401
|
Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, Wang JW, Yang L, Beal MF, Vogel H, Lu B. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A 2006; 103:10793-8. [PMID: 16818890 PMCID: PMC1502310 DOI: 10.1073/pnas.0602493103] [Citation(s) in RCA: 603] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mutations in Pink1, a gene encoding a Ser/Thr kinase with a mitochondrial-targeting signal, are associated with Parkinson's disease (PD), the most common movement disorder characterized by selective loss of dopaminergic neurons. The mechanism by which loss of Pink1 leads to neurodegeneration is not understood. Here we show that inhibition of Drosophila Pink1 (dPink1) function results in energy depletion, shortened lifespan, and degeneration of select indirect flight muscles and dopaminergic neurons. The muscle pathology was preceded by mitochondrial enlargement and disintegration. These phenotypes could be rescued by the wild type but not the pathogenic C-terminal deleted form of human Pink1 (hPink1). The muscle and dopaminergic phenotypes associated with dPink1 inactivation show similarity to that seen in parkin mutant flies and could be suppressed by the overexpression of Parkin but not DJ-1. Consistent with the genetic rescue results, we find that, in dPink1 RNA interference (RNAi) animals, the level of Parkin protein is significantly reduced. Together, these results implicate Pink1 and Parkin in a common pathway that regulates mitochondrial physiology and cell survival in Drosophila.
Collapse
Affiliation(s)
- Yufeng Yang
- *Department of Pathology and
- Geriatric Research, Education and Clinical Center/Veterans Affairs Palo Alto Health Care System, Stanford University School of Medicine, Palo Alto, CA 94304; and
| | - Stephan Gehrke
- *Department of Pathology and
- Geriatric Research, Education and Clinical Center/Veterans Affairs Palo Alto Health Care System, Stanford University School of Medicine, Palo Alto, CA 94304; and
| | - Yuzuru Imai
- *Department of Pathology and
- Geriatric Research, Education and Clinical Center/Veterans Affairs Palo Alto Health Care System, Stanford University School of Medicine, Palo Alto, CA 94304; and
| | - Zhinong Huang
- *Department of Pathology and
- Geriatric Research, Education and Clinical Center/Veterans Affairs Palo Alto Health Care System, Stanford University School of Medicine, Palo Alto, CA 94304; and
| | - Yingshi Ouyang
- *Department of Pathology and
- Geriatric Research, Education and Clinical Center/Veterans Affairs Palo Alto Health Care System, Stanford University School of Medicine, Palo Alto, CA 94304; and
| | - Ji-Wu Wang
- *Department of Pathology and
- Geriatric Research, Education and Clinical Center/Veterans Affairs Palo Alto Health Care System, Stanford University School of Medicine, Palo Alto, CA 94304; and
| | - Lichuan Yang
- Department of Neurology, Cornell University Medical College, 525 East 68th Street, New York, NY 10021
| | - M. Flint Beal
- Department of Neurology, Cornell University Medical College, 525 East 68th Street, New York, NY 10021
| | | | - Bingwei Lu
- *Department of Pathology and
- Geriatric Research, Education and Clinical Center/Veterans Affairs Palo Alto Health Care System, Stanford University School of Medicine, Palo Alto, CA 94304; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
402
|
Abstract
Defects of mitochondrial metabolism cause a wide range of human diseases that include examples from all medical subspecialties. This review updates the topic of mitochondrial diseases by reviewing the most important recent advances in this area. The factors influencing inheritance, maintenance and replication of mtDNA are reviewed and the genotype-phenotype of mtDNA disorders has been expanded, with new insights into epidemiology, pathogenesis and its role in ageing. Recently identified nuclear gene mutations of mitochondrial proteins include mutations of frataxin causing Friedreich's ataxia, PINK1, DJ1 causing Parkinson's disease and POLG causing infantile mtDNA depletion syndrome, ophthalmoplegia, parkinsonism, male subfertility and, in a transgenic mouse model, premature senescence. Mitochondrial defects in neurodegenerative diseases include Parkinson's, Alzheimer's and Huntington's disease. Improved understanding of mtDNA inheritance and mutation penetrance patterns, and novel techniques for mtDNA modification offer significant prospects for more accurate genetic counselling and effective future therapies.
Collapse
Affiliation(s)
- Anthony H V Schapira
- University Department of Clinical Neurosciences, Royal Free and University College Medical School, and Institute of Neurology, University College London, London NW3 2PF, UK.
| |
Collapse
|
403
|
Abstract
A large number of neurodegenerative diseases in humans result from protein misfolding and aggregation. Protein misfolding is believed to be the primary cause of Alzheimer's disease, Parkinson's disease, Huntington's disease, Creutzfeldt-Jakob disease, cystic fibrosis, Gaucher's disease and many other degenerative and neurodegenerative disorders. Cellular molecular chaperones, which are ubiquitous, stress-induced proteins, and newly found chemical and pharmacological chaperones have been found to be effective in preventing misfolding of different disease-causing proteins, essentially reducing the severity of several neurodegenerative disorders and many other protein-misfolding diseases. In this review, we discuss the probable mechanisms of several protein-misfolding diseases in humans, as well as therapeutic approaches for countering them. The role of molecular, chemical and pharmacological chaperones in suppressing the effect of protein misfolding-induced consequences in humans is explained in detail. Functional aspects of the different types of chaperones suggest their uses as potential therapeutic agents against different types of degenerative diseases, including neurodegenerative disorders.
Collapse
Affiliation(s)
- Tapan K Chaudhuri
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| | | |
Collapse
|
404
|
Abstract
In the past decade, the genetic causes underlying familial forms of many neurodegenerative disorders, such as Huntington's disease, Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, Friedreich ataxia, hereditary spastic paraplegia, dominant optic atrophy, Charcot-Marie-Tooth type 2A, neuropathy ataxia and retinitis pigmentosa, and Leber's hereditary optic atrophy have been elucidated. However, the common pathogenic mechanisms of neuronal death are still largely unknown. Recently, mitochondrial dysfunction has emerged as a potential 'lowest common denominator' linking these disorders. In this review, we discuss the body of evidence supporting the role of mitochondria in the pathogenesis of hereditary neurodegenerative diseases. We summarize the principal features of genetic diseases caused by abnormalities of mitochondrial proteins encoded by the mitochondrial or the nuclear genomes. We then address genetic diseases where mutant proteins are localized in multiple cell compartments, including mitochondria and where mitochondrial defects are likely to be directly caused by the mutant proteins. Finally, we describe examples of neurodegenerative disorders where mitochondrial dysfunction may be 'secondary' and probably concomitant with degenerative events in other cell organelles, but may still play an important role in the neuronal decay. Understanding the contribution of mitochondrial dysfunction to neurodegeneration and its pathophysiological basis will significantly impact our ability to develop more effective therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jennifer Q Kwong
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|
405
|
Choi HS, Lee SH, Kim SY, An JJ, Hwang SI, Kim DW, Yoo KY, Won MH, Kang TC, Kwon HJ, Kang JH, Cho SW, Kwon OS, Choi JH, Park J, Eum WS, Choi SY. Transduced Tat-α-Synuclein Protects against Oxidative Stress In vitro and In vivo. BMB Rep 2006; 39:253-62. [PMID: 16756753 DOI: 10.5483/bmbrep.2006.39.3.253] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder and is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Although many studies showed that the aggregation of alpha-synuclein might be involved in the pathogenesis of PD, its protective properties against oxidative stress remain to be elucidated. In this study, human wild type and mutant alpha-synuclein genes were fused with a gene fragment encoding the nine amino acid transactivator of transcription (Tat) protein transduction domain of HIV-1 in a bacterial expression vector to produce a genetic in-frame WT Tat-alpha-synuclein (wild type) and mutant Tat-alpha-synucleins (mutants; A30P and A53T), respectively, and we investigated the protective effects of wild type and mutant Tat-alpha-synucleins in vitro and in vivo. WT Tat-alpha-synuclein rapidly transduced into an astrocyte cells and protected the cells against paraquat induced cell death. However, mutant Tat-alpha-synucleins did not protect at all. In the mice models exposed to the herbicide paraquat, the WT Tat-alpha-synuclein completely protected against dopaminergic neuronal cell death, whereas mutants failed in protecting against oxidative stress. We found that these protective effects were characterized by increasing the expression level of heat shock protein 70 (HSP70) in the neuronal cells and this expression level was dependent on the concentration of transduced WT Tat-alpha-synuclein. These results suggest that transduced Tat-alpha-synuclein might protect cell death from oxidative stress by increasing the expression level of HSP70 in vitro and in vivo and this may be of potential therapeutic benefit in the pathogenesis of PD.
