seoul, South Korea. BMC Infect Dis 2019; 19:948. [PMID: 31703564 PMCID: PMC6842252 DOI: 10.1186/s12879-019-4607-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) can cause poor outcomes in solid organ transplant (SOT) recipients; moreover, it is associated with cardiovascular diseases (CVD) in the general population. Accordingly, anti-HCMV immunoglobulin G (IgG) seroepidemiology may be useful in identifying the risk of post-SOT HCMV infection or disease as well as immunosenescence or CVD. However, HCMV seroprevalence and titre have not been fully evaluated with regard to age distribution or compared between SOT recipients and healthy individuals in South Korea. Methods We retrospectively retrieved all unduplicated anti-HCMV IgG results of individuals aged > 1 year evaluated between July 2006 and November 2017 at Severance Hospital in Seoul. The cohort, excluding haematopoietic stem cell transplant recipients and subjects with equivocal values, included 2184 SOT recipients and 3015 healthy transplant donors. All IgG results in the SOT recipients were measured during the pre-transplant period. Results The overall IgG seroprevalence and titres were significantly higher among SOT recipients than among healthy donors (98.7% vs. 88.6%, p < 0.001, and 64.7 ± 44.3 vs. 49.8 ± 20.6 arbitrary units/mL, p < 0.001, respectively). The lowest seropositive rate in the SOT group was observed in recipients aged between 11 and 15 years (70.6%). The frequency of seropositivity among adults aged ≥41 years increased to ≥90% in SOT recipients and healthy donors. Age was independently associated with higher HCMV seroprevalence (41–60 years, OR, 76.4, 95% CI, 24.5–238.9, p < 0.001; ≥ 61 years, OR, 4.4, 95% CI, 1.3–14.9, p < 0.001, compared to ≤40 years). The healthy donor group had an independently low HCMV seropositive rate (OR, 0.1, 95% CI, 0.1–0.2, p < 0.001). Conclusions HCMV seropositivity was the lowest among school-aged children and adolescents. IgG testing revealed an intermediate serostatus risk of post-transplant HCMV infection and disease for most adult SOT recipients in South Korea.
Collapse
Affiliation(s)
- Yeonju La
- Department of Internal Medicine, Division of Infectious Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Da Eun Kwon
- Department of Internal Medicine, Division of Infectious Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seul Gi Yoo
- Department of Internal Medicine, Division of Infectious Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Hwa Lee
- Department of Internal Medicine, Division of Infectious Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Han
- Department of Internal Medicine, Division of Infectious Disease, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Yong Goo Song
- Department of Internal Medicine, Division of Infectious Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
439
|
Waters S, Lee S, Lloyd M, Irish A, Price P. The Detection of CMV in Saliva Can Mark a Systemic Infection with CMV in Renal Transplant Recipients. Int J Mol Sci 2019; 20:ijms20205230. [PMID: 31652514 PMCID: PMC6829882 DOI: 10.3390/ijms20205230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (CMV) is often transmitted through saliva. The salivary gland is a site of CMV replication and saliva can be used to diagnose congenital CMV infections. CMV replication is monitored in whole blood or plasma in renal transplant recipients (RTR) and associates with clinical disease. However, these assays may not detect replication in the salivary gland and there is little data linking detection in saliva with systemic infection and clinical sequelae. RTR (n = 82) were recruited > 2 years after transplantation. An in-house quantitative PCR assay was used to detect CMV UL54 in saliva samples. CMV DNA was sought in plasma using a commercial assay. Vascular health was predicted using flow mediated dilatation (FMD) and plasma biomarkers. CMV-reactive antibodies were quantified by ELISA and circulating CMV-specific T-cells by an interferon-γ ELISpot assay. Vδ2− γδ T-cells were detected using multicolor flow cytometry reflecting population expansion after CMV infection. The presence of CMV DNA in saliva and plasma associated with plasma levels of antibodies reactive with CMV gB and with populations of circulating Vδ2− γδ T -cells (p < 0.01). T-cells reactive to CMV immediate early (IE)-1 protein were generally lower in patients with CMV DNA in saliva or plasma, but the level of significance varied (p = 0.02–0.16). Additionally, CMV DNA in saliva or plasma associated weakly with impaired FMD (p = 0.06–0.09). The data suggest that CMV detected in saliva reflects systemic infections in adult RTR.
