401
|
Hu W, Ma H. Characterization of a novel putative zinc finger gene MIF1: involvement in multiple hormonal regulation of Arabidopsis development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:399-422. [PMID: 16412086 DOI: 10.1111/j.1365-313x.2005.02626.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Phytohormones play crucial roles in regulating many aspects of plant development. Although much has been learned about the effects of individual hormones, cross-talk between and integration of different hormonal signals are still not well understood. We present a study of MINI ZINC FINGER 1 (MIF1), a putative zinc finger protein from Arabidopsis, and suggest that it may be involved in integrating signals from multiple hormones. MIF1 homologs are highly conserved among seed plants, each characterized by a very short sequence containing a central putative zinc finger domain. Constitutive overexpression of MIF1 caused dramatic developmental defects, including dwarfism, reduced apical dominance, extreme longevity, dark-green leaves, altered flower morphology, poor fertility, reduced hypocotyl length, spoon-like cotyledons, reduced root growth, and ectopic root hairs on hypocotyls and cotyledons. In addition, 35S::MIF1 seedlings underwent constitutive photomorphogenesis in the dark, with root growth similar to that in the light. Furthermore, 35S::MIF1 seedlings were demonstrated to be non-responsive to gibberellin (GA) for cell elongation, hypersensitive to the GA synthesis inhibitor paclobutrazol (PAC) and abscisic acid (ABA), and hyposensitive to auxin, brassinosteroid and cytokinin, but normally responsive to ethylene. The de-etiolation defect could not be rescued by the hormones tested. Consistent with these observations, genome-scale expression profiling revealed that 35S::MIF1 seedlings exhibited decreased expression of genes involved in GA, auxin and brassinosteroid signaling as well as cell elongation/expansion, and increased expression of ABA-responsive genes. We propose that MIF1, or the protein(s) with which MIF1 interacts, is involved in mediating the control of plant development by multiple hormones.
Collapse
Affiliation(s)
- Wei Hu
- Department of Biology, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
402
|
Benavente LM, Alonso JM. Molecular mechanisms of ethylene signaling in Arabidopsis. MOLECULAR BIOSYSTEMS 2006; 2:165-73. [PMID: 16880934 DOI: 10.1039/b513874d] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ethylene is a gaseous plant hormone involved in several important physiological processes throughout a plant's life cycle. Decades of scientific research devoted to deciphering how plants are able to sense and respond to this key molecule have culminated in the establishment of one of the best characterized signal transduction pathways in plants. The ethylene signaling pathway starts with the perception of this gaseous hormone by a family of membrane-anchored receptors followed by a Raf-like kinase CTR1 that is physically associated with the receptors and actively inhibits downstream components of the pathway. A major gap is represented by the mysterious plant protein EIN2 that genetically works downstream of CTR1 and upstream of the key transcription factor EIN3. Transcriptional regulation by EIN3 and EIN3-family members has emerged as a key aspect of ethylene responses. The major components of this transcriptional cascade have been characterized and the involvement of post-transcriptional control by ubiquitination has been determined. Nevertheless, many aspects of this pathway still remain unknown. Recent genomic studies aiming to provide a more comprehensive view of modulation of gene expression have further emphasized the ample role of ethylene in a myriad of cellular processes and particularly in its crosstalk with other important plant hormones. This review aims to serve as a guide to the main scientific discoveries that have shaped the field of ethylene biology in the recent years.
Collapse
Affiliation(s)
- Larissa M Benavente
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
403
|
Weber P, Fulgosi H, Piven I, Müller L, Krupinska K, Duong VH, Herrmann RG, Sokolenko A. TCP34, a nuclear-encoded response regulator-like TPR protein of higher plant chloroplasts. J Mol Biol 2006; 357:535-49. [PMID: 16438983 DOI: 10.1016/j.jmb.2005.12.079] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 12/16/2005] [Accepted: 12/21/2005] [Indexed: 11/29/2022]
Abstract
We describe the identification of a novel chloroplast protein, designated TCP34 (tetratricopeptide-containing chloroplast protein of 34 kDa) due to the presence of three tandemly arranged tetratricopeptide repeat (TPR) arrays. The presence of the genes encoding this protein only in the genomes of higher plants but not in photosynthetic cyanobacterial prokaryotes suggests that TCP34 evolved after the separation of the higher plant lineage. The in vitro translated precursor could be imported into intact spinach chloroplasts and the processed products showed stable association with thylakoid membranes. Using a specific polyclonal antiserum raised against TCP34, three protein variants were detected. Two forms, T(1) and T(2), were associated with the thylakoid membranes and one, S(1), was found released in the stroma. TCP34 protein was not present in etioplasts and appeared only in developing chloroplasts. The ratio of membrane-bound and soluble forms was maximal at the onset of photosynthesis. The high molecular mass thylakoid TCP34 variant was found in association with a transcriptionally active protein/DNA complex (TAC) from chloroplasts and recombinant TCP34 showed specific binding to Spinacia oleracea chloroplast DNA. Two TCP34 forms, T(1) and S(1), were found to be phosphorylated. An as yet unidentified phosphorelay signal may modulate its capability for plastid DNA binding through the phosphorylation state of the putative response regulator-like domain. Based on the structural properties and biochemical analyses, we discuss the putative regulatory function of TCP34 in plastid gene expression.
Collapse
Affiliation(s)
- P Weber
- Department für Biologie I, Bereich Botanik, Ludwig-Maximilians-Universität, Menzingerstr. 67, 80638 München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
404
|
Ziosi V, Bregoli AM, Bonghi C, Fossati T, Biondi S, Costa G, Torrigiani P. Transcription of ethylene perception and biosynthesis genes is altered by putrescine, spermidine and aminoethoxyvinylglycine (AVG) during ripening in peach fruit (Prunus persica). THE NEW PHYTOLOGIST 2006; 172:229-38. [PMID: 16995911 DOI: 10.1111/j.1469-8137.2006.01828.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The time course of ethylene biosynthesis and perception was investigated in ripening peach fruit (Prunus persica) following treatments with the polyamines putrescine (Pu) and spermidine (Sd), and with aminoethoxyvinylglycine (AVG). Fruit treatments were performed in planta. Ethylene production was measured by gas chromatography, and polyamine content by high-performance liquid chromatography; expression analyses were performed by Northern blot or real-time polymerase chain reaction. Differential increases in the endogenous polyamine pool in the epicarp and mesocarp were induced by treatments; in both cases, ethylene production, fruit softening and abscission were greatly inhibited. The rise in 1-aminocyclopropane-1-carboxylate oxidase (PpACO1) mRNA was counteracted and delayed in polyamine-treated fruit, whereas transcript abundance of ethylene receptors PpETR1 (ethylene receptor 1) and PpERS1 (ethylene sensor 1) was enhanced at harvest. Transcript abundance of arginine decarboxylase (ADC) and S-adenosylmethionine decarboxylase (SAMDC) was transiently reduced in both the epicarp and mesocarp. AVG, here taken as a positive control, exerted highly comparable effects to those of Pu and Sd. Thus, in peach fruit, increasing the endogenous polyamine pool in the epicarp or in the mesocarp strongly interfered, both at a biochemical and at a biomolecular level, with the temporal evolution of the ripening syndrome.
Collapse
Affiliation(s)
- Vanina Ziosi
- Dip. di Biologia e.s., Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
405
|
Broekaert WF, Delauré SL, De Bolle MFC, Cammue BPA. The role of ethylene in host-pathogen interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2006; 44:393-416. [PMID: 16602950 DOI: 10.1146/annurev.phyto.44.070505.143440] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The phytohormone ethylene is a principal modulator in many aspects of plant life, including various mechanisms by which plants react to pathogen attack. Induced ethylene biosynthesis and subsequent intracellular signaling through a single conserved pathway have been well characterized. This leads to a cascade of transcription factors consisting of primary EIN3-like regulators and downstream ERF-like transcription factors. The latter control the expression of various effector genes involved in various aspects of systemic induced defense responses. Moreover, at this level significant cross-talk occurs with other defense response pathways controlled by salicylic acid and jasmonate, eventually resulting in a differentiated disease response.
