401
|
Yun M, Zhang X, Park CG, Park HW, Endow SA. A structural pathway for activation of the kinesin motor ATPase. EMBO J 2001; 20:2611-8. [PMID: 11387196 PMCID: PMC125472 DOI: 10.1093/emboj/20.11.2611] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular motors move along actin or microtubules by rapidly hydrolyzing ATP and undergoing changes in filament-binding affinity with steps of the nucleotide hydrolysis cycle. It is generally accepted that motor binding to its filament greatly increases the rate of ATP hydrolysis, but the structural changes in the motor associated with ATPase activation are not known. To identify the conformational changes underlying motor movement on its filament, we solved the crystal structures of three kinesin mutants that decouple nucleotide and microtubule binding by the motor, and block microtubule-activated, but not basal, ATPase activity. Conformational changes in the structures include a disordered loop and helices in the switch I region and a visible switch II loop, which is disordered in wild-type structures. Switch I moved closer to the bound nucleotide in two mutant structures, perturbing water-mediated interactions with the Mg2+. This could weaken Mg2+ binding and accelerate ADP release to activate the motor ATPASE: The structural changes we observe define a signaling pathway within the motor for ATPase activation that is likely to be essential for motor movement on microtubules.
Collapse
Affiliation(s)
- Mikyung Yun
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, TN 38105, Department of Microbiology, Duke University Medical Center, Durham, NC 27710 and Department of Biochemistry, University of Tennessee, Memphis, TN 38163, USA Corresponding authors e-mail: or
| | - Xiaohua Zhang
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, TN 38105, Department of Microbiology, Duke University Medical Center, Durham, NC 27710 and Department of Biochemistry, University of Tennessee, Memphis, TN 38163, USA Corresponding authors e-mail: or
| | - Cheon-Gil Park
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, TN 38105, Department of Microbiology, Duke University Medical Center, Durham, NC 27710 and Department of Biochemistry, University of Tennessee, Memphis, TN 38163, USA Corresponding authors e-mail: or
| | - Hee-Won Park
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, TN 38105, Department of Microbiology, Duke University Medical Center, Durham, NC 27710 and Department of Biochemistry, University of Tennessee, Memphis, TN 38163, USA Corresponding authors e-mail: or
| | - Sharyn A. Endow
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, TN 38105, Department of Microbiology, Duke University Medical Center, Durham, NC 27710 and Department of Biochemistry, University of Tennessee, Memphis, TN 38163, USA Corresponding authors e-mail: or
| |
Collapse
|
402
|
Swank DM, Bartoo ML, Knowles AF, Iliffe C, Bernstein SI, Molloy JE, Sparrow JC. Alternative exon-encoded regions of Drosophila myosin heavy chain modulate ATPase rates and actin sliding velocity. J Biol Chem 2001; 276:15117-24. [PMID: 11134017 DOI: 10.1074/jbc.m008379200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the molecular functions of the regions encoded by alternative exons from the single Drosophila myosin heavy chain gene, we made the first kinetic measurements of two muscle myosin isoforms that differ in all alternative regions. Myosin was purified from the indirect flight muscles of wild-type and transgenic flies expressing a major embryonic isoform. The in vitro actin sliding velocity on the flight muscle isoform (6.4 microm x s(-1) at 22 degrees C) is among the fastest reported for a type II myosin and was 9-fold faster than with the embryonic isoform. With smooth muscle tropomyosin bound to actin, the actin sliding velocity on the embryonic isoform increased 6-fold, whereas that on the flight muscle myosin slightly decreased. No difference in the step sizes of Drosophila and rabbit skeletal myosins were found using optical tweezers, suggesting that the slower in vitro velocity with the embryonic isoform is due to altered kinetics. Basal ATPase rates for flight muscle myosin are higher than those of embryonic and rabbit myosin. These differences explain why the embryonic myosin cannot functionally substitute in vivo for the native flight muscle isoform, and demonstrate that one or more of the five myosin heavy chain alternative exons must influence Drosophila myosin kinetics.
Collapse
Affiliation(s)
- D M Swank
- Biology Department and Molecular Biology Institute, San Diego State University, San Diego, California 92182, USA.
| | | | | | | | | | | | | |
Collapse
|
403
|
Abstract
No biological system has been studied by more diverse approaches than the actin-based molecular motor myosin. Biophysics, biochemistry, physiology, classical genetics and molecular genetics have all made their contributions, and myosin is now becoming one of the best-understood enzymes in biology.
