401
|
Absinta M, Ha SK, Nair G, Sati P, Luciano NJ, Palisoc M, Louveau A, Zaghloul KA, Pittaluga S, Kipnis J, Reich DS. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. eLife 2017; 6:e29738. [PMID: 28971799 PMCID: PMC5626482 DOI: 10.7554/elife.29738] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/01/2017] [Indexed: 01/20/2023] Open
Abstract
Here, we report the existence of meningeal lymphatic vessels in human and nonhuman primates (common marmoset monkeys) and the feasibility of noninvasively imaging and mapping them in vivo with high-resolution, clinical MRI. On T2-FLAIR and T1-weighted black-blood imaging, lymphatic vessels enhance with gadobutrol, a gadolinium-based contrast agent with high propensity to extravasate across a permeable capillary endothelial barrier, but not with gadofosveset, a blood-pool contrast agent. The topography of these vessels, running alongside dural venous sinuses, recapitulates the meningeal lymphatic system of rodents. In primates, meningeal lymphatics display a typical panel of lymphatic endothelial markers by immunohistochemistry. This discovery holds promise for better understanding the normal physiology of lymphatic drainage from the central nervous system and potential aberrations in neurological diseases.
Collapse
Affiliation(s)
- Martina Absinta
- Translational Neuroradiology SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Seung-Kwon Ha
- Translational Neuroradiology SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Govind Nair
- Translational Neuroradiology SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Pascal Sati
- Translational Neuroradiology SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Nicholas J Luciano
- Translational Neuroradiology SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Maryknoll Palisoc
- Hematopathology Section, Laboratory of PathologyNational Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Antoine Louveau
- Center for Brain Immunology and Glia, Department of Neuroscience, School of MedicineUniversity of VirginiaCharlottesvilleUnited States
| | - Kareem A Zaghloul
- Surgical Neurology BranchNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Stefania Pittaluga
- Hematopathology Section, Laboratory of PathologyNational Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, School of MedicineUniversity of VirginiaCharlottesvilleUnited States
| | - Daniel S Reich
- Translational Neuroradiology SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
402
|
Absinta M, Ha SK, Nair G, Sati P, Luciano NJ, Palisoc M, Louveau A, Zaghloul KA, Pittaluga S, Kipnis J, Reich DS. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. eLife 2017. [PMID: 28971799 DOI: 10.75554/elife.29738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Here, we report the existence of meningeal lymphatic vessels in human and nonhuman primates (common marmoset monkeys) and the feasibility of noninvasively imaging and mapping them in vivo with high-resolution, clinical MRI. On T2-FLAIR and T1-weighted black-blood imaging, lymphatic vessels enhance with gadobutrol, a gadolinium-based contrast agent with high propensity to extravasate across a permeable capillary endothelial barrier, but not with gadofosveset, a blood-pool contrast agent. The topography of these vessels, running alongside dural venous sinuses, recapitulates the meningeal lymphatic system of rodents. In primates, meningeal lymphatics display a typical panel of lymphatic endothelial markers by immunohistochemistry. This discovery holds promise for better understanding the normal physiology of lymphatic drainage from the central nervous system and potential aberrations in neurological diseases.
Collapse
Affiliation(s)
- Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Seung-Kwon Ha
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Govind Nair
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Nicholas J Luciano
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Maryknoll Palisoc
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Antoine Louveau
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, United States
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Stefania Pittaluga
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, United States
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
403
|
Negi N, Das BK. CNS: Not an immunoprivilaged site anymore but a virtual secondary lymphoid organ. Int Rev Immunol 2017; 37:57-68. [DOI: 10.1080/08830185.2017.1357719] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Neema Negi
- Department of Molecular Biology, Umea University, Umea, Sweden
| | - Bimal K. Das
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar (West), New Delhi, India
| |
Collapse
|
404
|
Fidyk W, Mitrus I, Ciomber A, Smagur A, Chwieduk A, Głowala-Kosińska M, Giebel S. Evaluation of proinflammatory and immunosuppressive cytokines in blood and bone marrow of healthy hematopoietic stem cell donors. Cytokine 2017; 102:181-186. [PMID: 28927758 DOI: 10.1016/j.cyto.2017.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/17/2017] [Accepted: 09/02/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cytokine composition of bone marrow microenvironment in comparison to blood is poorly explored. The goal of this study was to investigate the levels of cytokines present in peripheral blood and bone marrow of healthy hematopoietic stem cells donors. The data obtained on this subject with addition to cytometric analysis can provide new insight into the hematopoietic stem cells microenvironment. METHODOLOGY Study consisted of cytokine concentration analysis performed by ELISA tests of peripheral blood of healthy peripheral blood stem cells donors and bone marrow of healthy bone marrow donors. Additionally we have tested the expression of CD47 and CD274 proteins on the surface of hematopoietic stem cells by the flow cytometry analysis. RESULTS The results has shown different composition of analyzed cytokines (IL-1 β, IL-2, IL-4, IL-6, IL-10, IL-17A, TGF-β1, IFN-γ and TNF-α) present in bone marrow and blood of stem cells donors. The hematopoietic stem cells in peripheral blood are subjected to higher levels of proinflammatory cytokines whilst the lower level of those cytokines in bone marrow with a very high level of TGF-β1 which possibly creates a more immunosuppressive environment. The IL-10 level was significantly higher in peripheral blood of PBSC donors after the administration of mobilizing factor (G-CSF). The percentage of CD47+HSCs was significantly higher in bone marrow compared to peripheral blood of mobilized donors.
Collapse
Affiliation(s)
- Wojciech Fidyk
- Department of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie Institute Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15 Street, Poland.
| | - Iwona Mitrus
- Department of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie Institute Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15 Street, Poland
| | - Agnieszka Ciomber
- Department of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie Institute Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15 Street, Poland
| | - Andrzej Smagur
- Department of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie Institute Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15 Street, Poland
| | - Agata Chwieduk
- Department of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie Institute Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15 Street, Poland
| | - Magdalena Głowala-Kosińska
- Department of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie Institute Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15 Street, Poland
| | - Sebastian Giebel
- Department of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie Institute Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15 Street, Poland
| |
Collapse
|
405
|
Sun BL, Wang LH, Yang T, Sun JY, Mao LL, Yang MF, Yuan H, Colvin RA, Yang XY. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases. Prog Neurobiol 2017; 163-164:118-143. [PMID: 28903061 DOI: 10.1016/j.pneurobio.2017.08.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/11/2017] [Accepted: 08/31/2017] [Indexed: 12/20/2022]
Abstract
The belief that the vertebrate brain functions normally without classical lymphatic drainage vessels has been held for many decades. On the contrary, new findings show that functional lymphatic drainage does exist in the brain. The brain lymphatic drainage system is composed of basement membrane-based perivascular pathway, a brain-wide glymphatic pathway, and cerebrospinal fluid (CSF) drainage routes including sinus-associated meningeal lymphatic vessels and olfactory/cervical lymphatic routes. The brain lymphatic systems function physiological as a route of drainage for interstitial fluid (ISF) from brain parenchyma to nearby lymph nodes. Brain lymphatic drainage helps maintain water and ion balance of the ISF, waste clearance, and reabsorption of macromolecular solutes. A second physiological function includes communication with the immune system modulating immune surveillance and responses of the brain. These physiological functions are influenced by aging, genetic phenotypes, sleep-wake cycle, and body posture. The impairment and dysfunction of the brain lymphatic system has crucial roles in age-related changes of brain function and the pathogenesis of neurovascular, neurodegenerative, and neuroinflammatory diseases, as well as brain injury and tumors. In this review, we summarize the key component elements (regions, cells, and water transporters) of the brain lymphatic system and their regulators as potential therapeutic targets in the treatment of neurologic diseases and their resulting complications. Finally, we highlight the clinical importance of ependymal route-based targeted gene therapy and intranasal drug administration in the brain by taking advantage of the unique role played by brain lymphatic pathways in the regulation of CSF flow and ISF/CSF exchange.
Collapse
Affiliation(s)
- Bao-Liang Sun
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China.
| | - Li-Hua Wang
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, China
| | - Tuo Yang
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jing-Yi Sun
- Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Gangwon 220-701, Republic of Korea
| | - Lei-Lei Mao
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China
| | - Ming-Feng Yang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China
| | - Hui Yuan
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China
| | - Robert A Colvin
- Department of Biological Sciences, Interdisciplinary Graduate Program in Molecular and Cellular Biology, Neuroscience Program, Ohio University, Athens, OH 45701, USA
| | - Xiao-Yi Yang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China.
| |
Collapse
|
406
|
Spadoni I, Fornasa G, Rescigno M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat Rev Immunol 2017; 17:761-773. [PMID: 28869253 DOI: 10.1038/nri.2017.100] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Immune privilege is a complex process that protects organs from immune-mediated attack and damage. It is accomplished by a series of cellular barriers that both control immune cell entry and promote the development of tolerogenic immune cells. In this Review, we describe the vascular endothelial and epithelial barriers in organs that are commonly considered to be immune privileged, such as the brain and the eye. We compare these classical barriers with barriers in the intestine, which share features with barriers of immune-privileged organs, such as the capacity to induce tolerance and to protect from external insults. We suggest that when intestinal barriers break down, disruption of other barriers at distant sites can ensue, and this may underlie the development of various neurological, metabolic and intestinal disorders.
