401
|
Däbritz J. Granulocyte macrophage colony-stimulating factor and the intestinal innate immune cell homeostasis in Crohn's disease. Am J Physiol Gastrointest Liver Physiol 2014; 306:G455-65. [PMID: 24503766 DOI: 10.1152/ajpgi.00409.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Current literature consolidates the view of Crohn's disease (CD) as a form of immunodeficiency highlighting dysregulation of intestinal innate immunity in the pathogenesis of CD. Intestinal macrophages derived from blood monocytes play a key role in sustaining the innate immune homeostasis in the intestine, suggesting that the monocyte/macrophage compartment might be an attractive therapeutic target for the management of CD. Granulocyte macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor that also promotes myeloid cell activation, proliferation, and differentiation. GM-CSF has a protective effect in human CD and mouse models of colitis. However, the role of GM-CSF in immune and inflammatory reactions in the intestine is not well defined. Beneficial effects exerted by GM-CSF during intestinal inflammation could relate to modulation of the mucosal barrier function in the intestine, including epithelial cell proliferation, survival, restitution, and immunomodulatory actions. The aim of this review is to summarize potential mechanistic roles of GM-CSF in intestinal innate immune cell homeostasis and to highlight its central role in maintenance of the intestinal immune barrier in the context of immunodeficiency in CD.
Collapse
Affiliation(s)
- Jan Däbritz
- The Royal Children's Hospital Melbourne, Murdoch Children's Research Institute, Gastrointestinal Research in Inflammation & Pathology, Parkville, Victoria, Australia; University of Melbourne, Melbourne Medical School, Department of Paediatrics, Parkville, Victoria, Australia; University Children's Hospital Münster, Department of Pediatric Rheumatology and Immunology, Münster, Germany; and University of Münster, Interdisciplinary Center for Clinical Research, Münster, Germany
| |
Collapse
|
402
|
Hintze KJ, Cox JE, Rompato G, Benninghoff AD, Ward RE, Broadbent J, Lefevre M. Broad scope method for creating humanized animal models for animal health and disease research through antibiotic treatment and human fecal transfer. Gut Microbes 2014; 5:183-91. [PMID: 24637796 PMCID: PMC4063843 DOI: 10.4161/gmic.28403] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Traditionally, mouse humanization studies have used human fecal transfer to germ-free animals. This practice requires gnotobiotic facilities and is restricted to gnotobiotic mouse lines, which limits humanized mouse research. We have developed a generalizable method to humanize non germ-free mice using antibiotic treatment and human fecal transfer. The method involves depleting resident intestinal microbiota with broad-spectrum antibiotics, introducing human microbiota from frozen fecal samples by weekly gavage, and maintaining mice in HEPA-filtered microisolator cages. Pyrosequencing cecal microbiota 16S rRNA genes showed that recipient mice adopt a humanized microbiota profile analogous to their human donors, and distinct from mice treated with only antibiotics (no fecal transfer) or untreated control mice. In the humanized mice, 75% of the sequence mass was observed in their respective human donor and conversely, 68% of the donor sequence mass was recovered in the recipient mice. Principal component analyses of GC- and HPLC-separated cecal metabolites were performed to determine effects of transplanted microbiota on the metabolome. Cecal metabolite profiles of mice treated with only antibiotics (no fecal transfer) and control mice were dissimilar from each other and from humanized mice. Metabolite profiles for mice humanized from different donor samples clustered near each other, yet were sufficiently distinct that separate clusters were apparent for each donor. Also, cecal concentrations of 57 metabolites were significantly different between humanization treatments. These data demonstrate that our protocol can be used to humanize non germ-free mice and is sufficiently robust to generate metabolomic differences between mice humanized from different human donors.
Collapse
Affiliation(s)
- Korry J Hintze
- Dept. of Nutrition, Dietetics, and Food Sciences; Utah State University; Logan, UT USA,Applied Nutrition Research; Utah Science Technology and Research Initiative (USTAR); Logan, UT USA,Correspondence to: Korry J Hintze,
| | - James E Cox
- Department of Biochemistry; University of Utah; Salt Lake City, UT USA
| | - Giovanni Rompato
- Center of Integrated BioSystems; Utah State University; Logan, UT USA
| | - Abby D Benninghoff
- Applied Nutrition Research; Utah Science Technology and Research Initiative (USTAR); Logan, UT USA,Dept. of Animal, Dairy, and Veterinary Sciences; Utah State University; Logan, UT USA
| | - Robert E Ward
- Dept. of Nutrition, Dietetics, and Food Sciences; Utah State University; Logan, UT USA,Applied Nutrition Research; Utah Science Technology and Research Initiative (USTAR); Logan, UT USA
| | - Jeff Broadbent
- Dept. of Nutrition, Dietetics, and Food Sciences; Utah State University; Logan, UT USA,Applied Nutrition Research; Utah Science Technology and Research Initiative (USTAR); Logan, UT USA
| | - Michael Lefevre
- Dept. of Nutrition, Dietetics, and Food Sciences; Utah State University; Logan, UT USA,Applied Nutrition Research; Utah Science Technology and Research Initiative (USTAR); Logan, UT USA
| |
Collapse
|
403
|
Mach N, Berri M, Esquerré D, Chevaleyre C, Lemonnier G, Billon Y, Lepage P, Oswald IP, Doré J, Rogel-Gaillard C, Estellé J. Extensive expression differences along porcine small intestine evidenced by transcriptome sequencing. PLoS One 2014; 9:e88515. [PMID: 24533095 PMCID: PMC3922923 DOI: 10.1371/journal.pone.0088515] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/07/2014] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to analyse gene expression along the small intestine (duodenum, jejunum, ileum) and in the ileal Peyer's patches in four young pigs with no clinical signs of disease by transcriptome sequencing. Multidimensional scaling evidenced that samples clustered by tissue type rather than by individual, thus prefiguring a relevant scenario to draw tissue-specific gene expression profiles. Accordingly, 1,349 genes were found differentially expressed between duodenum and jejunum, and up to 3,455 genes between duodenum and ileum. Additionally, a considerable number of differentially expressed genes were found by comparing duodenum (7,027 genes), jejunum (6,122 genes), and ileum (6,991 genes) with ileal Peyer's patches tissue. Functional analyses revealed that most of the significant differentially expressed genes along small intestinal tissues were involved in the regulation of general biological processes such as cell development, signalling, growth and proliferation, death and survival or cell function and maintenance. These results suggest that the intrinsic large turnover of intestinal tissues would have local specificities at duodenum, ileum and jejunum. In addition, in concordance with their biological function, enteric innate immune pathways were overrepresented in ileal Peyer's patches. The reported data provide an expression map of the cell pathway variation in the different small intestinal tissues. Furthermore, expression levels measured in healthy individuals could help to understand changes in gene expression that occur in dysbiosis or pathological states.
Collapse
Affiliation(s)
- Núria Mach
- UMR1313 Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
- UMR1313 Génétique Animale et Biologie Intégrative, AgroParisTech, Jouy-en-Josas, France
- DSV/iRCM/SREIT/LREG, CEA, Jouy-en-Josas, France
- UMR1319 MICALIS, INRA, Jouy-en-Josas, France
- UMR1319 MICALIS, AgroParisTech, Jouy-en-Josas, France
- * E-mail:
| | - Mustapha Berri
- UMR1282 ISP, INRA, Nouzilly, France
- UMR1282 ISP, Université de Tours, Tours, France
| | - Diane Esquerré
- UMR444 LGC-Plateforme GET, INRA, Castanet-Tolosan, France
| | - Claire Chevaleyre
- UMR1282 ISP, INRA, Nouzilly, France
- UMR1282 ISP, Université de Tours, Tours, France
| | - Gaëtan Lemonnier
- UMR1313 Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
- UMR1313 Génétique Animale et Biologie Intégrative, AgroParisTech, Jouy-en-Josas, France
- DSV/iRCM/SREIT/LREG, CEA, Jouy-en-Josas, France
| | | | - Patricia Lepage
- UMR1319 MICALIS, INRA, Jouy-en-Josas, France
- UMR1319 MICALIS, AgroParisTech, Jouy-en-Josas, France
| | - Isabelle P. Oswald
- UMR1331 TOXALIM, INRA, Toulouse, France
- UMR1331 TOXALIM-INP, Université de Toulouse III, Toulouse, France
| | - Joël Doré
- UMR1319 MICALIS, INRA, Jouy-en-Josas, France
- UMR1319 MICALIS, AgroParisTech, Jouy-en-Josas, France
| | - Claire Rogel-Gaillard
- UMR1313 Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
- UMR1313 Génétique Animale et Biologie Intégrative, AgroParisTech, Jouy-en-Josas, France
- DSV/iRCM/SREIT/LREG, CEA, Jouy-en-Josas, France
| | - Jordi Estellé
- UMR1313 Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
- UMR1313 Génétique Animale et Biologie Intégrative, AgroParisTech, Jouy-en-Josas, France
- DSV/iRCM/SREIT/LREG, CEA, Jouy-en-Josas, France
| |
Collapse
|
404
|
Cheema AK, Suman S, Kaur P, Singh R, Fornace AJ, Datta K. Long-term differential changes in mouse intestinal metabolomics after γ and heavy ion radiation exposure. PLoS One 2014; 9:e87079. [PMID: 24475228 PMCID: PMC3903607 DOI: 10.1371/journal.pone.0087079] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/16/2013] [Indexed: 01/26/2023] Open
Abstract
Tissue consequences of radiation exposure are dependent on radiation quality and high linear energy transfer (high-LET) radiation, such as heavy ions in space is known to deposit higher energy in tissues and cause greater damage than low-LET γ radiation. While radiation exposure has been linked to intestinal pathologies, there are very few studies on long-term effects of radiation, fewer involved a therapeutically relevant γ radiation dose, and none explored persistent tissue metabolomic alterations after heavy ion space radiation exposure. Using a metabolomics approach, we report long-term metabolomic markers of radiation injury and perturbation of signaling pathways linked to metabolic alterations in mice after heavy ion or γ radiation exposure. Intestinal tissues (C57BL/6J, female, 6 to 8 wks) were analyzed using ultra performance liquid chromatography coupled with electrospray quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS) two months after 2 Gy γ radiation and results were compared to an equitoxic 56Fe (1.6 Gy) radiation dose. The biological relevance of the metabolites was determined using Ingenuity Pathway Analysis, immunoblots, and immunohistochemistry. Metabolic profile analysis showed radiation-type-dependent spatial separation of the groups. Decreased adenine and guanosine and increased inosine and uridine suggested perturbed nucleotide metabolism. While both the radiation types affected amino acid metabolism, the 56Fe radiation preferentially altered dipeptide metabolism. Furthermore, 56Fe radiation caused upregulation of ‘prostanoid biosynthesis’ and ‘eicosanoid signaling’, which are interlinked events related to cellular inflammation and have implications for nutrient absorption and inflammatory bowel disease during space missions and after radiotherapy. In conclusion, our data showed for the first time that metabolomics can not only be used to distinguish between heavy ion and γ radiation exposures, but also as a radiation-risk assessment tool for intestinal pathologies through identification of biomarkers persisting long after exposure.
