401
|
Somnuk S, Tassanakajon A, Rimphanitchayakit V. Gene expression and characterization of a serine proteinase inhibitor PmSERPIN8 from the black tiger shrimp Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2012; 33:332-341. [PMID: 22738762 DOI: 10.1016/j.fsi.2012.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 04/16/2012] [Accepted: 05/07/2012] [Indexed: 06/01/2023]
Abstract
The ubiquitous SERPINs or serine proteinase inhibitors are essential for controlling proteinases in several biological processes in various organisms. A PmSERPIN8, one of eight SERPINs identified from the Penaeus monodon database, is studied and reported herein. The open reading frame of PmSERPIN8 gene derived from a genomic gene contains 5 exons of 320, 139, 244, 239 and 312 bp separated by 4 introns of 447, 657, 326 and 479 bp. The PmSERPIN8 gene is highly expressed at nauplius stage and gradually subsided as the shrimp grow through zoea, mysis and postlarva stages. At sub-adult stage, the PmSERPIN8 gene is expressed mainly in the hemocyte and epipodite. The expression in response to Vibrio harveyi and YHV injection is up-regulated, respectively, at 24 and 48 h post-injection. The number of PmSERPIN8-producing hemocytes, however, is observed highest at 48 h post V. harveyi injection. All three hemocyte cell types: hyaline, semigranular and granular hemocytes are able to produce PmSERPIN8. The recombinant mature PmSERPIN8 (rPmSERPIN8) with a predicted size of 45.5 kDa was over-produced in an Escherichia coli system, solubilized from the inclusion bodies, purified and tested for its activity. We have found that the rPmSERPIN8 is able to inhibit the growth of Gram-positive bacterium, Bacillus subtilis, but not Gram-negative bacterium, V. harveyi 639, and inhibit the shrimp prophenoloxidase system. The PmSERPIN8 is, thus, involved in the shrimp innate immunity.
Collapse
Affiliation(s)
- Suphaphon Somnuk
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | | | | |
Collapse
|
402
|
Lin YC, Chen JC, Li CC, Morni WZW, Suhaili ASNA, Kuo YH, Chang YH, Chen LL, Tsui WC, Chen YY, Huang CL. Modulation of the innate immune system in white shrimp Litopenaeus vannamei following long-term low salinity exposure. FISH & SHELLFISH IMMUNOLOGY 2012; 33:324-331. [PMID: 22626810 DOI: 10.1016/j.fsi.2012.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/20/2012] [Accepted: 05/07/2012] [Indexed: 06/01/2023]
Abstract
Immune parameters, haemocyte lifespan, and gene expressions of lipopolysaccharide and β-glucan-binding protein (LGBP), peroxinectin (PX), integrin β, and α2-macroglobulin (α2-M) were examined in white shrimp Litopenaeus vannamei juveniles (0.48 ± 0.05 g) which had been reared at different salinity levels of 2.5‰, 5‰, 15‰, 25‰, and 35‰ for 24 weeks. All shrimp survived during the first 6 weeks. The survival rate of shrimp reared at 2.5‰ and 5‰ was much lower (30%) than that of shrimp reared at 15‰, 25‰, and 35‰ (76%~86%) after 24 weeks. Shrimp reared at 25% grew faster. Shrimp reared at 2.5‰ and 5‰ showed lower hyaline cells (HCs), granular cells (GCs), phenoloxidase activity (PO) activity, respiratory bursts (RBs), superoxide dismutase (SOD) activity, and lysozyme activity, but showed a longer haemocyte lifespan, and higher expressions of LGBP, PX, integrin β, and α2-M. In another experiment, shrimp which had been reared at different salinity levels for 24 weeks were challenged with Vibrio alginolyticus (6 × 10(6) cfu shrimp(-1)), and WSSV (10(3) copies shrimp(-1)) and then released to their respective seawater. At 96-144 h, cumulative mortalities of shrimp reared at 2.5‰ and 5‰ were significantly higher than those of shrimp reared at 15‰, 25‰, and 35‰. It was concluded that following long-term exposure to 2.5‰ and 5‰ seawater, white shrimp juveniles exhibited decreased resistance against a pathogen due to reductions in immune parameters. Increases in the haemocyte lifespan and gene expressions of LGBP, integrin β, PX, and α2-M indicated that shrimp had the ability to expend extra energy to modulate the innate immune system to prevent further perturbations at low salinity levels.
Collapse
Affiliation(s)
- Yong-Chin Lin
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
403
|
Lin YC, Chen JC, C. Man SN, W. Morni WZ, N.A. Suhaili AS, Cheng SY, Hsu CH. Modulation of innate immunity and gene expressions in white shrimp Litopenaeus vannamei following long-term starvation and re-feeding. RESULTS IN IMMUNOLOGY 2012; 2:148-56. [PMID: 24371579 PMCID: PMC3862379 DOI: 10.1016/j.rinim.2012.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 11/24/2022]
Abstract
The survival rate, weight loss, immune parameters, resistance against Vibrio alginolyticus and white-spot syndrome virus (WSSV), and expressions of lipopolysaccharide- and ß-glucan-binding protein (LGBP), peroxinectin (PX), prophenoloxidase-activating enzyme (ppA), prophenoloxidase (proPO) I, proPO II, α2-macroglobulin (α2-M), integrin ß, heat shock protein 70 (HSP70), cytosolic manganese superoxide dismutase (cytMnSOD), mitochondrial manganese superoxide dismutase (mtMnSOD), and extracellular copper and zinc superoxide dismutase (ecCuZnSOD) were examined in the white shrimp Litopenaeus vannamei (8.18 ± 0.86 g body weight) which had been denied food (starved) for up to 14-28 days. Among shrimp which had been starved for 7, 14, 21, and 28 days, 100%, 90%, 71%, and 59% survived, and they lost 3.2%, 7.3%, 9.2%, and 10.4% of their body weight, respectively. Hyaline cells (HCs), granular cells (GCs, including semi-granular cells), the total haemocyte count (THC), phenoloxidase (PO) activity, respiratory bursts (RBs), and SOD activity significantly decreased in shrimp which had been starved for 1, 1, 1, 5, 14, and 3 days, respectively. The expression of integrin ß significantly decreased after 0.5-5 days of starvation, whereas the expressions of LGBP, PX, proPO I, proPO II, ppA, and α2-M increased after 0.5-1 days. Transcripts of all genes except ecCuZnSOD decreased to the lowest level after 5 days, and tended to background values after 7 and 14 days. Cumulative mortality rates of 7-day-starved shrimp challenged with V. alginolyticus and WSSV were significantly higher than those of challenged control-shrimp for 1-7 and 1-4 days, respectively. In another experiment, immune parameters of shrimp which had been starved for 7 and 14 days and then received normal feeding (at 5% of their body weight daily) were examined after 3, 6, and 12 h, and 1, 3, and 5 days. All immune parameters of 7-day-starved shrimp were able to return to their baseline values after 5 days of re-feeding except for GCs, whereas all parameters of 14-day-starved shrimp failed to return to the baseline values even with 5 days of re-feeding. It was concluded that shrimp starved for 14 days exhibited three stages of modulation of gene expression, together with reductions in immune parameters, and decreased resistance against pathogens.
Collapse
Affiliation(s)
- Yong-Chin Lin
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Jiann-Chu Chen
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Siti Nursafura C. Man
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Wan Zabidii W. Morni
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | | | - Sha-Yen Cheng
- Department of Environmental Biology and Fisheries, College of Ocean Science and Resource, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Chih-Hung Hsu
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| |
Collapse
|
404
|
Goncalves P, Vernal J, Rosa RD, Yepiz-Plascencia G, de Souza CRB, Barracco MA, Perazzolo LM. Evidence for a novel biological role for the multifunctional β-1,3-glucan binding protein in shrimp. Mol Immunol 2012; 51:363-7. [DOI: 10.1016/j.molimm.2012.03.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 03/26/2012] [Indexed: 11/28/2022]
|
405
|
Liu H, Zeng H, Yao Q, Yuan J, Zhang Y, Qiu D, Yang X, Yang H, Liu Z. Steinernema glaseri surface enolase: molecular cloning, biological characterization, and role in host immune suppression. Mol Biochem Parasitol 2012; 185:89-98. [PMID: 22750626 DOI: 10.1016/j.molbiopara.2012.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/17/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
Abstract
Entomopathogenic nematodes are widely used as biological control agents that can suppress or evade the host immune defense upon entry into insects. The surface coat of Steinernema glaseri has been shown to play important roles in defeating the host immune system. In this work, a protein fraction with antiphagocytic activity was separated by electro-elution and further analyzed by two-dimensional electrophoresis (2-DE). LC-MS/MS analysis of one protein spot from a 2-DE gel gave five peptides that were highly similar to enolases of many organisms. A 1311 bp cDNA was cloned that encodes a 47 kDa protein with high sequence identity to enolases from different species of nematodes. The deduced protein, Sg-ENOL, was expressed in Escherichia coli, and its glycolytic activity was demonstrated by the conversion of 2-phospho-d-glycerate to phosphoenolpyruvate. Recombinant Sg-ENOL significantly reduced the LT(50)s of Xenorhabdus poinarii and Metarhizium anisopliae when co-injected into Galleria mellonella and Locusta migratoria manilensis Meyen, respectively. Using immuno-gold transmission electron microscopy, native Sg-ENOL was confirmed to be localized to both the nematode cuticle and the surface coat. In vitro, secretion of Sg-ENOL was inducible rather than constitutive. In vivo, Sg-ENOL was detected in the host hemolymph after infection of G. mellonella with S. glaseri, indicating that Sg-ENOL was secreted into the insect hemocoel and was involved in infection. This is the first report of the cloning and characterization of a surface coat protein in an entomopathogenic nematode. Our findings provide clear evidence for an important role for a cell surface enolase in S. glaseri infection and host immune suppression.