Collapse
Affiliation(s)
- Willem F Broekaert
- Center of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven, 3001 Leuven, Belgium.
| | | | | | | |
Collapse
|
406
|
Chagué V, Danit LV, Siewers V, Schulze-Gronover C, Tudzynski P, Tudzynski B, Sharon A. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:33-42. [PMID: 16404951 DOI: 10.1094/mpmi-19-0033] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ethylene production by infected plants is an early resistance response leading to activation of plant defense pathways. However, plant pathogens also are capable of producing ethylene, and ethylene might have an effect not only on the plant but on the pathogen as well. Therefore, ethylene may play a dual role in fungus-plant interactions by affecting the plant as well as the pathogen. To address this question, we studied the effects of ethylene on the gray mold fungus Botrytis cinerea and the disease it causes on Nicotiana benthamiana plants. Exposure of B. cinerea to ethylene inhibited mycelium growth in vitro and caused transcriptional changes in a large number of fungal genes. A screen of fungal signaling mutants revealed a Galpha null mutant (deltabcg1) which was ethylene insensitive, overproduced ethylene in vitro, and showed considerable transcriptional changes in response to ethylene compared with the wild type. Aminoethoxyvinylglycine (AVG)-treated, ethylene-nonproducing N. benthamiana plants developed much larger necroses than ethylene-producing plants, whereas addition of ethylene to AVG-treated leaves restricted disease spreading. Ethylene also affected fungal gene expression in planta. Expression of a putative pathogenicity fungal gene, bcspl1, was enhanced 24 h after inoculation in ethylene-producing plants but only 48 h after inoculation in ethylene-nonproducing plants. Our results show that the responses of B. cinerea to ethylene are partly mediated by a G protein signaling pathway, and that ethylene-induced plant resistance might involve effects of plant ethylene on both the plant and the fungus.
Collapse
Affiliation(s)
- Véronique Chagué
- Department of Plant Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
407
|
Tatsuki M, Endo A. Analyses of Expression Patterns of Ethylene Receptor Genes in Apple (Malus domestica Borkh.) Fruits Treated with or without 1-Methylcyclopropene (1-MCP). ACTA ACUST UNITED AC 2006. [DOI: 10.2503/jjshs.75.481] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
408
|
He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:903-16. [PMID: 16359384 DOI: 10.1111/j.1365-313x.2005.02575.x] [Citation(s) in RCA: 452] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
An NAC-type transcription factor gene AtNAC2 was identified from Arabidopsis thaliana when expression patterns of the genes from a microarray analysis were examined. The AtNAC2 expression was induced by salt stress and this induction was reduced in magnitude in the transgenic Arabidopsis plants overexpressing tobacco ethylene receptor gene NTHK1. AtNAC2 is localized in the nucleus and has transcriptional activation activity. It can form a homodimer in yeast. AtNAC2 was highly expressed in roots and flowers, but less expressed in other organs examined. In addition to the salt induction, the AtNAC2 can also be induced by abscisic acid (ABA), ACC and NAA. The salt induction was enhanced in the ethylene overproducer mutant eto1-1, but suppressed in the ethylene-insensitive mutants etr1-1 and ein2-1, and in the auxin-insensitive mutant tir1-1when compared with that in wild-type plants. However, the salt induction of AtNAC2 was not significantly affected in the ABA-insensitive mutants abi2-1, abi3-1 and abi4-1. These results indicate that the salt response of AtNAC2 requires ethylene signaling and auxin signaling pathways but does not require ABI2, ABI3 and ABI4, intermediates of the ABA signaling pathway. Overexpression of AtNAC2 in transgenic Arabidopsis plants resulted in promotion of lateral root development. AtNAC2 also promoted or inhibited downstream gene expressions. These results indicate that AtNAC2 may be a transcription factor incorporating the environmental and endogenous stimuli into the process of plant lateral root development.
Collapse
Affiliation(s)
- Xin-Jian He
- National Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
409
|
Yoshida H, Nagata M, Saito K, Wang KLC, Ecker JR. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC PLANT BIOLOGY 2005; 5:14. [PMID: 16091151 PMCID: PMC1199607 DOI: 10.1186/1471-2229-5-14] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 08/10/2005] [Indexed: 05/03/2023]
Abstract
BACKGROUND In Arabidopsis, ETO1 (ETHYLENE-OVERPRODUCER1) is a negative regulator of ethylene evolution by interacting with AtACS5, an isoform of the rate-limiting enzyme, 1-aminocyclopropane-1-carboxylate synthases (ACC synthase or ACS), in ethylene biosynthetic pathway. ETO1 directly inhibits the enzymatic activity of AtACS5. In addition, a specific interaction between ETO1 and AtCUL3, a constituent of a new type of E3 ubiquitin ligase complex, suggests the molecular mechanism in promoting AtACS5 degradation by the proteasome-dependent pathway. Because orthologous sequences to ETO1 are found in many plant species including tomato, we transformed tomato with Arabidopsis ETO1 to evaluate its ability to suppress ethylene production in tomato fruits. RESULTS Transgenic tomato lines that overexpress Arabidopsis ETO1 (ETO1-OE) did not show a significant delay of fruit ripening. So, we performed yeast two-hybrid assays to investigate potential heterologous interaction between ETO1 and three isozymes of ACC synthases from tomato. In the yeast two-hybrid system, ETO1 interacts with LE-ACS3 as well as AtACS5 but not with LE-ACS2 or LE-ACS4, two major isozymes whose gene expression is induced markedly in ripening fruits. According to the classification of ACC synthases, which is based on the C-terminal amino acid sequences, both LE-ACS3 and AtACS5 are categorized as type 2 isozymes and possess a consensus C-terminal sequence. In contrast, LE-ACS2 and LE-ACS4 are type 1 and type 3 isozymes, respectively, both of which do not possess this specific C-terminal sequence. Yeast two-hybrid analysis using chimeric constructs between LE-ACS2 and LE-ACS3 revealed that the type-2-ACS-specific C-terminal tail is required for interaction with ETO1. When treated with auxin to induce LE-ACS3, seedlings of ETO1-OE produced less ethylene than the wild type, despite comparable expression of the LE-ACS3 gene in the wild type. CONCLUSION These results suggest that ETO1 family proteins specifically interact with and negatively regulate type 2 ACC synthases. Our data also show that Arabidopsis ETO1 can regulate type 2 ACS in a heterologous plant, tomato.
Collapse
Affiliation(s)
- Hitoshi Yoshida
- Department of Rice Research, National Agricultural Research Center, Jo-etsu, Niigata 943–0193, Japan
- Department of Low-Temperature Sciences, National Agricultural Research Center for Hokkaido Region, Sapporo, Hokkaido 062–8555, Japan
| | - Masayasu Nagata
- Department of Physiology and Quality Science, National Institute of Vegetable and Tea Science, Ano, Mie 514–2392, Japan
| | - Koji Saito
- Department of Low-Temperature Sciences, National Agricultural Research Center for Hokkaido Region, Sapporo, Hokkaido 062–8555, Japan
| | - Kevin LC Wang
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, U.S.A
- Present address: Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Joseph R Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, U.S.A
| |
Collapse
|
410
|
Kishimoto K, Matsui K, Ozawa R, Takabayashi J. Volatile C6-aldehydes and Allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2005; 46:1093-102. [PMID: 15879447 DOI: 10.1093/pcp/pci122] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Green leafy volatiles or isoprenoids are produced after mechanical wounding or pathogen/herbivore attacks in higher plants. We monitored expression profiles of the genes involved in defense responses upon exposing Arabidopsis thaliana to the volatiles. Among the genes investigated, those known to be induced by mechanical wounding and/or jasmonate application, such as chalcone synthase (CHS), caffeic acid-O-methyltransferase (COMT), diacylglycerol kinase1 (DGK1), glutathione-S-transferase1 (GST1) and lipoxygenase2 (LOX2), were shown to be induced with (E)-2-hexenal, (Z)-3-hexenal, (Z)-3-hexenol or allo-ocimene (2,6-dimethyl-2,4,6-octatriene). A salicylic acid-responsive gene, pathogenesis-related protein2 (PR2), was not induced by the volatiles. Detailed analyses of the expression profiles showed that the manner of induction varied depending on either the gene monitored or the volatile used. A chemically inert compound, (Z)-3-hexenol, was also potent, which suggested that chemical reactivity was not the sole requisite for the inducing activity. With a jasmonate-insensitive mutant (jar1), the induction by the volatiles was mostly suppressed, however, that of LOX2 was unaltered. An ethylene-insensitive mutant (etr1) showed responses almost identical to the wild type, with minor exceptions. From these observations, it was suggested that both the jasmonate-dependent and -independent pathways were operative upon perception of the volatiles, while the ETR1-dependent pathway was not directly involved. When Botrytis cinerea was inoculated after the volatile treatment, retardation of disease development could be seen. It appears that volatile treatment could make the plants more resistant against the fungal disease.
Collapse
Affiliation(s)
- Kyutaro Kishimoto
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Kawaguchi, Saitama, 332-0012 Japan
| | | | | | | |
Collapse
|
411
|
Chao Q, Sullivan CD, Getz JM, Gleason KB, Sass PM, Nicolaides NC, Grasso L. Rapid generation of plant traits via regulation of DNA mismatch repair. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:399-407. [PMID: 17173628 DOI: 10.1111/j.1467-7652.2005.00133.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The reversible inhibition of DNA repair is a novel approach to maximize genetic diversity within a plant's genome in order to generate offspring exhibiting important de novo output traits. This process is based on the inhibition of the evolutionarily conserved mismatch repair (MMR) system. In this process, a human dominant negative MMR gene allele is introduced into the germline of a target plant, yielding progeny that can be screened to identify variants with commercially important agronomic output traits. Using this novel strategy, we generated MMR-deficient Arabidopsis thaliana plants that showed genome-wide instability of nucleotide repeats associated with chromosomal microsatellites, in addition to base substitution mutations. Functional screenings of the MMR-deficient Arabidopsis offspring identified variants expressing selectable traits (ethylene insensitivity and salt tolerance), as well as plants exhibiting altered morphologic traits (albinos and dwarfs). We determined by segregation analyses of variant plants that the de novo phenotypes were due to both recessive and dominant genetic mutations. Mutations caused by MMR deficiency showed a different spectrum compared with those derived using ethylmethane sulphonate (EMS) mutagenesis. Our finding demonstrates the feasibility of using reversible MMR deficiency via transient expression of a single human gene product to enhance genetic diversity in plants.