Collapse
Affiliation(s)
- Amrita K. Cheema
- Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - Shubhankar Suman
- Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - Prabhjit Kaur
- Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - Rajbir Singh
- Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - Albert J. Fornace
- Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
- Center of Excellence In Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kamal Datta
- Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
405
|
The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 2014; 111:2247-52. [PMID: 24390544 DOI: 10.1073/pnas.1322269111] [Citation(s) in RCA: 1486] [Impact Index Per Article: 135.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Given the trillions of microbes that inhabit the mammalian intestines, the host immune system must constantly maintain a balance between tolerance to commensals and immunity against pathogens to avoid unnecessary immune responses against otherwise harmless bacteria. Misregulated responses can lead to inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. The mechanisms by which the immune system maintains this critical balance remain largely undefined. Here, we demonstrate that the short-chain fatty acid n-butyrate, which is secreted in high amounts by commensal bacteria, can modulate the function of intestinal macrophages, the most abundant immune cell type in the lamina propria. Treatment of macrophages with n-butyrate led to the down-regulation of lipopolysaccharide-induced proinflammatory mediators, including nitric oxide, IL-6, and IL-12, but did not affect levels of TNF-α or MCP-1. These effects were independent of toll-like receptor signaling and activation of G-protein-coupled receptors, two pathways that could be affected by short-chain fatty acids. In this study, we provide several lines of evidence that suggest that these effects are due to the inhibition of histone deacetylases by n-butyrate. These findings elucidate a pathway in which the host may maintain tolerance to intestinal microbiota by rendering lamina propria macrophages hyporesponsive to commensal bacteria through the down-regulation of proinflammatory effectors.
Collapse
|
406
|
Swiatczak B. Immune balance: the development of the idea and its applications. JOURNAL OF THE HISTORY OF BIOLOGY 2014; 47:411-442. [PMID: 25574533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
It has long been taken for granted that the immune system’s capacity to protect an individual from infection and disease depends on the power of the system to distinguish between self and nonself. However, accumulating data have undermined this fundamental concept. Evidence against the self/nonself discrimination model left researchers in need of a new overarching framework able to capture the immune system’s reactivity. Here, I highlight that along with the self/nonself model, another powerful representation of the immune system’s reactivity has been developed in the twentieth century immunology. According to this alternative view, the immune system is not a killer of nonself strangers but a peace-maker helping to establish harmony with the environment. The balance view of the system has never become part of the dominant paradigm. However, it is gaining more and more currency as new research develops. Advances in mucosal immunology confirm that instead of distinguishing between self and foreign the immune system reacts to microbial, chemical and self-induced alterations to produce responses that counterbalance effects of these changes.
Collapse
Affiliation(s)
- Bartlomiej Swiatczak
- Department of History of Science, University of Science and Technology of China, Hefei, People's Republic of China.
| |
Collapse
|
407
|
Swiatczak B. Immune balance: the development of the idea and its applications. JOURNAL OF THE HISTORY OF BIOLOGY 2014; 47:411-442. [PMID: 24129740 DOI: 10.1007/s10739-013-9370-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
It has long been taken for granted that the immune system's capacity to protect an individual from infection and disease depends on the power of the system to distinguish between self and nonself. However, accumulating data have undermined this fundamental concept. Evidence against the self/nonself discrimination model left researchers in need of a new overarching framework able to capture the immune system's reactivity. Here, I highlight that along with the self/nonself model, another powerful representation of the immune system's reactivity has been developed in the twentieth century immunology. According to this alternative view, the immune system is not a killer of nonself strangers but a peace-maker helping to establish harmony with the environment. The balance view of the system has never become part of the dominant paradigm. However, it is gaining more and more currency as new research develops. Advances in mucosal immunology confirm that instead of distinguishing between self and foreign the immune system reacts to microbial, chemical and self-induced alterations to produce responses that counterbalance effects of these changes.
Collapse
Affiliation(s)
- Bartlomiej Swiatczak
- Department of History of Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, People's Republic of China,
| |
Collapse
|
408
|
A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice. Cell Host Microbe 2013; 13:711-22. [PMID: 23768495 DOI: 10.1016/j.chom.2013.05.013] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 11/28/2012] [Accepted: 05/23/2013] [Indexed: 12/23/2022]
Abstract
Imbalance in gut bacterial composition provokes host proinflammatory responses causing diseases such as colitis. Colonization with a mixture of Clostridium species from clusters IV and XIVa was shown to suppress colitis through the induction of IL-10-producing regulatory T (Treg) cells. We demonstrate that a distinct Clostridium strain from cluster I, Clostridium butyricum (CB), prevents acute experimental colitis in mice through induction of IL-10, an anti-inflammatory cytokine. However, while CB treatment had no effect on IL-10 production by T cells, IL-10-producing F4/80(+)CD11b(+)CD11c(int) macrophages accumulated in the inflamed mucosa after CB treatment. CB directly triggered IL-10 production by intestinal macrophages in inflamed mucosa via the TLR2/MyD88 pathway. The colitis-preventing effect of CB was negated in macrophage-specific IL-10-deficient mice, suggesting that induction of IL-10 by intestinal macrophages is crucial for the probiotic action of CB. Collectively, CB promotes IL-10 production by intestinal macrophages in inflamed mucosa, thereby preventing experimental colitis in mice.
Collapse
|
409
|
Candela M, Biagi E, Brigidi P, O'Toole PW, De Vos WM. Maintenance of a healthy trajectory of the intestinal microbiome during aging: a dietary approach. Mech Ageing Dev 2013; 136-137:70-5. [PMID: 24373997 DOI: 10.1016/j.mad.2013.12.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 12/05/2013] [Accepted: 12/16/2013] [Indexed: 12/21/2022]
Abstract
Sharing an intense transgenomic metabolism with the host, the intestinal microbiota is an essential factor for several aspects of the human physiology. However, several age-related factors, such as changes diet, lifestyle, inflammation and frailty, force the deterioration of this intestinal microbiota-host mutualistic interaction, compromising the possibility to reach longevity. In this scenario, the NU-AGE project involves the development of dietary interventions specifically tailored to the maintenance of a healthy trajectory of the intestinal microbiome, counteracting all processes connected to the pathophysiology of the human aging.