Collapse
Affiliation(s)
- Hua Liu
- Key Laboratory of Integrated Pest Management in Crops, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | | | | | | | |
Collapse
|
406
|
Altuntaş H, Kılıç AY, Uçkan F, Ergin E. Effects of gibberellic acid on hemocytes of Galleria mellonella L. (Lepidoptera: Pyralidae). ENVIRONMENTAL ENTOMOLOGY 2012; 41:688-696. [PMID: 22732628 DOI: 10.1603/en11307] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The impacts of different doses of the plant growth regulator gibberellic acid (GA(3)) in diet on the number of total and differential hemocytes, frequency of apoptotic, and necrotic hemocytes, mitotic indices, encapsulation, and melanization responses were investigated using the greater wax moth Galleria mellonella L. (Lepidoptera: Pyralidae) larvae. Total hemocyte counts increased in G. mellonella larvae at all treatment doses whereas GA(3) application had no effect on the number of different hemocyte types. The occurrence of apoptosis, necrosis and mitotic indices in GA(3) treated and untreated last instars were detected by acridine orange or ethidium bromide double staining by fluorescence microscopy. While the ratio of necrotic hemocytes increased at all GA(3) treatments, that of late apoptotic cells was only higher at doses >200 ppm when compared with untreated larvae. The percentage of mitotic index also increased at 5,000 ppm. Positively charged DEAE Sephadex A-25 beads were used for analysis of the levels of encapsulation and melanization in GA(3) treated G. mellonella larvae. At four and 24 h posttreatments with Sephadex A-25 bead injection, insects were dissected under a stereomicroscope. Encapsulation rates of larval hemocytes were dependent on the extent of encapsulation and time but not treatment groups. While the extent of melanization of hemocytes showed differences related to time, in general, a decrease was observed at all doses of GA(3) treated larvae at 24 h. We suggest that GA(3) treatment negatively affects hemocyte physiology and cell immune responses inducing cells to die by necrosis and apoptosis in G. mellonella larvae.
Collapse
Affiliation(s)
- H Altuntaş
- Department of Biology, Faculty of Science, Anadolu University, Eskişehir, Turkey.
| | | | | | | |
Collapse
|
407
|
The scope of the crustacean immune system for disease control. J Invertebr Pathol 2012; 110:251-60. [DOI: 10.1016/j.jip.2012.03.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/01/2011] [Indexed: 11/20/2022]
|
408
|
Xu Y, Zhou W, Zhou Y, Wu J, Zhou X. Transcriptome and comparative gene expression analysis of Sogatella furcifera (Horváth) in response to southern rice black-streaked dwarf virus. PLoS One 2012; 7:e36238. [PMID: 22558400 PMCID: PMC3338671 DOI: 10.1371/journal.pone.0036238] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/29/2012] [Indexed: 02/01/2023] Open
Abstract
Background The white backed planthopper (WBPH), Sogatella furcifera (Horváth), causes great damage to many crops by direct feeding or transmitting plant viruses. Southern rice black-streaked dwarf virus (SRBSDV), transmitted by WBPH, has become a great threat to rice production in East Asia. Methodology/Principal Findings By de novo transcriptome assembling and massive parallel pyrosequencing, we constructed two transcriptomes of WBPH and profiled the alternation of gene expression in response to SRBSDV infection in transcriptional level. Over 25 million reads of high-quality DNA sequences and 81388 different unigenes were generated using Illumina technology from both viruliferous and non-viruliferous WBPH. WBPH has a very similar gene ontological distribution to other two closely related rice planthoppers, Nilaparvata lugens and Laodelphax striatellus. 7291 microsatellite loci were also predicted which could be useful for further evolutionary analysis. Furthermore, comparative analysis of the two transcriptomes generated from viruliferous and non-viruliferous WBPH provided a list of candidate transcripts that potentially were elicited as a response to viral infection. Pathway analyses of a subset of these transcripts indicated that SRBSDV infection may perturb primary metabolism and the ubiquitin-proteasome pathways. In addition, 5.5% (181 out of 3315) of the genes in cell cytoskeleton organization pathway showed obvious changes. Our data also demonstrated that SRBSDV infection activated the immunity regulatory systems of WBPH, such as RNA interference, autophagy and antimicrobial peptide production. Conclusions/Significance We employed massively parallel pyrosequencing to collect ESTs from viruliferous and non-viruliferous samples of WBPH. 81388 different unigenes have been obtained. We for the first time described the direct effects of a Reoviridae family plant virus on global gene expression profiles of its insect vector using high-throughput sequencing. Our study will provide a road map for future investigations of the fascinating interactions between Reoviridae viruses and their insect vectors, and provide new strategies for crop protection.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Wenwu Zhou
- Institute of Insect Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- * E-mail: (JW); (XZ)
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- * E-mail: (JW); (XZ)
| |
Collapse
|
409
|
Abstract
Understanding how organisms fight infection has been a central focus of scientific research and medicine for the past couple of centuries, and a perennial object of trial and error by humans trying to mitigate the burden of disease. Vaccination success relies upon the exposure of susceptible individuals to pathogen constituents that do not cause (excessive) pathology and that elicit specific immune memory. Mass vaccination allows us to study how immunity operates at the group level; denser populations are more prone to transmitting disease between individuals, but once a critical proportion of the population becomes immune, "herd immunity" emerges. In social species, the combination of behavioural control of infection--e.g., segregation of sick individuals, disposal of the dead, quality assessment of food and water--and aggregation of immune individuals can protect non-immune members from disease. While immune specificity and memory are well understood to underpin immunisation in vertebrates, it has been somewhat surprising to find similar phenomena in invertebrates, which lack the vertebrate molecular mechanisms deemed necessary for immunisation. Indeed, reports showing alternative forms of immune memory are accumulating in invertebrates. In this issue of PLoS Biology, Konrad et al. present an example of fungus-specific immune responses in social ants that lead to the active immunisation of nestmates by infected individuals. These findings join others in showing how organisms evolved diverse mechanisms that fulfil common functions, namely the discrimination between pathogens, the transfer of immunity between related individuals, and the group-level benefits of immunisation.
Collapse
Affiliation(s)
- Simon A Babayan
- Centre for Immunity, Infection and Evolution and Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, Scotland, United Kingdom.
| | | |
Collapse
|
410
|
Assavalapsakul W, Panyim S. Molecular cloning and tissue distribution of the Toll receptor in the black tiger shrimp, Penaeus monodon. GENETICS AND MOLECULAR RESEARCH 2012; 11:484-93. [PMID: 22535384 DOI: 10.4238/2012.march.6.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The black tiger shrimp (Penaeus monodon) is economically important in many parts of the world, including Thailand. Shrimp immunity is similar to that of other invertebrate organisms; it consists of an innate immunity system. Toll or Toll-like receptors (TLRs) play an essential role in recognizing the cleaved form of the cytokine Spätzle, which is processed by a series of proteolytic cascades activated by secreted recognition molecules. We isolated a full-length Toll receptor from P. monodon. The cloned full-length sequence of the PmToll cDNA consists of 4144 nucleotides, containing a 5'-UTR with 366 nucleotides, a 3'-terminal UTR with 985 nucleotides, with a classical polyadenylation signal sequence AATAAA, a poly A-tail with 27 nucleotides, and an open reading frame coding for 931 amino acids. The deduced amino acid sequence of PmToll is a typical type I membrane domain protein, characteristic of TLR functional domains. It includes a putative signal peptide, an extracellular domain consisting of leucine-rich repeats, flanked by cysteine-rich motifs, a single-pass transmembrane portion, and a cytoplasmic TLR domain. PmToll was expressed in all tissues tested, including gill, hemocytes, heart, hepatopancreas, lymphoid organs, muscle, nerve, pleopod, stomach, testis, and ovary. The deduced amino acid of PmToll is closely related to that of other shrimp Tolls, especially FcToll. Further studies elucidating the mechanism of action of Tolls will be of benefit for understanding the defense mechanisms of this economically important aquatic species.
Collapse
Affiliation(s)
- W Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| | | |
Collapse
|
411
|
Ren Q, Du ZQ, Li M, Zhang CY, Chen KP. Cloning and expression analysis of an anti-lipopolysaccharide factor from giant freshwater prawn, Macrobrachium rosenbergii. Mol Biol Rep 2012; 39:7673-80. [DOI: 10.1007/s11033-012-1602-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 02/02/2012] [Indexed: 10/28/2022]
|
412
|
Wang PH, Liang JP, Gu ZH, Wan DH, Weng SP, Yu XQ, He JG. Molecular cloning, characterization and expression analysis of two novel Tolls (LvToll2 and LvToll3) and three putative Spätzle-like Toll ligands (LvSpz1-3) from Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:359-371. [PMID: 21827783 DOI: 10.1016/j.dci.2011.07.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/18/2011] [Accepted: 07/21/2011] [Indexed: 05/31/2023]
Abstract
Toll-like receptor-mediated NF-κB pathways are essential for inducing immune related-gene expression in the defense against bacterial, fungal and viral infections in insects and mammals. Although a Toll receptor (LvToll1) was cloned in Litopenaeus vannamei, relatively little is known about other types of Toll-like receptors and their endogenous cytokine-like ligand, Spätzle. Here, we report two novel Toll-like receptors (LvToll2 and LvToll3) and three Spätzle-like proteins (LvSpz1-3) from L. vannamei. LvToll2 has 1009 residues with an extracellular domain containing 18 leucine-rich repeats (LRRs) and a cytoplasmic Toll/interleukin-1 receptor (TIR) domain of 139 residues. LvToll3 is 1244 residues long with an extracellular domain containing 23 LRRs and a cytoplasmic TIR domain of 138 residues. The Spätzle-like proteins LvSpz1, LvSpz2 and LvSpz3 are 237, 245 and 275 residues in length, respectively, and all of them have a putative C-terminal cystine-knot domain. In Drosophila Schneider 2 (S2) cells, LvToll1 and LvToll3 were localized to the membrane and cytoplasm, and LvToll2 was confined to the cytoplasm. In Drosophila S2 cells, LvToll2 could significantly activate the promoters of NF-κB-pathway-controlled antimicrobial peptide genes, whereas LvToll1 and LvToll3 had no effect on them. LvSpz1 exerted some degree of inhibition on the promoter activities of Drosophila Attacin A and L. vannamei Penaeidin4. LvSpz3 also inhibited the Drosophila Attacin A promoter, but LvSpz2 could only slightly activate it. LvToll1, LvToll2 and LvToll3 were constitutive expressed in various tissues, while LvSpz1, LvSpz2 and LvSpz3 exhibited tissue-specific expression in the epithelium, eyestalk, intestine, gill and muscle. In the gill, after Vibrio alginolyticus challenge, LvToll1 was upregulated, but LvToll2 and LvToll3 showed no obvious changes. LvSpz1 and LvSpz3 were also strongly induced by V. alginolyticus challenge, but LvSpz2 only showed a slight downregulation. In the gill, after white spot syndrome virus (WSSV) challenge, LvToll1, LvToll2, LvToll3, LvSpz1 and LvSpz3 were upregulated, but LvSpz2 showed no obvious change, except for a slight downregulation at 12h post-injection of WSSV. These findings might be valuable in understanding the innate immune signal pathways of shrimp and enabling future studies on the host-pathogen interactions in V. alginolyticus and WSSV infections.