Collapse
Affiliation(s)
- Hee Soon Choi
- Department of Biomedical Sciences, Hallym University, Chunchon, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
406
|
Amer DAM, Irvine GB, El-Agnaf OMA. Inhibitors of alpha-synuclein oligomerization and toxicity: a future therapeutic strategy for Parkinson's disease and related disorders. Exp Brain Res 2006; 173:223-33. [PMID: 16733698 DOI: 10.1007/s00221-006-0539-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Accepted: 05/01/2006] [Indexed: 01/12/2023]
Abstract
An abundance of genetic, histopathological, and biochemical evidence has implicated the neuronal protein, alpha-synuclein (alpha-syn) as a key player in the development of several neurodegenerative diseases, the so-called synucleinopathies, of which Parkinson's disease (PD) is the most prevalent. Development of disease appears to be linked to events that increase the intracellular concentration of alpha-syn or cause its chemical modification, either of which can accelerate the rate at which it forms aggregates. Examples of such events include increased copy number of genes, decreased rate of degradation via the proteasome or other proteases, or altered forms of alpha-syn, such as truncations, missense mutations, or chemical modifications by oxidative reactions. Aggregated forms of the protein, especially newly formed soluble aggregates, are toxic to cells, so that one therapeutic strategy would be to reduce the rate at which such oligomerization occurs. We have therefore designed several peptides and also identified small molecules that can inhibit alpha-syn oligomerization and toxicity in vitro. These compounds could serve as lead compounds for the design of new drugs for the treatment of PD and related disorders in the future.
Collapse
Affiliation(s)
- Dena A M Amer
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, P.O.Box: 17666, Al Ain, United Arab Emirates
| | | | | |
Collapse
|
407
|
Storz P. Reactive oxygen species-mediated mitochondria-to-nucleus signaling: a key to aging and radical-caused diseases. Sci Signal 2006; 2006:re3. [PMID: 16639035 DOI: 10.1126/stke.3322006re3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mitochondria-generated reactive oxygen species have been implicated as a common feature that connects aging of organisms and age-related diseases. Efficient elimination of these radicals by antioxidants correlates with increased life span. Understanding how the mitochondrion signals to the nucleus to regulate antioxidant proteins might be a key to aging processes and treatment of human diseases.
Collapse
Affiliation(s)
- Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
408
|
Vartiainen S, Pehkonen P, Lakso M, Nass R, Wong G. Identification of gene expression changes in transgenic C. elegans overexpressing human alpha-synuclein. Neurobiol Dis 2006; 22:477-86. [PMID: 16626960 DOI: 10.1016/j.nbd.2005.12.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 11/11/2005] [Accepted: 12/17/2005] [Indexed: 12/21/2022] Open
Abstract
Alpha-synuclein containing cellular inclusions are a hallmark of Parkinson Disease, Lewy Body Dementia, and Multiple System Atrophy. A genome wide expression screen was performed in C. elegans overexpressing both wild-type and A53T human alpha-synuclein. 433 genes were up- and 67 genes down-regulated by statistical and fold change (> or <2) criteria. Gene ontology (GO) categories within the regulated gene lists indicated over-representation of development and reproduction, mitochondria, catalytic activity, and histone groups. Seven genes (pdr-1, ubc-7, pas-5, pas-7, pbs-4, RPT2, PSMD9) with function in the ubiquitin-proteasome system and 35 mitochondrial function genes were up-regulated. Nine genes that form histones H1, H2B, and H4 were down-regulated. These results demonstrate the effects of alpha-synuclein on proteasome and mitochondrial complex gene expression and provide further support for the role of these complexes in mediating neurotoxicity. The results also indicate an effect on nuclear protein genes that suggests a potential new avenue for investigation.
Collapse
Affiliation(s)
- Suvi Vartiainen
- Department of Neurobiology, A.I. Virtanen Institute, Kuopio, 70211, Finland
| | | | | | | | | |
Collapse
|
409
|
Betarbet R, Sherer TB, Di Monte DA, Greenamyre JT. Mechanistic approaches to Parkinson's disease pathogenesis. Brain Pathol 2006; 12:499-510. [PMID: 12408237 PMCID: PMC8095781 DOI: 10.1111/j.1750-3639.2002.tb00468.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurological disorder marked by nigrostriatal dopaminergic degeneration and development of cytoplasmic proteinaceous aggregates known as Lewy bodies. Although the pathogenic mechanisms responsible for PD are not completely understood, many clues have come from biochemical, epidemiological, and genetic studies. Mutations in certain genes found in rare, familial cases of PD, such as alpha-synuclein and parkin, suggest a role for the ubiquitin-proteosome system and aberrant protein aggregation. Biochemical analyses have implicated mitochondrial dysfunction in PD. Epidemiological and animal model studies point to a role for environmental toxins, some of which are mitochondrial inhibitors. Mitochondrial dysfunction, resulting from either genetic defects, environmental exposures or an interaction between the two, may cause alpha-synuclein aggregation or neurodegeneration through oxidative stress or excitotoxicity. A better understanding of the mechanisms underlying PD should reveal novel therapeutic targets.
Collapse
Affiliation(s)
- Ranjita Betarbet
- Center for Neurodegenerative Disease and Department of Neurology, Emory University, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
410
|
Ahn KJ, Paik SR, Chung KC, Kim J. Amino acid sequence motifs and mechanistic features of the membrane translocation of alpha-synuclein. J Neurochem 2006; 97:265-79. [PMID: 16524375 DOI: 10.1111/j.1471-4159.2006.03731.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Many lines of evidence suggest that alpha-synuclein can be secreted from cells and can penetrate into them, although the detailed mechanism is not known. In this study, we investigated the amino acid sequence motifs required for the membrane translocation of alpha-synuclein, and the mechanistic features of the phenomenon. We first showed that not only alpha-synuclein but also beta- and gamma-synucleins penetrated into live cells, indicating that the conserved N-terminal region might be responsible for the membrane translocation. Using a series of deletion mutants, we demonstrated that the 11-amino acid imperfect repeats found in synuclein family members play a critical role in the membrane translocation of these proteins. We further demonstrated that fusion peptides containing the 11-amino acid imperfect repeats of alpha-synuclein can transverse the plasma membrane, and that the membrane translocation efficiency is optimal when the peptide contains two repeat motifs. alpha-Synuclein appeared to be imported rapidly and efficiently into cells, with detectable protein in the cytoplasm within 5 min after exogenous treatment. Interestingly, the import of alpha-synuclein at 4 degrees C was comparable with the import observed at 37 degrees C. Furthermore, membrane translocation of alpha-synuclein was not significantly affected by treatment with inhibitors of endocytosis. These results suggest that the internalization of alpha-synuclein is temperature-insensitive and occurs very rapidly via a mechanism distinct from normal endocytosis.
Collapse
Affiliation(s)
- Keun Jae Ahn
- Department of Microbiology and Brain Korea 21 Projects For Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
411
|
Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, Jenkins NA, Price DL, Lee MK. Parkinson's disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 2006; 26:41-50. [PMID: 16399671 PMCID: PMC6381830 DOI: 10.1523/jneurosci.4308-05.2006] [Citation(s) in RCA: 507] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alpha-synuclein (alpha-Syn) is enriched in nerve terminals. Two mutations in the alpha-Syn gene (Ala53--> Thr and Ala30--> Pro) occur in autosomal dominant familial Parkinson's disease. Mice overexpressing the human A53T mutant alpha-Syn develop a severe movement disorder, paralysis, and synucleinopathy, but the mechanisms are not understood. We examined whether transgenic mice expressing human wild-type or familial Parkinson's disease-linked A53T or A30P mutant alpha-syn develop neuronal degeneration and cell death. Mutant mice were examined at early- to mid-stage disease and at near end-stage disease. Age-matched nontransgenic littermates were controls. In A53T mice, neurons in brainstem and spinal cord exhibited large axonal swellings, somal chromatolytic changes, and nuclear condensation. Spheroid eosinophilic Lewy body-like inclusions were present in the cytoplasm of cortical neurons and spinal motor neurons. These inclusions contained human alpha-syn and nitrated synuclein. Motor neurons were depleted (approximately 75%) in A53T mice but were affected less in A30P mice. Axonal degeneration was present in many regions. Electron microscopy confirmed the cell and axonal degeneration and revealed cytoplasmic inclusions in dendrites and axons. Some inclusions were degenerating mitochondria and were positive for humanalpha-syn. Mitochondrial complex IV and V proteins were at control levels, but complex IV activity was reduced significantly in spinal cord. Subsets of neurons in neocortex, brainstem, and spinal cord ventral horn were positive for terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling, cleaved caspase-3, and p53. Mitochondria in neurons had terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling-positive matrices and p53 at the outer membrane. Thus, A53T mutant mice develop intraneuronal inclusions, mitochondrial DNA damage and degeneration, and apoptotic-like death of neocortical, brainstem, and motor neurons.
Collapse
Affiliation(s)
- Lee J Martin
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA.
| | | | | | | | | | | | | | | |
Collapse
|
412
|
Xu S, Zhou M, Yu S, Cai Y, Zhang A, Uéda K, Chan P. Oxidative stress induces nuclear translocation of C-terminus of α-synuclein in dopaminergic cells. Biochem Biophys Res Commun 2006; 342:330-5. [PMID: 16480958 DOI: 10.1016/j.bbrc.2006.01.148] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 01/21/2006] [Indexed: 10/25/2022]
Abstract
Growing evidence suggests that oxidative stress is involved in the neuronal degeneration and can promote the aggregation of alpha-synuclein. However, the role of alpha-synuclein under physiological and pathological conditions remains poorly understood. In the present study, we examined the possible interaction between the alpha-synuclein and oxidative stress. In a dopaminergic cell line MES23.5, we have found that the 200microM H(2)O(2) treatment induced the translocation of alpha-synuclein from cytoplasm to nuclei at 30min post-treatment. The immunoactivity of alpha-synuclein became highly intensive in the nuclei after 2h treatment. The protein translocated to nucleus was a 10kDa fragment of C-terminus region of alpha-synuclein, while full-length alpha-synuclein remained in cytoplasm. Thioflavine-S staining suggested that the C-terminal fragment in the nuclei has no beta-sheet structures. Our present results indicated that 200microM H(2)O(2) treatment induces the intranuclear accumulation of the C-terminal fragment of alpha-synuclein in dopaminergic neurons, whose role remains to be investigated.