Collapse
Affiliation(s)
- Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Elena Biagi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Paul W O'Toole
- Department of Microbiology & Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | - Willem M De Vos
- Laboratory of Microbiology, Wageningen University, The Netherlands, and Departments of Veterinary Biosciences and Bacteriology & Immunology, Helsinki University, Finland
| |
Collapse
|
410
|
Kayama H, Nishimura J, Takeda K. Regulation of intestinal homeostasis by innate immune cells. Immune Netw 2013; 13:227-34. [PMID: 24385940 PMCID: PMC3875780 DOI: 10.4110/in.2013.13.6.227] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 02/07/2023] Open
Abstract
The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan. ; Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan. ; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan. ; Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan. ; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
411
|
Ardecky RJ, Bobkova EV, Kiffer-Moreira T, Brown B, Ganji S, Zou J, Pass I, Narisawa S, Iano FG, Rosenstein C, Cheltsov A, Rascon J, Hedrick M, Gasior C, Forster A, Shi S, Dahl R, Vasile S, Su Y, Sergienko E, Chung TDY, Kaunitz J, Hoylaerts MF, Pinkerton AB, Millán JL. Identification of a selective inhibitor of murine intestinal alkaline phosphatase (ML260) by concurrent ultra-high throughput screening against human and mouse isozymes. Bioorg Med Chem Lett 2013; 24:1000-1004. [PMID: 24412070 DOI: 10.1016/j.bmcl.2013.12.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 12/31/2022]
Abstract
Alkaline phosphatase (AP) isozymes are present in a wide range of species from bacteria to man and are capable of dephosphorylation and transphosphorylation of a wide spectrum of substrates in vitro. In humans, four AP isozymes have been identified-one tissue-nonspecific (TNAP) and three tissue-specific-named according to the tissue of their predominant expression: intestinal (IAP), placental (PLAP) and germ cell (GCAP) APs. Modulation of activity of the different AP isozymes may have therapeutic implications in distinct diseases and cellular processes. For instance, changes in the level of IAP activity can affect gut mucosa tolerance to microbial invasion due to the ability of IAP to detoxify bacterial endotoxins, alter the absorption of fatty acids and affect ectopurinergic regulation of duodenal bicarbonate secretion. To identify isozyme selective modulators of the human and mouse IAPs, we developed a series of murine duodenal IAP (Akp3-encoded dIAP isozyme), human IAP (hIAP), PLAP, and TNAP assays. High throughput screening and subsequent SAR efforts generated a potent inhibitor of dIAP, ML260, with specificity for the Akp3-, compared to the Akp5- and Akp6-encoded mouse isozymes.
Collapse
Affiliation(s)
| | | | | | - Brock Brown
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Santhi Ganji
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Jiwen Zou
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Ian Pass
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Sonoko Narisawa
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | | | | | - Anton Cheltsov
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Justin Rascon
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Michael Hedrick
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Carlton Gasior
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Anita Forster
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Shenghua Shi
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Russell Dahl
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | | | - Ying Su
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | | | | | | | - Marc F Hoylaerts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | | | | |
Collapse
|
412
|
Abstract
The gastrointestinal tract presents the largest and most vulnerable surface to the outside world. Simultaneously, it must be accessible and permeable to nutrients and must defend against pathogens and potentially injurious chemicals. Integrated responses to these challenges require the gut to sense its environment, which it does through a range of detection systems for specific chemical entities, pathogenic organisms and their products (including toxins), as well as physicochemical properties of its contents. Sensory information is then communicated to four major effector systems: the enteroendocrine hormonal signalling system; the innervation of the gut, both intrinsic and extrinsic; the gut immune system; and the local tissue defence system. Extensive endocrine-neuro-immune-organ-defence interactions are demonstrable, but under-investigated. A major challenge is to develop a comprehensive understanding of the integrated responses of the gut to the sensory information it receives. A major therapeutic opportunity exists to develop agents that target the receptors facing the gut lumen.
Collapse
Affiliation(s)
- John B Furness
- Department of Anatomy & Neuroscience, University of Melbourne, Grattan Street, Parkville, Vic 3010, Australia
| | | | | | | | | |
Collapse
|
413
|
Abstract
Enterohepatic circulation is responsible for the capture of bile acids and other steroids produced or metabolized in the liver and secreted to the intestine, for reabsorption back into the circulation and transport back to the liver. Bile acids are secreted from the liver in the form of mixed micelles that also contain phosphatidylcholines and cholesterol that facilitate the uptake of fats and vitamins from the diet due to the surfactant properties of bile acids and lipids. Bile acids are synthesized in the liver from cholesterol by a cascade of enzymes that carry out oxidation and conjugation reactions, and transported to the bile duct and gall bladder where they are stored before being released into the intestine. Bile flow from the gall bladder to the small intestine is triggered by food intake in accordance with its role in lipid and vitamin absorption from the diet. Bile acids are further metabolized by gut bacteria and are transported back to the circulation. Metabolites produced in the liver are termed primary bile acids or primary conjugated bile salts, while the metabolites generated by bacterial are called secondary bile acids. About 95% of bile acids are reabsorbed in the proximal and distal ileum into the hepatic portal vein and then into the liver sinusoids, where they are efficiently transported into the liver with little remaining in circulation. Each bile acid is reabsorbed about 20 times on average before being eliminated. Enterohepatic circulation is under tight regulation by nuclear receptor signaling, notably by the farnesoid X receptor (FXR).
Collapse
Affiliation(s)
- Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
414
|
Brown EM, Sadarangani M, Finlay BB. The role of the immune system in governing host-microbe interactions in the intestine. Nat Immunol 2013; 14:660-7. [PMID: 23778793 DOI: 10.1038/ni.2611] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/11/2013] [Indexed: 02/08/2023]
Abstract
The mammalian intestinal tract harbors a diverse community of trillions of microorganisms, which have co-evolved with the host immune system for millions of years. Many of these microorganisms perform functions critical for host physiology, but the host must remain vigilant to control the microbial community so that the symbiotic nature of the relationship is maintained. To facilitate homeostasis, the immune system ensures that the diverse microbial load is tolerated and anatomically contained, while remaining responsive to microbial breaches and invasion. Although the microbiota is required for intestinal immune development, immune responses also regulate the structure and composition of the intestinal microbiota. Here we discuss recent advances in our understanding of these complex interactions and their implications for human health and disease.
Collapse
Affiliation(s)
- Eric M Brown
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
415
|
Mangerich A, Dedon PC, Fox JG, Tannenbaum SR, Wogan GN. Chemistry meets biology in colitis-associated carcinogenesis. Free Radic Res 2013; 47:958-86. [PMID: 23926919 PMCID: PMC4316682 DOI: 10.3109/10715762.2013.832239] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intestine comprises an exceptional venue for a dynamic and complex interplay of numerous chemical and biological processes. Here, multiple chemical and biological systems, including the intestinal tissue itself, its associated immune system, the gut microbiota, xenobiotics, and metabolites meet and interact to form a sophisticated and tightly regulated state of tissue homoeostasis. Disturbance of this homeostasis can cause inflammatory bowel disease (IBD)-a chronic disease of multifactorial etiology that is strongly associated with increased risk for cancer development. This review addresses recent developments in research into chemical and biological mechanisms underlying the etiology of inflammation-induced colon cancer. Beginning with a general overview of reactive chemical species generated during colonic inflammation, the mechanistic interplay between chemical and biological mediators of inflammation, the role of genetic toxicology, and microbial pathogenesis in disease development are discussed. When possible, we systematically compare evidence from studies utilizing human IBD patients with experimental investigations in mice. The comparison reveals that many strong pathological and mechanistic correlates exist between mouse models of colitis-associated cancer, and the clinically relevant situation in humans. We also summarize several emerging issues in the field, such as the carcinogenic potential of novel inflammation-related DNA adducts and genotoxic microbial factors, the systemic dimension of inflammation-induced genotoxicity, and the complex role of genome maintenance mechanisms during these processes. Taken together, current evidence points to the induction of genetic and epigenetic alterations by chemical and biological inflammatory stimuli ultimately leading to cancer formation.
Collapse
Affiliation(s)
- Aswin Mangerich
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Biology, Molecular Toxicology Group, University of Konstanz, D-78457 Konstanz, Germany
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Center for Environmental Health Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - James G. Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Center for Environmental Health Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Steven R. Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Center for Environmental Health Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Gerald N. Wogan
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Center for Environmental Health Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
416
|
Targeting versus tinkering: Explaining why the clinic is frustrated with molecular mapping of disease mechanisms. Med Hypotheses 2013; 81:553-6. [DOI: 10.1016/j.mehy.2013.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/22/2013] [Indexed: 12/17/2022]
|
417
|
Filteau M, Matamoros S, Savard P, Roy D. Molecular monitoring of fecal microbiota in healthy adults following probiotic yogurt intake. PHARMANUTRITION 2013. [DOI: 10.1016/j.phanu.2013.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
418
|
Murata Y, Saito Y, Kaneko T, Kotani T, Kaneko Y, Ohnishi H, Matozaki T. Autoimmune animal models in the analysis of the CD47-SIRPα signaling pathway. Methods 2013; 65:254-9. [PMID: 24091004 DOI: 10.1016/j.ymeth.2013.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/18/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022] Open
Abstract
Signal regulatory protein α (SIRPα), also known as SHPS-1/SIRPA, is an immunoglobulin superfamily protein that binds to the protein tyrosine phosphatases Shp1 and Shp2 through its cytoplasmic region and is predominantly expressed in dendritic cells and macrophages. CD47, a widely expressed transmembrane protein, is a ligand for SIRPα, with the two proteins constituting a cell-cell communication system. It was previously demonstrated that the CD47-SIRPα signaling pathway is important for prevention of clearance by splenic macrophages of red blood cells or platelets from the bloodstream. In addition, this signaling pathway is also implicated in homeostatic regulation of dendritic cells and development of autoimmunity. Here we describe the detailed protocols for methods that were used in our recent studies to study the role of the CD47-SIRPα signaling pathway in autoimmunity. We also demonstrate that hematopoietic SIRPα as well as nonhematopoietic CD47 are important for development of experimental autoimmune encephalomyelitis. Thus, we here strengthen the importance of experimental animal models as well as other methods for the study of molecular pathogenesis of autoimmunity.