Collapse
Affiliation(s)
- Pei-Hui Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
413
|
Chevalier F, Herbinière-Gaboreau J, Charif D, Mitta G, Gavory F, Wincker P, Grève P, Braquart-Varnier C, Bouchon D. Feminizing Wolbachia: a transcriptomics approach with insights on the immune response genes in Armadillidium vulgare. BMC Microbiol 2012; 12 Suppl 1:S1. [PMID: 22375708 PMCID: PMC3287506 DOI: 10.1186/1471-2180-12-s1-s1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wolbachia are vertically transmitted bacteria known to be the most widespread endosymbiont in arthropods. They induce various alterations of the reproduction of their host, including feminization of genetic males in isopod crustaceans. In the pill bug Armadillidium vulgare, the presence of Wolbachia is also associated with detrimental effects on host fertility and lifespan. Deleterious effects have been demonstrated on hemocyte density, phenoloxidase activity, and natural hemolymph septicemia, suggesting that infected individuals could have defective immune capacities. Since nothing is known about the molecular mechanisms involved in Wolbachia-A. vulgare interactions and its secondary immunocompetence modulation, we developed a transcriptomics strategy and compared A. vulgare gene expression between Wolbachia-infected animals (i.e., "symbiotic" animals) and uninfected ones (i.e., "asymbiotic" animals) as well as between animals challenged or not challenged by a pathogenic bacteria. RESULTS Since very little genetic data is available on A. vulgare, we produced several EST libraries and generated a total of 28 606 ESTs. Analyses of these ESTs revealed that immune processes were over-represented in most experimental conditions (responses to a symbiont and to a pathogen). Considering canonical crustacean immune pathways, these genes encode antimicrobial peptides or are involved in pathogen recognition, detoxification, and autophagy. By RT-qPCR, we demonstrated a general trend towards gene under-expression in symbiotic whole animals and ovaries whereas the same gene set tends to be over-expressed in symbiotic immune tissues. CONCLUSION This study allowed us to generate the first reference transcriptome ever obtained in the Isopoda group and to identify genes involved in the major known crustacean immune pathways encompassing cellular and humoral responses. Expression of immune-related genes revealed a modulation of host immunity when females are infected by Wolbachia, including in ovaries, the crucial tissue for the Wolbachia route of transmission.
Collapse
|
414
|
Andrejko M, Mizerska-Dudka M. Effect of Pseudomonas aeruginosa elastase B on level and activity of immune proteins/peptides of Galleria mellonella hemolymph. JOURNAL OF INSECT SCIENCE (ONLINE) 2012; 12:88. [PMID: 23421724 PMCID: PMC3596945 DOI: 10.1673/031.012.8801] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Abstract Susceptibility of proteins and peptides present in immune hemolymph of Galleria mellonella Fabricius (Lepidoptera: Pyralidae) larvae to proteolytic degradation by purified elastase B of Pseudomonas aeruginosa was studied. Results showed that apoLp-III protein was gradually digested by elastase B in vitro. Additionally, polipeptides with molecular mass 6.5 and 4 kDa were degraded after treatment with the studied enzyme. The lack of these peptides and the decrease in anti-Escherichia coli activity could indicate that inducible antimicrobial peptides were digested by elastase B. On the contrary, no change in the lysosome activity level was observed in immune hemolymph incubated with elastase B. Thus, elastase B might contribute to the pathogenesis of P. aeruginosa.
Collapse
|
415
|
Jang IK, Pang Z, Yu J, Kim SK, Seo HC, Cho YR. Selectively enhanced expression of prophenoloxidase activating enzyme 1 (PPAE1) at a bacteria clearance site in the white shrimp, Litopenaeus vannamei. BMC Immunol 2011; 12:70. [PMID: 22208405 PMCID: PMC3268739 DOI: 10.1186/1471-2172-12-70] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/30/2011] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The prophenoloxidase-activating (PO activating) system plays an important role in the crustacean innate immunity, particularly in wound healing and pathogen defense. A key member of this system is prophenoloxidase-activating enzyme (PPAE), which is the direct activator of prophenoloxidase (proPO). Despite their importance in crustacean PO activating system, the studies on them remain limited. RESULTS Here we report on a PPAE of white shrimp, Litopenaeus vannamei (lvPPAE1), which showed 94% similarity to PPAE1 of Penaeus monodon. We found that lvPPAE1 in fluid hemocytes was down regulated after challenge by Vibrio harveyi but was enhanced when shrimps were exposed to a bacteria-rich environment for long-term. In vivo gene silence of lvPPAE1 by RNAi can significantly reduce the phenoloxidase activity (PO) and increase the susceptibility of shrimps to V. harveyi. Although lvPPAE1 was down-regulated in fluid hemocytes by Vibrio challenge, its expression increased significantly in gill after bacteria injection, which is the primary bacteria-clearance tissue. CONCLUSION Suppressed expression in fluid hemocytes and enhanced expression in gill indicates selectively enhanced expression at the bacterial clearance site. This is a novel feature for PPAE expression. The results will contribute to our understanding of the PO activating system in crustaceans.
Collapse
Affiliation(s)
- In-Kwon Jang
- National Fisheries Research & Development Institute, #707 Eulwang dong, Jung-gu, Incheon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
416
|
Ponprateep S, Tassanakajon A, Rimphanitchayakit V. A Kazal type serine proteinase SPIPm2 from the black tiger shrimp Penaeus monodon is capable of neutralization and protection of hemocytes from the white spot syndrome virus. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1179-1185. [PMID: 22032902 DOI: 10.1016/j.fsi.2011.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 05/31/2023]
Abstract
A Kazal type serine proteinase SPIPm2 is abundantly expressed in the hemocytes and shown to be involved in innate immune response against white spot syndrome virus (WSSV) in Penaeus monodon. The SPIPm2 is expressed and stored in the granules in the cytoplasm of semigranular and granular but not the hyaline hemocytes. Upon WSSV challenge and progression of infection, the SPIPm2 was secreted readily from the semigranular and granular hemocytes. The more they secreted the SPIPm2, the less they were distinguishable from the hyaline cells. The WSSV-infected cells were either semigranular or granular hemocytes or both and depleted of SPIPm2. The rSPIPm2 was able to temporarily and dose-dependently neutralize the WSSV and protect the hemocytes from viral infection judging from the substantially less expression of WSSV late gene VP28. The antiviral activity was very likely due to the binding of SPIPm2 to the components of viral particle and hemocyte cell membrane.
Collapse
Affiliation(s)
- Sirikwan Ponprateep
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|
417
|
Sirirustananun N, Chen JC, Lin YC, Yeh ST, Liou CH, Chen LL, Sim SS, Chiew SL. Dietary administration of a Gracilaria tenuistipitata extract enhances the immune response and resistance against Vibrio alginolyticus and white spot syndrome virus in the white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2011; 31:848-855. [PMID: 21820059 DOI: 10.1016/j.fsi.2011.07.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 05/31/2023]
Abstract
The haemogram, phenoloxidase (PO) activity, respiratory bursts (RBs), superoxide dismutase (SOD) activity, glutathione peroxidase (GPx) activity, lysozyme activity, and the mitotic index of haematopoietic tissue (HPT) were examined after the white shrimp Litopenaeus vannamei had been fed diets containing the hot-water extract of Gracilaria tenuistipitata at 0 (control), 0.5, 1.0, and 2.0 g kg(-1) for 7-35 days. Results indicated that these parameters directly increased with the amount of extract and time, but slightly decreased after 35 days. RBs, SOD activity, and GPx activity reached the highest levels after 14 days, whereas PO and lysozyme activities reached the highest levels after 28 days. In a separate experiment, white shrimp L. vannamei, which had been fed diets containing the extract for 14 days, were challenged with Vibrio alginolyticus at 2 × 10(6) cfu shrimp(-1) and white spot syndrome virus (WSSV) at 1 × 10(3) copies shrimp(-1), and then placed in seawater. The survival rate of shrimp fed the extract-containing diets was significantly higher than that of shrimp fed the control diet at 72-144 h post-challenge. We concluded that dietary administration of the G. tenuistipitata extract at ≤1.0 g kg(-1) could enhance the innate immunity within 14 days as evidenced by the increases in immune parameters and mitotic index of HPT in shrimp and their enhanced resistance against V. alginolyticus and WSSV infections. Shrimp fed the extract-containing diets showed a higher and continuous increase in the humoral response indicating its persistent role in innate immunity.
Collapse
Affiliation(s)
- Nuttarin Sirirustananun
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
418
|
Perazzolo LM, Bachère E, Rosa RD, Goncalves P, Andreatta ER, Daffre S, Barracco MA. Alpha2-macroglobulin from an Atlantic shrimp: biochemical characterization, sub-cellular localization and gene expression upon fungal challenge. FISH & SHELLFISH IMMUNOLOGY 2011; 31:938-943. [PMID: 21888978 DOI: 10.1016/j.fsi.2011.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/13/2011] [Accepted: 08/19/2011] [Indexed: 05/31/2023]
Abstract
In this study, we report on the isolation and characterization of an alpha2-macroglobulin (α2M) from the plasma of the pink shrimp Farfantepenaeus paulensis, its sub-cellular localization and transcriptional changes after infection by fungi. The molecular mass of the α2M was estimated at 389 kDa by gel filtration and 197 kDa by SDS-PAGE, under reducing conditions, suggesting that α2M from F. paulensis consists of two identical sub-units, covalently linked by disulphide bonds. The N-terminal amino acid sequence of the α2M from F. paulensis was very similar to those of other penaeid shrimps, crayfish and lobster (70-90% identity) and to a less extent with that of freshwater prawn (40% identity). A monoclonal antibody raised against the Marsupenaeus japonicus α2M made it possible to demonstrate that α2M of F. paulensis is stored in the vesicles of the shrimp granular hemocytes (through immunogold assay). Quantitative real-time PCR (qPCR) analysis showed that α2M mRNA transcripts significantly increased 24 h after an experimental infection with the shrimp pathogen Fusarium solani and it returned to the basal levels at 48 h post-injection. This is the first report on a α2M characterization in an Atlantic penaeid species and its expression profile upon a fungal infection.