Collapse
Affiliation(s)
- J A Spudich
- Department of Biochemistry, Beckman Center, B400, Stanford University School of Medicine, Stanford, California 94305-5307, USA.
| |
Collapse
|
404
|
Wendt T, Taylor D, Trybus KM, Taylor K. Three-dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2. Proc Natl Acad Sci U S A 2001; 98:4361-6. [PMID: 11287639 PMCID: PMC31840 DOI: 10.1073/pnas.071051098] [Citation(s) in RCA: 272] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of the actin-activated ATPase of smooth muscle myosin II is known to involve an interaction between the two heads that is controlled by phosphorylation of the regulatory light chain. However, the three-dimensional structure of this inactivated form has been unknown. We have used a lipid monolayer to obtain two-dimensional crystalline arrays of the unphosphorylated inactive form of smooth muscle heavy meromyosin suitable for structural studies by electron cryomicroscopy of unstained, frozen-hydrated specimens. The three-dimensional structure reveals an asymmetric interaction between the two myosin heads. The ATPase activity of one head is sterically "blocked" because part of its actin-binding interface is positioned onto the converter domain of the second head. ATPase activity of the second head, which can bind actin, appears to be inhibited through stabilization of converter domain movements needed to release phosphate and achieve strong actin binding. When the subfragment 2 domain of heavy meromyosin is oriented as it would be in an actomyosin filament lattice, the position of the heads is very different from that needed to bind actin, suggesting an additional contribution to ATPase inhibition in situ.
Collapse
Affiliation(s)
- T Wendt
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
405
|
Abstract
Photolytic release of MgADP (25-300 microM) from caged ADP in permeabilized tonic (rabbit femoral artery-Rfa) and phasic (rabbit bladder-Rbl) smooth muscle in high-tension rigor state, in the absence of Ca(2+), caused an exponential decline (approximately 1.5% in Rfa and approximately 6% in Rbl) of rigor force, with the rate proportional to the liberated [MgADP]. The apparent second-order rate constant of MgADP binding was estimated as approximately 1.0 x 10(6) M(-1) s(-1) for both smooth muscles. In control experiments, designed to test the specificity of MgADP, photolysis of caged ADP in the absence of Mg(2+) did not decrease rigor force in either smooth muscle, but rigor force decreased after photolytic release of Mg(2+) in the presence of ADP. The effects of photolysis of caged ADP were similar in smooth muscles containing thiophosphorylated or non-phosphorylated regulatory myosin light chains. Stretching or releasing (within range of 0.1-1.2% of initial Ca(2+)-activated force) did not affect the rate or relative amplitude of the force decrease. The effect of additions of MgADP to rigor cross-bridges could result from rotation of the lever arm of smooth muscle myosin, but this need not imply that ADP-release is a significant force-producing step of the physiological cross-bridge cycle.
Collapse
Affiliation(s)
- A S Khromov
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22906, USA
| | | | | |
Collapse
|
406
|
Abstract
High-resolution structures of the motor domain of myosin II and lower resolution actin-myosin structures have led to the "swinging lever arm" model for myosin force generation. The available kinetic data are not all easily reconciled with this model and understanding the final details of the myosin motor mechanism must await actin-myosin co-crystals. The observation that myosin can populate multiple states in the absence of actin has nonetheless led to significant insights. The currently known myosin structures correspond to defined kinetic states that bind weakly (K(d)>microM) to actin. It is possible that the myosin lever arm could complete its swing before strong binding to actin and force generation--a process that would correspond, in the absence of load, to a Brownian ratchet. We further suggest that, under load, internal springs within the myosin head could decouple force generation and lever arm movement.
Collapse
Affiliation(s)
- A Houdusse
- Structural Motility, Institut Curie CNRS, UMR 144, 26 rue d'Ulm, 75248 05 Paris Cedex, France.
| | | |
Collapse
|
407
|
Stafford WF, Jacobsen MP, Woodhead J, Craig R, O'Neall-Hennessey E, Szent-Györgyi AG. Calcium-dependent structural changes in scallop heavy meromyosin. J Mol Biol 2001; 307:137-47. [PMID: 11243809 DOI: 10.1006/jmbi.2000.4490] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism of calcium regulation of scallop myosin is not understood, although it is known that both myosin heads are required. We have explored possible interactions between the heads of heavy meromyosin (HMM) in the presence and absence of calcium and nucleotides by sedimentation and electron microscope studies. The ATPase activity of the HMM preparation was activated over tenfold by calcium, indicating that the preparation contained mostly regulated molecules. In the presence of ADP or ATP analogs, calcium increased the asymmetry of the HMM molecule as judged by its slower sedimentation velocity compared with that in EGTA. In the absence of nucleotide the asymmetry was high even in EGTA. The shift in sedimentation occurred with a sharp midpoint at a calcium level of about 0.5 microM. Sedimentation of subfragment 1 was not dependent on calcium or on nucleotides. Modeling accounted for the observed sedimentation behavior by assuming that both HMM heads bent toward the tail in the absence of calcium, while in its presence the heads had random positions. The sedimentation pattern showed a single peak at all calcium concentrations, indicating equilibration between the two forms with a t(1/2) less than 70 seconds. Electron micrographs of crosslinked, rotary shadowed specimens indicated that 81 % of HMM molecules in the presence of nucleotide had both heads pointing back towards the tail in the absence of calcium, as compared with 41 % in its presence. This is consistent with the sedimentation data. We conclude that in the "off" state, scallop myosin heads interact with each other, forming a rigid structure with low ATPase activity. When molecules are switched "on" by binding of calcium, communication between the heads is lost, allowing them to flex randomly about the junction with the tail; this could facilitate their interaction with actin in contracting muscle.