Collapse
Affiliation(s)
- Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yasuyuki Saito
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8512, Japan; Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma 371-8511, Japan
| | - Tetsuya Kaneko
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8512, Japan
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yoriaki Kaneko
- Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma 371-8511, Japan
| | - Hiroshi Ohnishi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-Machi, Maebashi, Gunma 371-8514, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8512, Japan.
| |
Collapse
|
419
|
Garrido-Mesa N, Algieri F, Rodríguez Nogales A, Gálvez J. Functional Plasticity of Th17 Cells: Implications in Gastrointestinal Tract Function. Int Rev Immunol 2013; 32:493-510. [DOI: 10.3109/08830185.2013.834899] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
420
|
Crosstalk between the intestinal microbiota and the innate immune system in intestinal homeostasis and inflammatory bowel disease. Inflamm Bowel Dis 2013; 19:2227-37. [PMID: 23669404 DOI: 10.1097/mib.0b013e31828dcac7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
: Inflammatory bowel diseases are a set of complex and chronic disorders that arise in genetically predisposed individuals due to a lack of tolerance to the gut microflora. Although the intestinal microbiota is required for the proper development of the host and the maintenance of intestinal homeostasis, its dysbiosis is associated with inflammatory bowel diseases pathogenesis. In this review, we focus the discussion on the crosstalk between the innate immune system and the microbiota. We examine new findings from genetic and functional studies investigating the critical role of the intestinal epithelial cell layer and the processes that maintain its integrity in health and disease. We further explore the mechanisms of the mucosal innate immune system including dendritic cells, macrophages, and innate-like lymphocytes in mediating immunological tolerance at the steady state or pathogenic inflammatory responses in inflammatory bowel diseases.
Collapse
|
421
|
Lin ME, Huang D, Deng BH, Lv YS, Rong L, Yao YS. Expression and Functional Role of Cdx2 in Intestinal Metaplasia of Cystitis Glandularis. J Urol 2013; 190:1083-9. [PMID: 23545100 DOI: 10.1016/j.juro.2013.03.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 03/26/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Ming-en Lin
- Department of Urology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangdong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
422
|
Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response in disease. Nat Rev Drug Discov 2013; 12:703-19. [DOI: 10.1038/nrd3976] [Citation(s) in RCA: 729] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
423
|
Betton GR. A review of the toxicology and pathology of the gastrointestinal tract. Cell Biol Toxicol 2013; 29:321-38. [DOI: 10.1007/s10565-013-9257-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/14/2013] [Indexed: 02/08/2023]
|
424
|
Borody TJ, Paramsothy S, Agrawal G. Fecal microbiota transplantation: indications, methods, evidence, and future directions. Curr Gastroenterol Rep 2013; 15:337. [PMID: 23852569 PMCID: PMC3742951 DOI: 10.1007/s11894-013-0337-1] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Fecal microbiota transplantation (FMT) has attracted great interest in recent years, largely due to the global Clostridium difficile infection (CDI) epidemic and major advances in metagenomic sequencing of the gastrointestinal (GI) microbiota, with growing understanding of its structure and function. FMT is now recommended as the most effective therapy for relapsing CDI and, with further refinement, may even be used in "first-time" CDI. There is interest also in other conditions related to GI dysbiosis--for example, inflammatory bowel disease, irritable bowel syndrome, obesity, and diabetes mellitus--although quality evidence is at present lacking. A few trials are now underway in FMT for ulcerative colitis. Many unanswered questions remain, including FMT methodology--for example, optimal route of administration, what makes a "good donor," safety issues, and long-term effects of FMT.
Collapse
Affiliation(s)
- Thomas J. Borody
- Centre for Digestive Diseases, Level 1, 229 Great North Road, Five Dock, Sydney, NSW 2046 Australia
| | | | - Gaurav Agrawal
- Centre for Digestive Diseases, Level 1, 229 Great North Road, Five Dock, Sydney, NSW 2046 Australia
| |
Collapse
|
425
|
Zipris D. The interplay between the gut microbiota and the immune system in the mechanism of type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 2013; 20:265-70. [PMID: 23743644 DOI: 10.1097/med.0b013e3283628569] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Discuss recent data linking the intestinal microbiome with mechanisms of inflammation and islet destruction. RECENT FINDINGS Type 1 diabetes (T1D) is a proinflammatory disease that results in the loss of insulin-producing beta cells. How T1D is triggered is unclear; however, both genetic and environmental factors were implicated in disease mechanisms. Emerging evidence supports the notion that there is a complex interaction between the intestinal microbiome and the immune system and this cross-talk is involved in maintaining normal immune homeostasis in the gut and periphery. Under some circumstances the gut microbiota could lead to pathogenic immune responses resulting in inflammation in the intestine as well as other organs. Indeed, recent data from genetically susceptible individuals suggested that alterations in gut bacterial communities may be involved in the mechanism of islet destruction. Studies performed in animal models of T1D indicated that manipulating the gut microbiome can protect from islet destruction via mechanisms that may involve down-regulating both the adaptive and innate immune systems. SUMMARY Further work is required to identify specific bacterial communities and mechanisms involved in triggering T1D. A better knowledge of the role of the gut microbiome in islet destruction could lead to new clinical interventions to restore healthy homeostasis and prevent disease development.
Collapse
Affiliation(s)
- Danny Zipris
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado 80045–6511 , USA.
| |
Collapse
|
426
|
Műzes G, Tulassay Z, Sipos F. Interplay of autophagy and innate immunity in Crohn's disease: a key immunobiologic feature. World J Gastroenterol 2013; 19:4447-4454. [PMID: 23901219 PMCID: PMC3725368 DOI: 10.3748/wjg.v19.i28.4447] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/19/2013] [Accepted: 07/04/2013] [Indexed: 02/06/2023] Open
Abstract
Crohn's disease representing a clinical phenotype of inflammatory bowel disease is a polygenic immune disorder with complex multifactor etiology. Recent genome-wide association studies of susceptibility loci have highlighted on the importance of the autophagy pathway, which previously had not been implicated in disease pathology. Autophagy represents an evolutionarily highly conserved multi-step process of cellular self-digestion due to sequestration of excessive, damaged, or aged proteins and intracellular organelles in double-membranous vesicles of autophagosomes, terminally self-digested in lysosomes. Autophagy is deeply involved in regulation of cell development and differentiation, survival and senescence, and it also fundamentally affects the inflammatory pathways, as well as the innate and adaptive arms of immune responses. Autophagy is mainly activated due to sensors of the innate immunity, i.e., by pattern recognition receptor signaling. The interplay of genes regulating immune functions is strongly influenced by the environment, especially gut resident microbiota. The basic challenge for intestinal immune recognition is the requirement of a simultaneous delicate balance between tolerance and responsiveness towards microbes. On the basis of autophagy-related risk genetic polymorphisms (ATG16L1, IRGM, NOD2, XBP1) impaired sensing and handling of intracellular bacteria by innate immunity, closely interrelated with the autophagic and unfolded protein pathways seem to be the most relevant immunobiologic events. Autophagy is now widely considered as a key regulator mechanism with the capacity to integrate several aspects of Crohn's disease pathogenesis. In this review, recent advances in the exciting crosstalk of susceptibility coding variants-related autophagy and innate immunity are discussed.
Collapse
|
427
|
|
428
|
Coskun M, Salem M, Pedersen J, Nielsen OH. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacol Res 2013; 76:1-8. [PMID: 23827161 DOI: 10.1016/j.phrs.2013.06.007] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/06/2013] [Accepted: 06/18/2013] [Indexed: 02/07/2023]
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway constitute the fulcrum in many vital cellular processes, including cell growth, differentiation, proliferation, and regulatory immune functions. Various cytokines, growth factors, and protein tyrosine kinases communicate through the JAK/STAT pathway and regulate the transcription of numerous genes. In addition to their critical roles in a plethora of key cellular activities, the JAK/STAT signaling pathways also have been implicated in the pathogenesis of several diseases, including inflammatory bowel disease (IBD), especially since a JAK inhibitor recently has been shown to be effective in the treatment of ulcerative colitis. The aim of this review is to highlight the recent findings on the regulatory mechanism of JAK/STAT signaling pathways and to reveal the evolving comprehension of their interface which might be of interest for clinicians involved in IBD therapy. Further, it is described how these signaling pathways have been exploited for the development of promising novel JAK inhibitors with anti-inflammatory effects verified in clinical trials.
Collapse
Affiliation(s)
- Mehmet Coskun
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
429
|
Maharshak N, Packey CD, Ellermann M, Manick S, Siddle JP, Huh EY, Plevy S, Sartor RB, Carroll IM. Altered enteric microbiota ecology in interleukin 10-deficient mice during development and progression of intestinal inflammation. Gut Microbes 2013; 4:316-24. [PMID: 23822920 PMCID: PMC3744516 DOI: 10.4161/gmic.25486] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Inflammatory bowel diseases (IBD) result from dysregulated immune responses toward microbial and perhaps other luminal antigens in a genetically susceptible host, and are associated with altered composition and diversity of the intestinal microbiota. The interleukin 10-deficient (IL-10 (-/-) ) mouse has been widely used to model human IBD; however the specific alterations that occur in the intestinal microbiota of this mouse model during the onset of colonic inflammation have not yet been defined. The aim of our study was to define the changes in diversity and composition that occur in the intestinal microbiota of IL-10 (-/-) mice during the onset and progression of colonic inflammation. We used high throughput sequencing of the 16S rRNA gene to characterize the diversity and composition of formerly germ-free, wild-type and IL-10 (-/-) mice associated with the same intestinal microbiota over time. Following two weeks of colonization with a specific pathogen-free (SPF) microbiota we observed a significant increase in the diversity and richness of the intestinal microbiota of wild-type mice. In contrast, a progressive decrease in diversity and richness was observed at three and four weeks in IL-10 (-/-) mice. This decrease in diversity and richness was mirrored by an increase in Proteobacteria and Escherichia coli in IL-10 (-/-) mice. An increase in E. coli was also observed in conventionally raised IL-10 (-/-) mice at the point of colonic inflammation. Our data reports the sequential changes in diversity and composition of the intestinal microbiota in an immune-mediated mouse model that may help provide insights into the primary vs. secondary role of dysbiosis in human IBD patients.