Collapse
Affiliation(s)
- Luciane Maria Perazzolo
- Laboratório de Imunologia Aplicada à Aquicultura, Departamento de Biologia Celular, Embriologia e Genética (BEG), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), CEP 88040-900, Florianópolis, SC, Brazil.
| | | | | | | | | | | | | |
Collapse
|
419
|
Soares T, Ferreira FRB, Gomes FS, Coelho LCBB, Torquato RJS, Napoleão TH, de Mendonça Cavalcanti MDS, Tanaka AS, Paiva PMG. The first serine protease inhibitor from Lasiodora sp. (Araneae: Theraphosidae) hemocytes. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
420
|
Arul Prakash A, Balasubramanian S, Gunasekaran G, Prakash M, Senthil Raja P. Control of Clinical Pathogens by the Haemolymph of Paratelphusa hydrodromous, a Freshwater Crab. ISRN PHARMACOLOGY 2011; 2011:642768. [PMID: 22084719 PMCID: PMC3195781 DOI: 10.5402/2011/642768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/08/2011] [Indexed: 11/23/2022]
Abstract
In the present study, effort has been made to find the antimicrobial activity of haemolymph collected from freshwater crab, Paratelphusa hydrodromous. The haemolymph collected was tested for antimicrobial assay by disc diffusion method against clinical pathogens. Five bacterial species, namely, Escherichia coli, Klebsiella pneumonia, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus aureus, and five fungal strains, namely and Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Rhizopus sp., and Mucor sp., were selected for the study. The result shows a strong response of haemolymph against the clinical pathogens which confirms the immune mechanism of the freshwater crab.
Collapse
Affiliation(s)
- A Arul Prakash
- Department of Zoology, Annamalai University, Annamalainagar, Tamilnadu 608 002, India
| | | | | | | | | |
Collapse
|
421
|
Rodríguez-Ramos T, Carpio Y, Ramos L, Pons T, Farnós O, Iglesias C, Sánchez de Melo I, Ramos Y, Pendón C, Estrada MP, Bolívar J. New aspects concerning to the characterization and the relationship with the immune response in vivo of the spiny lobster Panulirus argus nitric oxide synthase. Nitric Oxide 2011; 25:396-406. [DOI: 10.1016/j.niox.2011.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/16/2011] [Accepted: 09/18/2011] [Indexed: 01/04/2023]
|
422
|
Kuhn-Nentwig L, Largiadèr CR, Streitberger K, Chandru S, Baumann T, Kämpfer U, Schaller J, Schürch S, Nentwig W. Purification, cDNA structure and biological significance of a single insulin-like growth factor-binding domain protein (SIBD-1) identified in the hemocytes of the spider Cupiennius salei. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:891-901. [PMID: 21888974 DOI: 10.1016/j.ibmb.2011.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 05/31/2023]
Abstract
Cupiennius salei single insulin-like growth factor-binding domain protein (SIBD-1), which exhibits an IGFBP N-terminal domain-like profile, was identified in the hemocytes of the spider C. salei. SIBD-1 was purified by RP-HPLC and the sequence determined by a combination of Edman degradation and 5'-3'- RACE PCR. The peptide (8676.08 Da) is composed of 78 amino acids, contains six intrachain disulphide bridges and carries a modified Thr residue at position 2. SIBD-1 mRNA expression was detected by quantitative real-time PCR mainly in hemocytes, but also in the subesophageal nerve mass and muscle. After infection, the SIBD-1 content in the hemocytes decreases and, simultaneously, the temporal SIBD-1 expression seems to be down-regulated. Two further peptides, SIBD-2 and IGFBP-rP1, also exhibiting IGFBP N-terminal domain variants with unknown functions, were identified on cDNA level in spider hemocytes and venom glands. We conclude that SIBD-1 may play an important role in the immune system of spiders.
Collapse
Affiliation(s)
- Lucia Kuhn-Nentwig
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
423
|
Abstract
SUMMARYVariability of immune responses is an essential aspect of ecological immunology, yet how much of this variability is due to differences among parasite genotypes remains unknown. Here, variation in immune response of the crab, Macrophthalmus hirtipes, is examined as a function of experimental exposure to 10 clonal cercarial lineages of the trematode Maritrema novaezealandensis. Our goals were (1) to assess the variability of the host immune reaction elicited by 10 parasite clones, (2) to test if the heterozygosity–fitness correlation, whereby organisms with higher heterozygosities achieve a higher fitness than those with lower heterozygosities, applies to heterozygous parasites eliciting weak immune responses, and (3) to see how concomitant infections by other macroparasites influence the crab's immune response to cercariae. Parasite clones were distinguished and heterozygosities calculated using 20 microsatellite markers. We found that exposure to cercariae resulted in increased haemocyte counts, and that although interclonal differences in immune response elicited were detected, parasite heterozygosity did not correlate with host immune response. Additionally, the presence of other pre-existing parasites in hosts did not influence their immune response following experimental exposure to cercariae. Overall, the existence of variability in immune response elicited by different parasite clones is promising for future ecological immunology studies using this system.
Collapse
|
424
|
Abstract
Many of the cellular mechanisms underlying host responses to pathogens have been well conserved during evolution. As a result, Drosophila can be used to deconstruct many of the key events in host-pathogen interactions by using a wealth of well-developed molecular and genetic tools. In this review, we aim to emphasize the great leverage provided by the suite of genomic and classical genetic approaches available in flies for decoding details of host-pathogen interactions; these findings can then be applied to studies in higher organisms. We first briefly summarize the general strategies by which Drosophila resists and responds to pathogens. We then focus on how recently developed genome-wide RNA interference (RNAi) screens conducted in cells and flies, combined with classical genetic methods, have provided molecular insight into host-pathogen interactions, covering examples of bacteria, fungi and viruses. Finally, we discuss novel strategies for how flies can be used as a tool to examine how specific isolated virulence factors act on an intact host.
Collapse
Affiliation(s)
- Ethan Bier
- University of California, San Diego, La Jolla, CA 92039, USA.
| | | |
Collapse
|
425
|
Ratcliffe NA, Mello CB, Garcia ES, Butt TM, Azambuja P. Insect natural products and processes: new treatments for human disease. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:747-69. [PMID: 21658450 DOI: 10.1016/j.ibmb.2011.05.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/16/2011] [Accepted: 05/20/2011] [Indexed: 05/09/2023]
Abstract
In this overview, some of the more significant recent developments in bioengineering natural products from insects with use or potential use in modern medicine are described, as well as in utilisation of insects as models for studying essential mammalian processes such as immune responses to pathogens. To date, insects have been relatively neglected as sources of modern drugs although they have provided valuable natural products, including honey and silk, for at least 4-7000 years, and have featured in folklore medicine for thousands of years. Particular examples of Insect Folk Medicines will briefly be described which have subsequently led through the application of molecular and bioengineering techniques to the development of bioactive compounds with great potential as pharmaceuticals in modern medicine. Insect products reviewed have been derived from honey, venom, silk, cantharidin, whole insect extracts, maggots, and blood-sucking arthropods. Drug activities detected include powerful antimicrobials against antibiotic-resistant bacteria and HIV, as well as anti-cancer, anti-angiogenesis and anti-coagulant factors and wound healing agents. Finally, the many problems in developing these insect products as human therapeutic drugs are considered and the possible solutions emerging to these problems are described.
Collapse
Affiliation(s)
- Norman A Ratcliffe
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, 21045-900, RJ, Brazil.
| | | | | | | | | |
Collapse
|
426
|
Mello MVC, Aragão MEFD, Torres-Franklin MLP, Neto JMDO, Guedes MIF. Purification of infectious myonecrosis virus (IMNV) in species of marine shrimp Litopenaeus vannamei in the State of Ceará. J Virol Methods 2011; 177:10-4. [DOI: 10.1016/j.jviromet.2011.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 05/18/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022]
|
427
|
Altincicek B, Ter Braak B, Laughton AM, Udekwu KI, Gerardo NM. Escherichia coli K-12 pathogenicity in the pea aphid, Acyrthosiphon pisum, reveals reduced antibacterial defense in aphids. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1091-1097. [PMID: 21527277 DOI: 10.1016/j.dci.2011.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 05/30/2023]
Abstract
To better understand the molecular basis underlying aphid immune tolerance to beneficial bacteria and immune defense to pathogenic bacteria, we characterized how the pea aphid Acyrthosiphon pisum responds to Escherichia coli K-12 infections. E. coli bacteria, usually cleared in the hemolymph of other insect species, were capable of growing exponentially and killing aphids within a few days. Red fluorescence protein expressing E. coli K-12 laboratory strain multiplied in the aphid hemolymph as well as in the digestive tract, resulting in death of infected aphids. Selected gene deletion mutants of the E. coli K-12 predicted to have reduced virulence during systemic infections showed no difference in either replication or killing rate when compared to the wild type E. coli strain. Of note, however, the XL1-Blue E. coli K-12 strain exhibited a significant lag phase before multiplying and killing aphids. This bacterial strain has recently been shown to be more sensitive to oxidative stress than other E. coli K-12 strains, revealing a potential role for reactive oxygen species-mediated defenses in the otherwise reduced aphid immune system.