Collapse
Affiliation(s)
- W F Stafford
- Boston Biomedical Research Institute, Watertown, MA 02472, USA
| | | | | | | | | | | |
Collapse
|
408
|
Sun YB, Hilber K, Irving M. Effect of active shortening on the rate of ATP utilisation by rabbit psoas muscle fibres. J Physiol 2001; 531:781-91. [PMID: 11251058 PMCID: PMC2278485 DOI: 10.1111/j.1469-7793.2001.0781h.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2000] [Accepted: 11/15/2000] [Indexed: 11/29/2022] Open
Abstract
1. The rate of ATP utilisation during active shortening of single skinned fibres from rabbit psoas muscle at 10 degrees C was measured using an NADH-linked assay. Fibres were immersed in silicone oil and illuminated with 365 nm light. The amounts of NADH and carboxytetramethylrhodamine (CTMR) in the illuminated region of the fibre were measured simultaneously from fluorescence emission at 425-475 and 570-650 nm, respectively. The ratio of these two signals was used to determine the intracellular concentration of NADH, and thus the ATP utilisation, without interference from movements of the fibre with respect to the measuring light beam. 2. The total extra ATP utilisation due to shortening (ATP) was determined by extrapolation of the steady isometric rates before and after shortening to the mid-point of the shortening period. ATP had a roughly linear dependence on the extent of shortening in the range 1-15 % fibre length (L0) at a shortening velocity of 0.4 L0 s-1 from initial sarcomere length 2.7 microm. For shortening of 1 % L0, ATP was 21 +/- 1 M (mean +/- S.E.M., n = 3). 3. The mean rate of ATP utilisation during ramp shortening of 10 % L0 had a roughly linear dependence on shortening velocity in the range 0.05-1.2 L0 s-1. During unloaded shortening at 1.2 L0 s-1 the mean rate of ATP utilisation was 1.7 mM s-1, about 9 times the isometric rate. ATP was roughly independent of shortening velocity, and was 84 +/- 9 microM (mean +/- S.E.M., n = 6) for shortening of 10 % L0. 4. The implications of these results for mechanical-chemical coupling in muscle are discussed. The total ATP utilisation associated with shortening of 1 % L0 is only about 17 % of the concentration of the myosin heads in the fibre, suggesting that during isometric contraction either less than 17 % of the myosin heads are attached to actin, or that heads can detach without commitment to ATP splitting. The fraction of myosin heads attached to actin during unloaded shortening is estimated from the rate of ATP utilisation to be less than 7 %.
Collapse
Affiliation(s)
- Y B Sun
- School of Biomedical Sciences, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | | |
Collapse
|
409
|
Szczesna D, Ghosh D, Li Q, Gomes AV, Guzman G, Arana C, Zhi G, Stull JT, Potter JD. Familial hypertrophic cardiomyopathy mutations in the regulatory light chains of myosin affect their structure, Ca2+ binding, and phosphorylation. J Biol Chem 2001; 276:7086-92. [PMID: 11102452 DOI: 10.1074/jbc.m009823200] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of the familial hypertrophic cardiomyopathy mutations, A13T, F18L, E22K, R58Q, and P95A, found in the regulatory light chains of human cardiac myosin has been investigated. The results demonstrate that E22K and R58Q, located in the immediate extension of the helices flanking the regulatory light chain Ca(2+) binding site, had dramatically altered Ca(2+) binding properties. The K(Ca) value for E22K was decreased by approximately 17-fold compared with the wild-type light chain, and the R58Q mutant did not bind Ca(2+). Interestingly, Ca(2+) binding to the R58Q mutant was restored upon phosphorylation, whereas the E22K mutant could not be phosphorylated. In addition, the alpha-helical content of phosphorylated R58Q greatly increased with Ca(2+) binding. The A13T mutation, located near the phosphorylation site (Ser-15) of the human cardiac regulatory light chain, had 3-fold lower K(Ca) than wild-type light chain, whereas phosphorylation of this mutant increased the Ca(2+) affinity 6-fold. Whereas phosphorylation of wild-type light chain decreased its Ca(2+) affinity, the opposite was true for A13T. The alpha-helical content of the A13T mutant returned to the level of wild-type light chain upon phosphorylation. The phosphorylation and Ca(2+) binding properties of the regulatory light chain of human cardiac myosin are important for physiological function, and alteration any of these could contribute to the development of hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- D Szczesna
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
410
|
Forkey JN, Quinlan ME, Goldman YE. Protein structural dynamics by single-molecule fluorescence polarization. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 74:1-35. [PMID: 11106805 DOI: 10.1016/s0079-6107(00)00015-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- J N Forkey
- School of Medicine, University of Pennsylvania, Physiology Department, Pennsylvania Muscle Institute, D700 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104-6083, USA
| | | | | |
Collapse
|
411
|
Janes DP, Patel H, Chantler PD. Primary structure of myosin from the striated adductor muscle of the Atlantic scallop, Pecten maximus, and expression of the regulatory domain. J Muscle Res Cell Motil 2001; 21:415-22. [PMID: 11129432 DOI: 10.1023/a:1005698407859] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have determined the complete cDNA and deduced amino acid sequences of the heavy chain, regulatory light chain and essential light chain which constitute the molecular structure of myosin from the striated adductor muscle of the scallop, Pecten maximus. The deduced amino acid sequences of P. maximus regulatory light chain, essential light chain and heavy chain comprise 156, 156 and 1940 amino acids, respectively. These myosin peptide sequences, obtained from the most common of the eastern Atlantic scallops, are compared with those from three other molluscan myosins: the striated adductor muscles of Argopecten irradians and Placopecten magellanicus, and myosin from the siphon retractor muscle of the squid, Loligo pealei. The Pecten heavy chain sequence resembles those of the other two scallop sequences to a much greater extent as compared with the squid sequence, amino acid identities being 97.5% (A. irradians), 95.6% (P. magellanicus) and 73.6% (L. pealei), respectively. Myosin heavy chain residues that are known to be important for regulation are conserved in Pecten maximus. Using these Pecten sequences, we have overexpressed the regulatory light chain, and a combination of essential light chain and myosin heavy chain fragment, separately, in E. coli BL21 (DE3) prior to recombination, thereby producing Pecten regulatory domains without recourse to proteolytic digestion. The expressed regulatory domain was shown to undergo a calcium-dependent increase (approximately 7%) in intrinsic tryptophan fluorescence with a mid-point at a pCa of 6.6.