Collapse
Affiliation(s)
- Qimin Chao
- Morphotek Inc., 210 Welsh Pool Road, Exton, PA 19341, USA.
| | | | | | | | | | | | | |
Collapse
|
412
|
Mason MG, Schaller GE. Histidine kinase activity and the regulation of ethylene signal transduction. ACTA ACUST UNITED AC 2005. [DOI: 10.1139/b05-053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethylene is a gaseous hormone that regulates many aspects of plant growth and development. Although the effect of ethylene on plant growth was discovered a century ago, the key players in the ethylene response pathway were only identified over the last 15 years. In Arabidopsis, ethylene is perceived by a family of five receptors (ETR1, ETR2, ERS1, ERS2, and EIN4) that resemble two-component histidine kinases. Of these, only ETR1 and ERS1 contain all the conserved residues required for histidine kinase activity. The ethylene receptors appear to function primarily through CTR1, a serine/threonine kinase that actively suppresses ethylene responses in air (absence of ethylene). Despite recent progress toward understanding ethylene signal transduction, the role of the ethylene-receptor histidine-kinase activity remains unclear. This review considers the significance of histidine kinase activity in ethylene signaling and possible mechanisms by which it may modulate ethylene responses.Key words: ethylene receptor, ETR1, histidine kinase, two-component, phosphorylation, Arabidopsis.
Collapse
|
413
|
CHEN YIFENG, ETHERIDGE NAOMI, SCHALLER GERIC. Ethylene signal transduction. ANNALS OF BOTANY 2005; 95:901-15. [PMID: 15753119 PMCID: PMC4246747 DOI: 10.1093/aob/mci100] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 12/11/2004] [Accepted: 12/17/2004] [Indexed: 05/18/2023]
Abstract
BACKGROUND The phytohormone ethylene is a key regulator of plant growth and development. Components of the pathway for ethylene signal transduction were identified by genetic approaches in Arabidopsis and have now been shown to function in agronomically important plants as well. SCOPE This review focuses on recent advances in our knowledge on ethylene signal transduction, in particular on recently proposed components of the pathway, on the interaction between the pathway components and on the roles of transcriptional and post-transcriptional regulation in ethylene signalling. CONCLUSIONS Data indicate that the site of ethylene perception is at the endoplasmic reticulum and point to the importance of protein complexes in mediating the initial steps in ethylene signal transduction. The expression level of pathway components is regulated by both transcriptional and post-transcriptional mechanisms, degradation of the transcription factor EIN3 being a primary means by which the sensitivity of plants to ethylene is regulated. EIN3 also represents a control point for cross-talk with other signalling pathways, as exemplified by the effects of glucose upon its expression level. Amplification of the initial ethylene signal is likely to play a significant role in signal transduction and several mechanisms exist by which this may occur based on properties of known pathway components. Signal output from the pathway is mediated in part by carefully orchestrated changes in gene expression, the breadth of these changes now becoming clear through expression analysis using microarrays.
Collapse
Affiliation(s)
- YI-FENG CHEN
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - NAOMI ETHERIDGE
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - G. ERIC SCHALLER
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
414
|
Chiwocha SDS, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Ross ARS, Kermode AR. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:35-48. [PMID: 15773852 DOI: 10.1111/j.1365-313x.2005.02359.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In Arabidopsis thaliana, the etr1-2 mutation confers dominant ethylene insensitivity and results in a greater proportion of mature seeds that exhibit dormancy compared with mature seeds of the wild-type. We investigated the impact of the etr1-2 mutation on other plant hormones by analyzing the profiles of four classes of plant hormones and their metabolites by HPLC-ESI/MS/MS in mature seeds of wild-type and etr1-2 plants. Hormone metabolites were analyzed in seeds imbibed immediately under germination conditions, in seeds subjected to a 7-day moist-chilling (stratification) period, and during germination/early post-germinative growth. Higher than wild-type levels of abscisic acid (ABA) appeared to contribute, at least in part, to the greater incidence of dormancy in mature seeds of etr1-2. The lower levels of abscisic acid glucose ester (ABA-GE) in etr1-2 seeds compared with wild-type seeds under germination conditions (with and without moist-chilling treatments) suggest that reduced metabolism of ABA to ABA-GE likely contributed to the accumulation of ABA during germination in the mutant. The mutant seeds exhibited generally higher auxin levels and a large build-up of indole-3-aspartate when placed in germination conditions following moist-chilling. The mutant manifested increased levels of cytokinin glucosides through zeatin-O-glucosylation (Z-O-Glu). The resulting increase in Z-O-Glu was the largest and most consistent change associated with the ETR1 gene mutation. There were more gibberellins (GA) and at higher concentrations in the mutant than in wild-type. Our results suggest that ethylene signaling modulates the metabolism of all the other plant hormone pathways in seeds. Additionally, the hormone profiles of etr1-2 seed during germination suggest a requirement for higher than wild-type levels of GA to promote germination in the absence of a functional ethylene signaling pathway.
Collapse
Affiliation(s)
- Sheila D S Chiwocha
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | | | | | | | | | | | | |
Collapse
|
415
|
Abstract
The structural simplicity of the plant hormone ethylene contrasts with its dramatic effects in various developmental processes, as well as in the cellular processes that ethylene initiates in response to a diversity of environmental signals. A single well-conserved signaling cascade mediates this broad spectrum of responses. Ethylene is perceived by a family of two-component histidine kinase receptors that become inactivated upon ethylene binding. In the absence of the hormone, the receptors activate CTR1, a negative regulator of ethylene responses. Sequence similarity between CTR1 and the Raf protein kinases implies involvement of a mitogen-activated protein kinase cascade in this signaling pathway. The protein EIN2 acts downstream of CTR1 and the possible kinase cascade. Although the biochemical function of EIN2 is not understood, its critical role is manifested by the complete ethylene insensitivity of EIN2 loss-of-function mutants. Downstream of EIN2, a family of plant-specific EIN3-like transcription factors mediate ethylene responses. The regulation of EIN3 stability by ethylene is accomplished by F-box-containing proteins that participate in the formation of a SKP1/cullin/F-box complex that targets proteins for degradation by the proteasome. A large number of ethylene-regulated genes have been identified, including the APETALA2 domain-containing transcription factor genes ERF1 and EDF1 to 4, which suggests the participation of a transcriptional cascade in the ethylene response. The differential regulation of some components of this complex nuclear cascade by other signaling pathways provides a possible mechanism for interaction and signal integration. As new points of intersection with other pathways and additional participants in the pathway are identified, the Connections Map will be updated to include this new information.
Collapse
Affiliation(s)
- Anna N Stepanova
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
416
|
Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ. A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. PLANT PHYSIOLOGY 2005; 137:831-4. [PMID: 15761208 PMCID: PMC1065383 DOI: 10.1104/pp.104.056994] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 12/13/2004] [Accepted: 01/03/2005] [Indexed: 05/18/2023]
Affiliation(s)
- Radhika Desikan
- Centre for Research in Plant Science, Genomics Research Institute , University of the West of England, Bristol BS16 1QY, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
417
|
O'Malley RC, Rodriguez FI, Esch JJ, Binder BM, O'Donnell P, Klee HJ, Bleecker AB. Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members from Arabidopsis and tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:651-9. [PMID: 15703053 DOI: 10.1111/j.1365-313x.2004.02331.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ethylene signaling in plants is mediated by a family of ethylene receptors related to bacterial two-component regulators. Expression in yeast of ethylene-binding domains from the five receptor isoforms from Arabidopsis thaliana and five-receptor isoforms from tomato confirmed that all members of the family are capable of high-affinity ethylene-binding activity. All receptor isoforms displayed a similar level of ethylene binding on a per unit protein basis, while members of both subfamily I and subfamily II from Arabidopsis showed similar slow-release kinetics for ethylene. Quantification of receptor-isoform mRNA levels in receptor-deficient Arabidopsis lines indicated a direct correlation between total message level and total ethylene-binding activity in planta. Increased expression of remaining receptor isoforms in receptor-deficient lines tended to compensate for missing receptors at the level of mRNA expression and ethylene-binding activity, but not at the level of receptor signaling, consistent with specialized roles for family members in receptor signal output.