Collapse
Affiliation(s)
- Boran Altincicek
- Department of Biology, Emory University, O. Wayne Rollins Research Center, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
428
|
Huynh TG, Yeh ST, Lin YC, Shyu JF, Chen LL, Chen JC. White shrimp Litopenaeus vannamei immersed in seawater containing Sargassum hemiphyllum var. chinense powder and its extract showed increased immunity and resistance against Vibrio alginolyticus and white spot syndrome virus. FISH & SHELLFISH IMMUNOLOGY 2011; 31:286-93. [PMID: 21658452 DOI: 10.1016/j.fsi.2011.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 05/19/2023]
Abstract
This study was to examine the immune response of white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus and WSSV when shrimp received the Sargassum hemiphyllum var. chinense powder and its hot-water extract. Both powder and extract showed activation of prophenoloxidase and generation of superoxide anion in the shrimp in vitro. The haemocyte count, phenoloxidase (PO) activity, respiratory burst, and lysozyme activity were examined after the shrimp were immersed in seawater containing S. hemiphyllum var. chinense powder or its extract at 0, 100, 300, and 500 mg L⁻¹ for 1, 3, and 5 h. These immune parameters of shrimp immersed in 300 and 500 mg L⁻¹ powder, and 100 and 300 mg L⁻¹ extract were significantly higher than those of control shrimp after 3 h, but slightly decreased after 5 h. In another experiment, shrimp immersed in seawater containing the powder or the extract at 0, 100, 300, and 500 mg L⁻¹ after 3 h were challenged with V. alginolyticus at 8 × 10⁵ colony-forming unit (cfu) shrimp⁻¹, or challenged with WSSV at 1 × 10⁵ copies shrimp⁻¹, and then placed in seawater. Survival rate of shrimp immersed in 500 mg L⁻¹ powder was significantly higher than that of control shrimp after 24-120 h in the V. alginolyticus-challenge test, and after 72 h in the WSSV-challenge test, respectively. Survival rate of shrimp immersed in 300 mg L⁻¹ extract was significantly higher than that of control shrimp after 72-120 h in both V. alginolyticus-challenge and WSSV-challenge tests. It was concluded that the shrimp immersed in seawater containing the powder at 500 mg L⁻¹, and the extract at 300 mg L⁻¹ had increased immunity and resistance against V. alginolyticus infection, and the shrimp that received extract at 300 mg L⁻¹ showed resistance against WSSV infection.
Collapse
Affiliation(s)
- Truong-Giang Huynh
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
429
|
Azad P, Ryu J, Haddad GG. Distinct role of Hsp70 in Drosophila hemocytes during severe hypoxia. Free Radic Biol Med 2011; 51:530-8. [PMID: 21616137 PMCID: PMC3138732 DOI: 10.1016/j.freeradbiomed.2011.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 04/29/2011] [Accepted: 05/05/2011] [Indexed: 02/07/2023]
Abstract
Severe hypoxia can lead to injury and mortality in vertebrate or invertebrate organisms. Our research is focused on understanding the molecular mechanisms that lead to injury or adaptation to hypoxic stress using Drosophila as a model system. In this study, we employed the UAS-Gal4 system to dissect the protective role of Hsp70 in specific tissues in vivo under severe hypoxia. In contrast to overexpression in tissues such as muscles, heart, and brain, we found that overexpression of Hsp70 in hemocytes of flies provides a remarkable survival benefit to flies exposed to severe hypoxia for days. Furthermore, these flies were tolerant not only to severe hypoxia but also to other stresses such as oxidant stress (e.g., paraquat feeding or hyperoxia). Interestingly we observed that the better survival with Hsp70 overexpression in hemocytes under hypoxia or oxidant stress is causally linked to reactive oxygen species (ROS) reduction in whole flies. We also show that hemocytes are a major source of ROS generation, leading to injury during hypoxia, and their elimination results in a better survival under hypoxia. Hence, our study identified a protective role for Hsp70 in Drosophila hemocytes, which is linked to ROS reduction in the whole flies and thus helps in their remarkable survival during oxidant or hypoxic stress.
Collapse
Affiliation(s)
- Priti Azad
- Department of Pediatrics (Section of Respiratory Medicine), University of California-San Diego, La Jolla, CA 92093, USA
| | - Julie Ryu
- Department of Pediatrics (Section of Respiratory Medicine), University of California-San Diego, La Jolla, CA 92093, USA
- The Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Gabriel G. Haddad
- Department of Pediatrics (Section of Respiratory Medicine), University of California-San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California-San Diego, La Jolla, CA 92093, USA
- The Rady Children’s Hospital, San Diego, CA 92123, USA
- To whom correspondence should be addressed: Gabriel G. Haddad, MD, Departments of Pediatrics (Section of Respiratory Medicine), 9500 Gilman Dr MC0735, La Jolla, CA 92093, USA, Phone: +1-858-822-4740, Fax- 1- 858-534-6972,
| |
Collapse
|
430
|
Baruah K, Ranjan J, Sorgeloos P, Macrae TH, Bossier P. Priming the prophenoloxidase system of Artemia franciscana by heat shock proteins protects against Vibrio campbellii challenge. FISH & SHELLFISH IMMUNOLOGY 2011; 31:134-141. [PMID: 21554959 DOI: 10.1016/j.fsi.2011.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/16/2011] [Accepted: 04/19/2011] [Indexed: 05/30/2023]
Abstract
Like other invertebrates, the brine shrimp Artemia franciscana relies solely on innate immunity, which by definition lacks adaptive characteristics, to combat against invading pathogens. One of the innate mechanisms is melanisation of bacteria mediated by the activation of the prophenoloxidase (proPO) system. The 70 kDa heat shock proteins (Hsp70) derived from either prokaryote (Escherichia coli) or eukaryote (Artemia), well conserved and immune-dominant molecules, protect Artemia against Vibrio campbellii. However, the molecular mechanisms by which these proteins protect Artemia against Vibrio campbellii infection are unknown. Here we demonstrated that feeding gnotobiotically grown Artemia with either Artemia Hsp70 or the E. coli Hsp70 equivalent DnaK, each overproduced in E. coli, followed by V. campbellii challenge enhanced the proPO system, at both mRNA and protein activity levels. Additionally, the Artemia fed with these proteins survived well in a Vibrio challenge assay. These results indicated that Hsp70s derived from either prokaryotic or eukaryotic sources generate protective immunity in the crustacean Artemia against V. campbellii infection by priming the proPO system. This is apparently the first in vivo report on priming activity of Hsp70 in an invertebrate.
Collapse
Affiliation(s)
- Kartik Baruah
- Faculty of Bioscience Engineering, Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Rozier 44, Gent 9000, Belgium
| | | | | | | | | |
Collapse
|
431
|
Kim SG, Jung BW, Kim H. Hemocyanin-derived phenoloxidase activity with broad temperature stability extending into the cold environment in hemocytes of the hair crab Erimacrus isenbeckii. Comp Biochem Physiol B Biochem Mol Biol 2011; 159:103-8. [DOI: 10.1016/j.cbpb.2011.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/24/2011] [Accepted: 02/24/2011] [Indexed: 10/18/2022]
|
432
|
Perez DG, Fontanetti CS. Hemocitical responses to environmental stress in invertebrates: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2011; 177:437-447. [PMID: 20717717 DOI: 10.1007/s10661-010-1645-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 07/29/2010] [Indexed: 05/29/2023]
Abstract
Although invertebrates are recognized by the great facility to accumulate pollutants present in their environment and many of them are used as sentinel species in biomonitoring studies, little is known about the impact of toxicants on the immune system of these animals. In this regard, hemocytes play a fundamental role: these cells circulate freely through the hemolymph of invertebrates and act on the recognition of foreign material to the organism, mediating and effecting the cellular defense, such as phagocytosis, nodulation, and encapsulation. Different morphological types can be recognized but still there is controversy among the researchers about the exact classification of the hemocytes due to the diversity of techniques for the preservation and observation of these cells. In the present study, a review on the main hemocyte responses to environmental stress in different invertebrate organisms is presented, emphasizing the contamination by heavy metals. It is discussed parameters such as: alteration in the number of cells involved in the defense reaction, phagocytic activity, lysosomal responses, and production of reactive oxygen species.
Collapse
Affiliation(s)
- Danielli Giuliano Perez
- Department of Biology-Institute of Biosciences, UNESP, Av. 24-A, 1515-13506-900, Rio Claro, São Paulo, Brazil.
| | | |
Collapse
|
433
|
Borowska J, Pyza E. Effects of heavy metals on insect immunocompetent cells. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:760-770. [PMID: 21419130 DOI: 10.1016/j.jinsphys.2011.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 02/10/2011] [Accepted: 02/21/2011] [Indexed: 05/30/2023]
Abstract
The influence of the following heavy metals, copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb), on haemocytes of the house fly Musca domestica L. was studied under laboratory conditions. House fly larvae were exposed to low or high, semi-lethal concentrations of metals. These particular metals were selected because they are present in polluted environments in Poland. In addition, we studied expression of the stress proteins HSP70 and HSP72 in haemocytes collected from larvae that had been exposed to heavy metal. The obtained results showed changes in haemocytes morphology and phagocytotic plasticity in the experimental flies in comparison to control. The number of prohaemocytes, regarded as stem cells, increased, while granulocytes, responsible for phagocytosis, decreased. However, we have not detected any clear changes in expression of HSP70 or HSP72 in flies treated with low or high concentrations of the heavy metals.