Collapse
Affiliation(s)
- Ilaria Spadoni
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Giulia Fornasa
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy.,Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
407
|
Recognition of viral and self-antigens by T H 1 and T H 1/T H 17 central memory cells in patients with multiple sclerosis reveals distinct roles in immune surveillance and relapses. J Allergy Clin Immunol 2017; 140:797-808. [DOI: 10.1016/j.jaci.2016.11.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/18/2016] [Accepted: 11/10/2016] [Indexed: 11/18/2022]
|
408
|
Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest 2017; 127:3210-3219. [PMID: 28862640 PMCID: PMC5669566 DOI: 10.1172/jci90603] [Citation(s) in RCA: 397] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent discoveries of the glymphatic system and of meningeal lymphatic vessels have generated a lot of excitement, along with some degree of skepticism. Here, we summarize the state of the field and point out the gaps of knowledge that should be filled through further research. We discuss the glymphatic system as a system that allows CNS perfusion by the cerebrospinal fluid (CSF) and interstitial fluid (ISF). We also describe the recently characterized meningeal lymphatic vessels and their role in drainage of the brain ISF, CSF, CNS-derived molecules, and immune cells from the CNS and meninges to the peripheral (CNS-draining) lymph nodes. We speculate on the relationship between the two systems and their malfunction that may underlie some neurological diseases. Although much remains to be investigated, these new discoveries have changed our understanding of mechanisms underlying CNS immune privilege and CNS drainage. Future studies should explore the communications between the glymphatic system and meningeal lymphatics in CNS disorders and develop new therapeutic modalities targeting these systems.
Collapse
Affiliation(s)
- Antoine Louveau
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Benjamin A. Plog
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Salli Antila
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
- Center of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
409
|
Brain interference: Revisiting the role of IFNγ in the central nervous system. Prog Neurobiol 2017; 156:149-163. [DOI: 10.1016/j.pneurobio.2017.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 01/28/2023]
|
410
|
Abstract
PURPOSE OF REVIEW Tissue reservoirs of HIV may promote the persistent immunopathology responsible for non-AIDS morbidity and data support multifocal reactivation from tissues as the source of viral rebound during antiretroviral therapy (ART) interruption. The heterogeneity of tissue reservoirs and incomplete knowledge about their composition are obstacles to an HIV cure. RECENT FINDINGS In addition to the higher concentration of infected CD4 T cells found in both central lymphoid tissues and gut, specific subsets of CD4 T cells appear to play a disproportionate role in HIV persistence. Recently, a subset of central memory T cells enriched in lymph node germinal centers called T-follicular helper cells has been identified that expresses more viral RNA and occupies an anatomic niche inaccessible to cytotoxic T lymphocyte killing. Additional observations suggest that antiretroviral drug (ARV) concentrations may be lower in some tissues, raising the possibility for localized, low-level viral replication. Finally, some recent data implicate the persistence of infected, non-CD4 T-cell types in tissues during ART. SUMMARY The retention of infected cells in a wide variety of tissues, often with distinct viral and cellular characteristics, underscores the importance of studying tissue reservoirs in the development and assessment of cure strategies. Both inhibitory ARVs and latency-reversing drugs must reach these sites, and novel strategies may be needed to attack virus in cells as variable as T-follicular helper cells and macrophages.
Collapse
|
411
|
Abstract
Despite longstanding perceptions, robust innate and adaptive immune responses occur within the central nervous system (CNS) in response to infection and tissue damage. Although necessary to control infection, immune responses can lead to severe CNS pathology in the context of both viral infection and autoimmunity. Research into how the central nervous and immune systems communicate has accelerated over the past 20 years leading to a better understanding of pathways controlling immune activation and neuroinflammation that have guided the approval of new disease-modifying therapies to treat CNS immunopathology, particularly the inflammatory demyelinating disease multiple sclerosis. This article provides an introduction into the basic principles underlying immune responses within the CNS that developed from experimental animal models of both neurotropic virus infection and autoimmune T cell-mediated CNS demyelination.
Collapse
|
412
|
Herskind C, Wenz F, Giordano FA. Immunotherapy Combined with Large Fractions of Radiotherapy: Stereotactic Radiosurgery for Brain Metastases-Implications for Intraoperative Radiotherapy after Resection. Front Oncol 2017; 7:147. [PMID: 28791250 PMCID: PMC5522878 DOI: 10.3389/fonc.2017.00147] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Brain metastases (BM) affect approximately a third of all cancer patients with systemic disease. Treatment options include surgery, whole-brain radiotherapy, or stereotactic radiosurgery (SRS) while chemotherapy has only limited activity. In cases where patients undergo resection before irradiation, intraoperative radiotherapy (IORT) to the tumor bed may be an alternative modality, which would eliminate the repopulation of residual tumor cells between surgery and postoperative radiotherapy. Accumulating evidence has shown that high single doses of ionizing radiation can be highly efficient in eliciting a broad spectrum of local, regional, and systemic tumor-directed immune reactions. Furthermore, immune checkpoint blockade (ICB) has proven effective in treating antigenic BM and, thus, combining IORT with ICB might be a promising approach. However, it is not known if a low number of residual tumor cells in the tumor bed after resection is sufficient to act as an immunizing event opening the gate for ICB therapies in the brain. Because immunological data on tumor bed irradiation after resection are lacking, a rationale for combining IORT with ICB must be based on mechanistic insight from experimental models and clinical studies on unresected tumors. The purpose of the present review is to examine the mechanisms by which large radiation doses as applied in SRS and IORT enhance antitumor immune activity. Clinical studies on IORT for brain tumors, and on combined treatment of SRS and ICB for unresected BM, are used to assess the safety, efficacy, and immunogenicity of IORT plus ICB and to suggest an optimal treatment sequence.
Collapse
Affiliation(s)
- Carsten Herskind
- Medical Faculty Mannheim, Department of Radiation Oncology, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany.,Cellular and Molecular Radiation Oncology Laboratory, Medical Faculty Mannheim, Department of Radiation Oncology, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Wenz
- Medical Faculty Mannheim, Department of Radiation Oncology, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank A Giordano
- Medical Faculty Mannheim, Department of Radiation Oncology, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany.,Translational Radiation Oncology, Department of Radiation Oncology, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
413
|
Maternal Antiviral Immunoglobulin Accumulates in Neural Tissue of Neonates To Prevent HSV Neurological Disease. mBio 2017; 8:mBio.00678-17. [PMID: 28679745 PMCID: PMC5573671 DOI: 10.1128/mbio.00678-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
While antibody responses to neurovirulent pathogens are critical for clearance, the extent to which antibodies access the nervous system to ameliorate infection is poorly understood. In this study on herpes simplex virus 1 (HSV-1), we demonstrate that HSV-specific antibodies are present during HSV-1 latency in the nervous systems of both mice and humans. We show that antibody-secreting cells entered the trigeminal ganglion (TG), a key site of HSV infection, and persisted long after the establishment of latent infection. We also demonstrate the ability of passively administered IgG to enter the TG independently of infection, showing that the naive TG is accessible to antibodies. The translational implication of this finding is that human fetal neural tissue could contain HSV-specific maternally derived antibodies. Exploring this possibility, we observed HSV-specific IgG in HSV DNA-negative human fetal TG, suggesting passive transfer of maternal immunity into the prenatal nervous system. To further investigate the role of maternal antibodies in the neonatal nervous system, we established a murine model to demonstrate that maternal IgG can access and persist in neonatal TG. This maternal antibody not only prevented disseminated infection but also completely protected the neonate from neurological disease and death following HSV challenge. Maternal antibodies therefore have a potent protective role in the neonatal nervous system against HSV infection. These findings strongly support the concept that prevention of prenatal and neonatal neurotropic infections can be achieved through maternal immunization. Herpes simplex virus 1 is a common infection of the nervous system that causes devastating neonatal disease. Using mouse and human tissue, we discovered that antiviral antibodies accumulate in neural tissue after HSV-1 infection in adults. Similarly, these antibodies pass to the offspring during pregnancy. We found that antiviral maternal antibodies can readily access neural tissue of the fetus and neonate. These maternal antibodies then protect neonatal mice against HSV-1 neurological infection and death. These results underscore the previously unappreciated role of maternal antibodies in protecting fetal and newborn nervous systems against infection. These data suggest that maternal immunization would be efficacious at preventing fetal/neonatal neurological infections.
Collapse
|
414
|
Nisticò R, Salter E, Nicolas C, Feligioni M, Mango D, Bortolotto ZA, Gressens P, Collingridge GL, Peineau S. Synaptoimmunology - roles in health and disease. Mol Brain 2017. [PMID: 28637489 PMCID: PMC5480158 DOI: 10.1186/s13041-017-0308-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mounting evidence suggests that the nervous and immune systems are intricately linked. Many proteins first identified in the immune system have since been detected at synapses, playing different roles in normal and pathological situations. In addition, novel immunological functions are emerging for proteins typically expressed at synapses. Under normal conditions, release of inflammatory mediators generally represents an adaptive and regulated response of the brain to immune signals. On the other hand, when immune challenge becomes prolonged and/or uncontrolled, the consequent inflammatory response leads to maladaptive synaptic plasticity and brain disorders. In this review, we will first provide a summary of the cell signaling pathways in neurons and immune cells. We will then examine how immunological mechanisms might influence synaptic function, and in particular synaptic plasticity, in the healthy and pathological CNS. A better understanding of neuro-immune system interactions in brain circuitries relevant to neuropsychiatric and neurological disorders should provide specific biomarkers to measure the status of the neuroimmunological response and help design novel neuroimmune-targeted therapeutics.