Collapse
Affiliation(s)
- Nitsan Maharshak
- Division of Gastroenterology and Hepatology; Center for Gastrointestinal Biology and Disease; University of North Carolina at Chapel Hill; Chapel Hill, NC USA,Department of Gastroenterology and Liver diseases; Tel Aviv Sourasky Medical Center; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| | - Christopher D. Packey
- Division of Gastroenterology and Hepatology; Center for Gastrointestinal Biology and Disease; University of North Carolina at Chapel Hill; Chapel Hill, NC USA,Department of Microbiology and Immunology; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Melissa Ellermann
- Division of Gastroenterology and Hepatology; Center for Gastrointestinal Biology and Disease; University of North Carolina at Chapel Hill; Chapel Hill, NC USA,Department of Microbiology and Immunology; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Sayeed Manick
- Division of Gastroenterology and Hepatology; Center for Gastrointestinal Biology and Disease; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Jennica P. Siddle
- Division of Gastroenterology and Hepatology; Center for Gastrointestinal Biology and Disease; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Eun Young Huh
- Division of Gastroenterology and Hepatology; Center for Gastrointestinal Biology and Disease; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Scott Plevy
- Division of Gastroenterology and Hepatology; Center for Gastrointestinal Biology and Disease; University of North Carolina at Chapel Hill; Chapel Hill, NC USA,Department of Microbiology and Immunology; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - R. Balfour Sartor
- Division of Gastroenterology and Hepatology; Center for Gastrointestinal Biology and Disease; University of North Carolina at Chapel Hill; Chapel Hill, NC USA,Department of Microbiology and Immunology; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Ian M. Carroll
- Division of Gastroenterology and Hepatology; Center for Gastrointestinal Biology and Disease; University of North Carolina at Chapel Hill; Chapel Hill, NC USA,Correspondence to: Ian M. Carroll,
| |
Collapse
|
430
|
Butyric acid attenuates intestinal inflammation in murine DSS-induced colitis model via milk fat globule-EGF factor 8. J Transl Med 2013; 93:834-43. [PMID: 23752130 DOI: 10.1038/labinvest.2013.70] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Butyric acid, a short-chain fatty acid and one of the main metabolites of intestinal microbial fermentation of dietary fiber, has been shown to have an important role in maintaining the integrity of the intestinal mucosa, while it also has been shown to exert potent anti-inflammatory effects both in vitro and in vivo. However, the precise mechanisms underlying those effects have not been fully identified. We exposed colonic epithelial cells to butyric acid, then extracted total RNA samples, and subsequently hybridized them to microarray chips. Among the upregulated genes, milk fat globule-epidermal growth factor 8 (MFG-E8) was elevated by approximately fivefold. We previously reported that the potential therapeutic benefits of MFG-E8 in intestinal tissue injury were dependent not only on enhanced clearance of apoptotic cells but also required diverse cellular events for maintaining epithelial integrity. The influence of butyric acid on cell function is often attributed to its inhibition of histone deacetylases (HDACs). We found that acetylation on histone 3 lysine 9 (acetyl-H3K9) around the MFG-E8 promoter was significantly increased with butyric acid exposure. Experimental colitis was induced by administration of dextran sodium sulfate (DSS) in C57BL/6N (MFG-E8+/+) and MFG-E8-/- mice. Although the colonic bacterial compositions in wild-type (WT) and MFG-E8-/- mice were not significantly different, intrarectal administration of butyric acid during an acute phase of colitis attenuated intestinal inflammatory parameters and inhibited body weight loss in the WT mice. Our novel findings suggest that butyric acid has significant anti-inflammatory effects partly via MFG-E8 on DSS-induced murine experimental colitis.
Collapse
|
431
|
Groeger D, O’Mahony L, Murphy EF, Bourke JF, Dinan TG, Kiely B, Shanahan F, Quigley EM. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes 2013; 4:325-39. [PMID: 23842110 PMCID: PMC3744517 DOI: 10.4161/gmic.25487] [Citation(s) in RCA: 318] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Certain therapeutic microbes, including Bifidobacteria infantis (B. infantis) 35624 exert beneficial immunoregulatory effects by mimicking commensal-immune interactions; however, the value of these effects in patients with non-gastrointestinal inflammatory conditions remains unclear. In this study, we assessed the impact of oral administration of B. infantis 35624, for 6‒8 weeks on inflammatory biomarker and plasma cytokine levels in patients with ulcerative colitis (UC) (n = 22), chronic fatigue syndrome (CFS) (n = 48) and psoriasis (n = 26) in three separate randomized, double-blind, placebo-controlled interventions. Additionally, the effect of B. infantis 35624 on immunological biomarkers in healthy subjects (n = 22) was assessed. At baseline, both gastrointestinal (UC) and non-gastrointestinal (CFS and psoriasis) patients had significantly increased plasma levels of C-reactive protein (CRP) and the pro-inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) compared with healthy volunteers. B. infantis 35624 feeding resulted in reduced plasma CRP levels in all three inflammatory disorders compared with placebo. Interestingly, plasma TNF-α was reduced in CFS and psoriasis while IL-6 was reduced in UC and CFS. Furthermore, in healthy subjects, LPS-stimulated TNF-α and IL-6 secretion by peripheral blood mononuclear cells (PBMCs) was significantly reduced in the B. infantis 35624-treated groups compared with placebo following eight weeks of feeding. These results demonstrate the ability of this microbe to reduce systemic pro-inflammatory biomarkers in both gastrointestinal and non-gastrointestinal conditions. In conclusion, these data show that the immunomodulatory effects of the microbiota in humans are not limited to the mucosal immune system but extend to the systemic immune system.
Collapse
Affiliation(s)
| | - Liam O’Mahony
- Swiss Institute of Allergy and Asthma Research; University of Zurich; Davos, Switzerland
| | | | - John F. Bourke
- Department of Dermatology; South Infirmary-Victoria University Hospital; Cork, Ireland
| | - Timothy G. Dinan
- Alimentary Pharmabiotic Centre; Department of Medicine; University College Cork; Cork, Ireland
| | | | - Fergus Shanahan
- Alimentary Pharmabiotic Centre; Department of Medicine; University College Cork; Cork, Ireland,Department of Medicine; Clinical Sciences Building; Cork University Hospital; Cork, Ireland
| | - Eamonn M.M. Quigley
- Alimentary Pharmabiotic Centre; Department of Medicine; University College Cork; Cork, Ireland,Department of Medicine; Clinical Sciences Building; Cork University Hospital; Cork, Ireland,Correspondence to: Eamonn M.M. Quigley,
| |
Collapse
|
432
|
Liang J, van Abbema A, Balazs M, Barrett K, Berezhkovsky L, Blair W, Chang C, Delarosa D, DeVoss J, Driscoll J, Eigenbrot C, Ghilardi N, Gibbons P, Halladay J, Johnson A, Kohli PB, Lai Y, Liu Y, Lyssikatos J, Mantik P, Menghrajani K, Murray J, Peng I, Sambrone A, Shia S, Shin Y, Smith J, Sohn S, Tsui V, Ultsch M, Wu LC, Xiao Y, Yang W, Young J, Zhang B, Zhu BY, Magnuson S. Lead optimization of a 4-aminopyridine benzamide scaffold to identify potent, selective, and orally bioavailable TYK2 inhibitors. J Med Chem 2013; 56:4521-36. [PMID: 23668484 DOI: 10.1021/jm400266t] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Herein we report our lead optimization effort to identify potent, selective, and orally bioavailable TYK2 inhibitors, starting with lead molecule 3. We used structure-based design to discover 2,6-dichloro-4-cyanophenyl and (1R,2R)-2-fluorocyclopropylamide modifications, each of which exhibited improved TYK2 potency and JAK1 and JAK2 selectivity relative to 3. Further optimization eventually led to compound 37 that showed good TYK2 enzyme and interleukin-12 (IL-12) cell potency, as well as acceptable cellular JAK1 and JAK2 selectivity and excellent oral exposure in mice. When tested in a mouse IL-12 PK/PD model, compound 37 showed statistically significant knockdown of cytokine interferon-γ (IFNγ), suggesting that selective inhibition of TYK2 kinase activity might be sufficient to block the IL-12 pathway in vivo.