Collapse
Affiliation(s)
- D P Janes
- Unit of Molecular and Cellular Biology, Royal Veterinary College, University of London, UK
| | | | | |
Collapse
|
412
|
Minehardt TJ, Cooke R, Pate E, Kollman PA. Molecular dynamics study of the energetic, mechanistic, and structural implications of a closed phosphate tube in ncd. Biophys J 2001; 80:1151-68. [PMID: 11222280 PMCID: PMC1301311 DOI: 10.1016/s0006-3495(01)76092-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The switch 1 region of myosin forms a lid over the nucleotide phosphates as part of a structure known as the phosphate-tube. The homologous region in kinesin-family motors is more open, not interacting with the nucleotide. We used molecular dynamics (MD) simulations to examine a possible displacement of switch 1 of the microtubule motor, ncd, from the open conformation to the closed conformation seen in myosin. MD simulations were done of both the open and the closed conformations, with either MgADP or MgATP at the active site. All MD structures were stable at 300 K for 500 ps, implying that the open and closed conformers all represented local minima on a global free energy surface. Free energy calculations indicated that the open structure was energetically favored with MgADP at the active site, suggesting why only the open structure has been captured in crystallographic work. With MgATP, the closed and open structures had roughly equal energies. Simulated annealing MD showed the transformation from the closed phosphate-tube ncd structure to an open configuration. The MD simulations also showed that the coordination of switch 1 to the nucleotide dramatically affected the position of both the bound nucleotide and switch 2 and that a closed phosphate-tube may be necessary for catalysis.
Collapse
Affiliation(s)
- T J Minehardt
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
413
|
Murphy CT, Rock RS, Spudich JA. A myosin II mutation uncouples ATPase activity from motility and shortens step size. Nat Cell Biol 2001; 3:311-5. [PMID: 11231583 DOI: 10.1038/35060110] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is thought that Switch II of myosin, kinesin and G proteins has an important function in relating nucleotide state to protein conformation. Here we examine a myosin mutant containing an S456L substitution in the Switch II region. In this protein, mechanical activity is uncoupled from the chemical energy of ATP hydrolysis so that its gliding velocity on actin filaments is only one-tenth of that of the wild type. The mutant spends longer in the strongly bound state and exhibits a shorter step size, which together account for the reduction in in vitro velocity. This is the first single point mutation in myosin that has been found to affect step size.
Collapse
Affiliation(s)
- C T Murphy
- Departments of Biochemistry and Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
414
|
Seidman JG, Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 2001; 104:557-67. [PMID: 11239412 DOI: 10.1016/s0092-8674(01)00242-2] [Citation(s) in RCA: 731] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- J G Seidman
- Department of Genetics and Medicine, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
415
|
Joel PB, Trybus KM, Sweeney HL. Two conserved lysines at the 50/20-kDa junction of myosin are necessary for triggering actin activation. J Biol Chem 2001; 276:2998-3003. [PMID: 11042210 DOI: 10.1074/jbc.m006930200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin stimulates myosin's activity by inducing structural alterations that correlate with the transition from a weakly to a strongly bound state, during which time inorganic phosphate (P(i)) is released from myosin's active site. The surface loop at the 50/20-kDa junction of myosin (loop 2) is part of the actin interface. Here we demonstrate that elimination of two highly conserved lysines at the C-terminal end of loop 2 specifically blocks the ability of heavy meromyosin to undergo a weak to strong binding transition with actin in the presence of ATP. Removal of these lysines has no effect on strong binding in the absence of nucleotide, on the rate of ADP binding or release, or on the basal ATPase activity. We further show that the 16 amino acids of loop 2 preceding the lysine-rich region are not essential for actin activation, although they do modulate myosin's affinity for actin in the presence of ATP. We conclude that interaction of the conserved lysines with acidic residues in subdomain 1 of actin either triggers a structural change or stabilizes a conformation that is necessary for actin-activated release of P(i) and completion of the ATPase cycle.