Collapse
Affiliation(s)
- Robert Nisticò
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy. .,Pharmacology of Synaptic Disease Lab, European Brain Research Institute, 00143, Rome, Italy.
| | - Eric Salter
- Department of Physiology, University of Toronto, and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Celine Nicolas
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Marco Feligioni
- Pharmacology of Synaptic Disease Lab, European Brain Research Institute, 00143, Rome, Italy
| | - Dalila Mango
- Pharmacology of Synaptic Disease Lab, European Brain Research Institute, 00143, Rome, Italy
| | - Zuner A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Centre for the Developing Brain, King's College, St Thomas' Campus, London, UK
| | - Graham L Collingridge
- Department of Physiology, University of Toronto, and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Stephane Peineau
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK. .,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France. .,INSERM-ERi 24 (GRAP), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France.
| |
Collapse
|
415
|
Herz J, Filiano AJ, Wiltbank AT, Yogev N, Kipnis J. Myeloid Cells in the Central Nervous System. Immunity 2017; 46:943-956. [PMID: 28636961 PMCID: PMC5657250 DOI: 10.1016/j.immuni.2017.06.007] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/17/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
Abstract
The central nervous system (CNS) and its meningeal coverings accommodate a diverse myeloid compartment that includes parenchymal microglia and perivascular macrophages, as well as choroid plexus and meningeal macrophages, dendritic cells, and granulocytes. These myeloid populations enjoy an intimate relationship with the CNS, where they play an essential role in both health and disease. Although the importance of these cells is clearly recognized, their exact function in the CNS continues to be explored. Here, we review the subsets of myeloid cells that inhabit the parenchyma, meninges, and choroid plexus and discuss their roles in CNS homeostasis. We also discuss the role of these cells in various neurological pathologies, such as autoimmunity, mechanical injury, neurodegeneration, and infection. We highlight the neuroprotective nature of certain myeloid cells by emphasizing their therapeutic potential for the treatment of neurological conditions.
Collapse
Affiliation(s)
- Jasmin Herz
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Anthony J Filiano
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | - Ashtyn T Wiltbank
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Nir Yogev
- Gutenberg Research Fellowship Group of Neuroimmunology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Gutenberg Research Fellowship Group of Neuroimmunology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| |
Collapse
|
416
|
Schwartzbaum J, Wang M, Root E, Pietrzak M, Rempala GA, Huang RP, Johannesen TB, Grimsrud TK. A nested case-control study of 277 prediagnostic serum cytokines and glioma. PLoS One 2017; 12:e0178705. [PMID: 28594935 PMCID: PMC5464586 DOI: 10.1371/journal.pone.0178705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
Recent research shows bidirectional communication between the normal brain and the peripheral immune system. Glioma is a primary brain tumor characterized by systemic immunosuppression. To better understand gliomagenesis, we evaluated associations between 277 prediagnostic serum cytokines and glioma. We used glioma (n = 487) and matched control (n = 487) specimens from the Janus Serum Bank Cohort in Oslo, Norway. Conditional logistic regression allowed us to identify those cytokines that were individually associated with glioma. Next, we used heat maps to compare case to control Pearson correlation matrices of 12 cytokines modeled in an in silico study of the interaction between the microenvironment and the tumor. We did the same for case-control correlation matrices of lasso-selected cytokines and all 277 cytokines in the data set. Cytokines related to glioma risk (P ≤ .05) more than 10 years before diagnosis are sIL10RB, VEGF, beta-Catenin and CCL22. LIF was associated with decreased glioma risk within five years before glioma diagnosis (odds ratio (OR) = 0.47, 95% confidence interval (CI) = 0.23, 0.94). After adjustment for cytokines above, the previously observed interaction between IL4 and sIL4RA persisted (> 20 years before diagnosis, OR = 1.72, 95% CI = 1.20, 2.47). In addition, during this period, case correlations among 12 cytokines were weaker than were those among controls. This pattern was also observed among 30 lasso- selected cytokines and all 277 cytokines. We identified four cytokines and one interaction term that were independently related to glioma risk. We have documented prediagnostic changes in serum cytokine levels that may reflect the presence of a preclinical tumor.
Collapse
Affiliation(s)
- Judith Schwartzbaum
- Division of Epidemiology, College of Public Health, Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| | - Min Wang
- Mathematical Biosciences Institute, Ohio State University, Columbus, Ohio, United States of America
- Department of Biomedical Informatics, Ohio State University, Columbus, Ohio, United States of America
| | - Elisabeth Root
- Department of Geography, Ohio State University, Columbus, Ohio, United States of America
| | - Maciej Pietrzak
- Mathematical Biosciences Institute, Ohio State University, Columbus, Ohio, United States of America
- Division of Biostatistics, College of Public Health, Ohio State University, Columbus, Ohio, United States of America
| | - Grzegorz A. Rempala
- Mathematical Biosciences Institute, Ohio State University, Columbus, Ohio, United States of America
- Division of Biostatistics, College of Public Health, Ohio State University, Columbus, Ohio, United States of America
| | - Ruo-Pan Huang
- RayBiotech, Inc., Norcross, Georgia, United States of America
- RayBiotech, Inc. Guangzhou, China
| | | | - Tom K. Grimsrud
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| |
Collapse
|
417
|
Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, Itzkovitz S, Colonna M, Schwartz M, Amit I. A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease. Cell 2017; 169:1276-1290.e17. [PMID: 28602351 DOI: 10.1016/j.cell.2017.05.018] [Citation(s) in RCA: 2951] [Impact Index Per Article: 421.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/10/2017] [Accepted: 05/11/2017] [Indexed: 01/23/2023]
Abstract
Alzheimer's disease (AD) is a detrimental neurodegenerative disease with no effective treatments. Due to cellular heterogeneity, defining the roles of immune cell subsets in AD onset and progression has been challenging. Using transcriptional single-cell sorting, we comprehensively map all immune populations in wild-type and AD-transgenic (Tg-AD) mouse brains. We describe a novel microglia type associated with neurodegenerative diseases (DAM) and identify markers, spatial localization, and pathways associated with these cells. Immunohistochemical staining of mice and human brain slices shows DAM with intracellular/phagocytic Aβ particles. Single-cell analysis of DAM in Tg-AD and triggering receptor expressed on myeloid cells 2 (Trem2)-/- Tg-AD reveals that the DAM program is activated in a two-step process. Activation is initiated in a Trem2-independent manner that involves downregulation of microglia checkpoints, followed by activation of a Trem2-dependent program. This unique microglia-type has the potential to restrict neurodegeneration, which may have important implications for future treatment of AD and other neurodegenerative diseases. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Hadas Keren-Shaul
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amit Spinrad
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Assaf Weiner
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), and University Medical Center, Cancer Genomics Netherlands, 3584 CG Utrecht, the Netherlands.
| | - Orit Matcovitch-Natan
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Raz Dvir-Szternfeld
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tyler K Ulland
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kuti Baruch
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Lara-Astaiso
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Beata Toth
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
418
|
Immunotherapy and radiation in glioblastoma. J Neurooncol 2017; 134:531-539. [DOI: 10.1007/s11060-017-2413-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/03/2017] [Indexed: 02/06/2023]
|
419
|
Alves S, Churlaud G, Audrain M, Michaelsen-Preusse K, Fol R, Souchet B, Braudeau J, Korte M, Klatzmann D, Cartier N. Interleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer's disease mice. Brain 2017; 140:826-842. [PMID: 28003243 DOI: 10.1093/brain/aww330] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023] Open
Abstract
Interleukin-2 (IL-2)-deficient mice have cytoarchitectural hippocampal modifications and impaired learning and memory ability reminiscent of Alzheimer's disease. IL-2 stimulates regulatory T cells whose role is to control inflammation. As neuroinflammation contributes to neurodegeneration, we investigated IL-2 in Alzheimer's disease. Therefore, we investigated IL-2 levels in hippocampal biopsies of patients with Alzheimer's disease relative to age-matched control individuals. We then treated APP/PS1ΔE9 mice having established Alzheimer's disease with IL-2 for 5 months using single administration of an AAV-IL-2 vector. We first found decreased IL-2 levels in hippocampal biopsies of patients with Alzheimer's disease. In mice, IL-2-induced systemic and brain regulatory T cells expansion and activation. In the hippocampus, IL-2 induced astrocytic activation and recruitment of astrocytes around amyloid plaques, decreased amyloid-β42/40 ratio and amyloid plaque load, improved synaptic plasticity and significantly rescued spine density. Of note, this tissue remodelling was associated with recovery of memory deficits, as assessed in the Morris water maze task. Altogether, our data strongly suggest that IL-2 can alleviate Alzheimer's disease hallmarks in APP/PS1ΔE9 mice with established pathology. Therefore, this should prompt the investigation of low-dose IL-2 in Alzheimer's disease and other neuroinflammatory/neurodegenerative disorders.