Collapse
Affiliation(s)
- Ronan C O'Malley
- Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
418
|
Decreux A, Messiaen J. Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. PLANT & CELL PHYSIOLOGY 2005; 46:268-78. [PMID: 15769808 DOI: 10.1093/pcp/pci026] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Wall-associated kinase 1 (WAK1) is a transmembrane protein containing a cytoplasmic Ser/Thr kinase domain and an extracellular domain in contact with the pectin fraction of the plant cell walls. In order to characterize further the interaction of WAK1 with pectin, a 564 bp DNA sequence corresponding to amino acids 67-254 of the extracellular domain of WAK1 from Arabidopsis thaliana was cloned and expressed as a soluble recombinant peptide in yeast. Using enzyme-linked immunosorbent assays (ELISA), we show that peptide WAK(67-254) binds to polygalacturonic acid (PGA), oligogalacturonides, pectins extracted from A. thaliana cell walls and to structurally related alginates. Our results suggest that both ionic and steric interactions are required to match the relatively linear pectin backbone. Binding of WAK(67-254) to PGA, oligogalacturonides and alginates occurred only in the presence of calcium and in ionic conditions promoting the formation of calcium bridges between oligo-and polymers (also known as 'egg-boxes'). The conditions inhibiting the formation of calcium bridges (EDTA treatment, calcium substitution, high NaCl concentrations, depolymerization and methylesterification of pectins) also inhibited the binding of WAK(67-254) to calcium-induced egg-boxes. The relevance of this non-covalent link between WAK(67-254) and cell wall pectins is discussed in terms of cell elongation, cell differentiation and host-pathogen interactions.
Collapse
Affiliation(s)
- Annabelle Decreux
- FUNDP, Unité de Recherche en Biologie Végétale, 61 rue de Bruxelles, 5000 Namur, Belgium
| | | |
Collapse
|
419
|
Yamasaki S, Fujii N, Takahashi H. Hormonal Regulation of Sex Expression in Plants. PLANT HORMONES 2005; 72:79-110. [PMID: 16492469 DOI: 10.1016/s0083-6729(05)72003-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Seiji Yamasaki
- Faculty of Education, Fukuoka University of Education 1-1 Akamabunkyomachi, Munakata, Fukuoka 811-4192, Japan
| | | | | |
Collapse
|
420
|
Shoresh M, Yedidia I, Chet I. Involvement of Jasmonic Acid/Ethylene Signaling Pathway in the Systemic Resistance Induced in Cucumber by Trichoderma asperellum T203. PHYTOPATHOLOGY 2005; 95:76-84. [PMID: 18943839 DOI: 10.1094/phyto-95-0076] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
ABSTRACT Trichoderma spp. are effective biocontrol agents for a number of soilborne plant pathogens, and some are also known for their ability to enhance plant growth. It was recently suggested that Trichoderma also affects induced systemic resistance (ISR) mechanism in plants. Analysis of signal molecules involved in defense mechanisms and application of specific inhibitors indicated the involvement of jasmonic acid and ethylene in the protective effect conferred by Trichoderma spp. against the leaf pathogen Pseudomonas syringae pv. lachrymans. Moreover, examination of local and systemic gene expression by real-time reverse transcription-polymerase chain reaction analysis revealed that T. asperellum (T203) modulates the expression of genes involved in the jasmonate/ethylene signaling pathways of ISR (Lox1, Pal1, ETR1, and CTR1) in cucumber plants. We further showed that a subsequent challenge of Trichoderma-preinoculated plants with the leaf pathogen P. syringae pv. lachrymans resulted in higher systemic expression of the pathogenesisrelated genes encoding for chitinase 1, beta-1,3-glucanase, and peroxidase relative to noninoculated, challenged plants. This indicates that Trichoderma induced a potentiated state in the plant enabling it to be more resistant to subsequent pathogen infection.
Collapse
|
421
|
Abstract
Hormones are key regulators of plant growth and development. Genetic and biochemical studies have identified major factors that mediate ethylene biosynthesis and signal transduction. Substantial progress in the elucidation of the ethylene signal transduction pathway has been made, mainly by research on Arabidopsis thaliana. Research on ethylene biosynthesis and its regulation provided new insights, particularly on the posttranslational regulation of ethylene synthesis and the feedback from ethylene signal transduction. The identification of new components in the ethylene-response pathway and the elucidation of their mode of action provide a framework for understanding not only how plants sense and respond to this hormone but also how the signal is integrated with other inputs, ultimately determining the plant phenotype.
Collapse
Affiliation(s)
- Annelies De Paepe
- Unit Plant Hormone Signaling and Bio-imaging, Department of Molecular Genetics Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | |
Collapse
|
422
|
Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. THE PLANT CELL 2005; 17:61-76. [PMID: 15598805 PMCID: PMC544490 DOI: 10.1105/tpc.104.026161] [Citation(s) in RCA: 534] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2004] [Accepted: 10/10/2004] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana genome contains five class III homeodomain-leucine zipper genes. We have isolated loss-of-function alleles for each family member for use in genetic analysis. This gene family regulates apical embryo patterning, embryonic shoot meristem formation, organ polarity, vascular development, and meristem function. Genetic analyses revealed a complex pattern of overlapping functions, some of which are not readily inferred by phylogenetic relationships or by gene expression patterns. The PHABULOSA and PHAVOLUTA genes perform overlapping functions with REVOLUTA, whereas the PHABULOSA, PHAVOLUTA, and CORONA/ATHB15 genes perform overlapping functions distinct from REVOLUTA. Furthermore, ATHB8 and CORONA encode functions that are both antagonistic to those of REVOLUTA within certain tissues and overlapping with REVOLUTA in other tissues. Differences in expression patterns explain some of these genetic interactions, whereas other interactions are likely attributable to differences in protein function as indicated by cross-complementation studies.
Collapse
Affiliation(s)
- Michael J Prigge
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, An Arbor, Michigan 48109-1048, USA
| | | | | | | | | | | |
Collapse
|
423
|
Abstract
Plants use a structurally very simple gas molecule, the hydrocarbon ethylene, to modulate various developmental programs and coordinate responses to a multitude of external stress factors. How this simple molecule generates such a diverse array of effects has been the subject of intense research for the past two decades. A fascinating signaling pathway, with classical as well as novel plant-specific signaling elements, is emerging from these studies. We describe the four main modules that constitute this signaling pathway: a phosphotransfer relay, an EIN2-based unit, a ubiquitin-mediated protein degradation component, and a transcriptional cascade. The canonical and Arabidopsis ethylene signaling pathways in the Signal Transduction Knowledge Environment Connections Maps provide a complete panoramic view of these signaling events in plants.
Collapse
Affiliation(s)
- Jose M Alonso
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|
424
|
Sugawara H, Kawano Y, Hatakeyama T, Yamaya T, Kamiya N, Sakakibara H. Crystal structure of the histidine-containing phosphotransfer protein ZmHP2 from maize. Protein Sci 2004; 14:202-8. [PMID: 15576555 PMCID: PMC2253335 DOI: 10.1110/ps.041076905] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In higher plants, histidine-aspartate phosphorelays (two-component system) are involved in hormone signaling and stress responses. In these systems, histidine-containing phosphotransfer (HPt) proteins mediate the signal transmission from sensory histidine kinases to response regulators, including integration of several signaling pathways or branching into different pathways. We have determined the crystal structure of a maize HPt protein, ZmHP2, at 2.2 A resolution. ZmHP2 has six alpha-helices with a four-helix bundle at the C-terminus, a feature commonly found in HPt domains. In ZmHP2, almost all of the conserved residues among plant HPt proteins surround this histidine, probably forming the docking interface for the receiver domain of histidine kinase or the response regulator. Arg102 of ZmHP2 is conserved as a basic residue in plant HPt proteins. In bacteria, it is replaced by glutamine or glutamate that form a hydrogen bond to Ndelta atoms of the phospho-accepting histidine. It may play a key role in the complex formation of ZmHP2 with receiver domains.
Collapse
Affiliation(s)
- Hajime Sugawara
- Laboratory for Communication Mechanisms, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | | | | | | | | | | |
Collapse
|
425
|
Zhang H, Huang Z, Xie B, Chen Q, Tian X, Zhang X, Zhang H, Lu X, Huang D, Huang R. The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. PLANTA 2004; 220:262-70. [PMID: 15300440 DOI: 10.1007/s00425-004-1347-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 06/24/2004] [Indexed: 05/02/2023]
Abstract
Ethylene responsive factors (ERFs) are important plant-specific transcription factors, some of which have been demonstrated to interact with the ethylene-responsive GCC box and the dehydration-responsive element (DRE); however, data on the roles of ERF proteins in connection with various signaling pathways are limited. In this research, we used the GCC box, an essential cis-acting element responsive to ethylene and methyl jasmonate (MeJA), as bait in a yeast one-hybrid system to isolate transcription factors from tomato (Lycopersicon esculentum Mill.). One of the cDNAs, which was designated Jasmonate and Ethylene Response Factor 1 (JERF1), encodes an ERF protein, containing a conserved ERF DNA-binding motif and functioning as a transcriptional activator in yeast through targeting to the nucleus in onion (Allium cepa L.) epidermal cells. Biochemical analysis revealed that JERF1 bound not only to the GCC box but also to the DRE sequence. Expression of the JERF1 gene in tomato was induced by ethylene, MeJA, abscisic acid (ABA) and salt treatment, indicating that JERF1 might act as a connector among different signal transduction pathways. Further research with transgenic JERF1 tobacco (Nicotiana tabacum L.) plants indicated that overexpressing JERF1 activated expression of GCC box-containing genes such as osmotin, GLA, Prb-1b and CHN50 under normal growth conditions, and subsequently resulted in enhanced tolerance to salt stress, suggesting that JERF1 modulates osmotic tolerance by activation of downstream gene expression through interaction with the GCC box or DRE.