Collapse
Affiliation(s)
- P B Joel
- Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington, Vermont 05405-0068, USA
| | | | | |
Collapse
|
416
|
Abstract
Members of the kinesin superfamily of microtubule-based motors and the myosin superfamily of actin-based motors that move 'backwards' have been identified. As the core catalytic domains of myosins and kinesins are similar in structure, this raises the intriguing questions of how direction reversal is accomplished and whether kinesins and myosins share mechanisms for switching their motors into reverse.
Collapse
Affiliation(s)
- T Hasson
- Section of Cell and Developmental Biology, Division of Biology, University of California, San Diego, La Jolla, California 92093-0368, USA.
| | | |
Collapse
|
417
|
Kliche W, Fujita-Becker S, Kollmar M, Manstein DJ, Kull FJ. Structure of a genetically engineered molecular motor. EMBO J 2001; 20:40-6. [PMID: 11226153 PMCID: PMC140180 DOI: 10.1093/emboj/20.1.40] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Molecular motors move unidirectionally along polymer tracks, producing movement and force in an ATP-dependent fashion. They achieve this by amplifying small conformational changes in the nucleotide-binding region into force-generating movements of larger protein domains. We present the 2.8 A resolution crystal structure of an artificial actin-based motor. By combining the catalytic domain of myosin II with a 130 A conformational amplifier consisting of repeats 1 and 2 of alpha-actinin, we demonstrate that it is possible to genetically engineer single-polypeptide molecular motors with precisely defined lever arm lengths and specific motile properties. Furthermore, our structure shows the consequences of mutating a conserved salt bridge in the nucleotide-binding region. Disruption of this salt bridge, which is known to severely inhibit ATP hydrolysis activity, appears to interfere with formation of myosin's catalytically active 'closed' conformation. Finally, we describe the structure of alpha-actinin repeats 1 and 2 as being composed of two rigid, triple-helical bundles linked by an uninterrupted alpha-helix. This fold is very similar to the previously described structures of alpha-actinin repeats 2 and 3, and alpha-spectrin repeats 16 and 17.
Collapse
Affiliation(s)
- W Kliche
- Department of Biophysics, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
418
|
Kozielski F, Svergun D, Zaccai G, Wade RH, Koch MH. The overall conformation of conventional kinesins studied by small angle X-ray and neutron scattering. J Biol Chem 2001; 276:1267-75. [PMID: 11020387 DOI: 10.1074/jbc.m007169200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The quaternary structures of several monomeric and dimeric kinesin constructs from Homo sapiens and Drosophila melanogaster were analyzed using small angle x-ray and neutron scattering. The experimental scattering curves of these proteins were compared with simulated scattering curves calculated from available crystallographic coordinates. These comparisons indicate that the overall conformations of the solution structures of D. melanogaster and H. sapiens kinesin heavy chain dimers are compatible with the crystal structure of dimeric kinesin from Rattus norvegicus. This suggests that the unusual asymmetric conformation of dimeric kinesin in the microtubule-independent ADP state is likely to be a general feature of the kinesin heavy chain subfamily. An intermediate length Drosophila construct (365 residues) is mostly monomeric at low protein concentration whereas at higher concentrations it is dimeric with a tendency to form higher oligomers.
Collapse
Affiliation(s)
- F Kozielski
- Laboratoire de Microscopie Electronique Structurale, Institut de Biologie Structurale (CEA 47 CNRS), 41, rue Jules Horowitz, 38027 Grenoble Cedex 01, France.
| | | | | | | | | |
Collapse
|
419
|
Standiford DM, Sun WT, Davis MB, Emerson CP. Positive and negative intronic regulatory elements control muscle-specific alternative exon splicing of Drosophila myosin heavy chain transcripts. Genetics 2001; 157:259-71. [PMID: 11139507 PMCID: PMC1461464 DOI: 10.1093/genetics/157.1.259] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alternative splicing of Drosophila muscle myosin heavy chain (MHC) transcripts is precisely regulated to ensure the expression of specific MHC isoforms required for the distinctive contractile activities of physiologically specialized muscles. We have used transgenic expression analysis in combination with mutagenesis to identify cis-regulatory sequences that are required for muscle-specific splicing of exon 11, which is encoded by five alternative exons that produce alternative "converter" domains in the MHC head. Here, we report the identification of three conserved intronic elements (CIE1, -2, and -3) that control splicing of exon 11e in the indirect flight muscle (IFM). Each of these CIE elements has a distinct function: CIE1 acts as a splice repressor, while CIE2 and CIE3 behave as splice enhancers. These CIE elements function in combination with a nonconsensus splice donor to direct IFM-specific splicing of exon 11e. An additional cis-regulatory element that is essential in coordinating the muscle-specific splicing of other alternative exon 11s is identified. Therefore, multiple interacting intronic and splice donor elements establish the muscle-specific splicing of alternative exon 11s.