Collapse
Affiliation(s)
- Sandro Alves
- INSERM U1169/MIRCen CEA 92265 Fontenay aux Roses and Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France
| | - Guillaume Churlaud
- AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), F-75651, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR-S 959, Immunology-Immunopathology-Immunotherapy, F-75013 Paris, France
| | - Mickael Audrain
- INSERM U1169/MIRCen CEA 92265 Fontenay aux Roses and Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France
| | - Kristin Michaelsen-Preusse
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Brunswick, Germany.,Helmholtz Centre for Infection Research, AG NIND, Inhoffenstr. 7, 38124 Brunswick, Germany
| | - Romain Fol
- INSERM U1169/MIRCen CEA 92265 Fontenay aux Roses and Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France
| | - Benoit Souchet
- INSERM U1169/MIRCen CEA 92265 Fontenay aux Roses and Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France
| | - Jérôme Braudeau
- INSERM U1169/MIRCen CEA 92265 Fontenay aux Roses and Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Brunswick, Germany.,Helmholtz Centre for Infection Research, AG NIND, Inhoffenstr. 7, 38124 Brunswick, Germany
| | - David Klatzmann
- AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), F-75651, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR-S 959, Immunology-Immunopathology-Immunotherapy, F-75013 Paris, France
| | - Nathalie Cartier
- INSERM U1169/MIRCen CEA 92265 Fontenay aux Roses and Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France
| |
Collapse
|
420
|
The Enigmatic Role of Viruses in Multiple Sclerosis: Molecular Mimicry or Disturbed Immune Surveillance? Trends Immunol 2017; 38:498-512. [PMID: 28549714 PMCID: PMC7185415 DOI: 10.1016/j.it.2017.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 01/24/2023]
Abstract
Multiple sclerosis (MS) is a T cell driven autoimmune disease of the central nervous system (CNS). Despite its association with Epstein-Barr Virus (EBV), how viral infections promote MS remains unclear. However, there is increasing evidence that the CNS is continuously surveyed by virus-specific T cells, which protect against reactivating neurotropic viruses. Here, we discuss how viral infections could lead to the breakdown of self-tolerance in genetically predisposed individuals, and how the reactivations of viruses in the CNS could induce the recruitment of both autoaggressive and virus-specific T cell subsets, causing relapses and progressive disability. A disturbed immune surveillance in MS would explain several experimental findings, and has important implications for prognosis and therapy. A huge body of evidence suggests that viral infections promote MS; however, no single causal virus has been identified. Multiple viruses could promote MS via bystander effects. Molecular mimicry is an established pathogenic mechanism in selected autoimmune diseases. It is also well documented in MS, but its contribution to MS pathogenesis is still unclear. Bystander activation upon viral infection could be involved in the generation of the autoreactive and potentially encephalitogenic T helper (Th)-1/17 central memory (Th1/17CM) cells found in the circulation of patients with MS. Autoreactive Th1/17CM cells could expand at the cost of antiviral Th1CM cells in patients with MS, in particular in those undergoing natalizumab therapy, because these cells are expected to compete for the same homeostatic niche. Autoreactive Th1/17 cells and antiviral Th1 cells are recruited to the CSF of patients with MS following attacks, suggesting that viral reactivations in the CNS induce the recruitment of pathogenic Th1/17 cells. Autoreactive Th1/17 cells in the CNS might also induce de novo viral reactivations in a circuit of self-induced inflammation.
Collapse
|
421
|
Hundsberger T, Reardon DA, Wen PY. Angiogenesis inhibitors in tackling recurrent glioblastoma. Expert Rev Anticancer Ther 2017; 17:507-515. [PMID: 28438066 DOI: 10.1080/14737140.2017.1322903] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Despite aggressive multimodality treatment of glioblastoma, outcome remains poor and patients mostly die of local recurrences. Besides reoperation and occasionally reirradiation, systemic treatment of recurrent glioblastoma consists of alkylating chemotherapy (lomustine, temozolomide), bevacizumab and combinations thereof. Unfortunately, antiangiogenic agents failed to improve survival either as a monotherapy or in combination treatments. This review provides current insights into tumor-derived escape mechanisms and other areas of treatment failure of antiangiogenic agents in glioblastoma. Areas covered: We summarize the current literature on antiangiogenic agents in the treatment of glioblastoma, with a focus on recurrent disease. A literature search was performed using the terms 'glioblastoma', 'bevacizumab', 'antiangiogenic', 'angiogenesis', 'resistance', 'radiotherapy', 'chemotherapy' and derivations thereof. Expert commentary: New insights in glioma neoangiogenesis, increasing understanding of vascular pathway escape mechanisms, and upcoming immunotherapy approaches might revitalize the therapeutic potential of antiangiogenic agents against glioblastoma, although with a different treatment intention. The combination of antiangiogenic approaches with or without radiotherapy might still hold promise to complement the therapeutic armamentarium of fighting glioblastoma.
Collapse
Affiliation(s)
- Thomas Hundsberger
- a Department of Neurology and Department of Hematology /Oncology , Cantonal hospital , St. Gallen , Switzerland
| | - David A Reardon
- b Center for Neuro-Oncology , Dana-Farber Cancer Institute /Brigham and Women's Cancer Center , Boston , MA , USA
| | - Patrick Y Wen
- b Center for Neuro-Oncology , Dana-Farber Cancer Institute /Brigham and Women's Cancer Center , Boston , MA , USA
| |
Collapse
|
422
|
Madkouri R, Kaderbhai CG, Bertaut A, Truntzer C, Vincent J, Aubriot-Lorton MH, Farah W, Limagne E, Ladoire S, Boidot R, Derangère V, Ghiringhelli F. Immune classifications with cytotoxic CD8 + and Th17 infiltrates are predictors of clinical prognosis in glioblastoma. Oncoimmunology 2017; 6:e1321186. [PMID: 28680758 DOI: 10.1080/2162402x.2017.1321186] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Interest is growing on immune cells involvement in central nervous system tumors such as glioblastoma. Even if a few reports highlighted that immune classifications could have a prognostic value, no paradigm has been clearly yet established on large and homogeneous cohorts. The aim of our study was to analyze the prognostic role of the in situ immune response of cytotoxic T cells (i.e., CD8+), Foxp3 cells, Th17 and tumor-associated macrophages in glioblastoma on two independent large and homogeneous cohorts. METHODS We worked on two large homogenous cohorts of patients having glioblastoma who underwent standard radiochemotherapy. The first cohort of 186 patients was analyzed using IHC procedures (CD8+, IL-17A, FoxP3 and CD163) of surgery pieces. We next worked with transcriptomic data available online and used metagene strategy analysis for the second cohort of 525 patients. RESULTS Cytotoxic CD8+ lymphocytes and Foxp3 cells were associated with a good prognosis, while Th17 were associated with a poor clinical outcome. These data were confirmed with transcriptomic analysis. Moreover, we showed for the first time a strong link between angiogenesis and Th17 metagenes expressions in glioblastoma. CONCLUSIONS Our study shows that glioblastoma bearing patients can be classified on the immune infiltrate aspects. Beyond this prognostic role of immune biomarkers, subsequent classifications could definitely help clinicians to handle targeted therapy administration and immunotherapeutic interventions.
Collapse
Affiliation(s)
| | | | - Aurélie Bertaut
- Departmentof Biostatistic, Georges Francois Leclerc Cancer Center, Dijon, France
| | - Caroline Truntzer
- Cancer Biology Genetic and Histology Transfer Platform, Georges Francois Leclerc Cancer Center, Dijon, France
| | - Julie Vincent
- Department of Medical Oncology, Georges Francois Leclerc Cancer Center, Dijon, France
| | | | - Walid Farah
- Department of Neurosurgery, CHU, Dijon, France
| | - Emeric Limagne
- Cancer Biology Genetic and Histology Transfer Platform, Georges Francois Leclerc Cancer Center, Dijon, France
| | - Sylvain Ladoire
- Department of Medical Oncology, Georges Francois Leclerc Cancer Center, Dijon, France.,Cancer Biology Genetic and Histology Transfer Platform, Georges Francois Leclerc Cancer Center, Dijon, France.,INSERM U866, Dijon, France.,University of Bourgogne Franche-Comté, Dijon, France
| | - Romain Boidot
- Cancer Biology Genetic and Histology Transfer Platform, Georges Francois Leclerc Cancer Center, Dijon, France.,INSERM U866, Dijon, France
| | - Valentin Derangère
- Cancer Biology Genetic and Histology Transfer Platform, Georges Francois Leclerc Cancer Center, Dijon, France.,INSERM U866, Dijon, France.,University of Bourgogne Franche-Comté, Dijon, France
| | - François Ghiringhelli
- Department of Medical Oncology, Georges Francois Leclerc Cancer Center, Dijon, France.,Cancer Biology Genetic and Histology Transfer Platform, Georges Francois Leclerc Cancer Center, Dijon, France.,INSERM U866, Dijon, France.,University of Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
423
|
Platt MP, Agalliu D, Cutforth T. Hello from the Other Side: How Autoantibodies Circumvent the Blood-Brain Barrier in Autoimmune Encephalitis. Front Immunol 2017; 8:442. [PMID: 28484451 PMCID: PMC5399040 DOI: 10.3389/fimmu.2017.00442] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/30/2017] [Indexed: 12/11/2022] Open
Abstract
Antibodies against neuronal receptors and synaptic proteins are associated with autoimmune encephalitides (AE) that produce movement and psychiatric disorders. In order to exert their pathological effects on neural circuits, autoantibodies against central nervous system (CNS) targets must gain access to the brain and spinal cord by crossing the blood–brain barrier (BBB), a tightly regulated gateway formed by endothelial cells lining CNS blood vessels. To date, the pathogenic mechanisms that underlie autoantibody-triggered encephalitic syndromes are poorly understood, and how autoantibodies breach the barrier remains obscure for almost all AE syndromes. The relative importance of cellular versus humoral immune mechanisms for disease pathogenesis also remains largely unexplored. Here, we review the proposed triggers for various autoimmune encephalopathies and their animal models, as well as basic structural features of the BBB and how they differ among various CNS regions, a feature that likely underlies some regional aspects of autoimmune encephalitis pathogenesis. We then discuss the routes that antibodies and immune cells employ to enter the CNS and their implications for AE. Finally, we explore future therapeutic strategies that may either preserve or restore barrier function and thereby limit immune cell and autoantibody infiltration into the CNS. Recent mechanistic insights into CNS autoantibody entry indicate promising future directions for therapeutic intervention beyond current, short-lived therapies that eliminate circulating autoantibodies.