Collapse
Affiliation(s)
- Haiwen Zhang
- The National Plant Gene Research Center (Beijing), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
426
|
Dong HP, Peng J, Bao Z, Meng X, Bonasera JM, Chen G, Beer SV, Dong H. Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. PLANT PHYSIOLOGY 2004; 136:3628-38. [PMID: 15516507 PMCID: PMC527161 DOI: 10.1104/pp.104.048900] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 09/11/2004] [Accepted: 09/20/2004] [Indexed: 05/20/2023]
Abstract
Ethylene (ET) signal transduction may regulate plant growth and defense, depending on which components are recruited into the pathway in response to different stimuli. We report here that the ET pathway controls both insect resistance (IR) and plant growth enhancement (PGE) in Arabidopsis (Arabidopsis thaliana) plants responding to harpin, a protein produced by a plant pathogenic bacterium. PGE may result from spraying plant tops with harpin or by soaking seeds in harpin solution; the latter especially enhances root growth. Plants treated similarly develop resistance to the green peach aphid (Myzus persicae). The salicylic acid pathway, although activated by harpin, does not lead to PGE and IR. By contrast, PGE and IR are induced in both wild-type plants and genotypes that have defects in salicylic acid signaling. In response to harpin, levels of jasmonic acid (JA) decrease, and the COI1 gene, which is indispensable for JA signal transduction, is not expressed in wild-type plants. However, PGE and IR are stimulated in the JA-resistant mutant jar1-1. In the wild type, PGE and IR develop coincidently with increases in ET levels and the expression of several genes essential for ET signaling. The ET receptor gene ETR1 is required because both phenotypes are arrested in the etr1-1 mutant. Consistently, inhibition of ET perception nullifies the induction of both PGE and IR. The signal transducer EIN2 is required for IR, and EIN5 is required for PGE because IR and PGE are impaired correspondingly in the ein2-1 and ein5-1 mutants. Therefore, harpin activates ET signaling while conscribing EIN2 and EIN5 to confer IR and PGE, respectively.
Collapse
Affiliation(s)
- Hong-Ping Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
427
|
Thain SC, Vandenbussche F, Laarhoven LJJ, Dowson-Day MJ, Wang ZY, Tobin EM, Harren FJM, Millar AJ, Van Der Straeten D. Circadian rhythms of ethylene emission in Arabidopsis. PLANT PHYSIOLOGY 2004; 136:3751-61. [PMID: 15516515 PMCID: PMC527172 DOI: 10.1104/pp.104.042523] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 07/29/2004] [Accepted: 08/13/2004] [Indexed: 05/18/2023]
Abstract
Ethylene controls multiple physiological processes in plants, including cell elongation. Consequently, ethylene synthesis is regulated by internal and external signals. We show that a light-entrained circadian clock regulates ethylene release from unstressed, wild-type Arabidopsis (Arabidopsis thaliana) seedlings, with a peak in the mid-subjective day. The circadian clock drives the expression of multiple ACC SYNTHASE genes, resulting in peak RNA levels at the phase of maximal ethylene synthesis. Ethylene production levels are tightly correlated with ACC SYNTHASE 8 steady-state transcript levels. The expression of this gene is controlled by light, by the circadian clock, and by negative feedback regulation through ethylene signaling. In addition, ethylene production is controlled by the TIMING OF CAB EXPRESSION 1 and CIRCADIAN CLOCK ASSOCIATED 1 genes, which are critical for all circadian rhythms yet tested in Arabidopsis. Mutation of ethylene signaling pathways did not alter the phase or period of circadian rhythms. Mutants with altered ethylene production or signaling also retained normal rhythmicity of leaf movement. We conclude that circadian rhythms of ethylene production are not critical for rhythmic growth.
Collapse
Affiliation(s)
- Simon C Thain
- Unit Plant Hormone Signaling and Bio-Imaging, Department of Molecular Genetics, University of Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
428
|
Binder BM, Mortimore LA, Stepanova AN, Ecker JR, Bleecker AB. Short-term growth responses to ethylene in Arabidopsis seedlings are EIN3/EIL1 independent. PLANT PHYSIOLOGY 2004; 136:2921-7. [PMID: 15466219 PMCID: PMC523354 DOI: 10.1104/pp.104.050393] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 08/30/2004] [Accepted: 08/31/2004] [Indexed: 05/20/2023]
Abstract
Kinetic studies indicate there are two phases to growth inhibition by ethylene for the hypocotyls of etiolated Arabidopsis seedlings. Phase I is transient, while phase II results in sustained growth inhibition. The EIN2 membrane protein is required for both the first and second phases of growth inhibition by ethylene, while the transcription factors EIN3 and EIL1 are required for the second phase but not the first phase. The first phase lasts no more than 2 h. It is less sensitive to the ethylene response inhibitor 1-methylcyclopropene and more sensitive to ethylene than the second phase. The first phase shows adaptation at low concentrations of ethylene (< or =0.01 microL L(-1)) with a relative refractory period of 5 h after ethylene is added. A modified signal transduction model is proposed that accounts for the two phases of growth inhibition.
Collapse
Affiliation(s)
- Brad M Binder
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
429
|
Shibuya K, Barry KG, Ciardi JA, Loucas HM, Underwood BA, Nourizadeh S, Ecker JR, Klee HJ, Clark DG. The central role of PhEIN2 in ethylene responses throughout plant development in petunia. PLANT PHYSIOLOGY 2004; 136:2900-12. [PMID: 15466231 PMCID: PMC523352 DOI: 10.1104/pp.104.046979] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 06/25/2004] [Accepted: 06/30/2004] [Indexed: 05/19/2023]
Abstract
The plant hormone ethylene regulates many aspects of growth and development. Loss-of-function mutations in ETHYLENE INSENSITIVE2 (EIN2) result in ethylene insensitivity in Arabidopsis, indicating an essential role of EIN2 in ethylene signaling. However, little is known about the role of EIN2 in species other than Arabidopsis. To gain a better understanding of EIN2, a petunia (Petunia x hybrida cv Mitchell Diploid [MD]) homolog of the Arabidopsis EIN2 gene (PhEIN2) was isolated, and the role of PhEIN2 was analyzed in a wide range of plant responses to ethylene, many that do not occur in Arabidopsis. PhEIN2 mRNA was present at varying levels in tissues examined, and the PhEIN2 expression decreased after ethylene treatment in petals. These results indicate that expression of PhEIN2 mRNA is spatially and temporally regulated in petunia during plant development. Transgenic petunia plants with reduced PhEIN2 expression were compared to wild-type MD and ethylene-insensitive petunia plants expressing the Arabidopsis etr1-1 gene for several physiological processes. Both PhEIN2 and etr1-1 transgenic plants exhibited significant delays in flower senescence and fruit ripening, inhibited adventitious root and seedling root hair formation, premature death, and increased hypocotyl length in seedling ethylene response assays compared to MD. Moderate or strong levels of reduction in ethylene sensitivity were achieved with expression of both etr1-1 and PhEIN2 transgenes, as measured by downstream expression of PhEIL1. These results demonstrate that PhEIN2 mediates ethylene signals in a wide range of physiological processes and also indicate the central role of EIN2 in ethylene signal transduction.
Collapse
Affiliation(s)
- Kenichi Shibuya
- Department of Environmental Horticulture , University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
430
|
Affiliation(s)
- Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815, USA.
| | | |
Collapse
|
431
|
Qu X, Schaller GE. Requirement of the histidine kinase domain for signal transduction by the ethylene receptor ETR1. PLANT PHYSIOLOGY 2004; 136:2961-70. [PMID: 15466228 PMCID: PMC523358 DOI: 10.1104/pp.104.047126] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 07/19/2004] [Accepted: 08/31/2004] [Indexed: 05/19/2023]
Abstract
In Arabidopsis, ethylene is perceived by a receptor family consisting of five members, one of these being ETR1. The N-terminal half of ETR1 functions as a signal input domain. The C-terminal region of ETR1, consisting of a His kinase domain and a putative receiver domain, is likely to function in signal output. The role of the proposed signal output region in ethylene signaling was examined in planta. For this purpose, the ability of mutant versions of ETR1 to rescue the constitutive ethylene-response phenotype of the etr1-6;etr2-3;ein4-4 triple loss-of-function mutant line was examined. A truncated version of ETR1 that lacks both the His kinase domain and the receiver domain failed to rescue the triple mutant phenotype. A truncated ETR1 receptor that lacks only the receiver domain restored normal growth to the triple mutant in air, but the transgenic seedlings displayed hypersensitivity to low doses of ethylene. A mutation that eliminated His kinase activity had a modest effect upon the ability of the receptor to repress ethylene responses in air. These results demonstrate that the His kinase domain plays a role in the repression of ethylene responses. The potential roles of the receiver domain and His kinase activity in ethylene signaling are discussed.