Collapse
Affiliation(s)
- D M Standiford
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennyslvania 19104, USA
| | | | | | | |
Collapse
|
420
|
Higo J, Sugimoto Y, Wakabayashi K, Nakamura H. Collective motions of myosin head derived from backbone molecular dynamics and combination with X-ray solution scattering data. J Comput Chem 2001. [DOI: 10.1002/jcc.1147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
421
|
The Chemistry of Movement. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
422
|
|
423
|
Sasaki N, Ohkura R, Sutoh K. Insertion or deletion of a single residue in the strut sequence of Dictyostelium myosin II abolishes strong binding to actin. J Biol Chem 2000; 275:38705-9. [PMID: 11005804 DOI: 10.1074/jbc.m001966200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The strut loop, one of the three loops that connects the upper and lower 50K subdomains of myosin, plays a role as a "strut" to keep the relative disposition of the two subdomains. A single residue was either inserted into or deleted from this loop. The insertion or deletion mutation abolished the in vivo motor functions of myosin, as revealed by the fact that the mutant myosins did not complement the phenotypic defects of the myosin-null cells. In vitro studies of purified full-length myosins and their subfragment-1s (S1s) revealed that the insertion mutants virtually lost the strong binding to actin although their motor functions in the absence of actin remained almost normal, showing that only the hydrophobic actin-myosin association was selectively affected by the insertion mutations. Unlike the insertion mutants, the deletion mutant showed defects both in the strong-binding state and the rate-limiting step of ATPase cycle. These results indicate the functional importance of the strut loop in establishing the strong-binding state of myosin and thereby achieving successful power strokes.
Collapse
Affiliation(s)
- N Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | | | | |
Collapse
|
424
|
Bauer CB, Holden HM, Thoden JB, Smith R, Rayment I. X-ray structures of the apo and MgATP-bound states of Dictyostelium discoideum myosin motor domain. J Biol Chem 2000; 275:38494-9. [PMID: 10954715 DOI: 10.1074/jbc.m005585200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin is the most comprehensively studied molecular motor that converts energy from the hydrolysis of MgATP into directed movement. Its motile cycle consists of a sequential series of interactions between myosin, actin, MgATP, and the products of hydrolysis, where the affinity of myosin for actin is modulated by the nature of the nucleotide bound in the active site. The first step in the contractile cycle occurs when ATP binds to actomyosin and releases myosin from the complex. We report here the structure of the motor domain of Dictyostelium discoideum myosin II both in its nucleotide-free state and complexed with MgATP. The structure with MgATP was obtained by soaking the crystals in substrate. These structures reveal that both the apo form and the MgATP complex are very similar to those previously seen with MgATPgammaS and MgAMP-PNP. Moreover, these structures are similar to that of chicken skeletal myosin subfragment-1. The crystallized protein is enzymatically active in solution, indicating that the conformation of myosin observed in chicken skeletal myosin subfragment-1 is unable to hydrolyze ATP and most likely represents the pre-hydrolysis structure for the myosin head that occurs after release from actin.
Collapse
Affiliation(s)
- C B Bauer
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, USA
| | | | | | | | | |
Collapse
|
425
|
Abstract
This article describes methods for expressing and obtaining purified smooth muscle myosin subfragments using the baculovirus/insect cell expression system, as well as methods for purifying whole myosin from tissue. Protocols for several gel assays that are routinely used with myosin are given, including gels to monitor light chain phosphorylation state and native gels to determine protein homogeneity. Steady-state myosin ATPase and actin-activated ATPase determinations are described, as are some of the more basic transient-state kinetic parameters that can be measured. The in vitro motility assay, in which the rate of actin movement over myosin or its subfragments is quantified, is also presented.
Collapse
Affiliation(s)
- K M Trybus
- Department of Molecular Physiology and Biophysics, Given E205, University of Vermont, Burlington, Vermont 05405, USA.
| |
Collapse
|
426
|
Suzuki Y. Detection of the swings of the lever arm of a myosin motor by fluorescence resonance energy transfer of green and blue fluorescent proteins. Methods 2000; 22:355-63. [PMID: 11133241 DOI: 10.1006/meth.2000.1087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The "lever-arm" model of a myosin motor predicts that the lever-arm domain in the myosin head tilts and swings against the catalytic domain during ATP hydrolysis, resulting in force generation. To investigate if this "swing" of the lever arm really occurs during the hydrolysis of ATP, we employed fluorescence resonance energy transfer (FRET) between two fluorescent proteins [green (GFP) and blue (BFP)] fused to the N and C termini of the Dictyostelium myosin-motor domain. FRET measurements showed that the C-terminal BFP in the fusion protein first swings against the N-terminal GFP at the isomerization step of the ATP hydrolysis cycle and then swings back at the phosphate-release step. Because the C-terminal BFP mimics the motion of the lever arm, the result indicates that the lever arm swings at the specific steps of the ATP hydrolysis cycle, i.e., at the isomerization and phosphate-release steps. The latter swing may correspond to the power stroke of myosin, while the former may be related to the recovery stroke.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|
427
|
Warshaw DM, Guilford WH, Freyzon Y, Krementsova E, Palmiter KA, Tyska MJ, Baker JE, Trybus KM. The light chain binding domain of expressed smooth muscle heavy meromyosin acts as a mechanical lever. J Biol Chem 2000; 275:37167-72. [PMID: 10945998 DOI: 10.1074/jbc.m006438200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structural data led to the proposal that the molecular motor myosin moves actin by a swinging of the light chain binding domain, or "neck." To test the hypothesis that the neck functions as a mechanical lever, smooth muscle heavy meromyosin (HMM) mutants were expressed with shorter or longer necks by either deleting or adding light chain binding sites. The mutant HMMs were characterized kinetically and mechanically, with emphasis on measurements of unitary displacements and forces in the laser trap assay. Two shorter necked constructs had smaller unitary step sizes and moved actin more slowly than WT HMM in the motility assay. A longer necked construct that contained an additional essential light chain binding site exhibited a 1.4-fold increase in the unitary step size compared with its control. Kinetic changes were also observed with several of the constructs. The mutant lacking a neck produced force at a somewhat reduced level, while the force exerted by the giraffe construct was higher than control. The single molecule displacement and force data support the hypothesis that the neck functions as a rigid lever, with the fulcrum for movement and force located at a point within the motor domain.