Collapse
Affiliation(s)
- Shengli Xu
- Department of Neurobiology and the Sino-Japan Joint Laboratory of Neurodegenerative diseases, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital University of Medical Sciences, Beijing 100053, China
| | | | | | | | | | | | | |
Collapse
|
413
|
Hayashita-Kinoh H, Yamada M, Yokota T, Mizuno Y, Mochizuki H. Down-regulation of α-synuclein expression can rescue dopaminergic cells from cell death in the substantia nigra of Parkinson’s disease rat model. Biochem Biophys Res Commun 2006; 341:1088-95. [PMID: 16460685 DOI: 10.1016/j.bbrc.2006.01.057] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 01/10/2006] [Indexed: 11/16/2022]
Abstract
Fibrillization and aggregation of alpha-synuclein may play a critical role in neurodegenerative diseases like Parkinson's diseases. Adeno-associated virus (AAV) vector delivery of an alpha-synuclein ribozyme was tested for its silencing effect on degenerating nigrostriatal neurons in the MPP(+) model of Parkinson's disease. We designed alpha-synuclein ribozyme against human alpha-synuclein gene expression and constructed alpha-synuclein ribozymes-carrying rAAV vector (designated rAAV-SynRz). Co-transfection of rAAV-SynRz and rAAV-alpha-synuclein into HEK293 cells resulted in down-regulation of alpha-synuclein protein expression in vitro. Then, rAAV-SynRz was injected into the substantia nigra (SN) of MPP(+)-treated rats. Cell counts of TH-positive neurons in the SN revealed that rAAV-SynRz significantly protected TH-positive cells against apoptotic death, compared with those of rAAV-EGFP or no rAAV injected rats. Our results indicate that the use of rAAV-SynRz allowed the survival of higher number of TH-positive neurons in SN in the MPP(+) model. Down-regulation of alpha-synuclein expression could be potentially a suitable target for gene therapy of Parkinson's disease.
Collapse
|
414
|
Klivenyi P, Siwek D, Gardian G, Yang L, Starkov A, Cleren C, Ferrante RJ, Kowall NW, Abeliovich A, Beal MF. Mice lacking alpha-synuclein are resistant to mitochondrial toxins. Neurobiol Dis 2006; 21:541-8. [PMID: 16298531 DOI: 10.1016/j.nbd.2005.08.018] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 08/12/2005] [Accepted: 08/28/2005] [Indexed: 12/01/2022] Open
Abstract
Abnormalities in the function of alpha-synuclein are implicated in the pathogenesis of Parkinson's disease (PD). We found that alpha-synuclein-deficient mice are resistant to MPTP-induced degeneration of dopaminergic neurons. There was dose-dependent protection against loss of both dopamine in the striatum and dopamine transporter (DAT) immunoreactive neurons in the substantia nigra. These effects were not due to alterations in MPTP processing. We found that alpha-synuclein-deficient mice are also resistant to both malonate and 3-nitropropionic acid (3-NP) neurotoxicity. There was reduced generation of reactive oxygen species in alpha-synuclein-deficient mice following administration of 3-NP. These findings implicate alpha-synuclein as a modulator of oxidative damage, which has been implicated in neuronal death produced by MPTP and other mitochondrial toxins.
Collapse
Affiliation(s)
- Peter Klivenyi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York-Presbyterian Hospital, 525 East 68th Street, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
415
|
Papadopoulos D, Ewans L, Pham-Dinh D, Knott J, Reynolds R. Upregulation of alpha-synuclein in neurons and glia in inflammatory demyelinating disease. Mol Cell Neurosci 2006; 31:597-612. [PMID: 16503161 DOI: 10.1016/j.mcn.2006.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 12/21/2005] [Accepted: 01/11/2006] [Indexed: 11/29/2022] Open
Abstract
A growing body of evidence suggests that axonal loss and neurodegeneration are responsible for the permanent neurological deficit that typically develops in the course of MS. To investigate the neurodegenerative component of MS pathogenesis, we examined the expression of alpha-synuclein, a protein whose accumulation is common to many neurodegenerative disorders, under conditions of immune-mediated inflammatory demyelination. alpha-Synuclein expression was examined in the spinal cord of myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) in rats using immunofluorescence and in situ hybridization and in postmortem tissues from cases of secondary progressive MS using immunohistochemistry. alpha-Synuclein upregulation was detected in neurons and glia in and close by lesions and in normal appearing spinal cord EAE tissue at the protein and mRNA levels. alpha-Synuclein positive neurons and glia appeared early, and their number was maximal during EAE exacerbations, but some expression was maintained throughout the course of EAE. In addition, increased alpha-synuclein expression was detected in neurons and glia in and close to MS lesions. Although the increased expression of alpha-synuclein was detected as a granular cytoplasmic labeling rather than inclusion bodies, this result does suggest that neuronal cell death in immune-mediated demyelinating disease may share some common features with other neurodegenerative conditions.
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- Department of Cellular and Molecular Neuroscience, Division of Neuroscience, Imperial College Faculty of Medicine, Charing Cross Hospital Campus, Fulham Palace Road, London W6 8RF, UK
| | | | | | | | | |
Collapse
|
416
|
Kumar B, Nahreini P, Hanson AJ, Andreatta C, Prasad JE, Prasad KN. Selenomethionine prevents degeneration induced by overexpression of wild-type human alpha-synuclein during differentiation of neuroblastoma cells. J Am Coll Nutr 2006; 24:516-23. [PMID: 16373949 DOI: 10.1080/07315724.2005.10719498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE High levels of wild-type alpha-synuclein are found in autopsied brain samples of idiopathic Parkinson's disease (PD), some familial PD, some Alzheimer's disease (AD) and Down's syndrome with dementia. Therefore, we have investigated whether overexpression of wild-type alpha-synuclein causes degeneration during adenosine, 3',5'-cyclic monophosphate (cAMP)-induced differentiation of murine neuroblastoma (NB) cells in culture. We have also studied whether selenomethionine can modify the effect of overexpression of alpha-synuclein during differentiation of NB cells. METHODS To study these issues, we established a murine neuroblastoma (NB) clone (NBP2-PN54-C20) that expressed high levels of wild-type human alpha-synuclein as determined by real time PCR and Western blot. We have utilized RO20-1724, an inhibitor of cyclic nucleotide phosphodiesterase, and prostaglandin A1 (PGA1), a stimulator of adenylate cyclase, or RO20-1724 and dibutyryl cAMP to induce terminal differentiation in over 95% of the cell population by elevating the intracellular levels of cAMP in NB cells. The viability of cells was determined by MTT assay and LDH leakage assay, and the degeneration was documented by photomicrographs. RESULTS The results showed that overexpression of human wild-type alpha-synuclein decreased viability and increased degenerative changes in comparison to those observed in vector control cells, when differentiation was induced by treatment with RO20-1724 and PGA1, but not with RO20-1724 and dibutyryl cAMP. When selenomethionine was added to NB cells overexpressing alpha-synuclein immediately after the addition of RO20-1724 and PGA1, the viability and degenerative changes were markedly reduced, suggesting the involvement of increased oxidative stress in the mechanism of action of alpha-synuclein. This protective effect was not observed after treatment with sodium selenite or methionine. CONCLUSIONS Data suggested that Overexpression of wild-type human alpha-synuclein-decreased viability and increased the levels of degenerative changes during differentiation of NB cells were reduced by selenomethionine treatment. This suggest that one of mechanisms of action alpha-synuclein may involve increased oxidative stress.
Collapse
Affiliation(s)
- Bipin Kumar
- Center for Vitamins and Cancer Research, Department of Radiology, School of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | |
Collapse
|
417
|
Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 2006; 39:359-407. [PMID: 16285865 PMCID: PMC2821041 DOI: 10.1146/annurev.genet.39.110304.095751] [Citation(s) in RCA: 2353] [Impact Index Per Article: 130.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Life is the interplay between structure and energy, yet the role of energy deficiency in human disease has been poorly explored by modern medicine. Since the mitochondria use oxidative phosphorylation (OXPHOS) to convert dietary calories into usable energy, generating reactive oxygen species (ROS) as a toxic by-product, I hypothesize that mitochondrial dysfunction plays a central role in a wide range of age-related disorders and various forms of cancer. Because mitochondrial DNA (mtDNA) is present in thousands of copies per cell and encodes essential genes for energy production, I propose that the delayed-onset and progressive course of the age-related diseases results from the accumulation of somatic mutations in the mtDNAs of post-mitotic tissues. The tissue-specific manifestations of these diseases may result from the varying energetic roles and needs of the different tissues. The variation in the individual and regional predisposition to degenerative diseases and cancer may result from the interaction of modern dietary caloric intake and ancient mitochondrial genetic polymorphisms. Therefore the mitochondria provide a direct link between our environment and our genes and the mtDNA variants that permitted our forbears to energetically adapt to their ancestral homes are influencing our health today.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Molecular and Mitochondrial Medicine and Genetics, Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-3940, USA.
| |
Collapse
|
418
|
Abstract
Lewy bodies (LB) in the substantia nigra are a cardinal pathological feature of Parkinson's disease, but they occur in a number of neurodegenerative diseases and can be widespread in the nervous system. The characteristics, locations, and composition of LB are reviewed, with particular attention to alpha-synuclein (alpha-SYN), which appears to be the major component of LB. The propensity for alpha-SYN, a presynaptic protein widely expressed in the brain, to aggregate is because of an amyloidogenic central region. The factors that favor the aggregation of alpha-SYN and mechanisms of toxicity are examined, and a mechanism through which aggregates of alpha-SYN could induce mitochondrial dysfunction and/or release of proapoptotic molecules is proposed.