Collapse
Affiliation(s)
- Xiang Qu
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | |
Collapse
|
432
|
Binder BM, O'malley RC, Wang W, Moore JM, Parks BM, Spalding EP, Bleecker AB. Arabidopsis seedling growth response and recovery to ethylene. A kinetic analysis. PLANT PHYSIOLOGY 2004; 136:2913-20. [PMID: 15466220 PMCID: PMC523353 DOI: 10.1104/pp.104.050369] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 08/30/2004] [Accepted: 08/31/2004] [Indexed: 05/19/2023]
Abstract
Responses to the plant hormone ethylene are mediated by a family of five receptors in Arabidopsis that act in the absence of ethylene as negative regulators of response pathways. In this study, we examined the rapid kinetics of growth inhibition by ethylene and growth recovery after ethylene withdrawal in hypocotyls of etiolated seedlings of wild-type and ethylene receptor-deficient Arabidopsis lines. This analysis revealed that there are two phases to growth inhibition by ethylene in wild type: a rapid phase followed by a prolonged, slower phase. Full recovery of growth occurs approximately 90 min after ethylene removal. None of the receptor null mutations tested had a measurable effect on the two phases of growth inhibition. However, loss-of-function mutations in ETR1, ETR2, and EIN4 significantly prolonged the time for recovery of growth rate after ethylene was removed. Plants with an etr1-6;etr2-3;ein4-4 triple loss-of-function mutation took longer to recover than any of the single mutants, while the ers1;ers2 double mutant had no effect on recovery rate, suggesting that receiver domains play a role in recovery. Transformation of the ers1-2;etr1-7 double mutant with wild-type genomic ETR1 rescued the slow recovery phenotype, while a His kinase-inactivated ETR1 construct did not. To account for the rapid recovery from growth inhibition, a model in which clustered receptors act cooperatively is proposed.
Collapse
Affiliation(s)
- Brad M Binder
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
433
|
Zhang ZG, Zhou HL, Chen T, Gong Y, Cao WH, Wang YJ, Zhang JS, Chen SY. Evidence for serine/threonine and histidine kinase activity in the tobacco ethylene receptor protein NTHK2. PLANT PHYSIOLOGY 2004; 136:2971-81. [PMID: 15466243 PMCID: PMC523359 DOI: 10.1104/pp.103.034686] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 08/29/2004] [Accepted: 09/09/2004] [Indexed: 05/19/2023]
Abstract
Ethylene plays important roles in plant growth, development, and stress responses. Two ethylene receptors, ETR1 from Arabidopsis and NTHK1 from tobacco (Nicotiana tabacum), have been found to have His kinase (HK) activity and Ser/Thr kinase activity, respectively, although both show similarity to bacterial two-component HK. Here, we report the characterization of another ethylene receptor homolog gene, NTHK2, from tobacco. This gene also encodes a HK-like protein and is induced by dehydration and CaCl(2) but not significantly affected by NaCl and abscisic acid treatments. The biochemical properties of the yeast (Schizosaccharomyces pombe)-expressed NTHK2 domains were further characterized. We found that NTHK2 possessed Ser/Thr kinase activity in the presence of Mn(2+) and had HK activity in the presence of Ca(2+). Several lines of evidence supported this conclusion, including hydrolytic stability, phosphoamino acid analysis, mutation, deletion, and substrate analysis. These properties have implications in elucidation of the complexity of the ethylene signal transduction pathway and understanding of ethylene functions in plants.
Collapse
Affiliation(s)
- Zhi-Gang Zhang
- National Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
434
|
Moussatche P, Klee HJ. Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J Biol Chem 2004; 279:48734-41. [PMID: 15358768 DOI: 10.1074/jbc.m403100200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptors for the gaseous phytohormone ethylene show sequence similarity to bacterial two-component histidine kinases. These receptors are encoded by a multigene family that can be divided into subfamilies 1 and 2. It has been previously shown that a subfamily 1 Arabidopsis thaliana ethylene receptor, ETR1, autophosphorylates in vitro on a conserved histidine residue (1). However, sequence comparisons between the five ethylene receptor family members suggest that subfamily 2 members do not have all the motifs necessary for histidine kinase activity. Further, a tobacco subfamily 2 receptor, NTHK1, autophosphorylates on serines and threonines in vitro (2). Here we show that all five Arabidopsis ethylene receptor proteins autophosphorylate in vitro. We analyzed the nature of the phosphorylated amino acids by acid/base stability and bi-dimensional thin layer electrophoresis and demonstrated that unlike ETR1 all other ethylene receptors autophosphorylate predominantly on serine residues. ERS1, the only other subfamily 1 receptor, is able to phosphorylate on both histidine and serine residues in the presence of Mn2+. However, histidine autophosphorylation is lost when ERS1 is assayed in the presence of both Mg2+ and Mn2+, suggesting that this activity may not occur in vivo. Furthermore, mutation of the histidine residue conserved in two-component systems does not abolish serine autophosphorylation, eliminating the possibility of a histidine to serine phosphotransfer. Our biochemical observations complement the recently published genetic data that histidine kinase activity is not necessary for ethylene receptor function in plants and suggest that ethylene signal transduction does not occur through a phosphorelay mechanism.
Collapse
Affiliation(s)
- Patricia Moussatche
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611, USA.
| | | |
Collapse
|
435
|
Kuroda S, Hirose Y, Shiraishi M, Davies E, Abe S. Co-expression of an ethylene receptor gene, ERS1, and ethylene signaling regulator gene, CTR1, in Delphinium during abscission of florets. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004. [PMID: 15474381 DOI: 10.1016/s0981-9428(03)00115-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We are trying to determine the mechanisms responsible for ethylene-induced floret abscission in cut flowers of Delphinium and recently identified an ethylene receptor gene, ERS1, and studied its response to ethylene treatment. In order to identify additional components of the ethylene response network in Delphinium, we performed 3' and 5' rapid amplification of cDNA ends (RACE) using the consensus sequence of the serine/threonine kinase domain of the ethylene signaling regulator gene (CTR1) involved in the constitutive triple response (CTR) to ethylene. The full-length cDNA (2754 nt) encoded a protein of 800 amino acids, which contained the expected serine/threonine kinase domain, the consensus ATP-binding site, and the serine/threonine kinase catalytic site. The protein had quite high (>50%) overall identity to CTR1 from Arabidopsis and tomato, and 70-75% identity in the catalytic site. The amount of mRNA encoding both CTR1 and ERS1 more than doubled within 6 h in cut florets incubated in the presence of exogenous ethylene. Similarly, the amount of ERS1 transcript doubled in florets within 6 d of harvesting, presumably in response to endogenous ethylene, while CTR1 mRNA increased to about 40% over the same period. However, in the presence of silver thiosulfate (STS), an ethylene inhibitor, the level of both transcripts remained essentially unchanged for the first 8 d before declining to very low levels. Florets on the control plants had almost completely abscised by 6 d, but the florets on STS-treated plants had not abscised by 20 d, by which time the flowers were almost dead. The data are consistent with the hypothesis that endogenous ethylene evokes the accumulation of both these transcripts (and their encoded proteins), thereby speeding up abscission and reducing the useful shelf life of the cut flowers.