Collapse
Affiliation(s)
- Jun Liang
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
433
|
Cabrera S, Fernández AF, Mariño G, Aguirre A, Suárez MF, Español Y, Vega JA, Laurà R, Fueyo A, Fernández-García MS, Freije JMP, Kroemer G, López-Otín C. ATG4B/autophagin-1 regulates intestinal homeostasis and protects mice from experimental colitis. Autophagy 2013; 9:1188-200. [PMID: 23782979 DOI: 10.4161/auto.24797] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The identification of inflammatory bowel disease (IBD) susceptibility genes by genome-wide association has linked this pathology to autophagy, a lysosomal degradation pathway that is crucial for cell and tissue homeostasis. Here, we describe autophagy-related 4B, cysteine peptidase/autophagin-1 (ATG4B) as an essential protein in the control of inflammatory response during experimental colitis. In this pathological condition, ATG4B protein levels increase in parallel with the induction of autophagy. Moreover, ATG4B expression is significantly reduced in affected areas of the colon from IBD patients. Consistently, atg4b (-/-) mice present Paneth cell abnormalities, as well as an increased susceptibility to DSS-induced colitis. atg4b-deficient mice exhibit significant alterations in proinflammatory cytokines and mediators of the immune response to bacterial infections, which are reminiscent of those found in patients with Crohn disease or ulcerative colitis. Additionally, antibiotic treatments and bone marrow transplantation from wild-type mice reduced colitis in atg4b (-/-) mice. Taken together, these results provided additional evidence for the importance of autophagy in intestinal pathologies and describe ATG4B as a novel protective protein in inflammatory colitis. Finally, we propose that atg4b-null mice are a suitable model for in vivo studies aimed at testing new therapeutic strategies for intestinal diseases associated with autophagy deficiency.
Collapse
Affiliation(s)
- Sandra Cabrera
- Departamento de Bioquímica y Biología Molecular; Facultad de Medicina; Instituto Universitario de Oncología (IUOPA); Universidad de Oviedo; Oviedo, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
434
|
Neonatal immune adaptation of the gut and its role during infections. Clin Dev Immunol 2013; 2013:270301. [PMID: 23737810 PMCID: PMC3659470 DOI: 10.1155/2013/270301] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/03/2013] [Indexed: 12/22/2022]
Abstract
The intestinal tract is engaged in a relationship with a dense and complex microbial ecosystem, the microbiota. The establishment of this symbiosis is essential for host physiology, metabolism, and immune homeostasis. Because newborns are essentially sterile, the first exposure to microorganisms and environmental endotoxins during the neonatal period is followed by a crucial sequence of active events leading to immune tolerance and homeostasis. Contact with potent immunostimulatory molecules starts immediately at birth, and the discrimination between commensal bacteria and invading pathogens is essential to avoid an inappropriate immune stimulation and/or host infection. The dysregulation of these tight interactions between host and microbiota can be responsible for important health disorders, including inflammation and sepsis. This review summarizes the molecular events leading to the establishment of postnatal immune tolerance and how pathogens can avoid host immunity and induce neonatal infections and sepsis.
Collapse
|
435
|
Cao SS, Zimmermann EM, Chuang BM, Song B, Nwokoye A, Wilkinson JE, Eaton KA, Kaufman RJ. The unfolded protein response and chemical chaperones reduce protein misfolding and colitis in mice. Gastroenterology 2013; 144:989-1000.e6. [PMID: 23336977 PMCID: PMC3751190 DOI: 10.1053/j.gastro.2013.01.023] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 01/10/2013] [Accepted: 01/13/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Endoplasmic reticulum (ER) stress has been associated with development of inflammatory bowel disease. We examined the effects of ER stress-induced chaperone response and the orally active chemical chaperones tauroursodeoxycholate (TUDCA) and 4-phenylbutyrate (PBA), which facilitate protein folding and reduce ER stress, in mice with colitis. METHODS We used dextran sulfate sodium (DSS) to induce colitis in mice that do not express the transcription factor ATF6α or the protein chaperone P58(IPK). We examined the effects of TUDCA and PBA in cultured intestinal epithelial cells (IECs); in wild-type, P58(IPK-/-), and Atf6α(-/-) mice with colitis; and in Il10(-/-) mice. RESULTS P58(IPK-/-) and Atf6α(-/-) mice developed more severe colitis following administration of DSS than wild-type mice. IECs from P58(IPK-/-) mice had excessive ER stress, and apoptotic signaling was activated in IECs from Atf6α(-/-) mice. Inflammatory stimuli induced ER stress signals in cultured IECs, which were reduced by incubation with TUDCA or PBA. Oral administration of either PBA or TUDCA reduced features of DSS-induced acute and chronic colitis in wild-type mice, the colitis that develops in Il10(-/-) mice, and DSS-induced colitis in P58(IPK-/-) and Atf6α(-/-) mice. Reduced signs of colonic inflammation in these mice were associated with significantly decreased ER stress in colonic epithelial cells. CONCLUSIONS The unfolded protein response induces expression of genes that encode chaperones involved in ER protein folding; these factors prevent induction of colitis in mice. Chemical chaperones such as TUDCA and PBA alleviate different forms of colitis in mice and might be developed for treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Stewart Siyan Cao
- Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
436
|
Peloquin JM, Nguyen DD. The microbiota and inflammatory bowel disease: insights from animal models. Anaerobe 2013; 24:102-6. [PMID: 23603043 DOI: 10.1016/j.anaerobe.2013.04.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 12/17/2022]
Abstract
Inflammatory bowel disease (IBD) is thought to result from a dysregulated immune response to intestinal microbial flora in individuals with genetic predisposition(s). Genome-wide association studies (GWAS) in human IBD have identified more than 150 associated loci, some of which are key players in innate immunity and bacterial handling, reflecting the importance of the microbiota in disease pathogenesis. In fact, the presence of a microbial flora is not only crucial to the development of a normal murine immune system but also critical for the development of disease in the majority of animal models of IBD. Although animal models do not perfectly recapitulate human IBD, they have led to the discovery of important concepts in IBD pathogenesis, such as the central role of microbiota in disease development and perpetuation. Many genetically susceptible models do not develop colitis when raised in a germ-free or Helicobacter-free environment. In fact, disease in most models can be attenuated or completely abolished with antibiotic treatment. Moreover, an interplay between intestinal microbiota and mucosal immune activation is suggested by the presence of serum antibodies against the Cbir1 flagellin, an immunodominant antigen that activates TLR5, in certain models of spontaneous colitis as well as in human patients. Furthermore, T cells reactive to Cbir1 are able to induce disease in recipient mice upon adoptive cell transfer, demonstrating the pro-inflammatory properties of certain bacterial products. In fact, it has been shown that transfer of certain intestinal bacteria from a specific genetically altered mouse model with spontaneous colitis can induce disease in wild-type mice upon co-housing or direct feeding. These observations demonstrate the pathogenic potential of intestinal microbiota in IBD. However, intestinal bacteria are not always maladaptive in mucosal homeostasis. Both Bacteroides fragilis and Clostridium species promote the number and function of a certain regulatory T cell subset in the colon leading to protection against murine colitis. In fact, normal development of regulatory cells and epithelial cell integrity are abolished in the absence of an intestinal flora, suggestive of the need for certain microbial components to induce beneficial anti-inflammatory mechanisms. All in all, altered immune responses to microbes play a crucial role in IBD pathogenesis. However, certain components of the microbiota are also likely critical for normal development of regulatory mechanisms that contribute to mucosal homeostasis. Findings in animal models highlight the concept that IBD is a disease that results from the interplay of genetics and microbial/environmental factors.
Collapse
Affiliation(s)
- Joanna M Peloquin
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
437
|
Abstract
The animal and bacterial kingdoms have coevolved and coadapted in response to environmental selective pressures over hundreds of millions of years. The meta'omics revolution in both sequencing and its analytic pipelines is fostering an explosion of interest in how the gut microbiome impacts physiology and propensity to disease. Gut microbiome studies are inherently interdisciplinary, drawing on approaches and technical skill sets from the biomedical sciences, ecology, and computational biology. Central to unraveling the complex biology of environment, genetics, and microbiome interaction in human health and disease is a deeper understanding of the symbiosis between animals and bacteria. Experimental model systems, including mice, fish, insects, and the Hawaiian bobtail squid, continue to provide critical insight into how host-microbiota homeostasis is constructed and maintained. Here we consider how model systems are influencing current understanding of host-microbiota interactions and explore recent human microbiome studies.
Collapse
Affiliation(s)
- Aleksandar D. Kostic
- Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, Massachusetts 02141, USA
| | - Michael R. Howitt
- Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Wendy S. Garrett
- Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, Massachusetts 02141, USA
| |
Collapse
|
438
|
Cahenzli J, Balmer ML, McCoy KD. Microbial-immune cross-talk and regulation of the immune system. Immunology 2013; 138:12-22. [PMID: 22804726 DOI: 10.1111/j.1365-2567.2012.03624.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/14/2012] [Accepted: 07/10/2012] [Indexed: 12/13/2022] Open
Abstract
We are all born germ-free. Following birth we enter into a lifelong relationship with microbes residing on our body's surfaces. The lower intestine is home to the highest microbial density in our body, which is also the highest microbial density known on Earth (up to 10(12) /g of luminal contents). With our indigenous microbial cells outnumbering our human cells by an order of magnitude our body is more microbial than human. Numerous immune adaptations confine these microbes within the mucosa, enabling most of us to live in peaceful homeostasis with our intestinal symbionts. Intestinal epithelial cells not only form a physical barrier between the bacteria-laden lumen and the rest of the body but also function as multi-tasking immune cells that sense the prevailing microbial (apical) and immune (basolateral) milieus, instruct the underlying immune cells, and adapt functionally. In the constant effort to ensure intestinal homeostasis, the immune system becomes educated to respond appropriately and in turn immune status can shape the microbial consortia. Here we review how the dynamic immune-microbial dialogue underlies maturation and regulation of the immune system and discuss recent findings on the impact of diet on both microbial ecology and immune function.