Collapse
Affiliation(s)
- Joanna Borowska
- Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland
| | | |
Collapse
|
434
|
Arockiaraj J, Easwvaran S, Vanaraja P, Singh A, Othman RY, Bhassu S. Prophenoloxidase activating enzyme-III from giant freshwater prawn Macrobrachium rosenbergii: characterization, expression and specific enzyme activity. Mol Biol Rep 2011; 39:1377-86. [PMID: 21614523 DOI: 10.1007/s11033-011-0872-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/14/2011] [Indexed: 12/26/2022]
Abstract
The prophenoloxidase activating system is an important innate immune response against microbial infections in invertebrates. The major enzyme, phenoloxidase, is synthesized as an inactive precursor and its activation to an active enzyme is mediated by a cascade of clip domain serine proteinases. In this study, a cDNA encoding a prophenoloxidase activating enzyme-III from the giant freshwater prawn Macrobrachium rosenbergii, designated as MrProAE-III, was identified and characterized. The full-length cDNA contains an open reading frame of 1110 base pair (bp) encoding a predicted protein of 370 amino acids including an 22 amino acid signal peptide. The MrProAE-III protein exhibits a characteristic sequence structure of a long serine proteases-trypsin domain and an N- and C-terminal serine proteases-trypsin family histidine active sites, respectively, which together are the characteristics of the clip-serin proteases. Sequence analysis showed that MrProAE-III exhibited the highest amino acid sequence similarity (63%) to a ProAE-III from Atlantic blue crab, Callinectes sapidus. MrProAE-III mRNA and enzyme activity of MrProAE-III were detectable in all examined tissues, including hepatopancreas, hemocytes, pleopods, walking legs, eye stalk, gill, stomach, intestine, brain and muscle with the highest level of both in hepatopancreas. This is regulated after systemic infectious hypodermal and hematopoietic necrosis virus infection supporting that it is an immune-responsive gene. These results indicate that MrProAE-III functions in the proPO system and is an important component in the prawn immune system.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Centre for Biotechnology in Agriculture Research, Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
435
|
Abstract
Spiny lobsters have few reported pathogens, parasites and symbionts. However, they do have a diverse fauna comprised of a pathogenic virus, several bacteria, protozoans, helminths and even symbiotic crustaceans. A few idiopathic syndromes have also been reported, but these appear correlated with lobsters held in poor conditions. Fungal and bacterial pathogens present significant threats for rearing spiny lobsters in aquaculture settings, but only one pathogen, Panulirus argus virus 1, is thought to have damaged a fishery for a spiny lobster. No doubt others will emerge as lobsters are brought into aquaculture setting and as fishing pressure intensifies with stocks become more susceptible to anthropogenic stressors.
Collapse
Affiliation(s)
- J D Shields
- Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, The College of William & Mary, Gloucester Point, VA 23062, USA.
| |
Collapse
|
436
|
Shenoy RT, Thangamani S, Velazquez-Campoy A, Ho B, Ding JL, Sivaraman J. Structural basis for dual-inhibition mechanism of a non-classical Kazal-type serine protease inhibitor from horseshoe crab in complex with subtilisin. PLoS One 2011; 6:e18838. [PMID: 21541315 PMCID: PMC3082530 DOI: 10.1371/journal.pone.0018838] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 03/21/2011] [Indexed: 12/03/2022] Open
Abstract
Serine proteases play a crucial role in host-pathogen interactions. In the innate immune system of invertebrates, multi-domain protease inhibitors are important for the regulation of host-pathogen interactions and antimicrobial activities. Serine protease inhibitors, 9.3-kDa CrSPI isoforms 1 and 2, have been identified from the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. The CrSPIs were biochemically active, especially CrSPI-1, which potently inhibited subtilisin (Ki = 1.43 nM). CrSPI has been grouped with the non-classical Kazal-type inhibitors due to its unusual cysteine distribution. Here we report the crystal structure of CrSPI-1 in complex with subtilisin at 2.6 Å resolution and the results of biophysical interaction studies. The CrSPI-1 molecule has two domains arranged in an extended conformation. These two domains act as heads that independently interact with two separate subtilisin molecules, resulting in the inhibition of subtilisin activity at a ratio of 1:2 (inhibitor to protease). Each subtilisin molecule interacts with the reactive site loop from each domain of CrSPI-1 through a standard canonical binding mode and forms a single ternary complex. In addition, we propose the substrate preferences of each domain of CrSPI-1. Domain 2 is specific towards the bacterial protease subtilisin, while domain 1 is likely to interact with the host protease, Furin. Elucidation of the structure of the CrSPI-1: subtilisin (1∶2) ternary complex increases our understanding of host-pathogen interactions in the innate immune system at the molecular level and provides new strategies for immunomodulation.
Collapse
Affiliation(s)
- Rajesh T. Shenoy
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Saravanan Thangamani
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Fundacion ARAID, Diputacion General de Aragon, Zaragoza, Spain
| | - Bow Ho
- Department of Microbiology, National University of Singapore, Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (JS); (JLD)
| | - J. Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (JS); (JLD)
| |
Collapse
|
437
|
Chevalier F, Herbinière-Gaboreau J, Bertaux J, Raimond M, Morel F, Bouchon D, Grève P, Braquart-Varnier C. The immune cellular effectors of terrestrial isopod Armadillidium vulgare: meeting with their invaders, Wolbachia. PLoS One 2011; 6:e18531. [PMID: 21533137 PMCID: PMC3080368 DOI: 10.1371/journal.pone.0018531] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 03/10/2011] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Most of crustacean immune responses are well described for the aquatic forms whereas almost nothing is known for the isopods that evolved a terrestrial lifestyle. The latter are also infected at a high prevalence with Wolbachia, an endosymbiotic bacterium which affects the host immune system, possibly to improve its transmission. In contrast with insect models, the isopod Armadillidium vulgare is known to harbor Wolbachia inside the haemocytes. METHODOLOGY/PRINCIPAL FINDINGS In A. vulgare we characterized three haemocyte types (TEM, flow cytometry): the hyaline and semi-granular haemocytes were phagocytes, while semi-granular and granular haemocytes performed encapsulation. They were produced in the haematopoietic organs, from central stem cells, maturing as they moved toward the edge (TEM). In infected individuals, live Wolbachia (FISH) colonized 38% of the haemocytes but with low, variable densities (6.45±0.46 Wolbachia on average). So far they were not found in hyaline haemocytes (TEM). The haematopoietic organs contained 7.6±0.7×10(3)Wolbachia, both in stem cells and differentiating cells (FISH). While infected and uninfected one-year-old individuals had the same haemocyte density, in infected animals the proportion of granular haemocytes in particular decreased by one third (flow cytometry, Pearson's test = 12 822.98, df = 2, p<0.001). CONCLUSIONS/SIGNIFICANCE The characteristics of the isopod immune system fell within the range of those known from aquatic crustaceans. The colonization of the haemocytes by Wolbachia seemed to stand from the haematopoietic organs, which may act as a reservoir to discharge Wolbachia in the haemolymph, a known route for horizontal transfer. Wolbachia infection did not affect the haemocyte density, but the quantity of granular haemocytes decreased by one third. This may account for the reduced prophenoloxidase activity observed previously in these animals.
Collapse
Affiliation(s)
- Frédéric Chevalier
- Université de Poitiers, Laboratoire Ecologie, Evolution, Symbiose, UMR CNRS 6556, Poitiers, France
| | | | - Joanne Bertaux
- Université de Poitiers, Laboratoire Ecologie, Evolution, Symbiose, UMR CNRS 6556, Poitiers, France
| | - Maryline Raimond
- Université de Poitiers, Laboratoire Ecologie, Evolution, Symbiose, UMR CNRS 6556, Poitiers, France
| | - Franck Morel
- Université de Poitiers, Laboratoire Inflammation, Tissus Epitheliaux et Cytokines, EA 4331, Poitiers, France
| | - Didier Bouchon
- Université de Poitiers, Laboratoire Ecologie, Evolution, Symbiose, UMR CNRS 6556, Poitiers, France
| | - Pierre Grève
- Université de Poitiers, Laboratoire Ecologie, Evolution, Symbiose, UMR CNRS 6556, Poitiers, France
| | | |
Collapse
|
438
|
Dittmer J, Koehler AV, Richard FJ, Poulin R, Sicard M. Variation of parasite load and immune parameters in two species of New Zealand shore crabs. Parasitol Res 2011; 109:759-67. [PMID: 21400115 DOI: 10.1007/s00436-011-2319-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/23/2011] [Indexed: 11/28/2022]
Abstract
While parasites are likely to encounter several potential intermediate hosts in natural communities, a parasite's actual range of compatible hosts is limited by numerous biological factors ranging from behaviour to immunology. In crustaceans, two major components of immunity are haemocytes and the prophenoloxidase system involved in the melanisation of foreign particles. Here, we analysed metazoan parasite prevalence and loads in the two sympatric crab species Hemigrapsus crenulatus and Macrophthalmus hirtipes at two sites. In parallel, we analysed the variation in haemocyte concentration and amount of circulating phenoloxidase (PO) in the haemolymph of the same individuals in an attempt to (a) explain differences in parasite prevalence and loads in the two species at two sites and (b) assess the impact of parasites on these immune parameters. M. hirtipes harboured more parasites but also exhibited higher haemocyte concentrations than H. crenulatus independent of the study site. Thus, higher investment in haemocyte production for M. hirtipes does not seem to result in higher resistance to parasites. Analyses of variation in immune parameters for the two crab species between the two sites that differed in parasite prevalence showed common trends. (a) In general, haemocyte concentrations were higher at the site experiencing higher parasitic pressure while circulating PO activity was lower and (b) haemocyte concentrations were influenced by microphallid trematode metacercariae in individuals from the site with higher parasitic pressure. We suggest that the higher haemocyte concentrations observed in both crab species exposed to higher parasitic pressure may represent an adaptive response to the impact of parasites on this immune parameter.