Collapse
Affiliation(s)
- Clifford W Shults
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
419
|
Betarbet R, Canet-Aviles RM, Sherer TB, Mastroberardino PG, McLendon C, Kim JH, Lund S, Na HM, Taylor G, Bence NF, Kopito R, Seo BB, Yagi T, Yagi A, Klinefelter G, Cookson MR, Greenamyre JT. Intersecting pathways to neurodegeneration in Parkinson's disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiol Dis 2006; 22:404-20. [PMID: 16439141 DOI: 10.1016/j.nbd.2005.12.003] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 11/09/2005] [Accepted: 12/08/2005] [Indexed: 12/21/2022] Open
Abstract
Sporadic Parkinson's disease (PD) is most likely caused by a combination of environmental exposures and genetic susceptibilities, although there are rare monogenic forms of the disease. Mitochondrial impairment at complex I, oxidative stress, alpha-synuclein aggregation, and dysfunctional protein degradation, have been implicated in PD pathogenesis, but how they are related to each other is unclear. To further evaluated PD pathogenesis here, we used in vivo and in vitro models of chronic low-grade complex I inhibition with the pesticide rotenone. Chronic rotenone exposure in vivo caused oxidative modification of DJ-1, accumulation of alpha-synuclein, and proteasomal impairment. Interestingly, the effects become more regionally restricted such that systemic complex I inhibition eventually results in highly selective degeneration of the nigrostriatal pathway. DJ-1 modifications, alpha-synuclein accumulation, and proteasomal dysfunction were also seen in vitro and these effects could be prevented with alpha-tocopherol. Thus, chronic exposure to a pesticide and mitochondrial toxin brings into play three systems, DJ-1, alpha-synuclein, and the ubiquitin-proteasome system, and implies that mitochondrial dysfunction and oxidative stress link environmental and genetic forms of the disease.
Collapse
Affiliation(s)
- Ranjita Betarbet
- Center for Neurodegenerative Disease, Center for Neurodegenerative diseases, Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
420
|
HASHIMOTO MAKOTO, ROCKENSTEIN EDWARD, MASLIAH ELIEZER. Transgenic Models of α-Synuclein Pathology. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.2003.tb07475.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
421
|
Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhang W, Zhou Y, Hong JS, Zhang J. Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson's disease. FASEB J 2005; 19:533-42. [PMID: 15791003 DOI: 10.1096/fj.04-2751com] [Citation(s) in RCA: 908] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A growing body of evidence indicates that an inflammatory process in the substantia nigra, characterized by activation of resident microglia, likely either initiates or aggravates nigral neurodegeneration in Parkinson's disease (PD). To study the mechanisms by which nigral microglia are activated in PD, the potential role of alpha-synuclein (a major component of Lewy bodies that can cause neurodegeneration when aggregated) in microglial activation was investigated. The results demonstrated that in a primary mesencephalic neuron-glia culture system, extracellular aggregated human alpha-synuclein indeed activated microglia; microglial activation enhanced dopaminergic neurodegeneration induced by aggregated alpha-synuclein. Furthermore, microglial enhancement of alpha-synuclein-mediated neurotoxicity depended on phagocytosis of alpha-synuclein and activation of NADPH oxidase with production of reactive oxygen species. These results suggest that nigral neuronal damage, regardless of etiology, may release aggregated alpha-synuclein into substantia nigra, which activates microglia with production of proinflammatory mediators, thereby leading to persistent and progressive nigral neurodegeneration in PD. Finally, NADPH oxidase could be an ideal target for potential pharmaceutical intervention, given that it plays a critical role in alpha-synuclein-mediated microglial activation and associated neurotoxicity.
Collapse
Affiliation(s)
- Wei Zhang
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
422
|
Tofaris GK, Spillantini MG. Alpha-synuclein dysfunction in Lewy body diseases. Mov Disord 2005; 20 Suppl 12:S37-44. [PMID: 16092089 DOI: 10.1002/mds.20538] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
alpha-Synuclein belongs to a small group of natively unfolded proteins that can transiently bind to lipid membranes and acquire a partial alpha-helical conformation. Its relevance to Parkinson's disease (PD) is based on mutations found in familial cases of the disease and its presence in filaments of Lewy bodies (LB) and Lewy neurites (LN) in sporadic cases where it is packed in a beta-sheet configuration. This structural plasticity of alpha-synuclein has raised the possibility that neurodegeneration may be a consequence of abnormal protein folding. The extent to which abnormal folding and aggregation of neuronal proteins is directly toxic to the cell, an inert biochemical marker of an underlying harmful metabolic defect, or a protective reaction remains to be seen. We review the function of alpha-synuclein and recent studies that have shed light on the mechanisms by which it aggregates.
Collapse
|
423
|
α-Synuclein aggregation in neurodegenerative diseases and its inhibition as a potential therapeutic strategy. Biochem Soc Trans 2005. [DOI: 10.1042/bst0331106] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is strong evidence for the involvement of α-synuclein in the pathologies of several neurodegenerative disorders, including PD (Parkinson's disease). Development of disease appears to be linked to processes that increase the rate at which α-synuclein forms aggregates. These processes include increased protein concentration (via either increased rate of synthesis or decreased rate of degradation), and altered forms of α-synuclein (such as truncations, missense mutations, or chemical modifications by oxidative reactions). Aggregated forms of the protein are toxic to cells and one therapeutic strategy would be to reduce the rate at which aggregation occurs. To this end we have designed several peptides that reduce α-synuclein aggregation. A cell-permeable version of one such peptide was able to inhibit the DNA damage induced by Fe(II) in neuronal cells transfected with α-synuclein (A53T), a familial PD-associated mutation.
Collapse
|
424
|
Kanthasamy AG, Kitazawa M, Kanthasamy A, Anantharam V. Dieldrin-induced neurotoxicity: relevance to Parkinson's disease pathogenesis. Neurotoxicology 2005; 26:701-19. [PMID: 16112328 DOI: 10.1016/j.neuro.2004.07.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 07/25/2004] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is increasingly recognized as a neurodegenerative disorder strongly associated with environmental chemical exposures. Recent epidemiological data demonstrate that environmental risk factors may play a dominant role as compared to genetic factors in the etiopathogenesis of idiopathic Parkinson's disease. Identification of key genetic defects such as alpha-synuclein and parkin mutations in PD also underscores the important role of genetic factors in the disease. Thus, understanding the interplay between genes and environment in PD may be critical to unlocking the mysteries of this 200-year-old neurodegenerative disease. Pesticides and metals are the most common classes of environmental chemicals that promote dopaminergic degeneration. The organochlorine pesticide dieldrin has been found in human PD postmortem brain tissues, suggesting that this pesticide has potential to promote nigral cell death. Though dieldrin has been banned, humans continue to be exposed to the pesticide through contaminated dairy products and meats due to the persistent accumulation of the pesticide in the environment. This review summarizes various neurotoxic studies conducted in both cell culture and animals models following dieldrin exposure and discusses their relevance to key pathological mechanisms associated with nigral dopaminergic degeneration including oxidative stress, mitochondrial dysfunction, protein aggregation, and apoptosis.
Collapse
Affiliation(s)
- Anumantha G Kanthasamy
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011-1250, USA.
| | | | | | | |
Collapse
|
425
|
Abstract
The incidence of many diseases rises sharply with age. Although clearly separable, ageing and certain age-related diseases might share common mechanisms. Cellular metabolism and subsequent generation of reactive oxygen species might contribute both to the rate at which we age and to our susceptibility to numerous chronic diseases, therefore therapies that directly target the ageing process might provide new ways to treat human diseases.