Collapse
Affiliation(s)
- D M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | | | | | |
Collapse
|
428
|
Xing J, Wriggers W, Jefferson GM, Stein R, Cheung HC, Rosenfeld SS. Kinesin has three nucleotide-dependent conformations. Implications for strain-dependent release. J Biol Chem 2000; 275:35413-23. [PMID: 10852922 DOI: 10.1074/jbc.m004232200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although crystallographic information is available on several nucleotide-induced states in myosin, little is known about the corresponding structural changes in kinesin, since a crystallographic model is only available for the kinesin:ADP complex. This makes it difficult to characterize at a molecular level the structural changes that occur in this motor through the course of its ATPase cycle. In this study, we report on the production of a series of single tryptophan mutants of a monomeric human kinesin motor domain, which demonstrate nucleotide-dependent changes in microtubule affinity that are similar to wild type. We have used these mutations to measure intramolecular distances in both strong and weak binding states, using fluorescence resonance energy transfer. This work provides direct evidence that movement of the switch II loop and helix are essential to mediate communication between the catalytic and microtubule binding sites, evidence that is supported as well by molecular modeling. Kinetic studies of fluorescent nucleotide binding to these mutants are consistent with these distance changes, and demonstrate as well that binding of ADP produces two structural transitions, neither of which are identical to that produced by the binding of ATP. This study provides a basis for understanding current structural models of the kinesin mechanochemical cycle.
Collapse
Affiliation(s)
- J Xing
- Departments of Biochemistry and Molecular Genetics and Neurology and the Graduate Program in Cell and Molecular Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
429
|
Abstract
The long-standing swinging crossbridge or lever arm hypothesis for the motor action of myosin heads finds support in recent results from 3-D tomograms of insect flight muscle (IFM) fast frozen during active contraction and from both fluorescence polarization and X-ray diffraction during rapid stretches or releases of isometrically contracting fibers. The latter provide direct evidence for lever arm movements synchronous with force changes. Rebuilding the atomic model of nucleotide-free subfragment 1 (S1) to fit fast-frozen, active IFM crossbridges suggests a two-stage power stroke in which the catalytic domain rolls on actin from weak to strong binding; this is followed by a 5-nm lever arm swing of the light chain domain, which gives a total interaction distance of approx. 12 nm. Comparison of S1 crystal structures with in situ myosin heads suggests that actin binding may be necessary in order to view the full repertoire of myosin motor action. The differing positions of the catalytic domains of actin-attached myosin heads in contracting IFM suggest that both the actin-myosin binding energy and the hydrolysis of ATP may be used to cock the crossbridge and drive the power stroke.
Collapse
Affiliation(s)
- M C Reedy
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
430
|
Houdusse A, Szent-Gyorgyi AG, Cohen C. Three conformational states of scallop myosin S1. Proc Natl Acad Sci U S A 2000; 97:11238-43. [PMID: 11016966 PMCID: PMC17184 DOI: 10.1073/pnas.200376897] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have determined the structure of the intact scallop myosin head, containing both the motor domain and the lever arm, in the nucleotide-free state and in the presence of MgADP.V04, corresponding to the transition state. These two new structures, together with the previously determined structure of scallop S1 complexed with MgADP (which we interpret as a detached ATP state), reveal three conformations of an intact S1 obtained from a single isoform. These studies, together with new crystallization results, show how the conformation of the motor depends on the nucleotide content of the active site. The resolution of the two new structures ( approximately 4 A) is sufficient to establish the relative positions of the subdomains and the overall conformation of the joints within the motor domain as well as the position of the lever arm. Comparison of available crystal structures from different myosin isoforms and truncated constructs in either the nucleotide-free or transition states indicates that the major features within the motor domain are relatively invariant in both these states. In contrast, the position of the lever arm varies significantly between different isoforms. These results indicate that the heavy-chain helix is pliant at the junction between the converter and the lever arm and that factors other than the precise position of the converter can influence the position of the lever arm. It is possible that this pliant junction in the myosin head contributes to the compliance known to be present in the crossbridge.