Collapse
Affiliation(s)
- Jessica Dittmer
- Laboratoire Ecologie, Evolution, Symbiose, UMR CNRS 6556, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers, France.
| | | | | | | | | |
Collapse
|
439
|
Zhang XW, Wang XW, Sun C, Zhao XF, Wang JX. C-type lectin from red swamp crayfish Procambarus clarkii participates in cellular immune response. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2011; 76:168-184. [PMID: 21322006 DOI: 10.1002/arch.20416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Lectins are potential immune recognition proteins. In this study, a novel C-type lectin (Pc-Lec1) is reported in freshwater crayfish Procambarus clarkii. Pc-Lec1 encodes a protein of 163 amino acids with a putative signal peptide and a single carbohydrate recognition domain. It was constitutively expressed in various tissues of a normal crayfish, especially in the hepatopancreas and gills. Expressions of Pc-Lec1 were up-regulated in the hepatopancreas and gills of crayfish challenged with Vibrio anguillarum, Staphylococcus aureus, or the white spot syndrome virus. Recombinant mature Pc-Lec1 bound bacteria and polysaccharides (peptidoglycan, lipoteichoic acid, and lipopolysaccharide) but did not agglutinate bacteria. Pc-Lec1 enhanced hemocyte encapsulation of the sepharose beads in vitro, and the blocking of beads by a polyclonal antibody inhibited encapsulation. Pc-Lec1 promoted clearance of V. anguillarum in vivo. These results suggest that Pc-Lec1 is a pattern recognition receptor and participates in cellular immune response. Pc-Lec1 performs its function as an opsonin by enhancing the encapsulation or clearance of pathogenic bacteria.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | | | | | | | | |
Collapse
|
440
|
Alves CL, Araujo RN, Gontijo NF, Pereira MH. Importance and physiological effects of hemolymphagy in triatomines (Hemiptera: Reduviidae). JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:372-81. [PMID: 21485376 DOI: 10.1603/me10151] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Triatomines are hematophagous insects and the vectors for Trypanosoma cruzi in the Americas. Although their preferred meal is blood from vertebrate hosts, unfed triatomine nymphs are often seen feeding on different arthropod species. Triatomine saliva has a wide range of activities that aid the hematophagic process. However, nothing is known about its role during hemolymphagy. In the current study, we reproduced hemolymphagy under laboratory conditions and evaluated the influence of hemolymphagy on the survival of Triatoma infestans nymphs. The effects of saliva on the activation of the prophenoloxidase cascade in the invertebrate host and the influence of the saliva on the motility of the bugs and contractions of the dorsal vessels were assessed. Hemolymphagy prolonged the survival rate of T. infestans first instars from 60 to >120 d compared with unfed nymphs. The saliva from T. infestans caused a 50% reduction in the amplitude and frequency of the dorsal vessel contractions of adult Rhodnius prolixus and induced paralysis for >10 min when the saliva was injected into second instars. T. infestans saliva was able to inhibit the activation of the prophenoloxidase cascade from a R. prolixus hemolymph, but had no effect on the phenoloxidase activity after the cascade was activated. The paralyzing molecule in the saliva was <5 kDa and probably had no proteic or lipidic characteristics. These results suggest that triatomine saliva may play an important role during hemolymphagy by inducing paralysis and suppressing immune responses in the invertebrate host. The importance of hemolymphagy for the survival of nymphs in periods when vertebrate blood is scarce is also discussed.
Collapse
Affiliation(s)
- Ceres L Alves
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Bloco I4, Sala 177, Av. Antônio Carlos 6627, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
441
|
Yang J, Wang L, Zhang H, Qiu L, Wang H, Song L. C-type lectin in Chlamys farreri (CfLec-1) mediating immune recognition and opsonization. PLoS One 2011; 6:e17089. [PMID: 21347232 PMCID: PMC3039652 DOI: 10.1371/journal.pone.0017089] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 01/17/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND C-type lectins are a superfamily of Ca(2+) dependent carbohydrate-recognition proteins that play significant diverse roles in nonself-recognition and clearance of invaders. Though they are well characterized in vertebrates, the study of the potential function and mechanism of C-type lectins in invertebrate immunity is still in its infancy. METHODOLOGY A C-type lectin (CfLec-1) from scallop Chlamys farreri, a dominant cultured mollusk species in China, was selected to investigate its mRNA expression, localization and the possible functions in innate immunity in the present study. After scallop was stimulated by three typical PAMPs, the mRNA expression of CfLec-1 in hemocytes was poles apart. It was significantly up-regulated (p<0.01) after scallops were stimulated by LPS or β-glucan, but significantly down-regulated (p<0.01) after PGN stimulation. The binding ability of recombinant CfLec-1 (designated as rCfLec-1) towards eight PAMPs was investigated subsequently by PAMPs microarray, which revealed rCfLec-1 could bind LPS, PGN and mannan in vitro, indicating CfLec-1 served as a PRR involved in the pathogen recognition. Immunofluorescence assay with polyclonal antibody specific for CfLec-1 revealed that CfLec-1 was mainly located in the mantle and gill of the scallop. CfLec-1 could bind to the surface of scallop hemocytes and recruited hemocytes to enhance their encapsulation in vitro, and this process could be specifically blocked by anti-rCfLec-1 antibody. Meanwhile, rCfLec-1 could also enhance the phagocytic activity of scallop hemocytes against Escherichia coli. CONCLUSIONS The results clearly suggested that CfLec-1 in C. farreri not only served as a PRR involved in the PAMPs recognition, but also functioned as an opsonin participating in the clearance of invaders. It is therefore suspected that CfLec-1 could be an attachment-molecule to nonself-agents acting as an alternative to immunoglobulin in vertebrates.
Collapse
Affiliation(s)
- Jialong Yang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Lingling Wang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Limei Qiu
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Hao Wang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linsheng Song
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail:
| |
Collapse
|
442
|
Global analysis of the transcriptional response of whitefly to tomato yellow leaf curl China virus reveals the relationship of coevolved adaptations. J Virol 2011; 85:3330-40. [PMID: 21270146 DOI: 10.1128/jvi.02507-10] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The begomoviruses are the largest and most economically important group of plant viruses transmitted exclusively by the whitefly Bemisia tabaci in a circulative, persistent manner. The circulation of the viruses within the insect vectors involves complex interactions between virus and vector components; however, the molecular mechanisms of these interactions remain largely unknown. Here we investigated the transcriptional response of the invasive B. tabaci Middle East-Asia Minor 1 species to Tomato yellow leaf curl China virus (TYLCCNV) using Illumina sequencing technology. Results showed that 1,606 genes involved in 157 biochemical pathways were differentially expressed in the viruliferous whiteflies. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that TYLCCNV can perturb the cell cycle and primary metabolism in the whitefly, which explains the negative effect of this virus on the longevity and fecundity of B. tabaci. Our data also demonstrated that TYLCCNV can activate whitefly immune responses, such as autophagy and antimicrobial peptide production, which might lead to a gradual decrease of viral particles within the body of the viruliferous whitefly. Furthermore, PCR results showed that TYLCCNV can invade the ovary and fat body tissues of the whitefly, and Lysotracker and Western blot analyses revealed that the invasion of TYLCCNV induced autophagy in both the ovary and fat body tissues. Surprisingly, TYLCCNV also suppressed the whitefly immune responses by downregulating the expression of genes involved in Toll-like signaling and mitogen-activated protein kinase (MAPK) pathways. Taken together, these results reveal the relationship of coevolved adaptations between begomoviruses and whiteflies and will provide a road map for future investigations into the complex interactions between plant viruses and their insect vectors.
Collapse
|
443
|
Charoensapsri W, Amparyup P, Hirono I, Aoki T, Tassanakajon A. PmPPAE2, a new class of crustacean prophenoloxidase (proPO)-activating enzyme and its role in PO activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:115-124. [PMID: 20837056 DOI: 10.1016/j.dci.2010.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/02/2010] [Accepted: 09/02/2010] [Indexed: 05/29/2023]
Abstract
The prophenoloxidase (proPO) activating system plays an important role in the defense against microbial invasion in invertebrates. In the present study, we report a second proPO-activating enzyme (designated PmPPAE2) from the hemocytes of the black tiger shrimp, Penaeus monodon. PmPPAE2 contained the structural features of the clip domain serine proteinase family and exhibited 51% amino acid sequence similarity to the insect Manduca sexta PAP-1. Amino acid sequence alignment with the available arthropod PPAE sequences demonstrated that PmPPAE2 is a new class of crustacean PPAE. Transcript expression analysis revealed that PmPPAE2 transcripts were mainly expressed in hemocytes. Double-stranded RNA-mediated suppression of PmPPAE2 transcript levels resulted in a significant decrease in the total hemolymph PO activity (41%) and also increased the shrimp's susceptibility to Vibrio harveyi infection. Genomic organization analysis revealed that PmPPAE1 and PmPPAE2 are encoded by different genomic loci. The PmPPAE1 gene consists of ten exons and nine introns, whilst PmPPAE2 comprises of eight exons interrupted by seven introns. Analysis of the larval developmental stage expression of the four key genes in the shrimp proPO system (PmPPAE1, PmPPAE2, PmproPO1 and PmproPO2) revealed that PmPPAE1 and PmproPO2 transcripts were expressed in all larval stages (nauplius, protozoea, mysis and post-larvae), whilst PmPPAE2 and PmproPO1 transcripts were mainly presented in the late larval developmental stages (mysis and post-larvae). These results suggest that the PmPPAE2 functions as a shrimp PPAE and possibly mediates the activation of PmproPO1.
Collapse
Affiliation(s)
- Walaiporn Charoensapsri
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | | | | | | | | |
Collapse
|
444
|
Tian C, Wang L, Ye G, Zhu S. Inhibition of melanization by a Nasonia defensin-like peptide: implications for host immune suppression. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1857-1862. [PMID: 20708012 DOI: 10.1016/j.jinsphys.2010.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 07/28/2010] [Accepted: 08/04/2010] [Indexed: 05/26/2023]
Abstract
The parasitic wasp Nasonia vitripennis suppresses host immune mechanisms that include melanization reactions. Melanization is an important immune response of hosts induced by wasp infection and thus its inhibition represents a successful strategy for parasitism. However, the molecular basis associated with such inhibition is largely unknown in N. vitripennis. Here, we report recombinant expression, structural and functional characterization of a Nasonia-derived defensin-like peptide (called nasonin-3) whose recombinant product exerts inhibitory effect on host melanization. The possible role of nasonin-3 in immune suppression is also discussed.