Collapse
Affiliation(s)
- Julia Cahenzli
- Department of Clinical Research, Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
439
|
Caricilli AM, Saad MJA. The role of gut microbiota on insulin resistance. Nutrients 2013; 5:829-51. [PMID: 23482058 PMCID: PMC3705322 DOI: 10.3390/nu5030829] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/10/2013] [Accepted: 01/15/2013] [Indexed: 12/12/2022] Open
Abstract
The development of obesity and insulin resistance has been extensively studied in the last decades, but the mechanisms underlying these alterations are still not completely understood. The gut microbiota has been identified as a potential contributor to metabolic diseases. It has been shown that obese individuals present different proportions of bacterial phyla compared with lean individuals, with an increase in Firmicutes and Actinobacteria and a decrease in Bacteroidetes. This alteration seems to interfere with intestinal permeability, increasing the absorption of lipopolysaccharide (LPS), which reaches circulation and initiates activation of Toll-like receptor (TLR) 4 and 2 and LPS receptor CD14, leading to increased activation of inflammatory pathways. With these activations, an impairment of the insulin signaling is observed, with decreased phosphorylation of the insulin receptor, insulin receptor substrate (IRS) and Akt, as well as increased inhibitory serine phosphorylation of IRS-1. Altered proportions of bacterial phyla have also been demonstrated to interfere with host’s biochemical pathways, increasing energy extraction and depot in adipose tissue. Therefore, understanding the mechanisms by which the alteration in the gut microbiota produces different signaling activations and phenotype changes may offer an interesting opportunity for the treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Andrea M. Caricilli
- Department of Immunology, ICB IV, University of São Paulo, Av. Prof. Lineu Prestes, 2415, Cidade Universitária, São Paulo, SP, Brazil; E-Mail:
| | - Mario J. A. Saad
- Department of Internal Medicine, State University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, Campinas, SP, Brazil
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +55-19-35218950
| |
Collapse
|
440
|
Yeretssian G. Effector functions of NLRs in the intestine: innate sensing, cell death, and disease. Immunol Res 2013; 54:25-36. [PMID: 22454103 DOI: 10.1007/s12026-012-8317-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleotide-binding and oligomerization domain-like receptors (NLRs) are central regulators of pathogen recognition, the induction of innate immune effectors and inflammation with utmost importance in human diseases such as inflammatory bowel diseases. Most NLRs are key mediators of inflammasome complexes that activate caspase-1 and drive proteolytic processing of pro-inflammatory cytokines; however, a few tightly regulate inflammasome-independent activation of nuclear factor-κB and mitogen-activated protein kinase pathways. NLR signaling has evolved in intestinal epithelial cells to avoid overactive inflammatory responses toward the resident microbiota and to preserve epithelial barrier integrity and functions by maintaining homeostasis. In the present review, I examine new insights into the role of the NLRs in antimicrobial defenses. I pay particular attention to the emerging role of these receptors in engaging a complex cross talk between cell death and innate immunity pathways. Furthermore, I discuss the physiological functions of the NLRs in shaping the innate immune response within the intestine, maintaining homeostasis, inducing tissue repair following injury and promoting tumorigenesis.
Collapse
Affiliation(s)
- Garabet Yeretssian
- Department of Medicine, Immunology Institute, Icahn Medical Institute, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
441
|
Abstract
At mucosal surfaces, phagocytes such as macrophages coexist with microbial communities; highly controlled regulation of these interactions is essential for immune homeostasis. Pattern-recognition receptors (PRRs) are critical in recognizing and responding to microbial products, and they are subject to negative regulation through various mechanisms, including downregulation of PRR-activating components or induction of inhibitors. Insights into these regulatory mechanisms have been gained through human genetic disease-association studies, in vivo mouse studies utilizing disease models or targeted gene perturbations, and in vitro and ex vivo human cellular studies examining phagocytic cell functions. Although mouse models provide an important approach to study macrophage regulation, human and mouse macrophages exhibit differences, which must be considered when extrapolating mouse findings to human physiology. This review discusses inhibitory regulation of PRR-induced macrophage functions and the consequences of dysregulation of these functions and highlights mechanisms that have a role in intestinal macrophages and in human macrophage studies.
Collapse
Affiliation(s)
- M Hedl
- Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
442
|
Fanning S, Hall LJ, van Sinderen D. Bifidobacterium breve UCC2003 surface exopolysaccharide production is a beneficial trait mediating commensal-host interaction through immune modulation and pathogen protection. Gut Microbes 2013; 3:420-5. [PMID: 22713271 DOI: 10.4161/gmic.20630] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bifidobacteria constitute a substantial proportion of the human gut microbiota. There are currently many bifidobacterial strains with claimed probiotic attributes. The mechanism through which these strains reside within their host and exert benefits to the host is far from fully understood. We have shown in the case of Bifidobacterium breve UCC2003 that a cell surface exopolysaccharide (EPS) plays a role in in vivo persistence. Biosynthesis of two possible EPSs is controlled by a bidirectional gene cluster which guides alternate EPS synthesis by means of a reorienting promoter. The presence of EPS impacts on host immune response: the wild type, EPS-positive B. breve UCC2003 efficiently evades the adaptive B-cell host response, while its isogenic, EPS-deficient equivalent elicits a strong adaptive immune response. Functionally, EPS positive strains were more resilient to presence of acid and bile and were responsible for reduced colonization levels of Citrobacter rodentium, a gut pathogen. In conclusion, we have found that EPS is important in host interactions and pathogen protection, the latter indicative of a probiotic ability for the EPS of B. breve UCC2003.
Collapse
Affiliation(s)
- Saranna Fanning
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
443
|
Abstract
The association of inflammation with modern human diseases (e.g. obesity, cardiovascular disease, type 2 diabetes mellitus, cancer) remains an unsolved mystery of current biology and medicine. Inflammation is a protective response to noxious stimuli that unavoidably occurs at a cost to normal tissue function. This fundamental trade-off between the cost and benefit of the inflammatory response has been optimized over evolutionary time for specific environmental conditions. Rapid change of the human environment due to niche construction outpaces genetic adaptation through natural selection, leading increasingly to a mismatch between the modern environment and selected traits. Consequently, multiple trade-offs that affect human physiology are not optimized to the modern environment, leading to increased disease susceptibility. Here we examine the inflammatory response from an evolutionary perspective. We discuss unique aspects of the inflammatory response and its evolutionary history that can help explain the association between inflammation and modern human diseases.
Collapse
Affiliation(s)
- Daniel Okin
- HHMI and Department of Immunobiology, Yale University Medical School, New Haven, CT 06510, USA
| | | |
Collapse
|
444
|
Abstract
The colonic ecosystem differs from that in the proximal gut in several important respects. The colonic microbiota represents the largest population of microbes colonizing humans from birth. Constraints on bacterial numbers, composition, and interaction with the host involve not only the innate and acquired immune system, but also the colonic mucin structure. While the microbiota provides beneficial protective, trophic, nutritional, and metabolic signals for the host, it may become a risk factor for disease depending on context and host susceptibility. Technological advances including DNA-based high-throughput compositional analysis have linked changes in the indigenous microbiota with several human diseases. In some instances, these findings have the potential to serve as new biomarkers of risk of disease. In this overview, recent advances are focused upon in relation to irritable bowel syndrome, inflammatory bowel disease, and colon cancer. The possibility that the therapeutic solution to some of these disorders may reside within the microbiota will also be addressed.
Collapse
Affiliation(s)
- Fergus Shanahan
- Department of Medicine and Alimentary Pharmabiotic Centre, University College Cork, National University of Ireland, Dublin, Ireland.
| |
Collapse
|
445
|
Tuovinen E, Keto J, Nikkilä J, Mättö J, Lähteenmäki K. Cytokine response of human mononuclear cells induced by intestinal Clostridium species. Anaerobe 2013; 19:70-6. [DOI: 10.1016/j.anaerobe.2012.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 10/25/2012] [Accepted: 11/09/2012] [Indexed: 01/05/2023]
|
446
|
Hand D, Wallis C, Colyer A, Penn CW. Pyrosequencing the canine faecal microbiota: breadth and depth of biodiversity. PLoS One 2013; 8:e53115. [PMID: 23382835 PMCID: PMC3561364 DOI: 10.1371/journal.pone.0053115] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 11/27/2012] [Indexed: 02/07/2023] Open
Abstract
Mammalian intestinal microbiota remain poorly understood despite decades of interest and investigation by culture-based and other long-established methodologies. Using high-throughput sequencing technology we now report a detailed analysis of canine faecal microbiota. The study group of animals comprised eleven healthy adult miniature Schnauzer dogs of mixed sex and age, some closely related and all housed in kennel and pen accommodation on the same premises with similar feeding and exercise regimes. DNA was extracted from faecal specimens and subjected to PCR amplification of 16S rDNA, followed by sequencing of the 5′ region that included variable regions V1 and V2. Barcoded amplicons were sequenced by Roche-454 FLX high-throughput pyrosequencing. Sequences were assigned to taxa using the Ribosomal Database Project Bayesian classifier and revealed dominance of Fusobacterium and Bacteroidetes phyla. Differences between animals in the proportions of different taxa, among 10,000 reads per animal, were clear and not supportive of the concept of a “core microbiota”. Despite this variability in prominent genera, littermates were shown to have a more similar faecal microbial composition than unrelated dogs. Diversity of the microbiota was also assessed by assignment of sequence reads into operational taxonomic units (OTUs) at the level of 97% sequence identity. The OTU data were then subjected to rarefaction analysis and determination of Chao1 richness estimates. The data indicated that faecal microbiota comprised possibly as many as 500 to 1500 OTUs.