Collapse
Affiliation(s)
- Toren Finkel
- Cardiovascular Branch ofthe National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, USA.
| |
Collapse
|
426
|
Dalfó E, Portero-Otín M, Ayala V, Martínez A, Pamplona R, Ferrer I. Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J Neuropathol Exp Neurol 2005; 64:816-30. [PMID: 16141792 DOI: 10.1097/01.jnen.0000179050.54522.5a] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress has been well documented in the substantia nigra in Parkinson disease (PD), but little is known about oxidative damage, particularly lipoxidation, advanced glycation (AGE), and AGE receptors (RAGE) in other structures, including the cerebral cortex, in early stages of diseases with Lewy bodies. The present study was undertaken to analyze these parameters in the frontal cortex (area 8), amygdala, and substantia nigra in selected cases with no neurologic symptoms and with neuropathologically verified incidental Lewy body disease-related changes, comparing them with healthy age-matched individuals. Results of the present study have shown mass spectrometric and immunologic evidences of increased lipoxidative damage by the markers malondialdehyde-lysine (MDAL) and 4-hydroxynonenal-lysine (HNE), increased expression of AGE in the substantia nigra, amygdala, and frontal cortex, and increased and heterogeneous RAGE cellular expression in the substantia nigra and frontal cortex in cases with early stages of parkinsonian neuropathology. In addition, increased content of the highly peroxidizable docosahexaenoic acid in the amygdala and frontal cortex. These changes were not associated to alpha-synuclein aggregation in cortex, contrasting with aggregates found in SDS-soluble fractions of frontal cortex in dementia with Lewy bodies (DLB) cases. The pattern of lipidic abnormalities differed in DLB and incidental Lewy body disease. Furthermore, although AGE and RAGE expression were raised in DLB, no increase in the total amount of HNE and MDAL adducts was found in the cerebral cortex in DLB. Preliminary analyses have identified 2 proteins with lipoxidative damage, alpha-synuclein and manganese superoxide dismutase (SOD2), in incidentally Lewy body disease cortex. This study demonstrates abnormal fatty acid profiles, increased and selective lipoxidative damage, and increased AGE and RAGE expression in the frontal cortex in cases with early stages of parkinsonian neuropathology without treatment. These findings further support antioxidant therapy in the treatment of PD to reduce cortical damage associated with oxidative stress.
Collapse
Affiliation(s)
- Esther Dalfó
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Spain
| | | | | | | | | | | |
Collapse
|
427
|
Silvestri L, Caputo V, Bellacchio E, Atorino L, Dallapiccola B, Valente EM, Casari G. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet 2005; 14:3477-92. [PMID: 16207731 DOI: 10.1093/hmg/ddi377] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative illness associated with a selective loss of dopaminergic neurons in the nigrostriatal pathway of the brain. Despite the overall rarity of the familial forms of PD, the identification of single genes linked to the disease has yielded crucial insights into possible mechanisms of neurodegeneration. Recently, a putative mitochondrial kinase, PINK1, has been found mutated in an inherited form of parkinsonism. Here, we describe that PINK1 mutations confer different autophosphorylation activity, which is regulated by the C-terminal portion of the protein. We also demonstrate the mitochondrial localization of both wild-type and mutant PINK1 proteins unequivocally and prove that a short N-terminal part of PINK1 is sufficient for its mitochondrial targeting.
Collapse
Affiliation(s)
- Laura Silvestri
- Human Molecular Genetics Unit, Dibit-San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
428
|
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder that results primarily from the death of dopaminergic neurons in the substantia nigra. Although the etiology of PD is incompletely understood, the recent discovery of genes associated with rare monogenic forms of the disease, together with earlier studies and new experimental animal models, has provided important and novel insight into the molecular pathways involved in disease pathogenesis. Increasing evidence indicates that deficits in mitochondrial function, oxidative and nitrosative stress, the accumulation of aberrant or misfolded proteins, and ubiquitin-proteasome system dysfunction may represent the principal molecular pathways or events that commonly underlie the pathogenesis of sporadic and familial forms of PD .
Collapse
Affiliation(s)
- Darren J Moore
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
429
|
Abstract
Several genes have been identified for monogenic disorders that variably resemble Parkinson's disease. Dominant mutations in the gene encoding alpha-synuclein enhance the propensity of this protein to aggregate. As a consequence, these patients have a widespread disease with protein inclusion bodies in several brain areas. In contrast, mutations in several recessive genes (parkin, DJ-1, and PINK1) produce neuronal cell loss but generally without protein aggregation pathology. Progress has been made in understanding some of the mechanisms of toxicity: Parkin is an E3 ubiquitin ligase and DJ-1 and PINK1 appear to protect against mitochondrial damage. However, we have not yet fully resolved how the recessive genes relate to alpha-synuclein, or whether they represent different ways to induce a similar phenotype.
Collapse
Affiliation(s)
- Mark R Cookson
- Cell Biology Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland 20892, USA.
| |
Collapse
|
430
|
Lu B. Understanding and treating neurodegeneration: insights from the flies. AGE (DORDRECHT, NETHERLANDS) 2005; 27:225-239. [PMID: 23598655 PMCID: PMC3458495 DOI: 10.1007/s11357-005-2917-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 03/21/2005] [Accepted: 03/27/2005] [Indexed: 06/02/2023]
Abstract
Drosophila has recently emerged as a model system for studying mechanisms of neurodegeneration. Genetic models for most of the major neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), polyglutamine diseases, and tauopathies, have been successfully established. Pharmacological models of some of these diseases have also been created. Genetic modifier screens using these models have uncovered previously implicated mechanisms and molecules as well as novel ones. Fly models have turned out to be excellent system for the in vivo testing of therapeutic potentials of candidate compounds. It is anticipated that further exploration of the fly models will not only provide novel insights into mechanisms of neurodegeneration but also lead to the development of rational treatment of those debilitating degenerative diseases.
Collapse
Affiliation(s)
- Bingwei Lu
- Department of Pathology, GRECC, VA Palo Alto Health Care System, Stanford University School of Medicine, Palo Alto, CA 94304 USA
| |
Collapse
|
431
|
Papachroni K, Ninkina N, Wanless J, Kalofoutis AT, Gnuchev NV, Buchman VL. Peripheral sensory neurons survive in the absence of alpha- and gamma-synucleins. J Mol Neurosci 2005; 25:157-64. [PMID: 15784963 DOI: 10.1385/jmn:25:2:157] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Accepted: 08/30/2004] [Indexed: 11/11/2022]
Abstract
Physiological functions of alpha-synuclein, a protein implicated in certain types of neurodegeneration, and two other members of the same family, beta-synuclein and gamma-synuclein, are not clearly understood. It has been suggested that synucleins are involved in intracellular processes associated with survival of neurons and their response to stress, and that changes of synuclein ratio might have deteriorating effects on neurons. In wild-type mice, sensory neurons of the peripheral nervous system express alpha-synuclein and notably high levels of gamma-synuclein, but targeted inactivation of either of these genes has no effect on these neurons. Here we produced double, alpha-synuclein/gamma-synuclein null mutant mice, which develop normally, are fertile, and show no obvious signs of pathology in adulthood. Survival of alpha/gamma-synuclein-deficient peripheral sensory neurons in vivo and in primary tissue culture is indistinguishable from survival of wild-type neurons. The absence of two synucleins does not lead to expression in sensory neurons of the third member of the family, beta-synuclein. Therefore, our results demonstrate that neurons with normally high levels of synuclein(s) can develop and survive normally in the absence of any of these proteins. This suggests that other intraneuronal mechanisms and pathways effectively compensate the loss of synuclein function in null mutant animals.
Collapse
Affiliation(s)
- Katerina Papachroni
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | | | | | | | | | | |
Collapse
|
432
|
Purisai MG, McCormack AL, Langston WJ, Johnston LC, Di Monte DA. Alpha-synuclein expression in the substantia nigra of MPTP-lesioned non-human primates. Neurobiol Dis 2005; 20:898-906. [PMID: 16006134 DOI: 10.1016/j.nbd.2005.05.028] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2005] [Revised: 05/10/2005] [Accepted: 05/25/2005] [Indexed: 12/21/2022] Open
Abstract
Changes in the expression of alpha-synuclein are likely to underlie its normal function as well as its role in pathological processes. The relationship between toxic injury and alpha-synuclein expression was assessed in the substantia nigra of squirrel monkeys treated with a single injection of MPTP and sacrificed 1 week or 1 month later. At 1 week, when stereological cell counting revealed only a small decrease (-10%) in the number of dopaminergic neurons, alpha-synuclein mRNA and protein were markedly enhanced. Increased alpha-synuclein immunoreactivity was evident at the level of neuronal fibers whereas nigral cell bodies were devoid of detectable protein. At 1 month post-MPTP, neuronal loss rose to 40%. Both alpha-synuclein mRNA and protein remained elevated but, noticeably, a robust alpha-synuclein immunoreactivity characterized a significant number of cell bodies. Neuromelanin granules are hallmarks of dopaminergic neurons in primates. Therefore, the number of alpha-synuclein-positive cells that also contained neuromelanin was counted throughout the substantia nigra. At 1 month, the vast majority of alpha-synuclein-immunoreactive neurons contained neuromelanin, and approximately 80% of the dopaminergic cell bodies that survived MPTP toxicity stained positive for alpha-synuclein. The results indicate that a single toxic insult is capable of inducing a sustained alpha-synuclein up-regulation in the primate brain. They support a direct relationship between neuronal injury and enhanced alpha-synuclein expression, and suggest that protein elevation within cell bodies may be a late feature of neurons that have endured a toxic stress.