Collapse
Affiliation(s)
- Maryann P Platt
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Dritan Agalliu
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.,Department of Pharmacology, Columbia University Medical Center, New York, NY, USA.,Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA
| | - Tyler Cutforth
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.,Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
424
|
Mangani D, Weller M, Roth P. The network of immunosuppressive pathways in glioblastoma. Biochem Pharmacol 2017; 130:1-9. [DOI: 10.1016/j.bcp.2016.12.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022]
|
425
|
Chandran M, Candolfi M, Shah D, Mineharu Y, Yadav VN, Koschmann C, Asad AS, Lowenstein PR, Castro MG. Single vs. combination immunotherapeutic strategies for glioma. Expert Opin Biol Ther 2017; 17:543-554. [PMID: 28286975 DOI: 10.1080/14712598.2017.1305353] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Malignant gliomas are highly invasive tumors, associated with a dismal survival rate despite standard of care, which includes surgical resection, radiotherapy and chemotherapy with temozolomide (TMZ). Precision immunotherapies or combinations of immunotherapies that target unique tumor-specific features may substantially improve upon existing treatments. Areas covered: Clinical trials of single immunotherapies have shown therapeutic potential in high-grade glioma patients, and emerging preclinical studies indicate that combinations of immunotherapies may be more effective than monotherapies. In this review, the authors discuss emerging combinations of immunotherapies and compare efficacy of single vs. combined therapies tested in preclinical brain tumor models. Expert opinion: Malignant gliomas are characterized by a number of factors which may limit the success of single immunotherapies including inter-tumor and intra-tumor heterogeneity, intrinsic resistance to traditional therapies, immunosuppression, and immune selection for tumor cells with low antigenicity. Combination of therapies which target multiple aspects of tumor physiology are likely to be more effective than single therapies. While a limited number of combination immunotherapies are described which are currently being tested in preclinical and clinical studies, the field is expanding at an astounding rate, and endless combinations remain open for exploration.
Collapse
Affiliation(s)
- Mayuri Chandran
- a Department of Neurosurgery , The University of Michigan School of Medicine, MSRB II , Ann Arbor , MI , USA.,b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Marianela Candolfi
- c Instituto de Investigaciones Biomédicas (CONICET-UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Diana Shah
- a Department of Neurosurgery , The University of Michigan School of Medicine, MSRB II , Ann Arbor , MI , USA.,b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Yohei Mineharu
- d Department of Neurosurgery , Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Viveka Nand Yadav
- a Department of Neurosurgery , The University of Michigan School of Medicine, MSRB II , Ann Arbor , MI , USA.,b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Carl Koschmann
- a Department of Neurosurgery , The University of Michigan School of Medicine, MSRB II , Ann Arbor , MI , USA.,e Department of Pediatrics, Hematology & Oncology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Antonela S Asad
- c Instituto de Investigaciones Biomédicas (CONICET-UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Pedro R Lowenstein
- a Department of Neurosurgery , The University of Michigan School of Medicine, MSRB II , Ann Arbor , MI , USA.,b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Maria G Castro
- a Department of Neurosurgery , The University of Michigan School of Medicine, MSRB II , Ann Arbor , MI , USA.,b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| |
Collapse
|
426
|
Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol Stress 2017; 7:124-136. [PMID: 29276734 PMCID: PMC5736941 DOI: 10.1016/j.ynstr.2017.03.001] [Citation(s) in RCA: 625] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/16/2017] [Accepted: 03/02/2017] [Indexed: 12/11/2022] Open
Abstract
The importance of the gut–brain axis in regulating stress-related responses has long been appreciated. More recently, the microbiota has emerged as a key player in the control of this axis, especially during conditions of stress provoked by real or perceived homeostatic challenge. Diet is one of the most important modifying factors of the microbiota-gut-brain axis. The routes of communication between the microbiota and brain are slowly being unravelled, and include the vagus nerve, gut hormone signaling, the immune system, tryptophan metabolism, and microbial metabolites such as short chain fatty acids. The importance of the early life gut microbiota in shaping later health outcomes also is emerging. Results from preclinical studies indicate that alterations of the early microbial composition by way of antibiotic exposure, lack of breastfeeding, birth by Caesarean section, infection, stress exposure, and other environmental influences - coupled with the influence of host genetics - can result in long-term modulation of stress-related physiology and behaviour. The gut microbiota has been implicated in a variety of stress-related conditions including anxiety, depression and irritable bowel syndrome, although this is largely based on animal studies or correlative analysis in patient populations. Additional research in humans is sorely needed to reveal the relative impact and causal contribution of the microbiome to stress-related disorders. In this regard, the concept of psychobiotics is being developed and refined to encompass methods of targeting the microbiota in order to positively impact mental health outcomes. At the 2016 Neurobiology of Stress Workshop in Newport Beach, CA, a group of experts presented the symposium “The Microbiome: Development, Stress, and Disease”. This report summarizes and builds upon some of the key concepts in that symposium within the context of how microbiota might influence the neurobiology of stress.
Collapse
Affiliation(s)
- Jane A Foster
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Linda Rinaman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
427
|
Quail DF, Joyce JA. The Microenvironmental Landscape of Brain Tumors. Cancer Cell 2017; 31:326-341. [PMID: 28292436 PMCID: PMC5424263 DOI: 10.1016/j.ccell.2017.02.009] [Citation(s) in RCA: 1077] [Impact Index Per Article: 153.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 02/07/2023]
Abstract
The brain tumor microenvironment (TME) is emerging as a critical regulator of cancer progression in primary and metastatic brain malignancies. The unique properties of this organ require a specific framework for designing TME-targeted interventions. Here, we discuss a number of these distinct features, including brain-resident cell types, the blood-brain barrier, and various aspects of the immune-suppressive environment. We also highlight recent advances in therapeutically targeting the brain TME in cancer. By developing a comprehensive understanding of the complex and interconnected microenvironmental landscape of brain malignancies we will greatly expand the range of therapeutic strategies available to target these deadly diseases.
Collapse
Affiliation(s)
- Daniela F Quail
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Physiology, McGill University, Montreal, QC H3A 1A3, Canada
| | - Johanna A Joyce
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Lausanne, Switzerland; Department of Oncology, University of Lausanne, Chemin des Boveresses 155, 1066 Lausanne, Switzerland.
| |
Collapse
|
428
|
|
429
|
Spielman LJ, Estaki M, Ghosh S, Gibson DL, Klegeris A. The effects of voluntary wheel running on neuroinflammatory status: Role of monocyte chemoattractant protein-1. Mol Cell Neurosci 2017; 79:93-102. [DOI: 10.1016/j.mcn.2016.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/30/2016] [Indexed: 12/17/2022] Open
|
430
|
Fenoy AJ, Villarreal SJ, Schiess MC. Acute and Subacute Presentations of Cerebral Edema following Deep Brain Stimulation Lead Implantation. Stereotact Funct Neurosurg 2017; 95:86-92. [PMID: 28208150 DOI: 10.1159/000454892] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS Postoperative cerebral edema around a deep brain stimulation (DBS) electrode is an uncommon reported complication. The goal of this study was to identify instances of postoperative edema based on clinical presentation, and to remark on their management. METHODS A retrospective chart review was performed on all patients who underwent DBS electrode implantation over a 3-year period. Routine CT imaging on postoperative day (POD) 1 was negative. Patients were identified based on clinical neurological changes, leading to imaging and subsequent diagnosis. RESULTS Five of 145 patients (3.4%) presented with new neurological symptoms from POD 1 to 14, which were confirmed by CT imaging to show perilead and/or subcortical edema around 6 of 281 electrodes (2.1%). Four of 5 patients had unilateral edema despite bilateral implantation. Clinical presentations varied widely. Two patients presenting on POD 1 with deteriorating conditions required longer inpatient stays with supportive measures than those presenting later (p = 0.0002). All patients were treated with corticosteroids and returned to baseline by 3 months after surgery. CONCLUSIONS Acute instances of DBS lead edema may occur as early as POD 1 and can rapidly progress into profound deficits. Treatment with supportive care and corticosteroids is otherwise identical to those cases presenting later.
Collapse
Affiliation(s)
- Albert J Fenoy
- Department of Neurosurgery, Mischer Neuroscience Institute, University of Texas - Houston Health Science Center, Houston, TX, USA
| | | | | |
Collapse
|
431
|
Shorter J. Designer protein disaggregases to counter neurodegenerative disease. Curr Opin Genet Dev 2017; 44:1-8. [PMID: 28208059 DOI: 10.1016/j.gde.2017.01.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/07/2017] [Accepted: 01/26/2017] [Indexed: 01/21/2023]
Abstract
Protein misfolding and aggregation unify several devastating neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. There are no effective therapeutics for these disorders and none that target the reversal of the aberrant protein misfolding and aggregation that cause disease. Here, I showcase important advances to define, engineer, and apply protein disaggregases to mitigate deleterious protein misfolding and counter neurodegeneration. I focus on two exogenous protein disaggregases, Hsp104 from yeast and gene 3 protein from bacteriophages, as well as endogenous human protein disaggregases, including: (a) Hsp110, Hsp70, Hsp40, and small heat-shock proteins; (b) HtrA1; and (c) NMNAT2 and Hsp90. I suggest that protein-disaggregase modalities can be channeled to treat numerous fatal and presently incurable neurodegenerative diseases.