Collapse
Affiliation(s)
- Daniel Hand
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Corrin Wallis
- WALTHAM® Centre for Pet Nutrition, Melton Mowbray, Leicestershire, United Kingdom
| | - Alison Colyer
- WALTHAM® Centre for Pet Nutrition, Melton Mowbray, Leicestershire, United Kingdom
| | - Charles W. Penn
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
447
|
Haahtela T, Holgate S, Pawankar R, Akdis CA, Benjaponpitak S, Caraballo L, Demain J, Portnoy J, von Hertzen L. The biodiversity hypothesis and allergic disease: world allergy organization position statement. World Allergy Organ J 2013; 6:3. [PMID: 23663440 PMCID: PMC3646540 DOI: 10.1186/1939-4551-6-3] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 01/17/2013] [Indexed: 12/21/2022] Open
Abstract
Biodiversity loss and climate change secondary to human activities are now being associated with various adverse health effects. However, less attention is being paid to the effects of biodiversity loss on environmental and commensal (indigenous) microbiotas. Metagenomic and other studies of healthy and diseased individuals reveal that reduced biodiversity and alterations in the composition of the gut and skin microbiota are associated with various inflammatory conditions, including asthma, allergic and inflammatory bowel diseases (IBD), type1 diabetes, and obesity. Altered indigenous microbiota and the general microbial deprivation characterizing the lifestyle of urban people in affluent countries appear to be risk factors for immune dysregulation and impaired tolerance. The risk is further enhanced by physical inactivity and a western diet poor in fresh fruit and vegetables, which may act in synergy with dysbiosis of the gut flora. Studies of immigrants moving from non-affluent to affluent regions indicate that tolerance mechanisms can rapidly become impaired in microbe-poor environments. The data on microbial deprivation and immune dysfunction as they relate to biodiversity loss are evaluated in this Statement of World Allergy Organization (WAO). We propose that biodiversity, the variability among living organisms from all sources are closely related, at both the macro- and micro-levels. Loss of the macrodiversity is associated with shrinking of the microdiversity, which is associated with alterations of the indigenous microbiota. Data on behavioural means to induce tolerance are outlined and a proposal made for a Global Allergy Plan to prevent and reduce the global allergy burden for affected individuals and the societies in which they live.
Collapse
Affiliation(s)
- Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, PO Box 160, 00029, Helsinki, HUCH, Finland
| | - Stephen Holgate
- School of Medicine, University of Southampton, Southampton, UK
| | | | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland
| | - Suwat Benjaponpitak
- Department of Pediatrics, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Jeffrey Demain
- Allergy, Asthma & Immunology Center of Alaska, Dept of Pediatrics, University of Washington, Washington, USA
| | - Jay Portnoy
- University of Missouri-Kansas City School of Medicine, Missouri, USA
| | - Leena von Hertzen
- Skin and Allergy Hospital, Helsinki University Hospital, PO Box 160, 00029, Helsinki, HUCH, Finland
| |
Collapse
|
448
|
Amar J, Lange C, Payros G, Garret C, Chabo C, Lantieri O, Courtney M, Marre M, Charles MA, Balkau B, Burcelin R. Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: the D.E.S.I.R. study. PLoS One 2013; 8:e54461. [PMID: 23372728 PMCID: PMC3555817 DOI: 10.1371/journal.pone.0054461] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 12/11/2012] [Indexed: 02/07/2023] Open
Abstract
Aim We recently described a human blood microbiome and a connection between this microbiome and the onset of diabetes. The aim of the current study was to assess the association between blood microbiota and incident cardiovascular disease. Methods and Results D.E.S.I.R. is a longitudinal study with the primary aim of describing the natural history of the metabolic syndrome and its complications. Participants were evaluated at inclusion and at 3-, 6-, and 9-yearly follow-up visits. The 16S ribosomal DNA bacterial gene sequence, that is common to the vast majority of bacteria (Eubac) and a sequence that mostly represents Proteobacteria (Pbac), were measured in blood collected at baseline from 3936 participants. 73 incident cases of acute cardiovascular events, including 30 myocardial infarctions were recorded. Eubac was positively correlated with Pbac (r = 0.59; P<0.0001). In those destined to have cardiovascular complications, Eubac was lower (0.14±0.26 vs 0.12±0.29 ng/µl; P = 0.02) whereas a non significant increase in Pbac was observed. In multivariate Cox analysis, Eubac was inversely correlated with the onset of cardiovascular complications, (hazards ratio 0.50 95% CI 0.35–0.70) whereas Pbac (1.56, 95%CI 1.12–2.15) was directly correlated. Conclusion Pbac and Eubac were shown to be independent markers of the risk of cardiovascular disease. This finding is evidence for the new concept of the role played by blood microbiota dysbiosis on atherothrombotic disease. This concept may help to elucidate the relation between bacteria and cardiovascular disease.
Collapse
Affiliation(s)
- Jacques Amar
- INSERM U1048, Institute of Research on Metabolic and Cardiovascular Diseases, CHU Toulouse, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
449
|
Bosco-Drayon V, Poidevin M, Boneca IG, Narbonne-Reveau K, Royet J, Charroux B. Peptidoglycan sensing by the receptor PGRP-LE in the Drosophila gut induces immune responses to infectious bacteria and tolerance to microbiota. Cell Host Microbe 2013; 12:153-65. [PMID: 22901536 DOI: 10.1016/j.chom.2012.06.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/22/2012] [Accepted: 06/18/2012] [Indexed: 01/05/2023]
Abstract
Gut epithelial cells contact both commensal and pathogenic bacteria, and proper responses to these bacteria require a balance of positive and negative regulatory signals. In the Drosophila intestine, peptidoglycan-recognition proteins (PGRPs), including PGRP-LE, play central roles in bacterial recognition and activation of immune responses, including induction of the IMD-NF-κB pathway. We show that bacteria recognition is regionalized in the Drosophila gut with various functional regions requiring different PGRPs. Specifically, peptidoglycan recognition by PGRP-LE in the gut induces NF-κB-dependent responses to infectious bacteria but also immune tolerance to microbiota through upregulation of pirk and PGRP-LB, which negatively regulate IMD pathway activation. Loss of PGRP-LE-mediated detection of bacteria in the gut results in systemic immune activation, which can be rescued by overexpressing PGRP-LB in the gut. Together these data indicate that PGRP-LE functions as a master gut bacterial sensor that induces balanced responses to infectious bacteria and tolerance to microbiota.
Collapse
Affiliation(s)
- Virginie Bosco-Drayon
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR, Aix-Marseille Université, France
| | | | | | | | | | | |
Collapse
|
450
|
Couturier-Maillard A, Secher T, Rehman A, Normand S, De Arcangelis A, Haesler R, Huot L, Grandjean T, Bressenot A, Delanoye-Crespin A, Gaillot O, Schreiber S, Lemoine Y, Ryffel B, Hot D, Nùñez G, Chen G, Rosenstiel P, Chamaillard M. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest 2013; 123:700-11. [PMID: 23281400 DOI: 10.1172/jci62236] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 11/01/2012] [Indexed: 12/11/2022] Open
Abstract
Instability in the composition of gut bacterial communities (dysbiosis) has been linked to common human intestinal disorders, such as Crohn's disease and colorectal cancer. Here, we show that dysbiosis caused by Nod2 deficiency gives rise to a reversible, communicable risk of colitis and colitis-associated carcinogenesis in mice. Loss of either Nod2 or RIP2 resulted in a proinflammatory microenvironment that enhanced epithelial dysplasia following chemically induced injury. The condition could be improved by treatment with antibiotics or an anti-interleukin-6 receptor-neutralizing antibody. Genotype-dependent disease risk was communicable via maternally transmitted microbiota in both Nod2-deficient and WT hosts. Furthermore, reciprocal microbiota transplantation reduced disease risk in Nod2-deficient mice and led to long-term changes in intestinal microbial communities. Conversely, disease risk was enhanced in WT hosts that were recolonized with dysbiotic fecal microbiota from Nod2-deficient mice. Thus, we demonstrated that licensing of dysbiotic microbiota is a critical component of disease risk. Our results demonstrate that NOD2 has an unexpected role in shaping a protective assembly of gut bacterial communities and suggest that manipulation of dysbiosis is a potential therapeutic approach in the treatment of human intestinal disorders.
Collapse
|