Collapse
Affiliation(s)
- Maya G Purisai
- The Parkinson's Institute, 1170 Morse Avenue, Sunnyvale, California 94089, USA
| | | | | | | | | |
Collapse
|
433
|
Nieto M, Gil-Bea FJ, Dalfó E, Cuadrado M, Cabodevilla F, Sánchez B, Catena S, Sesma T, Ribé E, Ferrer I, Ramírez MJ, Gómez-Isla T. Increased sensitivity to MPTP in human alpha-synuclein A30P transgenic mice. Neurobiol Aging 2005; 27:848-56. [PMID: 16006012 DOI: 10.1016/j.neurobiolaging.2005.04.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 04/15/2005] [Accepted: 04/26/2005] [Indexed: 12/21/2022]
Abstract
In addition to genetic factors, environmental factors have long been suspected to contribute to the pathogenesis of Parkinson's disease (PD). We investigated the possible interaction between genetic factors and neurotoxins by testing whether alpha-synuclein A30P Tg5093 transgenic mice show increased sensitivity to secondary toxic insults like 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone. While sensitivity to chronic treatment with rotenone was not enhanced in the Tg5093 line, chronic treatment with 80 or 150 mg/kg MPTP resulted in increased deterioration of the nigrostriatal dopaminergic system as assessed by quantitation of nigral tyrosine hydroxylase (TH) positive neurons and striatal dopamine (DA) levels in Tg5093 mice when compared to non-transgenic littermate controls. Thus, the results of this study demonstrate a role for the overexpression of mutant human alpha-synuclein A30P in increased vulnerability of DA neurons to MPTP.
Collapse
Affiliation(s)
- María Nieto
- Department of Neurology and Neurosurgery, Clinica Universitaria de Navarra, Universidad de Navarra, Pamplona, Navarre, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
434
|
Ahlskog JE. Challenging conventional wisdom: the etiologic role of dopamine oxidative stress in Parkinson's disease. Mov Disord 2005; 20:271-82. [PMID: 15580550 DOI: 10.1002/mds.20362] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Oxidative stress is well documented in Parkinson's disease (PD) and has been attributed to dopamine oxidative metabolism. However, evidence of oxidative stress is found in a variety of neurodegenerative disorders, suggesting that more general factors are responsible or that cytodestructive processes secondarily generate oxyradical products. Increasing evidence points away from dopamine metabolism as an important contributor to PD neurodegeneration. Predictions from the dopamine oxidative stress hypothesis of PD reveal multiple inconsistencies. Although the clinical and therapeutic importance of the nigrostriatal dopaminergic system is undeniable, PD neuropathology is much more widespread.
Collapse
Affiliation(s)
- J Eric Ahlskog
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| |
Collapse
|
435
|
Yamada M, Mizuno Y, Mochizuki H. Parkin gene therapy for alpha-synucleinopathy: a rat model of Parkinson's disease. Hum Gene Ther 2005; 16:262-70. [PMID: 15761265 DOI: 10.1089/hum.2005.16.262] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Parkin is known to mitigate alpha-synuclein-induced neuronal cell death in vitro, which suggests that the parkin gene therapy is a candidate for therapeutic strategies for Parkinson's disease (PD). In the present study, the parkin gene therapy was investigated for its ameliorative effects on alpha-synucleinopathy in substantia nigra (SN) of rats. A recombinant adeno-associated viral (rAAV) vector system has frequently been used for the gene transfer to rat SN, and we have previously demonstrated that this technique induced the alpha-synucleinopathy, which closely resembles pathogenetic changes in PD. Therefore, in the present study, the effect of parkin was examined by co-infection of rAAV-parkin with rAAV-alpha-synuclein into dopaminergic neurons in SN. At 13 weeks post-rAAV infection, alpha-synuclein overexpression induced dopaminergic neuron loss, while co-expression of parkin mitigated the alpha-synuclein toxicity. Moreover, alpha-synuclein-induced dopaminergic neuron loss consequently resulted in motor dysfunction, which was also mitigated by parkin. Taken together, our results indicate that the parkin gene therapy is effective against alpha-synucleinopathy, suggesting its potential suitability for patients with PD.
Collapse
Affiliation(s)
- Masanori Yamada
- Research Institute for Diseases of Old Age, Juntendo University, Tokyo 113-8421, Japan
| | | | | |
Collapse
|
436
|
Rockenstein E, Schwach G, Ingolic E, Adame A, Crews L, Mante M, Pfragner R, Schreiner E, Windisch M, Masliah E. Lysosomal pathology associated with alpha-synuclein accumulation in transgenic models using an eGFP fusion protein. J Neurosci Res 2005; 80:247-59. [PMID: 15765523 DOI: 10.1002/jnr.20446] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Disorders with Lewy body (LB) formation, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB), are characterized by alpha-synuclein accumulation in the neuronal cell body. Recent studies have suggested that in addition to LBs, alpha-synuclein might accumulate more widely throughout the neurons and their processes, leading to neurodegeneration and functional impairment. The precise patterns of alpha-synuclein accumulation in vivo, however, and its relationship with subcellular neuronal alterations such as lysosomal pathology are not completely clear. To this end, we developed transgenic (tg) in vivo and in vitro models expressing a stable enhanced green fluorescent protein (eGFP) tagged in the C-terminal site of a human (h)alpha-synuclein construct under the regulatory control of the platelet-derived growth factor-beta (PDGFbeta) promoter and carried out confocal, ultrastructural, and biochemical studies. In tg mice, confocal studies demonstrated a wide distribution of halpha-synuclein-eGFP in the neuronal cell bodies, axons, and presynaptic terminals. In several neuronal cell bodies and their neurites, halpha-synuclein-eGFP was found not only as inclusions but also as discrete granular structures that in double-labeling studies colocalized with antibodies against halpha-synuclein and the lysosomal marker cathepsin D. Consistent with these findings, ultrastructural analysis showed that halpha-synuclein-eGFP overexpression resulted in the accumulation of electrodense inclusions and laminated bodies suggestive of lysosomal pathology, and that the halpha-synuclein-eGFP protein was more abundant in the lysosomal fractions of the tg animals. Taken together, these findings support the notion that enhanced visualization of alpha-synuclein utilizing a hybrid eGFP molecule reveals a more widespread accumulation of this molecule in several neuronal compartments, promoting lysosomal dysfunction. Furthermore, the PDGFbeta-halpha-synuclein-eGFP tg model might be a valuable tool in testing new treatments for LBD in a fast and reliable manner.
Collapse
Affiliation(s)
- Edward Rockenstein
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, California 92093-0624, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
437
|
Ziolkowska B, Gieryk A, Bilecki W, Wawrzczak-Bargiela A, Wedzony K, Chocyk A, Danielson PE, Thomas EA, Hilbush BS, Sutcliffe JG, Przewlocki R. Regulation of alpha-synuclein expression in limbic and motor brain regions of morphine-treated mice. J Neurosci 2005; 25:4996-5003. [PMID: 15901780 PMCID: PMC6724864 DOI: 10.1523/jneurosci.4376-04.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 04/11/2005] [Accepted: 04/12/2005] [Indexed: 11/21/2022] Open
Abstract
Chronic exposure to opiates produces dependence and addiction, which may result from neuroadaptations in the dopaminergic reward pathway and its target brain regions. The neuronal protein alpha-synuclein has been implicated in neuronal plasticity and proposed to serve as a negative regulator of dopamine neurotransmission. Thus, alpha-synuclein could mediate some effects of opiates in the brain. The present study investigated the influence of acute and chronic morphine administration on alpha-synuclein mRNA and protein expression in the brains of mice. Downregulation of alpha-synuclein mRNA was observed in the basolateral amygdala, dorsal striatum, nucleus accumbens, and ventral tegmental area of mice withdrawn from chronic morphine treatment. The changes were the most pronounced after longer periods of withdrawal (48 h). In contrast, levels of alpha-synuclein protein, as assessed by Western blotting, were significantly increased in the amygdala and striatum/accumbens (but not in the mesencephalon) of morphine-withdrawn mice. In both brain regions, levels of alpha-synuclein were elevated for as long as 2 weeks after treatment cessation. Because alpha-synuclein is a presynaptic protein, the detected opposite changes in its mRNA and protein levels are likely to take place in different populations of projection neurons whose somata are in different brain areas. Axonal localization of alpha-synuclein was confirmed by immunofluorescent labeling. An attempt to identify postsynaptic neurons innervated by alpha-synuclein-containing axon terminals revealed their selective apposition to calbindin D28K-negative projection neurons in the basolateral amygdala. The observed changes in alpha-synuclein levels are discussed in connection with their putative role in mediating suppression of dopaminergic neurotransmission during opiate withdrawal.
Collapse
Affiliation(s)
- Barbara Ziolkowska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
438
|
Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 2005; 14:1709-25. [PMID: 15888489 PMCID: PMC2674782 DOI: 10.1093/hmg/ddi178] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Molecular differences between dopamine (DA) neurons may explain why the mesostriatal DA neurons in the A9 region preferentially degenerate in Parkinson's disease (PD) and toxic models, whereas the adjacent A10 region mesolimbic and mesocortical DA neurons are relatively spared. To characterize innate physiological differences between A9 and A10 DA neurons, we determined gene expression profiles in these neurons in the adult mouse by laser capture microdissection, microarray analysis and real-time PCR. We found 42 genes relatively elevated in A9 DA neurons, whereas 61 genes were elevated in A10 DA neurons [> 2-fold; false discovery rate (FDR) < 1%]. Genes of interest for further functional analysis were selected by criteria of (i) fold differences in gene expression, (ii) real-time PCR validation and (iii) potential roles in neurotoxic or protective biochemical pathways. Three A9-elevated molecules [G-protein coupled inwardly rectifying K channel 2 (GIRK2), adenine nucleotide translocator 2 (ANT-2) and the growth factor IGF-1] and three A10-elevated peptides (GRP, CGRP and PACAP) were further examined in both alpha-synuclein overexpressing PC12 (PC12-alphaSyn) cells and rat primary ventral mesencephalic (VM) cultures exposed to MPP+ neurotoxicity. GIRK2-positive DA neurons were more vulnerable to MPP+ toxicity and overexpression of GIRK2 increased the vulnerability of PC12-alphaSyn cells to the toxin. Blocking of ANT decreased vulnerability to MPP+ in both cell culture systems. Exposing cells to IGF-1, GRP and PACAP decreased vulnerability of both cell types to MPP+, whereas CGRP protected PC12-alphaSyn cells but not primary VM DA neurons. These results indicate that certain differentially expressed molecules in A9 and A10 DA neurons may play key roles in their relative vulnerability to toxins and PD.