Collapse
Affiliation(s)
- Shelley Waters
- School of Biomedical Science, Curtin University, Bentley 6102, Australia.
| | - Silvia Lee
- School of Biomedical Science, Curtin University, Bentley 6102, Australia.
- Department of Microbiology and Infectious Diseases, Pathwest Laboratory Medicine, Murdoch 6150, Australia.
| | - Megan Lloyd
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia.
- School of Biomedical Sciences, University of Western Australia, Nedlands 6009, Australia.
| | - Ashley Irish
- Renal Unit, Fiona Stanley Hospital, Murdoch 6150, Australia.
- School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Australia.
| | - Patricia Price
- School of Biomedical Science, Curtin University, Bentley 6102, Australia.
| |
Collapse
|
440
|
Poh KC, Zheng S. A rare case of CMV pneumonia in HIV-infection. Respir Med Case Rep 2019; 28:100945. [PMID: 31709138 PMCID: PMC6831852 DOI: 10.1016/j.rmcr.2019.100945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 02/01/2023] Open
Abstract
Cytomegalovirus (CMV) pneumonia is a rare opportunistic infection in the setting of HIV (Human Immunodeficiency Virus)-infection. Establishing accurate diagnosis of CMV pneumonia in HIV-infection can be challenging. Co-infections by multiple opportunistic pathogens are common and a high degree of clinical vigilance to evaluate for multiple infections, including CMV pneumonia, should be maintained. As there can be a degree of overlap in clinical and radiological features amongst different opportunistic infections affecting the lungs, definitive microbiological and cytohistologic evidences are needed. Reliance on microbiological evidence of CMV in respiratory specimens alone for the diagnosis of CMV pneumonia will lead to an over-diagnosis of the condition and unnecessary treatment. In our case report, we describe a 53-year-old man with recently diagnosed HIV-infection who presented with non-resolving pneumonia. A diagnosis of CMV pneumonia was reached through consistent clinical, radiological, microbiological and cytologic investigations. The patient made a full clinical recovery after being started on anti-CMV treatment.
Collapse
|
441
|
Liu J, Jaijyan DK, Tang Q, Zhu H. Promising Cytomegalovirus-Based Vaccine Vector Induces Robust CD8 + T-Cell Response. Int J Mol Sci 2019; 20:E4457. [PMID: 31510028 PMCID: PMC6770317 DOI: 10.3390/ijms20184457] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 02/08/2023] Open
Abstract
Vaccination has had great success in combating diseases, especially infectious diseases. However, traditional vaccination strategies are ineffective for several life-threatening diseases, including acquired immunodeficiency syndrome (AIDS), tuberculosis, malaria, and cancer. Viral vaccine vectors represent a promising strategy because they can efficiently deliver foreign genes and enhance antigen presentation in vivo. However, several limitations, including pre-existing immunity and packaging capacity, block the application of viral vectors. Cytomegalovirus (CMV) has been demonstrated as a new type of viral vector with additional advantages. CMV could systematically elicit and maintain high frequencies of effector memory T cells through the "memory inflation" mechanism. Studies have shown that CMV can be genetically modified to induce distinct patterns of CD8+ T-cell responses, while some unconventional CD8+ T-cell responses are rarely induced through conventional vaccine strategies. CMV has been used as a vaccine vector to deliver many disease-specific antigens, and the efficacy of these vaccines was tested in different animal models. Promising results demonstrated that the robust and unconventional T-cell responses elicited by the CMV-based vaccine vector are essential to control these diseases. These accumulated data and evidence strongly suggest that a CMV-based vaccine vector represents a promising approach to develop novel prophylactic and therapeutic vaccines against some epidemic pathogens and tumors.
Collapse
Affiliation(s)
- Jian Liu
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China.
- College of Life Sciences, Jinan University, Guangzhou 510632, China.
| | - Dabbu Kumar Jaijyan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA.
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA.
| | - Hua Zhu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA.