Collapse
Affiliation(s)
- James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
432
|
Combined effect of BCG vaccination and enriched environment promote neurogenesis and spatial cognition via a shift in meningeal macrophage M2 polarization. J Neuroinflammation 2017; 14:32. [PMID: 28183352 PMCID: PMC5301319 DOI: 10.1186/s12974-017-0808-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/01/2017] [Indexed: 02/08/2023] Open
Abstract
Background The spatial learning abilities of developing mice benefit from extrinsic cues, such as an enriched environment, with concomitant enhancement in cognitive functions. Interestingly, such enhancements can be further increased through intrinsic Bacillus Calmette-Guérin (BCG) vaccination. Results Here, we first report that combined neonatal BCG vaccination and exposure to an enriched environment (Enr) induced combined neurobeneficial effects, including hippocampal long-term potentiation, and increased neurogenesis and spatial learning and memory, in mice exposed to the Enr and vaccinated with BCG relative to those in the Enr that did not receive BCG vaccination. Neonatal BCG vaccination markedly induced anti-inflammatory meningeal macrophage polarization both in regular and Enr breeding mice. The meninges are composed of the pia mater, dura mater, and choroid plexus. Alternatively, this anti-inflammatory activity of the meninges occurred simultaneously with increased expression of the neurotrophic factors BDNF/IGF-1 and the M2 microglial phenotype in the hippocampus. Our results reveal a critical role for BCG vaccination in the regulation of neurogenesis and spatial cognition through meningeal macrophage M2 polarization and neurotrophic factor expression; these effects were completely or partially prevented by minocycline or anti-IL-10 antibody treatment, respectively. Conclusions Together, we first claim that immunological factor and environmental factor induce a combined effect on neurogenesis and cognition via a common pathway-meningeal macrophage M2 polarization. We also present a novel functional association between peripheral T lymphocytes and meningeal macrophages after evoking adaptive immune responses in the periphery whereby T lymphocytes are recruited to the meninges in response to systemic IFN-γ signaling. This leads to meningeal macrophage M2 polarization, subsequent to microglial M2 activation and neurotrophic factor expression, and eventually promotes a positive behavior. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0808-7) contains supplementary material, which is available to authorized users.
Collapse
|
433
|
Di Benedetto S, Müller L, Wenger E, Düzel S, Pawelec G. Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neurosci Biobehav Rev 2017; 75:114-128. [PMID: 28161508 DOI: 10.1016/j.neubiorev.2017.01.044] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 01/08/2023]
Abstract
It is widely accepted that the brain and the immune system continuously interact during normal as well as pathological functioning. Human aging is commonly accompanied by low-grade inflammation in both the immune and central nervous systems, thought to contribute to many age-related diseases. This review of the current literature focuses first on the normal neuroimmune interactions occurring in the brain, which promote learning, memory and neuroplasticity. Further, we discuss the protective and dynamic role of barriers to neuroimmune interactions, which have become clearer with the recent discovery of the meningeal lymphatic system. Next, we consider age-related changes of the immune system and possible deleterious influences of immunosenescence and low-grade inflammation (inflammaging) on neurodegenerative processes in the normally aging brain. We survey the major immunomodulators and neuroregulators in the aging brain and their highly tuned dynamic and reciprocal interactions. Finally, we consider our current understanding of how physical activity, as well as a combination of physical and cognitive interventions, may mediate anti-inflammatory effects and thus positively impact brain aging.
Collapse
Affiliation(s)
- Svetlana Di Benedetto
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Lentzeallee 94, 14195, Berlin, Germany; Center for Medical Research, Department of Internal Medicine II, University of Tübingen, Waldhörnlestr. 22, 72072 Tübingen, Germany
| | - Ludmila Müller
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Lentzeallee 94, 14195, Berlin, Germany.
| | - Elisabeth Wenger
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Lentzeallee 94, 14195, Berlin, Germany
| | - Sandra Düzel
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Lentzeallee 94, 14195, Berlin, Germany
| | - Graham Pawelec
- Center for Medical Research, Department of Internal Medicine II, University of Tübingen, Waldhörnlestr. 22, 72072 Tübingen, Germany
| |
Collapse
|
434
|
The role of peripheral immune cells in the CNS in steady state and disease. Nat Neurosci 2017; 20:136-144. [DOI: 10.1038/nn.4475] [Citation(s) in RCA: 336] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023]
|
435
|
A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers. Nat Rev Microbiol 2017; 15:149-159. [PMID: 28090076 DOI: 10.1038/nrmicro.2016.178] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier, which is one of the tightest barriers in the body, protects the brain from insults, such as infections. Indeed, only a few of the numerous blood-borne bacteria can cross the blood-brain barrier to cause meningitis. In this Review, we focus on invasive extracellular pathogens, such as Neisseria meningitidis, Streptococcus pneumoniae, group B Streptococcus and Escherichia coli, to review the obstacles that bacteria have to overcome in order to invade the meninges from the bloodstream, and the specific skills they have developed to bypass the blood-brain barrier. The medical importance of understanding how these barriers can be circumvented is underlined by the fact that we need to improve drug delivery into the brain.
Collapse
|
436
|
Fenster RJ, Eisen JL. Checking the Brain's Immune Privilege: Evolving Theories of Brain-Immune Interactions. Biol Psychiatry 2017; 81:e7-e9. [PMID: 27938880 PMCID: PMC5374327 DOI: 10.1016/j.biopsych.2016.10.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Robert J Fenster
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Jane L Eisen
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island; Department of Psychiatry, Mount Sinai/Saint Luke's, New York, New York.
| |
Collapse
|
437
|
Potential pathophysiological pathways that can explain the positive effects of exercise on fatigue in multiple sclerosis: A scoping review. J Neurol Sci 2017; 373:307-320. [PMID: 28131211 DOI: 10.1016/j.jns.2017.01.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Fatigue is one of the most common and most disabling symptoms of multiple sclerosis (MS). It is a multidimensional and complex symptom with multifaceted origins, involving both central and peripheral fatigue mechanisms. Exercise has proven to be safe for people with MS, with cumulating evidence supporting significant reductions in fatigue. However, the potential pathophysiological pathways that can explain the positive effects of exercise on fatigue in MS remain elusive. OBJECTIVES The objectives were, in PwMS (1) to update the knowledge on the pathophysiology underlying primary and secondary fatigue, and (2) to discuss potential pathophysiological pathways that can explain the positive effects of exercise on MS fatigue. METHODS A comprehensive literature search of six databases (PubMed, Embase, Cochrane Library, PEDro, CINAHL and SPORTDiscus) was performed. To be included, the study had to 1) enroll participants with definite MS according to defined criteria, 2) assess explicit pathophysiological mechanisms related to MS fatigue, 3) be available in English, Danish or French, and 4) had undergone peer-review. RESULTS A total of 234 studies fulfilled the inclusion criteria. Primary MS fatigue mainly originated from a dysfunction of central nervous system neuronal circuits secondary to increased inflammation, reduced glucose metabolism, brain atrophy and diffuse demyelination and axonal lesions. Secondary MS fatigue was linked with sleep disturbances, depression, cognitive impairments, and deconditioning. Cardiovascular, immunologic, neuroendocrine, and neurotrophic changes associated with exercise may alleviate primary MS fatigue while exercise may improve secondary MS fatigue through symptomatic improvement of deconditioning, sleep disorders, and depression. CONCLUSIONS >30 primary and secondary pathophysiological fatigue pathways were identified underlining the multidimensionality and complexity of MS fatigue. Though the underlying key cellular and molecular cascades still have to be fully elucidated, exercise holds the potential to alleviate MS fatigue, through both primary and secondary fatigue pathways.
Collapse
|
438
|
Karmakar S, Reilly KM. The role of the immune system in neurofibromatosis type 1-associated nervous system tumors. CNS Oncol 2016; 6:45-60. [PMID: 28001089 DOI: 10.2217/cns-2016-0024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
With the recent development of new anticancer therapies targeting the immune system, it is important to understand which immune cell types and cytokines play critical roles in suppressing or promoting tumorigenesis. The role of mast cells in promoting neurofibroma growth in neurofibromatosis type 1 (NF1) patients was hypothesized decades ago. More recent experiments in mouse models have demonstrated the causal role of mast cells in neurofibroma development and of microglia in optic pathway glioma development. We review here what is known about the role of NF1 mutation in immune cell function and the role of immune cells in promoting tumorigenesis in NF1. We also review the therapies targeting immune cell pathways and their promise in NF1 tumors.