Collapse
Affiliation(s)
- Chee Yeun Chung
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Harvard Center for Neurodegeneration and Repair, Boston, MA 02114, USA
| | - Hyemyung Seo
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Kai Christian Sonntag
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Andrew Brooks
- Department of Environmental Medicine, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ling Lin
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Ole Isacson
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Harvard Center for Neurodegeneration and Repair, Boston, MA 02114, USA
- To whom correspondence should be addressed. Tel: +1 6178553283; Fax: +1 6178553284;
| |
Collapse
|
439
|
Xu J, Zhong N, Wang H, Elias JE, Kim CY, Woldman I, Pifl C, Gygi SP, Geula C, Yankner BA. The Parkinson's disease-associated DJ-1 protein is a transcriptional co-activator that protects against neuronal apoptosis. Hum Mol Genet 2005; 14:1231-41. [PMID: 15790595 DOI: 10.1093/hmg/ddi134] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mutations in the DJ-1 gene cause early-onset autosomal recessive Parkinson's disease (PD), although the role of DJ-1 in the degeneration of dopaminergic neurons is unresolved. Here we show that the major interacting-proteins with DJ-1 in dopaminergic neuronal cells are the nuclear proteins p54nrb and pyrimidine tract-binding protein-associated splicing factor (PSF), two multifunctional regulators of transcription and RNA metabolism. PD-associated DJ-1 mutants exhibit decreased nuclear distribution and increased mitochondrial localization, resulting in diminished co-localization with co-activator p54nrb and repressor PSF. Unlike pathogenic DJ-1 mutants, wild-type DJ-1 acts to inhibit the transcriptional silencing activity of the PSF. In addition, the transcriptional silencer PSF induces neuronal apoptosis, which can be reversed by wild-type DJ-1 but to a lesser extent by PD-associated DJ-1 mutants. DJ-1-specific small interfering RNA sensitizes cells to PSF-induced apoptosis. Both DJ-1 and p54nrb block oxidative stress and mutant alpha-synuclein-induced cell death. Thus, DJ-1 is a neuroprotective transcriptional co-activator that may act in concert with p54nrb and PSF to regulate the expression of a neuroprotective genetic program. Mutations that impair the transcriptional co-activator function of DJ-1 render dopaminergic neurons vulnerable to apoptosis and may contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
- Jin Xu
- Department of Neurology, Caritas St Elizabeth's Center, Tufts University School of Medicine, Boston, MA 02135, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
440
|
Callio J, Oury TD, Chu CT. Manganese superoxide dismutase protects against 6-hydroxydopamine injury in mouse brains. J Biol Chem 2005; 280:18536-42. [PMID: 15755737 PMCID: PMC1885201 DOI: 10.1074/jbc.m413224200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dopaminergic neurons of the substantia nigra are susceptible to toxin-based insults. Intrastriatal injection of 6-hydroxydopamine results in selective toxicity to these neurons. A mechanistic role for reactive oxygen species is supported by observations that antioxidants confer protection from 6-hydroxydopamine. Although cell culture studies have suggested extracellular or nonmitochondrial mechanisms in 6-hydroxydopamine toxicity, the compartmentalization of oxidative injury mechanisms is incompletely defined in vivo. Transgenic mice overexpressing mitochondrial manganese superoxide dismutase or extracellular superoxide dismutase received unilateral intrastriatal injections of 6-hydroxydopamine. Mice that overexpress manganese superoxide dismutase showed significantly smaller striatal lesions than littermate controls. There were no differences in nonspecific striatal injury associated with contralateral vehicle injection. Manganese superoxide dismutase overexpression also protected against loss of neuronal cell bodies in the substantia nigra. In contrast, mice overexpressing extracellular superoxide dismutase showed no protection from 6-hydroxydopamine toxicity in either brain region. Protection of the nigrostriatal system by overexpression of manganese superoxide dismutase supports a role for mitochondrially derived superoxide in 6-hydroxydopamine toxicity. Mitochondrial oxidative stress appears to be a common mechanism among diverse models of Parkinson disease, whether involving toxins, mutated genes, or cybrid cells containing patient mitochondria. Antioxidant therapies that target this subcellular compartment may prove promising.
Collapse
Affiliation(s)
- Jason Callio
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
441
|
Abstract
Alpha-synuclein is a 140 amino acid neuronal protein that has been associated with several neurodegenerative diseases. A point mutation in the gene coding for the alpha-synuclein protein was the first discovery linking this protein to a rare familial form of Parkinson's disease (PD). Subsequently, other mutations in the alpha-synuclein gene have been identified in familial PD. The aggregated proteinaceous inclusions called Lewy bodies found in PD and cortical Lewy body dementia (LBD) were discovered to be predominantly alpha-synuclein. Aberrant aggregation of alpha-synuclein has been detected in an increasing number of neurodegenerative diseases, collectively known as synucleopathies. Alpha-synuclein exists physiologically in both soluble and membrane-bound states, in unstructured and alpha-helical conformations, respectively. The physiological function of alpha-synuclein appears to require its translocation between these subcellular compartments and interconversion between the 2 conformations. Abnormal processing of alpha-synuclein is predicted to lead to pathological changes in its binding properties and function. In this review, genetic and environmental risk factors for alpha-synuclein pathology are described. Various mechanisms for in vitro and in vivo alpha-synuclein aggregation and neurotoxicity are summarized, and their relevance to neuropathology is explored.
Collapse
|
442
|
Maingay M, Romero-Ramos M, Kirik D. Viral vector mediated overexpression of human alpha-synuclein in the nigrostriatal dopaminergic neurons: a new model for Parkinson's disease. CNS Spectr 2005; 10:235-44. [PMID: 15744224 DOI: 10.1017/s1092852900010075] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is predominantly a dopamine deficiency syndrome, which is produced in the brain by the loss of cells located in a small area in the ventral midbrain called the substantia nigra. Complete unilateral dopamine lesions, based on the administration of toxic substances (ie, 6-hydroxy-dopamine in rats and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice and primates) have been extremely useful in testing strategies of replacement. For example, the functional and biochemical impact of the transplanted ventral mesencephalic dopaminergic progenitors has been characterized to a large extent, using the complete lesion model in rats. Over the last decade, however, studies addressing the ability of neurotrophic factors to protect injured dopamine cells prompted researchers to make available partial and progressive lesion models to allow a window of opportunity to interfere the disease progression. Recent findings relating alpha-synuclein with Parkinson's disease pathology have opened new possibilities to develop alternative models based on the overexpression of this protein using recombinant adeno-associated viral vectors, which is valuable not only for helping to better understand its involvement in the disease process, but also to more closely resemble the neurodegeneration found in Parkinson's disease.
Collapse
Affiliation(s)
- Matthew Maingay
- Division of Neurobiology, Wallenberg Neurocenter, Lund University, Sweden.
| | | | | |
Collapse
|
443
|
Wenning GK, Jellinger KA. The role of alpha-synuclein in the pathogenesis of multiple system atrophy. Acta Neuropathol 2005; 109:129-40. [PMID: 15666181 DOI: 10.1007/s00401-004-0935-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 10/04/2004] [Accepted: 10/04/2004] [Indexed: 11/27/2022]
Abstract
The discovery of glial cytoplasmic inclusions (GCIs) in 1989 helped to define multiple system atrophy (MSA) as a clinicopathological entity, and drew attention to the prominent role played by these inclusions in the pathogenesis of the disorder. Subsequently, GCIs were shown to be highly positive for alpha-synuclein, a neuronal protein that is normally absent in oligodendroglia except during embryonic development. The source of oligodendroglial alpha-synuclein aggregation in MSA is unknown. Since genetic overexpression has been excluded, active uptake from dying neurons remains a possibility. The similar topography of oligodendroglial and neuronal pathology in MSA suggests a fundamental disturbance of the functional unit between oligodendroglia, axon, and neuron. Transgenic MSA mouse models are now available to determine these aspects of cellular disturbance experimentally.
Collapse
Affiliation(s)
- Gregor K Wenning
- Department of Neurology, University of Innsbruck, School of Medicine, Anichstrasse 35, 6020, Innsbruck, Austria
| | | |
Collapse
|
444
|
Corti O, Hampe C, Darios F, Ibanez P, Ruberg M, Brice A. Parkinson's disease: from causes to mechanisms. C R Biol 2005; 328:131-42. [PMID: 15770999 DOI: 10.1016/j.crvi.2004.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a common age-related, progressive neurodegenerative disease of unknown etiology. Environmental factors have long been suspected to participate in the pathogenesis of PD due to the existence of neurotoxins that preferentially damage the dopaminergic nigrostriatal pathway. In the past few years, novel insights into the degenerative process have been provided by the discovery of genes responsible for rare monogenic parkinsonian syndromes. Compelling evidence is accumulating, suggesting that the products of several of these genes can interact with environmental toxins and intervene in molecular pathways controlling the functional integrity of mitochondria.