Collapse
Affiliation(s)
- Satoshi Kuroda
- Laboratory of Molecular Cell Biology, Department of Biological Resources, Faculty of Agriculture, Ehime University, Matsuyama 7908566, Japan
| | | | | | | | | |
Collapse
|
436
|
Zhang H, Zhang D, Chen J, Yang Y, Huang Z, Huang D, Wang XC, Huang R. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. PLANT MOLECULAR BIOLOGY 2004. [PMID: 15604719 DOI: 10.1007/s11103-005-2140-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ethylene responsive factors (ERFs) are important in regulating plant pathogen resistance, abiotic stress tolerance and plant development. Recent studies have greatly enlarged the ERF protein family and revealed more important roles of ERFs in plants. Here, we report our finding of a tomato ERF protein TSRF1, which is transcriptionally up-regulated by ethylene, salicylic acid, or Ralstonia solanacearum strain BJ1057 infection. Biochemical analysis indicates that TSRF1 specifically interacts in vitro with the GCC box, an element present in the promoters of many pathogenesis-related (PR) genes. Further investigation evidences that TSRF1 activates in vivo the expression of reporter beta-glucuronidase gene controlled by GCC box. More importantly, overexpressing TSRF1 in tobacco and tomato constitutively activates the expression of PR genes, and subsequently enhancing transgenic plant resistance to the bacterial wilt caused by Ralstonia solanacearum strain BJ1057. Therefore our investigation not only extends the functions of ERF proteins in plant resistance to R. solanacearum, but also provides further clues to understanding the mechanism of host regulatory proteins in response to the infection of pathogens.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Binding Sites/genetics
- Blotting, Northern
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Electrophoretic Mobility Shift Assay
- Ethylenes/pharmacology
- Gene Expression Regulation, Plant/drug effects
- Immunity, Innate
- Solanum lycopersicum/genetics
- Solanum lycopersicum/metabolism
- Solanum lycopersicum/microbiology
- Molecular Sequence Data
- Mutation
- Oligonucleotides/genetics
- Oligonucleotides/metabolism
- Plant Diseases/genetics
- Plant Diseases/microbiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Protein Binding
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Ralstonia solanacearum/growth & development
- Response Elements/genetics
- Salicylic Acid/pharmacology
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tobacco/genetics
- Tobacco/metabolism
- Tobacco/microbiology
- Trans-Activators/genetics
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- Hongbo Zhang
- The National Plant Gene Research Center (Beijing), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | | | | | |
Collapse
|
437
|
Hass C, Lohrmann J, Albrecht V, Sweere U, Hummel F, Yoo SD, Hwang I, Zhu T, Schäfer E, Kudla J, Harter K. The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis. EMBO J 2004; 23:3290-302. [PMID: 15282545 PMCID: PMC514511 DOI: 10.1038/sj.emboj.7600337] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 06/29/2004] [Indexed: 11/09/2022] Open
Abstract
Hormones are important regulators of plant growth and development. In Arabidopsis, perception of the phytohormones ethylene and cytokinin is accomplished by a family of sensor histidine kinases including ethylene-resistant (ETR) 1 and cytokinin-response (CRE) 1. We identified the Arabidopsis response regulator 2 (ARR2) as a signalling component functioning downstream of ETR1 in ethylene signal transduction. Analyses of loss-of-function and ARR2-overexpressing lines as well as functional assays in protoplasts indicate an important role of ARR2 in mediating ethylene responses. Additional investigations indicate that an ETR1-initiated phosphorelay regulates the transcription factor activity of ARR2. This mechanism may create a novel signal transfer from endoplasmic reticulum-associated ETR1 to the nucleus for the regulation of ethylene-response genes. Furthermore, global expression profiling revealed a complex ARR2-involving two-component network that interferes with a multitude of different signalling pathways and thereby contributes to the highly integrated signal processing machinery in higher plants.
Collapse
Affiliation(s)
- Claudia Hass
- Botanisches Institut, Universität zu Köln, Köln, Germany
| | - Jens Lohrmann
- Institut für Biologie II, Universität Freiburg, Freiburg, Germany
| | - Verónica Albrecht
- Institut für Botanik und Botanischer Garten, Universität Münster, Münster, Germany
- Molekulare Botanik, Universität Ulm, Ulm, Germany
| | - Uta Sweere
- Botanisches Institut, Universität zu Köln, Köln, Germany
- Institut für Biologie II, Universität Freiburg, Freiburg, Germany
| | - Florian Hummel
- Institut für Biologie II, Universität Freiburg, Freiburg, Germany
| | - Sang Dong Yoo
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Ildoo Hwang
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Tong Zhu
- Syngenta Biotechnology Inc., Research Triangle Park, NC, USA
| | - Eberhard Schäfer
- Institut für Biologie II, Universität Freiburg, Freiburg, Germany
| | - Jörg Kudla
- Institut für Botanik und Botanischer Garten, Universität Münster, Münster, Germany
- Molekulare Botanik, Universität Ulm, Ulm, Germany
- Institut für Botanik und Botanischer Garten, Universität Münster, Schlossgarten 3, 48149 Münster, Germany. Tel.: +49 251 83 24813; Fax: +49 251 83 23823; E-mail:
| | - Klaus Harter
- Botanisches Institut, Universität zu Köln, Köln, Germany
- Botanisches Institut, Universität zu Köln, Gyrhofstr. 15, 50931 Köln, Germany. Tel.: +49 221 470 6897; Fax: +49 221 470 7765; E-mail:
| |
Collapse
|
438
|
Adams-Phillips L, Barry C, Giovannoni J. Signal transduction systems regulating fruit ripening. TRENDS IN PLANT SCIENCE 2004; 9:331-8. [PMID: 15231278 DOI: 10.1016/j.tplants.2004.05.004] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fruit ripening is a unique aspect of plant development with direct implications for a large component of the food supply and related areas of human health and nutrition. Recent advances in ripening research have given insights into the molecular basis of conserved developmental signals coordinating the ripening process and suggest that sequences related to floral development genes might be logical targets for additional discovery. Recent characterization of hormonal and environmental signal transduction components active in tomato fruit ripening (particularly ethylene and light) show conservation of signaling components yet novel gene family size and expression motifs that might facilitate complete and timely manifestation of ripening phenotypes. Emerging genomics tools and approaches are rapidly providing new clues and candidate genes that are expanding the known regulatory circuitry of ripening.
Collapse
Affiliation(s)
- Lori Adams-Phillips
- Boyce Thompson Institute for Plant Research, Tower Road, Cornell Campus, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
439
|
Klee HJ. Ethylene signal transduction. Moving beyond Arabidopsis. PLANT PHYSIOLOGY 2004; 135:660-7. [PMID: 15208412 PMCID: PMC514102 DOI: 10.1104/pp.104.040998] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 04/12/2004] [Accepted: 04/12/2004] [Indexed: 05/18/2023]
Affiliation(s)
- Harry J Klee
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
440
|
Zhao XC, Schaller GE. Effect of salt and osmotic stress upon expression of the ethylene receptor ETR1 in Arabidopsis thaliana. FEBS Lett 2004; 562:189-92. [PMID: 15044023 DOI: 10.1016/s0014-5793(04)00238-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 02/26/2004] [Accepted: 02/26/2004] [Indexed: 10/26/2022]
Abstract
In hormone perception, varying the concentrations of hormone, receptor, or downstream signaling elements can modulate signal transduction. Previous research has demonstrated that ethylene biosynthesis in plants is regulated by abiotic factors. Here we report that exposure of Arabidopsis plants to NaCl reduced expression of the ethylene receptor ETR1. The change in gene expression was reflected at the protein level based on immunoblot analysis. Further analysis supports a general effect of osmotic stress upon the expression level of ETR1. The reduction in ETR1 levels should cause increased sensitivity of the plant to ethylene. These results suggest that plant responses to abiotic stress are modulated by changes in the expression level of ethylene receptors.
Collapse
Affiliation(s)
- Xue-Chu Zhao
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, NH 03824, USA
| | | |
Collapse
|
441
|
Wang H, Huang Z, Chen Q, Zhang Z, Zhang H, Wu Y, Huang D, Huang R. Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. PLANT MOLECULAR BIOLOGY 2004; 55:183-92. [PMID: 15604674 DOI: 10.1007/s11103-004-0113-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The ethylene, jasmonic acid and osmotic signaling pathways respond to environmental stimuli and in order to understand how plants adapt to biotic and abiotic stresses it is important to understand how these pathways interact each other. In this paper, we report a novel ERF protein--jasmonate and ethylene-responsive factor 3 (JERF3)--that unites these pathways. JERF3, which functions as an in vivo transcription activator in yeast, binds to the GCC box, an element responsive to ethylene/JA signaling, as well as to DRE, a dehydration-responsive element that responds to dehydration, high salt and low-temperature. Expression of JERF3 in tomato is mainly induced by ethylene, JA, cold, salt or ABA. Constitutive expression of JERF3 in transgenic tobacco significantly activated expression of pathogenesis-related genes that contained the GCC box, resulting in enhanced tolerance to salt. These results indicate that JERF3 functions as a linker in ethylene- and osmotic stress-signaling pathways.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Amino Acid Sequence
- Base Sequence
- Cell Nucleus/metabolism
- Cold Temperature
- Cyclopentanes/pharmacology
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Ethylenes/pharmacology
- Gene Expression Regulation, Plant
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Solanum lycopersicum/drug effects
- Solanum lycopersicum/genetics
- Microscopy, Fluorescence
- Molecular Sequence Data
- Oligonucleotides/genetics
- Oligonucleotides/metabolism
- Oxylipins
- Phylogeny
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Protein Binding
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sodium Chloride/pharmacology
- Nicotiana/drug effects
- Nicotiana/genetics
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Hui Wang
- The National Plant Gene Research Center (Beijing), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | | | | | | | | | | | | | | |
Collapse
|
442
|
Larsen PB, Cancel JD. A recessive mutation in the RUB1-conjugating enzyme, RCE1, reveals a requirement for RUB modification for control of ethylene biosynthesis and proper induction of basic chitinase and PDF1.2 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:626-38. [PMID: 15125769 DOI: 10.1111/j.1365-313x.2004.02068.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
By screening etiolated Arabidopsis seedlings for mutants with aberrant ethylene-related phenotypes, we identified a mutant that displays features of the ethylene-mediated triple response even in the absence of ethylene. Further characterization showed that the phenotype observed for the dark-grown seedlings of this mutant is reversible by prevention of ethylene perception and is dependent on a modest increase in ethylene production correlated with an increase in 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO) activity in the hypocotyl. Molecular characterization of leaves of the mutant revealed severely impaired induction of basic chitinase (chiB) and plant defensin (PDF)1.2 following treatment with jasmonic acid and/or ethylene. Positional cloning of the mutation resulted in identification of a 49-bp deletion in RCE1 (related to ubiquitin 1 (RUB1)-conjugating enzyme), which has been demonstrated to be responsible for covalent attachment of RUB1 to the SCF (Skpl Cdc 53 F-box) ubiquitin ligase complex to modify its activity. Our analyses with rce1-2 demonstrate a previously unknown requirement for RUB1 modification for regulation of ethylene biosynthesis and proper induction of defense-related genes in Arabidopsis.