Collapse
Affiliation(s)
- Souvik Karmakar
- Rare Tumors Initiative, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Bethesda, MD 20814, USA
| | - Karlyne M Reilly
- Rare Tumors Initiative, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Bethesda, MD 20814, USA
| |
Collapse
|
439
|
Selmi C, Barin JG, Rose NR. Current trends in autoimmunity and the nervous system. J Autoimmun 2016; 75:20-29. [DOI: 10.1016/j.jaut.2016.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 08/06/2016] [Indexed: 01/17/2023]
|
440
|
Madhu BP, Singh KP, Saminathan M, Singh R, Shivasharanappa N, Sharma AK, Malik YS, Dhama K, Manjunatha V. Role of nitric oxide in the regulation of immune responses during rabies virus infection in mice. Virusdisease 2016; 27:387-399. [PMID: 28004019 PMCID: PMC5142598 DOI: 10.1007/s13337-016-0343-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/24/2016] [Indexed: 12/25/2022] Open
Abstract
Rabies virus (RABV) stimulates nitric oxide (NO) production, which either triggers T cell differentiation or suppresses T cell function depending on its concentration. Herein, we assessed the potential role of NO in regulation of immune responses during RABV infection in mice model. The experimental animals were divided into four groups and 100LD50 of challenge virus standard (CVS) strain of RABV was inoculated intracerebrally on day 0 and subsequently aminoguanidine (AG; inducible nitric oxide synthase inhibitor) was injected intraperitoneally twice a day, up to 6 days. The samples were collected at 2, 4, 6, 8, 9, 10 and 12 days post infection (DPI). The immune cells including CD4+, CD8+ T lymphocytes and natural killer (NK) cells were estimated from peripheral blood mononuclear cells (PBMCs) and splenocytes. Serum total NO concentration, histopathology, immunohistochemistry, direct fluorescent antibody technique and TUNEL assay was performed. Infection with CVS resulted in significant early increase in CD4+, CD8+ and NK cells in blood and spleen until 2 DPI. From 4 DPI onwards significant reduction was noticed in these parameters which coincided with increased NO on 4 DPI, rising to maximum on 8 DPI, until their death on 10 DPI. Conversely, the CVS-AG treated group showed lower levels of NO and increased number of CD4+, CD8+ and NK cells. Increased number of cells in blood and spleen coincided with increased survival time, delayed development of clinical signs, reduced viral load and less apoptotic cells. NO played important role in regulation of immune responses during RABV infection. The findings of present study confirmed the role of NO and/or iNOS using iNOS inhibitor (aminoguanidine) in immune response during RABV infection, which would further help in understanding the virus immunopathogenesis with adoption of newer antiviral strategies to counter the progression of disease.
Collapse
Affiliation(s)
- B. P. Madhu
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh India
| | - K. P. Singh
- Pathology Laboratory, Centre for Animal Disease Research and Diagnosis (CADRAD), ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh India
| | - M. Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh India
| | - R. Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh India
| | - N. Shivasharanappa
- Animal Science Section, ICAR-Central Coastal Agricultural Research Institute, Ela, Goa India
| | - A. K. Sharma
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh India
| | - Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh India
| | - K. Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh India
| | - V. Manjunatha
- Wild Animal Disease Diagnostic Laboratory, Institute of Animal Health and Veterinary Biologicals, Bannerghatta Biological Park, Bannerghatta, Bengaluru, Karnataka India
| |
Collapse
|
441
|
Worbs T, Hammerschmidt SI, Förster R. Dendritic cell migration in health and disease. Nat Rev Immunol 2016; 17:30-48. [PMID: 27890914 DOI: 10.1038/nri.2016.116] [Citation(s) in RCA: 536] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are potent and versatile antigen-presenting cells, and their ability to migrate is key for the initiation of protective pro-inflammatory as well as tolerogenic immune responses. Recent comprehensive studies have highlighted the importance of DC migration in the maintenance of immune surveillance and tissue homeostasis, and also in the pathogenesis of a range of diseases. In this Review, we summarize the anatomical, cellular and molecular factors that regulate the migration of different DC subsets in health and disease. In particular, we focus on new insights concerning the role of migratory DCs in the pathogenesis of diseases of the skin, intestine, lung, and brain, as well as in autoimmunity and atherosclerosis.
Collapse
Affiliation(s)
- Tim Worbs
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Swantje I Hammerschmidt
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
442
|
Haberthur K, Brennan K, Hoglund V, Balcaitis S, Chinn H, Davis A, Kreuser S, Winter C, Leary SES, Deutsch GH, Ellenbogen RG, Crane CA. NKG2D ligand expression in pediatric brain tumors. Cancer Biol Ther 2016; 17:1253-1265. [PMID: 27834580 DOI: 10.1080/15384047.2016.1250047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Adult brain tumors establish an immunosuppressive tumor microenvironment as a modality of immune escape, with several immunotherapies designed to overcome this barrier. However, the relationship between tumor cells and immune cells in pediatric brain tumor patients is not as well-defined. In this study, we sought to determine whether the model of immune escape observed in adult brain tumors is reflected in patients with pediatric brain tumors by evaluating NKG2D ligand expression on tissue microarrays created from patients with a variety of childhood brain tumor diagnoses, and infiltration of Natural Killer and myeloid cells. We noted a disparity between mRNA and protein expression for the 8 known NKG2D ligands. Surprisingly, high-grade gliomas did not have increased NKG2D ligand expression compared to normal adjacent brain tissue, nor did they have significant myeloid or NK cell infiltration. These data suggest that pediatric brain tumors have reduced NK cell-mediated immune surveillance, and a less immunosuppressive tumor microenvironment as compared to their adult counterparts. These data indicate that therapies aimed to improve NK cell trafficking and functions in pediatric brain tumors may have a greater impact on anti-tumor immune responses and patient survival, with fewer obstacles to overcome.
Collapse
Affiliation(s)
- Kristen Haberthur
- a Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute , Seattle , WA , USA
| | - Kathryn Brennan
- b University of Michigan , Department of Immunology , Ann Arbor , MI , USA
| | - Virginia Hoglund
- a Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute , Seattle , WA , USA
| | - Stephanie Balcaitis
- a Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute , Seattle , WA , USA
| | - Harrison Chinn
- a Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute , Seattle , WA , USA
| | - Amira Davis
- a Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute , Seattle , WA , USA
| | - Shannon Kreuser
- a Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute , Seattle , WA , USA
| | - Conrad Winter
- c Department of Pathology Seattle Children's Hospital , Seattle , WA , USA
| | - Sarah E S Leary
- d Seattle Children's Hospital and Associate Professor , Center for Clinical and Translational Research, Seattle Children's Research Institute , WA , USA
| | - Gail H Deutsch
- e Fetal Autopsy Services, Department of Pathology , Seattle Children's Hospital , WA , USA
| | - Richard G Ellenbogen
- f University of Washington School of Medicine, Theodore S. Roberts Endowed Chair in Pediatric Neurological Surgery, Seattle Children's Hospital , WA , USA
| | - Courtney A Crane
- a Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute , Seattle , WA , USA.,g University of Washington Department of Neurological Surgery , Seattle , WA , USA
| |
Collapse
|
443
|
Santonja C, Medina-Puente C, Serrano Del Castillo C, Cabello Úbeda A, Rodríguez-Pinilla SM. Primary effusion lymphoma involving cerebrospinal fluid, deep cervical lymph nodes and adenoids. Report of a case supporting the lymphatic connection between brain and lymph nodes. Neuropathology 2016; 37:249-258. [PMID: 27862361 DOI: 10.1111/neup.12353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 01/05/2023]
Abstract
We describe an unusual presentation of primary effusion lymphoma in CSF of a 45-year-old HIV-positive man, with no evidence of involvement of pleural, peritoneal or pericardial cavities. Cytologic examination and flow cytometric analysis suggested the diagnosis, eventually made in an excised deep cervical lymph node, in which the neoplastic cells involved selectively the sinuses. This case represents the fifth reported example of CSF involvement by this type of lymphoma, and supports the alleged connection between CSF and cervical lymph nodes via lymphatic vessels. Interestingly, review of an adenoidectomy specimen obtained 9 months before presentation for nonspecific complaints showed rare clusters of neoplastic cells involving surface epithelium and chorium, a finding that might represent a homing mechanism and implies an asymptomatic, occult phase of lymphoma development.
Collapse
|
444
|
Jeltsch-David H, Muller S. Autoimmunity, neuroinflammation, pathogen load: A decisive crosstalk in neuropsychiatric SLE. J Autoimmun 2016; 74:13-26. [DOI: 10.1016/j.jaut.2016.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 04/21/2016] [Accepted: 04/24/2016] [Indexed: 12/23/2022]
|
445
|
Mitsdoerffer M, Peters A. Tertiary Lymphoid Organs in Central Nervous System Autoimmunity. Front Immunol 2016; 7:451. [PMID: 27826298 PMCID: PMC5078318 DOI: 10.3389/fimmu.2016.00451] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/11/2016] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by chronic inflammation in the central nervous system (CNS), which results in permanent neuronal damage and substantial disability in patients. Autoreactive T cells are important drivers of the disease; however, the efficacy of B cell depleting therapies uncovered an essential role for B cells in disease pathogenesis. They can contribute to inflammatory processes via presentation of autoantigen, secretion of pro-inflammatory cytokines, and production of pathogenic antibodies. Recently, B cell aggregates reminiscent of tertiary lymphoid organs (TLOs) were discovered in the meninges of MS patients, leading to the hypothesis that differentiation and maturation of autopathogenic B and T cells may partly occur inside the CNS. Since these structures were associated with a more severe disease course, it is extremely important to gain insight into the mechanism of induction, their precise function, and clinical significance. Mechanistic studies in patients are limited. However, a few studies in the MS animal model experimental autoimmune encephalomyelitis (EAE) recapitulate TLO formation in the CNS and provide new insight into CNS TLO features, formation, and function. This review summarizes what we know so far about CNS TLOs in MS and what we have learned about them from EAE models. It also highlights the areas that are in need of further experimental work, as we are just beginning to understand and evaluate the phenomenon of CNS TLOs.