- College of Life Sciences, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
442
|
Cui J, Yan W, Xie H, Xu S, Wang Q, Zhang W, Ni A. Cytomegalovirus antigenemia in patients with autoimmune and non-autoimmune diseases in Beijing: A 10-year single hospital experience. PLoS One 2019; 14:e0221793. [PMID: 31461496 PMCID: PMC6713388 DOI: 10.1371/journal.pone.0221793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/14/2019] [Indexed: 01/22/2023] Open
Abstract
Background Primary cytomegalovirus (CMV) infection is prevalent worldwide and usually results in latency in immunocompetent populations. Reactivation of latent CMV can cause life-threatening complications in immunocompromised hosts. Methods We used the CMV Brite assay to test CMV antigenemia (pp65) in whole blood samples from 22,192 patients with or without autoimmune diseases in Beijing during 2008–2018. Results The overall prevalence of CMV antigenemia was 19.5% (9.7%, males; 26.0%, females). The prevalence of CMV antigenemia was 35.1%, 58.6% and 11.4% in whole patients with autoimmune diseases, in patients with systemic lupus erythematosus (SLE) and in patients with non-SLE autoimmune diseases, respectively. All patients with non-autoimmune diseases, patients with HIV/AIDS or transplantation were found to have 5.0%, 27% or 14.8%, respectively. Patients≤20 years with SLE had a significantly higher prevalence of CMV antigenemia than did all SLE patients, on average. Patients>51 years with non-SLE autoimmune diseases had a significantly higher prevalence than did all patients with non-SLE autoimmune diseases, on average. The prevalence of CMV antigenemia in patients admitted to intensive-care units (ICUs) were 9.2%, which was significantly higher than that among all patients with non-autoimmune diseases. Patients with SLE had 23.8% of negative conversion of CMV antigenemia, significantly lower than the percentage of patients with non-SLE autoimmune (64.3%) and non-autoimmune (61.0%) diseases. The mean number of days to negative conversion of CMV antigenemia in patients with SLE was 35.3±35.8 days, which was significantly longer than that in patients with non-SLE autoimmune diseases (15.4±11.9 days) and non-autoimmune diseases (13.6±7.7 days). Conclusions CMV antigenemia is found more likely in women than in men, more prevalently in patients with SLE than those with HIV/AIDS or transplant recipients, more frequently in patients admitted to ICUs. Patients with SLE had prolonged CMV antigenemia. The role of CMV appears important in SLE.
Collapse
Affiliation(s)
- Jingtao Cui
- Department of Clinical Laboratories, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjuan Yan
- Department of Clinical Laboratories, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongjie Xie
- Department of Clinical Laboratories, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaoxia Xu
- Department of Clinical Laboratories, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiaofeng Wang
- Department of Clinical Laboratories, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihong Zhang
- Department of Clinical Laboratories, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anping Ni
- Department of Clinical Laboratories, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
443
|
Lim CC, Tan BH, Tung YT, Huang H, Hao Y, Mok IYJ, Lee PH, Choo JCJ. Risk-stratified approach to anti-viral prophylaxis against cytomegalovirus disease in glomerulonephritis and renal vasculitis treated with potent immunosuppressants. Infect Dis (Lond) 2019; 51:745-752. [PMID: 31407631 DOI: 10.1080/23744235.2019.1648855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Aim: Cytomegalovirus (CMV) reactivation and disease in immunocompromised individuals is associated with significant morbidity and mortality. Preventive measures such as anti-viral prophylaxis or surveillance and pre-emptive therapy effectively reduced CMV disease in solid organ transplant but have not been evaluated among patients with glomerulonephritis at-risk for CMV disease after immunosuppressive therapy. We evaluated the utility and outcomes of a risk-stratified approach to anti-viral prophylaxis for adults with glomerulonephritis treated with potent immunosuppressants. Methods: Single-center retrospective cohort study of adults with glomerulonephritis and renal vasculitis prescribed methylprednisolone, cyclophosphamide or rituximab in a tertiary referral centre. A risk-stratified approach to CMV anti-viral prophylaxis was implemented in March 2015. We compared the incidence of CMV disease in the pre-implementation (January 2008-December 2014) and post-implementation (June 2015-June 2017) groups. Results: We studied 119 individuals: 85 in the pre-implementation group and 34 in the post-implementation group. The post-implementation group had worse kidney function, greater proteinuria, higher prednisolone dose and more received intravenous methylprednisolone and plasma exchanges but CMV disease within 6 months was similar to the pre-implementation group (2.9% vs. 3.5%, p = 1.00). Among individuals in the post-implementation group who satisfied criteria to receive anti-viral prophylaxis (n = 21), CMV disease was more frequent in the group not given prophylaxis compared to those given prophylaxis as recommended (8.3% versus 0%, p = 1.00). Adverse events related to anti-viral prophylaxis occurred in 40%. Conclusion: This study provided pilot data for future randomized controlled trials to evaluate CMV preventive strategies in selected high-risk patients with glomerulonephritis or renal vasculitis.