Collapse
Affiliation(s)
- Olga Corti
- INSERM U 289, hôpital de la Pitié-Salpêtrière, 47, bd de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | |
Collapse
|
445
|
Testa CM, Sherer TB, Greenamyre JT. Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. ACTA ACUST UNITED AC 2005; 134:109-18. [PMID: 15790535 DOI: 10.1016/j.molbrainres.2004.11.007] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 10/31/2004] [Accepted: 11/04/2004] [Indexed: 12/21/2022]
Abstract
Rotenone, a pesticide and complex I inhibitor, causes nigrostriatal degeneration similar to Parkinson disease pathology in a chronic, systemic, in vivo rodent model [M. Alam, W.J. Schmidt, Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats, Behav. Brain Res. 136 (2002) 317-324; R. Betarbet, T.B. Sherer, G. MacKenzie, M. Garcia-Osuna, A.V. Panov, J.T. Greenamyre, Chronic systemic pesticide exposure reproduces features of Parkinson's disease, Nat. Neurosci. 3 (2000) 1301-1306; S.M. Fleming, C. Zhu, P.O. Fernagut, A. Mehta, C.D. DiCarlo, R.L. Seaman, M.F. Chesselet, Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone, Exp. Neurol. 187 (2004) 418-429; T.B. Sherer, J.H. Kim, R. Betarbet, J.T. Greenamyre, Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation, Exp. Neurol. 179 (2003) 9-16.]. To better investigate the role of mitochondria and complex I inhibition in chronic, progressive neurodegenerative disease, we developed methods for long-term culture of rodent postnatal midbrain organotypic slices. Chronic complex I inhibition over weeks by low dose (10-50 nM) rotenone in this system lead to dose- and time-dependent destruction of substantia nigra pars compacta neuron processes, morphologic changes, some neuronal loss, and decreased tyrosine hydroxylase (TH) protein levels. Chronic complex I inhibition also caused oxidative damage to proteins, measured by protein carbonyl levels. This oxidative damage was blocked by the antioxidant alpha-tocopherol (vitamin E). At the same time, alpha-tocopherol also blocked rotenone-induced reductions in TH protein and TH immunohistochemical changes. Thus, oxidative damage is a primary mechanism of mitochondrial toxicity in intact dopaminergic neurons. The organotypic culture system allows close study of this and other interacting mechanisms over a prolonged time period in mature dopaminergic neurons with intact processes, surrounding glia, and synaptic connections.
Collapse
Affiliation(s)
- Claudia M Testa
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
446
|
Abstract
A critical role of mitochondrial dysfunction and oxidative damage has been hypothesized in both aging and neurodegenerative diseases. Much of the evidence has been correlative, but recent evidence has shown that the accumulation of mitochondrial DNA mutations accelerates normal aging, leads to oxidative damage to nuclear DNA, and impairs gene transcription. Furthermore, overexpression of the antioxidant enzyme catalase in mitochondria increases murine life span. There is strong evidence from genetics and transgenic mouse models that mitochondrial dysfunction results in neurodegeneration and may contribute to the pathogenesis of Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, hereditary spastic paraplegia, and cerebellar degenerations. Therapeutic approaches targeting mitochondrial dysfunction and oxidative damage in these diseases therefore have great promise.
Collapse
Affiliation(s)
- M Flint Beal
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, NY 10021, USA.
| |
Collapse
|
447
|
Beta-amyloid-derived pentapeptide RIIGLa inhibits Abeta(1-42) aggregation and toxicity. Biochem Biophys Res Commun 2004; 324:64-9. [PMID: 15464983 DOI: 10.1016/j.bbrc.2004.09.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Indexed: 12/20/2022]
Abstract
Pr-IIGL(a), a derivative of the tetrapeptide beta-amyloid 31-34 (Abeta(31-34)), exerts controversial effects: it is toxic in a neuroblastoma culture, but it protects glial cells from the cytotoxic action of Abeta(1-42). For an understanding of this phenomenon, a new pentapeptide, RIIGL(a) was synthetized, and both compounds were studied by different physicochemical and biological methods. Transmission electron microscopic (TEM) studies revealed that Pr-IIGL(a) forms fibrillar aggregates, whereas RIIGL(a) does not form fibrils. Congo red binding studies furnished the same results. Aggregated Pr-IIGL(a) acts as a cytotoxic agent in neuroblastoma cultures, but RIIGL(a) does not display inherent toxicity. RIIGL(a) co-incubated with Abeta(1-42) inhibits the formation of mature amyloid fibres (TEM studies) and reduces the cytotoxic effect of fibrillar Abeta(1-42). These results indicate that RIIGL(a) is an effective inhibitor of both the aggregation and the toxic effects of Abeta(1-42) and can serve as a lead compound for the design of novel neuroprotective peptidomimetics.
Collapse
|
448
|
Abstract
The recent identification of genes (parkin, DJ-1, and PINK1) involved in recessive autosomal parkinsonism, and the indications that these proteins may have protective effects on the mitochondria, has led to the reemergence of the notion that mitochondrial dysfunction might play a central role in the etiology of sporadic Parkinson's disease (PD). This idea has previously been supported by biochemical analyses showing reduced mitochondrial activity in PD patients and in animal models of PD generated by the selective inhibition of mitochondria activity. However, the involvement of DJ-1 or PINK1 loss of function in classical idiopathic PD, characterized by pathological inclusions composed of aggregated alpha-synuclein protein, has still not been evaluated. More detailed studies of the possible interactions between parkin, DJ-1, PINK1, and alpha-synuclein and their effects on mitochondria are needed to more adequately define the biological pathways that may convergently or independently lead to parkinsonism.
Collapse
Affiliation(s)
- Benoit I Giasson
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
449
|
Kim S, Jeon BS, Heo C, Im PS, Ahn TB, Seo JH, Kim HS, Park CH, Choi SH, Cho SH, Lee WJ, Suh YH. Alpha-synuclein induces apoptosis by altered expression in human peripheral lymphocyte in Parkinson's disease. FASEB J 2004; 18:1615-7. [PMID: 15289452 DOI: 10.1096/fj.04-1917fje] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Though the etiology of Parkinson's disease (PD) remains unclear, alpha-synuclein (alpha-SN) is regarded as a major causative agent of PD. Several lines of evidence indicate that immunological abnormalities are associated with PD for unknown reasons. The present study was performed to assess whether peripheral blood mononuclear cells (PBMCs) show altered alpha-SN expression in PD patients and to identify its functions, which may be related to peripheral immune abnormalities in PD. alpha-SN was found to be expressed more in 151 idiopathic PD (IPD) patients than in 101 healthy controls, who nevertheless showed as age-dependent increases. By in vitro transfection, alpha-SN expression was shown to be correlated with glucocorticoid sensitive apoptosis, possibly caused by the enhanced expression of glucocorticoid receptor (GR), caspase activations (caspase-8, caspase-9), CD95 up-regulation, and reactive oxygen species (ROS) production. An understanding of the correlation between alpha-SN levels and apoptosis in the presence of the coordinated involvement of multiple processes would provide an insight into the molecular basis of the disease. The present study provides a clue that the alpha-SN may be one of the primary causes of the immune abnormalities observed in PD and offers new targets for pharmacotherapeutic intervention.
Collapse
Affiliation(s)
- Seonghan Kim
- Department of Pharmacology, College of Medicine, National Creative Research Initiative Center for Alzheimer's Dementia and Neuroscience Research Institute, MRC, Seoul National University, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
450
|
Yu S, Zuo X, Li Y, Zhang C, Zhou M, Zhang YA, Uéda K, Chan P. Inhibition of tyrosine hydroxylase expression in α-synuclein-transfected dopaminergic neuronal cells. Neurosci Lett 2004; 367:34-9. [PMID: 15308292 DOI: 10.1016/j.neulet.2004.05.118] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Revised: 05/09/2004] [Accepted: 05/22/2004] [Indexed: 11/22/2022]
Abstract
Although the aberrant expression of alpha-synuclein (alpha-Syn) is toxic to dopaminergic neurons, little is known about the correlation between the abnormality of alpha-Syn and the expression of tyrosine hydroxylase (TH), a rate-limiting enzyme for the synthesis of dopamine neurotransmitter. In this study, the MES23.5 rat dopaminergic cell line transfected with wild-type human alpha-Syn cDNA (h alpha-Syn) construct was used to investigate the association between alpha-Syn and TH. Immunocytochemical staining and Western blot for TH showed that the TH expression was greatly decreased in h alpha-Syn-transfected cells. Northern blot confirmed that the TH mRNA level was also dramatically reduced. Reduction of TH protein levels did not affect the growth and proliferation of the transfected cells. No apparent cell injury or death was observed. These results suggest that an abnormal expression of alpha-Syn may inhibit TH synthesis in dopaminergic cells.
Collapse
Affiliation(s)
- Shun Yu
- Department of Neurobiology and the Sino-Japan Joint Laboratory on Neurodegenerative Diseases, Beijing Institute of Geriatrics, Xuanwu Hospital of the Capital University of Medical Sciences, 45 Changchun Street, Beijing 100053, China
| | | | | | | | | | | | | | | |
Collapse
|