Collapse
Affiliation(s)
- Meike Mitsdoerffer
- Klinikum Rechts der Isar, Department of Neurology, Technical University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anneli Peters
- Department of Neuroimmunology, Max Planck Institute of Neurobiology , Martinsried , Germany
| |
Collapse
|
446
|
Routy JP, Routy B, Graziani GM, Mehraj V. The Kynurenine Pathway Is a Double-Edged Sword in Immune-Privileged Sites and in Cancer: Implications for Immunotherapy. Int J Tryptophan Res 2016; 9:67-77. [PMID: 27773992 PMCID: PMC5063567 DOI: 10.4137/ijtr.s38355] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
The term “immune privilege” was originally coined to describe the suppression of inflammatory responses within organs protected by anatomic barriers, ie, the eyes, brain, placenta, and testes. However, cellular and metabolic processes, which orchestrate immune responses, also control inflammation within these sites. Our current understanding of tolerogenic mechanisms has extended the definition of immune privilege to include hair follicles, the colon, and cancer. By catabolizing tryptophan, cells expressing the enzyme indoleamine-2,3-dioxygenase produce kynurenine metabolites, which orchestrate local and systemic responses to control inflammation, thus maintaining immune privilege. This review highlights the double-edged role played by the kynurenine pathway (KP), which establishes and maintains immune-privileged sites while contributing to cancer immune escape. The identification of the underlying molecular drivers of the KP in immune-privileged sites and in cancer is essential for the development of novel therapies to treat autoimmunity and cancer and to improve transplantation outcomes.
Collapse
Affiliation(s)
- Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.; The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.; Professor of Medicine, Division of Hematology, McGill University Health Centre, Montreal, QC, Canada.; Louis Lowenstein Chair in Hematology and Oncology, McGill University, Montreal, QC, Canada
| | - Bertrand Routy
- Postdoctoral Fellow, Gustave Roussy Cancer Campus, Villejuif, France.; INSERM U1015, Villejuif, France
| | - Gina M Graziani
- Research Associate, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Vikram Mehraj
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.; Postdoctoral Fellow, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
447
|
Hadar A, Milanesi E, Squassina A, Niola P, Chillotti C, Pasmanik-Chor M, Yaron O, Martásek P, Rehavi M, Weissglas-Volkov D, Shomron N, Gozes I, Gurwitz D. RGS2 expression predicts amyloid-β sensitivity, MCI and Alzheimer's disease: genome-wide transcriptomic profiling and bioinformatics data mining. Transl Psychiatry 2016; 6:e909. [PMID: 27701409 PMCID: PMC5315547 DOI: 10.1038/tp.2016.179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/26/2016] [Accepted: 06/15/2016] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent cause of dementia. Misfolded protein pathological hallmarks of AD are brain deposits of amyloid-β (Aβ) plaques and phosphorylated tau neurofibrillary tangles. However, doubts about the role of Aβ in AD pathology have been raised as Aβ is a common component of extracellular brain deposits found, also by in vivo imaging, in non-demented aged individuals. It has been suggested that some individuals are more prone to Aβ neurotoxicity and hence more likely to develop AD when aging brains start accumulating Aβ plaques. Here, we applied genome-wide transcriptomic profiling of lymphoblastoid cells lines (LCLs) from healthy individuals and AD patients for identifying genes that predict sensitivity to Aβ. Real-time PCR validation identified 3.78-fold lower expression of RGS2 (regulator of G-protein signaling 2; P=0.0085) in LCLs from healthy individuals exhibiting high vs low Aβ sensitivity. Furthermore, RGS2 showed 3.3-fold lower expression (P=0.0008) in AD LCLs compared with controls. Notably, RGS2 expression in AD LCLs correlated with the patients' cognitive function. Lower RGS2 expression levels were also discovered in published expression data sets from postmortem AD brain tissues as well as in mild cognitive impairment and AD blood samples compared with controls. In conclusion, Aβ sensitivity phenotyping followed by transcriptomic profiling and published patient data mining identified reduced peripheral and brain expression levels of RGS2, a key regulator of G-protein-coupled receptor signaling and neuronal plasticity. RGS2 is suggested as a novel AD biomarker (alongside other genes) toward early AD detection and future disease modifying therapeutics.
Collapse
Affiliation(s)
- A Hadar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Milanesi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - P Niola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - C Chillotti
- Unit of Clinical Pharmacology, University Hospital of Cagliari, Cagliari, Italy
| | - M Pasmanik-Chor
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - O Yaron
- The Genomic Analysis Laboratory, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - P Martásek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - M Rehavi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - D Weissglas-Volkov
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - N Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Adams Super Center for Brain Studies, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - I Gozes
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Adams Super Center for Brain Studies, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: or
| | - D Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Adams Super Center for Brain Studies, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: or
| |
Collapse
|
448
|
Schwartz M, Deczkowska A. Neurological Disease as a Failure of Brain–Immune Crosstalk: The Multiple Faces of Neuroinflammation. Trends Immunol 2016; 37:668-679. [DOI: 10.1016/j.it.2016.08.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
|
449
|
The Role of Neutrophil Proteins on the Amyloid Beta-RAGE Axis. PLoS One 2016; 11:e0163330. [PMID: 27676391 PMCID: PMC5038948 DOI: 10.1371/journal.pone.0163330] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/06/2016] [Indexed: 01/11/2023] Open
Abstract
We previously showed an elevated expression of the neutrophil protein, cationic antimicrobial protein of 37kDa (CAP37), in brains of patients with Alzheimer’s disease (AD), suggesting that CAP37 could be involved in AD pathogenesis. The first step in determining how CAP37 might contribute to AD pathogenesis was to identify the receptor through which it induces cell responses. To identify a putative receptor, we performed GAMMA analysis to determine genes that positively correlated with CAP37 in terms of expression. Positive correlations with ligands for the receptor for advanced glycation end products (RAGE) were observed. Additionally, CAP37 expression positively correlated with two other neutrophil proteins, neutrophil elastase and cathepsin G. Enzyme-linked immunosorbent assays (ELISAs) demonstrated an interaction between CAP37, neutrophil elastase, and cathepsin G with RAGE. Amyloid beta 1–42 (Aβ1–42), a known RAGE ligand, accumulates in AD brains and interacts with RAGE, contributing to Aβ1–42 neurotoxicity. We questioned whether the binding of CAP37, neutrophil elastase and/or cathepsin G to RAGE could interfere with Aβ1–42 binding to RAGE. Using ELISAs, we determined that CAP37 and neutrophil elastase inhibited binding of Aβ1–42 to RAGE, and this effect was reversed by protease inhibitors in the case of neutrophil elastase. Since neutrophil elastase and cathepsin G have enzymatic activity, mass spectrometry was performed to determine the proteolytic activity of all three neutrophil proteins on Aβ1–42. All three neutrophil proteins bound to Aβ1–42 with different affinities and cleaved Aβ1–42 with different kinetics and substrate specificities. We posit that these neutrophil proteins could modulate neurotoxicity in AD by cleaving Aβ1–42 and influencing the Aβ1–42 –RAGE interaction. Further studies will be required to determine the biological significance of these effects and their relevance in neurodegenerative diseases such as AD. Our findings identify a novel area of study that underscores the importance of neutrophils and neutrophil proteins in neuroinflammatory diseases such as AD.
Collapse
|
450
|
Aspects of T Cell-Mediated Immunity Induced in Mice by a DNA Vaccine Based on the Dengue-NS1 Antigen after Challenge by the Intracerebral Route. PLoS One 2016; 11:e0163240. [PMID: 27631083 PMCID: PMC5024998 DOI: 10.1371/journal.pone.0163240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/05/2016] [Indexed: 11/19/2022] Open
Abstract
Dengue disease has emerged as a major public health issue across tropical and subtropical countries. Infections caused by dengue virus (DENV) can evolve to life-threatening forms, resulting in about 20,000 deaths every year worldwide. Several animal models have been described concerning pre-clinical stages in vaccine development against dengue, each of them presenting limitations and advantages. Among these models, a traditional approach is the inoculation of a mouse-brain adapted DENV variant in immunocompetent animals by the intracerebral (i.c.) route. Despite the historical usage and relevance of this model for vaccine testing, little is known about the mechanisms by which the protection is developed upon vaccination. To cover this topic, a DNA vaccine based on the DENV non-structural protein 1 (pcTPANS1) was considered and investigations were focused on the induced T cell-mediated immunity against i.c.-DENV infection. Immunophenotyping assays by flow cytometry revealed that immunization with pcTPANS1 promotes a sustained T cell activation in spleen of i.c.-infected mice. Moreover, we found that the downregulation of CD45RB on T cells, as an indicator of cell activation, correlated with absence of morbidity upon virus challenge. Adoptive transfer procedures supported by CFSE-labeled cell tracking showed that NS1-specific T cells induced by vaccination, proliferate and migrate to peripheral organs of infected mice, such as the liver. Additionally, in late stages of infection (from the 7th day onwards), vaccinated mice also presented reduced levels of circulating IFN-γ and IL-12p70 in comparison to non-vaccinated animals. In conclusion, this work presented new aspects about the T cell-mediated immunity concerning DNA vaccination with pcTPANS1 and the i.c. infection model. These insights can be explored in further studies of anti-dengue vaccine efficacy.
Collapse
|