Collapse
Affiliation(s)
- Cynthia Ciwei Lim
- Department of Renal Medicine, Singapore General Hospital , Singapore
| | - Ban Hock Tan
- Department of Infectious Diseases, Singapore General Hospital , Singapore
| | - Yu Tzu Tung
- Department of Pharmacy, Singapore General Hospital , Singapore
| | - Huijun Huang
- Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Ying Hao
- Health Service Research Unit, Division of Medicine, Singapore General Hospital , Singapore
| | - Irene Y J Mok
- Department of Renal Medicine, Singapore General Hospital , Singapore
| | - Puay Hoon Lee
- Department of Pharmacy, Singapore General Hospital , Singapore
| | - Jason C J Choo
- Department of Renal Medicine, Singapore General Hospital , Singapore
| |
Collapse
|
444
|
Gomes AC, Griffiths PD, Reeves MB. The Humoral Immune Response Against the gB Vaccine: Lessons Learnt from Protection in Solid Organ Transplantation. Vaccines (Basel) 2019; 7:E67. [PMID: 31319553 PMCID: PMC6789498 DOI: 10.3390/vaccines7030067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (hCMV) is considered to be the highest priority for vaccine development. This view is underscored by the significant morbidity associated with congenital hCMV infection and viraemia in transplant patients. Although a number of vaccines have been trialed, none have been licensed. The hCMV vaccine candidate that has performed best in clinical trials to date is the recombinant glycoprotein B (gB) vaccine that has demonstrated protection, ranging from a 43% to 50% efficacy in three independent phase II trials. In this review, we focus on data from the phase II trial performed in solid organ transplant patients and the outcomes of follow-up studies attempting to identify immunological and mechanistic correlates of protection associated with this vaccine strategy. We relate this to other vaccine studies of gB as well as other vaccine strategies to determine areas of commonality and divergence. Finally, through the review, we discuss the unique challenges and opportunities presented with vaccine studies in transplant populations with recommendations that could empower subsequent trials.
Collapse
Affiliation(s)
- Ariane C Gomes
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK
| | - Paul D Griffiths
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK
| | - Matthew B Reeves
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK.
| |
Collapse
|
445
|
Griffiths PD. Natural history studies bring universal screening for congenital CMV infection closer. Rev Med Virol 2019; 29:e2072. [PMID: 31237046 DOI: 10.1002/rmv.2072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Paul D Griffiths
- Institute of Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
446
|
Stern L, Withers B, Avdic S, Gottlieb D, Abendroth A, Blyth E, Slobedman B. Human Cytomegalovirus Latency and Reactivation in Allogeneic Hematopoietic Stem Cell Transplant Recipients. Front Microbiol 2019; 10:1186. [PMID: 31191499 PMCID: PMC6546901 DOI: 10.3389/fmicb.2019.01186] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) reactivation is a major infectious cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). HCMV is a ubiquitous beta-herpesvirus which asymptomatically infects immunocompetent individuals but establishes lifelong latency, with the potential to reactivate to a life-threatening productive infection when the host immune system is suppressed or compromised. Opportunistic HCMV reactivation is the most common viral complication following engraftment after HSCT and is associated with a marked increase in non-relapse mortality, which appears to be linked to complex effects on post-transplant immune recovery. This minireview explores the cellular sites of HCMV latency and reactivation in HSCT recipients and provides an overview of the risk factors for HCMV reactivation post-HSCT. The impact of HCMV in shaping post-transplant immune reconstitution and its relationship with patient outcomes such as relapse and graft-versus-host disease will be discussed. Finally, we survey current and emerging strategies to prevent and control HCMV reactivation in HSCT recipients, with recent developments including adoptive T cell therapies to accelerate HCMV-specific T cell reconstitution and new anti-HCMV drug therapy for HCMV reactivation after HSCT.