Collapse
Affiliation(s)
- Caihuan Tian
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | |
Collapse
|
445
|
Andrade GS, Serrão JE, Zanuncio JC, Zanuncio TV, Leite GLD, Polanczyk RA. Immunity of an alternative host can be overcome by higher densities of its parasitoids Palmistichus elaeisis and Trichospilus diatraeae. PLoS One 2010; 5:e13231. [PMID: 20975929 PMCID: PMC2958748 DOI: 10.1371/journal.pone.0013231] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/11/2010] [Indexed: 11/18/2022] Open
Abstract
Interactions of the parasitoids Palmistichus elaeisis Delvare & LaSalle and Trichospilus diatraeae Cherian & Margabandhu (Hymenoptera: Eulophidae) with its alternative host Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae) affect the success or failure of the mass production of these parasitoids for use in integrated pest management programs. The aim of this study was to evaluate changes in the cellular defense and encapsulation ability of A. gemmatalis pupae against P. elaeisis or T. diatraeae in adult parasitoid densities of 1, 3, 5, 7, 9, 11 or 13 parasitoids/pupae. We evaluated the total quantity of circulating hemocytes and the encapsulation rate versus density. Increasing parasitoid density reduced the total number of hemocytes in the hemolymph and the encapsulation rate by parasitized pupae. Furthermore, densities of P. elaeisis above 5 parasitoids/pupae caused higher reduction in total hemocyte numbers. The encapsulation rate fell with increasing parasitoid density. However, parasitic invasion by both species induced generally similar responses. The reduction in defensive capacity of A. gemmatalis is related to the adjustment of the density of these parasitoids to their development in this host. Thus, the role of the density of P. elaeisis or T. diatraeae by pupa is induced suppression of cellular defense and encapsulation of the host, even without them possesses a co-evolutionary history. Furthermore, these findings can predict the success of P. elaeisis and T. diatraeae in the control of insect pests through the use of immunology as a tool for evaluation of natural enemies.
Collapse
Affiliation(s)
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - José Cola Zanuncio
- Departamento de Biologia Animal, BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
- * E-mail:
| | | | | | - Ricardo Antonio Polanczyk
- Departamento de Proteção de Plantas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Universidade do Estado de São Paulo, São Paulo, Brazil
| |
Collapse
|
446
|
Rungrassamee W, Leelatanawit R, Jiravanichpaisal P, Klinbunga S, Karoonuthaisiri N. Expression and distribution of three heat shock protein genes under heat shock stress and under exposure to Vibrio harveyi in Penaeus monodon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1082-1089. [PMID: 20561967 DOI: 10.1016/j.dci.2010.05.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/24/2010] [Accepted: 05/24/2010] [Indexed: 05/27/2023]
Abstract
A sudden increase in temperature results in heat shock stress of the cultured shrimp. To cope with the stress, shrimp has to overcome by triggering a response known as heat shock response. To understand the heat shock response in the black tiger shrimp (Penaeus monodon), we examined expression patterns and distribution of three heat shock protein (hsp) genes in P. monodon juveniles. The expression levels of hsp21, hsp70 and hsp90 were determined by quantitative real-time PCR in nine tissues (gill, heart, hepatopancreas, stomach, intestine, eyestalk, pleopod, thoracic ganglia and hemocyte) under untreated and heat shock conditions. Under untreated condition, all three hsp genes were differentially expressed in all examined tissues where the hsp70 transcript showed the highest basal level. Under heat shock condition, only hsp90 was inducible in all nine tissues when comparing to its untreated level. The time-course induction experiment in gill and hepatopancreas revealed that the transcriptional levels of hsp21, hsp70 and hsp90 were inducible under the heat shock condition and in time-dependent manner. To determine the response of the hsp genes upon bacterial exposure, we further determined transcript levels of the hsp genes in gill of P. monodon after Vibrio harveyi injection. The expression levels of hsp70 and hsp90 were significantly increased after a 3-h exposure to V. harveyi where the hsp21 transcript was induced later after a 24-h exposure. This evidence suggests for putative roles and involvement of the hsp genes as a part of immunity response against V. harveyi in P. monodon.
Collapse
Affiliation(s)
- Wanilada Rungrassamee
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathumthani 12120, Thailand.
| | | | | | | | | |
Collapse
|
447
|
Donpudsa S, Ponprateep S, Prapavorarat A, Visetnan S, Tassanakajon A, Rimphanitchayakit V. A Kazal-type serine proteinase inhibitor SPIPm2 from the black tiger shrimp Penaeus monodon is involved in antiviral responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1101-1108. [PMID: 20540960 DOI: 10.1016/j.dci.2010.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/01/2010] [Accepted: 06/01/2010] [Indexed: 05/29/2023]
Abstract
A five-domain Kazal-type serine proteinase inhibitor, SPIPm2, from Penaeus monodon has recently been implicated in antiviral responses for it is up-regulated upon viral infection and needs further studies. The SPIPm2 genomic gene was composed of seven exons and six introns. The genomic DNA segments coding for each Kazal domain were separated by introns of variable lengths supporting the hypothesis of gene duplication in the Kazal-type gene family. RT-PCR and Western blot analysis revealed that the SPIPm2 transcript and its five-domain protein product were expressed mainly in the hemocytes and less in gill, heart and antennal gland. Upon white spot syndrome virus (WSSV) infection, the SPIPm2 was only detected in the hemocytes and plasma. Immunocytochemical study of P. monodon hemocytes showed that the percentage of SPIPm2-producing hemocytes was reduced by about half after WSSV infection. Quantitative RT-PCR revealed further that the SPIPm2 was up-regulated early in the hemocytes of WSSV-infected shrimp and gradually reduced as the infection progressed. Injection of the recombinant SPIPm2 (rSPIPm2) prior to WSSV injection resulted in a significant inhibition of WSSV replication. The rSPIPm2 injection also prolonged the mortality rate of WSSV-infected shrimp. Therefore, the SPIPm2 was involved in the innate immunity against WSSV infection in shrimp.
Collapse
Affiliation(s)
- Suchao Donpudsa
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | | | | | | | | | | |
Collapse
|
448
|
Mak P, Zdybicka-Barabas A, Cytryńska M. A different repertoire of Galleria mellonella antimicrobial peptides in larvae challenged with bacteria and fungi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1129-1136. [PMID: 20558200 DOI: 10.1016/j.dci.2010.06.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 05/29/2023]
Abstract
To date, functioning of insect humoral immune response is especially well described in Diptera. The mechanisms of pathogen recognition, activation of signaling pathways and regulation of antimicrobial defense peptide expression are relatively well known. The present paper demonstrates evidence that the immune system of the Lepidoptera moth, Galleria mellonella, is also able to distinguish between different classes of microorganisms and responds to the invading pathogen accordingly. G. mellonella larvae were challenged with Gram-negative and Gram-positive bacteria as well as with yeast and filamentous fungus cells. Subsequently, 24, 48 and 72 h after immunization, the concentrations of lysozyme and six defense peptides were determined in the hemolymph by the HPLC technique. The compounds studied demonstrated variability both in the kinetics of the increase as well as in the concentrations reached. The Gram-negative bacterium and filamentous fungus were particularly effective immunogens, especially affecting the levels of lysozyme, Galleria defensin, proline-rich peptide 2 and cecropin D-like peptide.
Collapse
Affiliation(s)
- Pawel Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow, Poland
| | | | | |
Collapse
|
449
|
Oweson C, Li C, Söderhäll I, Hernroth B. Effects of manganese and hypoxia on coelomocyte renewal in the echinoderm, Asterias rubens (L.). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 100:84-90. [PMID: 20678812 DOI: 10.1016/j.aquatox.2010.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 05/29/2023]
Abstract
Manganese (Mn) is a naturally abundant metal and particularly so in soft-bottom oceanic sediments where it generally occurs bound in a four-valent colloidal state as MnO2. When hypoxic conditions occur in bottom waters, the metal reduces to the bioavailable ion Mn2+ and can reach concentrations known to have immunotoxic effects in the crustacean Nephrops norvegicus, reducing numbers of circulating haemocytes as a consequence. However, we have previously shown that Mn seems to have a contrasting effect on the echinoderm Asterias rubens in which it triggers the proliferation of haematopoietic cells and increases coelomocyte numbers. Since elevated Mn levels mostly co-occur with hypoxia in nature, here we investigated whether hypoxia has a negative effect on haematopoiesis. Proliferation and differentiation of coelomocytes and cells in the coelomic epithelium of A. rubens were compared after 3 days of exposure to realistic levels of Mn, hypoxia or a combination of these two parameters. We can confirm that Mn elevated numbers of coelomocytes and increased proliferation of epithelial cells, but hypoxia did not affect these levels. However, hypoxia did affect differentiation of these cells as judged by investigating the expression of a Runt domain transcription factor, which was also cloned and sequenced. Through comparative quantification using a real time PCR technique, we found that exposure to hypoxia had a clearly stimulating effect on mRNA expression of Runt gene in both coelomocytes and epithelial cells. These results indicate that during hypoxic conditions the composition of coelomocyte sub-populations changed.
Collapse
Affiliation(s)
- Carolina Oweson
- Department of Marine Ecology, University of Gothenburg, Kristineberg 566, SE-45034 Fiskebäckskil, Sweden
| | | | | | | |
Collapse
|
450
|
McNeil J, Cox-Foster D, Slavicek J, Hoover K. Contributions of immune responses to developmental resistance in Lymantria dispar challenged with baculovirus. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1167-1177. [PMID: 20350551 DOI: 10.1016/j.jinsphys.2010.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 05/29/2023]
Abstract
How the innate immune system functions to defend insects from viruses is an emerging field of study. We examined the impact of melanized encapsulation, a component of innate immunity that integrates both cellular and humoral immune responses, on the success of the baculovirus Lymantria dispar multiple nucleocapsid nucleopolyhedrovirus (LdMNPV) in its host L. dispar. L. dispar exhibits midgut-based and systemic, age-dependent resistance to LdMNPV within the fourth instar; the LD(50) in newly molted larvae is approximately 18-fold lower than in mid-instar larvae (48-72h post-molt). We examined the role of the immune system in systemic resistance by measuring differences in hemocyte immunoresponsiveness to foreign targets, hemolymph phenoloxidase (PO) and FAD-glucose dehydrogenase (GLD) activities, and melanization of infected tissue culture cells. Mid-instar larvae showed a higher degree of hemocyte immunoresponsiveness, greater potential PO activity (pro-PO) at the time the virus is escaping the midgut to enter the hemocoel (72h post-inoculation), greater GLD activity, and more targeted melanization of infected tissue, which correlate with reduced viral success in the host. These findings support the hypothesis that innate immune responses can play an important role in anti-viral defenses against baculoviruses and that the success of these defenses can be age-dependent.
Collapse
Affiliation(s)
- James McNeil
- Department of Entomology, The Pennsylvania State University, 501 ASI, University Park, PA 16802, USA
| | | | | | | |
Collapse
|