Collapse
Affiliation(s)
- Paul B Larsen
- Department of Biochemistry, University of California-Riverside, Riverside, CA 92521, USA.
| | | |
Collapse
|
443
|
Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo SD, Yanagisawa S, Vierstra RD. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci U S A 2004; 101:6803-8. [PMID: 15090654 PMCID: PMC404126 DOI: 10.1073/pnas.0401698101] [Citation(s) in RCA: 272] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Indexed: 11/18/2022] Open
Abstract
Ubiquitination of various intracellular proteins by ubiquitin-protein ligases (or E3s) plays an essential role in eukaryotic cell regulation primarily through its ability to selectively target proteins for degradation by the 26S proteasome. Skp1, Cullin, F-box (SCF) complexes are one influential E3 class that use F-box proteins to deliver targets to a core ligase activity provided by the Skp1, Cullin, and Rbx1 subunits. Almost 700 F-box proteins can be found in Arabidopsis, indicating that SCF E3s likely play a pervasive role in plant physiology and development. Here, we describe the reverse genetic analysis of two F-box proteins, EBF1 and -2, that work coordinately in SCF complexes to repress ethylene action. Mutations in either gene cause hypersensitivity to exogenous ethylene and its precursor 1-aminocyclopropane-1-carboxylic acid. EBF1 and -2 interact directly with ethylene insensitive 3 (EIN3), a transcriptional regulator important for ethylene signaling. Levels of EIN3 are increased in mutants affecting either EBF1 or -2, suggesting that the corresponding SCF complexes work together in EIN3 breakdown. Surprisingly, double ebf1 ebf2 mutants display a substantial arrest of seedling growth and have elevated EIN3 levels, even in the absence of exogenous ethylene. Collectively, our results show that the SCF(EBF1/EBF2)-dependent ubiquitination and subsequent removal of EIN3 is critical not only for proper ethylene signaling but also for growth in plants.
Collapse
Affiliation(s)
- Jennifer M Gagne
- Department of Genetics, University of Wisconsin, Madison, WI 53706-1574, USA
| | | | | | | | | | | | | |
Collapse
|
444
|
Champion A, Picaud A, Henry Y. Reassessing the MAP3K and MAP4K relationships. TRENDS IN PLANT SCIENCE 2004; 9:123-9. [PMID: 15003235 DOI: 10.1016/j.tplants.2004.01.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Antony Champion
- Institute of Biology, Leiden University, Clusius Laboratory, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | |
Collapse
|
445
|
Gallie DR, Young TE. The ethylene biosynthetic and perception machinery is differentially expressed during endosperm and embryo development in maize. Mol Genet Genomics 2004; 271:267-81. [PMID: 14760521 DOI: 10.1007/s00438-004-0977-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Accepted: 12/31/2003] [Indexed: 01/22/2023]
Abstract
The maize endosperm undergoes programmed cell death late in its development so that, with the exception of the aleurone layer, the tissue is dead by the time the kernel matures. Although ethylene is known to regulate the onset of endosperm cell death, the temporal and spatial control of the ethylene biosynthetic and perception machinery during maize endosperm development has not been examined. In this study, we report the isolation of the maize gene families for ACC synthase, ACC oxidase, the ethylene receptor, and EIN2 and EIL, which act downstream of the receptor. We show that ACC oxidase is expressed primarily in the endosperm, and only at low levels in the developing embryo late in its development. ACC synthase is expressed throughout endosperm development but, in contrast to ACC oxidase, it is transiently expressed to a significantly higher level in the developing embryo at a time that corresponds with the onset of endosperm cell death. Only two ethylene receptor gene families were identified in maize, in contrast to the five types previously identified in Arabidopsis. Members of both ethylene receptor families were expressed to substantially higher levels in the developing embryo than in the endosperm, as were members of the EIN2 and EIL gene families. These results suggest that the endosperm and embryo both contribute to the synthesis of ethylene, and they provide a basis for understanding why the developing endosperm is especially sensitive to ethylene-induced cell death while the embryo is protected.
Collapse
Affiliation(s)
- D R Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA.
| | | |
Collapse
|
446
|
Abstract
During the past decade, molecular genetic studies on the reference plant Arabidopsis have established a largely linear signal transduction pathway for the response to ethylene gas. The biochemical modes of action of many of the signaling components are still unresolved. During the past year, however, progress in several areas has been made on several fronts. The different approaches used have included a functional study of the activity of the receptor His kinase, the determination of the ethylene receptor signaling complex at the endoplasmic reticulum and of the regulation of CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) activity by these receptors, the identification of a unique MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascade, the cloning and characterization of numerous ETHYLENE INSENSITIVE3 (EIN3)/EIN3-like (EIL) transcription factors from many plant species, and the integration of the ethylene and jasmonate response pathways via the ETHYLENE RESPONSE FACTOR (ERF) family of transcription factors. The elucidation of the biochemical mechanisms of ethylene signal transduction and the identification of new components in the ethylene response pathway in Arabidopsis are providing a framework for understanding how all plants sense and respond to ethylene.
Collapse
Affiliation(s)
- Hongwei Guo
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
447
|
Champion A, Kreis M, Mockaitis K, Picaud A, Henry Y. Arabidopsis kinome: after the casting. Funct Integr Genomics 2004; 4:163-87. [PMID: 14740254 DOI: 10.1007/s10142-003-0096-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Revised: 09/22/2003] [Accepted: 11/04/2003] [Indexed: 11/25/2022]
Abstract
Arabidopsis thaliana is used as a favourite experimental organism for many aspects of plant biology. We capitalized on the recently available Arabidopsis genome sequence and predicted proteome, to draw up a genome-scale protein serine/threonine kinase (PSTK) inventory. The PSTKs represent about 4% of the A. thaliana proteome. In this study, we provide a description of the content and diversity of the non-receptor PSTKs. These kinases have crucial functions in sensing, mediating and coordinating cellular responses to an extensive range of stimuli. A total of 369 predicted non receptor PSTKs were detailed: the Raf superfamily, the CMGC, CaMK, AGC and STE families, as well as a few small clades and orphan sequences. An extensive relationship analysis of these kinases allows us to classify the proteins in superfamilies, families, sub-families and groups. The classification provides a better knowledge of the characteristics shared by the different clades. We focused on the MAP kinase module elements, with particular attention to their docking sites for protein-protein interaction and their biological function. The large number of A. thaliana genes encoding kinases might have been achieved through successive rounds of gene and genome duplications. The evolution towards an increasing gene number suggests that functional redundancy plays an important role in plant genetic robustness.
Collapse
Affiliation(s)
- A Champion
- Institut de Biotechnologie des Plantes, Laboratoire de Biologie du Développement des Plantes, Bâtiment 630, UMR CNRS/UPS 8618, Université de Paris-Sud, 91405, Orsay Cedex, France
| | | | | | | | | |
Collapse
|
448
|
Voesenek LACJ, Rijnders JHGM, Peeters AJM, van de Steeg HM, de Kroon H. PLANT HORMONES REGULATE FAST SHOOT ELONGATION UNDER WATER: FROM GENES TO COMMUNITIES. Ecology 2004. [DOI: 10.1890/02-740] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
449
|
Boles E, André B. Role of transporter-like sensors in glucose and amino acid signalling in yeast. MOLECULAR MECHANISMS CONTROLLING TRANSMEMBRANE TRANSPORT 2004. [DOI: 10.1007/b95773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
450
|
Langebartels C, Kangasjärvi J. Ethylene and Jasmonate as Regulators of Cell Death in Disease Resistance. ECOLOGICAL STUDIES 2004. [DOI: 10.1007/978-3-662-08818-0_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|