Collapse
Affiliation(s)
- Lauren Stern
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Barbara Withers
- Department of Haematology, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Selmir Avdic
- Westmead Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,Sydney Cellular Therapies Laboratory, Westmead, NSW, Australia
| | - David Gottlieb
- Westmead Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,Sydney Cellular Therapies Laboratory, Westmead, NSW, Australia.,Blood and Marrow Transplant Unit, Westmead Hospital, Sydney, NSW, Australia
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Emily Blyth
- Westmead Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,Sydney Cellular Therapies Laboratory, Westmead, NSW, Australia.,Blood and Marrow Transplant Unit, Westmead Hospital, Sydney, NSW, Australia
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
447
|
Di Pietro M, Filardo S, Romano S, Sessa R. Chlamydia trachomatis and Chlamydia pneumoniae Interaction with the Host: Latest Advances and Future Prospective. Microorganisms 2019; 7:microorganisms7050140. [PMID: 31100923 PMCID: PMC6560445 DOI: 10.3390/microorganisms7050140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
Research in Chlamydia trachomatis and Chlamydia pneumoniae has gained new traction due to recent advances in molecular biology, namely the widespread use of the metagenomic analysis and the development of a stable genomic transformation system, resulting in a better understanding of Chlamydia pathogenesis. C. trachomatis, the leading cause of bacterial sexually transmitted diseases, is responsible of cervicitis and urethritis, and C. pneumoniae, a widespread respiratory pathogen, has long been associated with several chronic inflammatory diseases with great impact on public health. The present review summarizes the current evidence regarding the complex interplay between C. trachomatis and host defense factors in the genital micro-environment as well as the key findings in chronic inflammatory diseases associated to C. pneumoniae.
Collapse
Affiliation(s)
- Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| | - Silvio Romano
- Cardiology, Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| |
Collapse
|
448
|
Smit GSA, Abrams S, Dorny P, Speybroeck N, Devleesschauwer B, Hutse V, Jansens H, Theeten H, Beutels P, Hens N. The seroprevalence of cytomegalovirus infection in Belgium anno 2002 and 2006: a comparative analysis with hepatitis A virus seroprevalence. Epidemiol Infect 2019; 147:e154. [PMID: 31063104 PMCID: PMC6518518 DOI: 10.1017/s0950268819000487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/01/2019] [Accepted: 02/13/2019] [Indexed: 11/06/2022] Open
Abstract
Cytomegalovirus (CMV) infection is endemic worldwide but its seroprevalence varies widely. The goal of this study was to estimate the age-specific seroprevalence of CMV infection in Belgium based on two cross-sectional serological datasets from 2002 and 2006. The seroprevalence was estimated relying on diagnostic test results based on cut-off values pre-specified by the manufacturers of the tests as well as relying on mixture models applied to continuous pathogen-specific immunoglobulin G antibody titre concentrations. The age-specific seroprevalence of hepatitis A virus (HAV), based on three Belgian cross-sectional serological datasets from 1993, 2002 and 2006, was used as a comparator since individuals acquire lifelong immunity upon recovery, implying an increasing seroprevalence with age. The age group weighted overall CMV seroprevalence derived from the mixture model was 32% (95% confidence interval (CI) 31-34%) in 2002 and 31% (95% CI 30-32%) in 2006. We demonstrated that CMV epidemiology differs from the immunizing infection HAV. This was the first large-scale study of CMV and HAV serial datasets in Belgium, estimating seroprevalence specified by age and birth cohort.
Collapse
Affiliation(s)
- G. S. A. Smit
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Department of Biomedical Sciences, Institute of Tropical Medicine (ITM), Antwerp, Belgium
- Institute of Health and Society (IRSS), Université catholique de Louvain, Brussels, Belgium
| | - S. Abrams
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
- Department of Epidemiology and Social Medicine, University of Antwerp, Antwerp, Belgium
| | - P. Dorny
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Department of Biomedical Sciences, Institute of Tropical Medicine (ITM), Antwerp, Belgium
| | - N. Speybroeck
- Institute of Health and Society (IRSS), Université catholique de Louvain, Brussels, Belgium
| | - B. Devleesschauwer
- Department of Epidemiology and Public Health, sciensano, Brussels, Belgium
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - V. Hutse
- Scientific Directorate Infectious Diseases in Humans, Service of Viral Diseases, Sciensano, Brussels, Belgium
| | - H. Jansens
- Department of Laboratory Medicine, Antwerp University Hospital, Edegem, Belgium
| | - H. Theeten
- Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Center for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - P. Beutels
- Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- School of Public Health and Community Medicine, The University of New South Wales, Sydney, Australia
| | - N. Hens
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
- Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Center for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|