Collapse
Affiliation(s)
- A Houdusse
- Rosenstiel Basic Medical Sciences Research Center, and Biology Department, Brandeis University, Waltham, MA 02254-9110, USA.
| | | | | |
Collapse
|
431
|
Quevillon-Chéruel S, Janmot C, Nozais M, Lompré AM, Béchet JJ. Functional regions in the essential light chain of smooth muscle myosin as revealed by the mutagenesis approach. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6151-7. [PMID: 11012667 DOI: 10.1046/j.1432-1327.2000.01668.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The endogenous essential light chain (LC17) of myosin from intestine smooth muscle was replaced with mutated essential light chains prepared using recombinant techniques. Complete exchange was observed with histidine-tagged derivatives of LC17a, LC17b and E122A-LC17a (LC17a and LC17b are the usual constituants of smooth muscle myosin), with small changes in the ATPase activity of reconstituted myosins. Much less exchange was observed with the light-chain derivative lacking the last 12 amino acid residues, demonstrating the importance of this segment, which may act as one arm of a pair of pincers to bind the myosin heavy chain.
Collapse
Affiliation(s)
- S Quevillon-Chéruel
- Laboratoire des Gènes et Protéines Musculaires, Université de Paris-Sud, France.
| | | | | | | | | |
Collapse
|
432
|
Yasunaga T, Suzuki Y, Ohkura R, Sutoh K, Wakabayashi T. ATP-induced transconformation of myosin revealed by determining three-dimensional positions of fluorophores from fluorescence energy transfer measurements. J Struct Biol 2000; 132:6-18. [PMID: 11121303 DOI: 10.1006/jsbi.2000.4302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The method of fluorescence resonance energy transfer (FRET) is one of the most important techniques for measuring the distance between two fluorophores and for detecting the changes in protein structure under physiological conditions. The use of green fluorescent protein is also a powerful technology that has been used to elucidate dynamic molecular events. From these we have developed a novel method to determine the three-dimensional positions of fluorophores by combining the FRET data and other structural information available. Using this method, we could determine the ATP-induced changes of three-dimensional structure of truncated Dictyostelium myosin in solution. The myosin structure with ADP in solution was found to be similar to that of the crystal structure of MgADPBeFx-bound truncated Dictyostelium myosin (type I structure), whereas myosin with ATP in solution was similar to the crystal structure of MgAdPVi-bound one (type II structure). However, the crystal structure of MgADP-bound scallop myosin (type III structure) could not be explained by any of our FRET data under various conditions. This indicates that the type III crystal structure might represent a transient intermediate conformation that could not be detected using fluorescence energy transfer.
Collapse
Affiliation(s)
- T Yasunaga
- Department of Physics, School of Science, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
433
|
Abstract
When the sliding filament hypothesis was proposed in 1953-1954, existing evidence showed that (1) contributions to tension were given by active sites uniformly distributed within each zone of filament overlap and (2) each site functioned cyclically. These sites were identified by electron microscopy as cross-bridges between the two filaments, formed of the heads of myosin molecules projecting from a thick filament and attaching to a thin filament. The angle of these cross-bridges was found to be different at rest and in rigor, suggesting that the event causing relative motion of the filaments was a change of the angle of the cross-bridges. At first, it seemed likely that the whole cross-bridge rotated about its attachment to actin, but when the atomic structures of actin and myosin were obtained by X-ray crystallography, a possible hinge was found between the "catalytic domain" which attaches to the actin filament and the "light-chain domain" which appears to act as a lever arm. Two attitudes of the lever arm are now well established, the transition between them being driven by a conformational change coupled to some step in the hydrolysis of ATP, but several recent observations suggest that this is not the whole story: a third attitude has been shown by X-ray crystallography; a non-muscle myosin has been shown to produce its working stroke in two steps; and there are suggestions that an additional displacement of the filaments is produced by a change in the attitude of the catalytic domain on the thin filament.
Collapse
|
434
|
Abstract
The gallop of a race horse and the minute excursions of a cellular vesicle have one thing in common: they are based on the directional movement of proteins termed molecular motors -- many trillions in the case of the horse, just a few in the case of the cell vesicle. These tiny machines take nanometre steps on a millisecond timescale to drive all biological movements. Over the past 15 years new biochemical and biophysical approaches have allowed us to take a giant step forward in understanding the molecular basis of motor mechanics.
Collapse
Affiliation(s)
- G Woehlke
- Adolf-Butenandt-Institut, Zellbiologie, University of Munich, Schillerstrasse 42, 80336 Munich, Germany.
| | | |
Collapse
|
435
|
Abstract
Unlike vertebrate skeletal muscle, smooth muscle myosin heavy chain isoforms are encoded by a single gene. Alternative splicing of the primary transcript from a single gene generates four smooth muscle myosin heavy chain isoforms. These isoforms differ both at the carboxyl terminus (SM1 and SM2 isoforms) and at the amino terminus (SM-A and SM-B isoforms). The smooth muscle myosin heavy chain isoforms are differentially expressed during smooth muscle development and in different smooth muscle cell types. The mechanical properties of smooth muscle may be correlated with the myosin heavy chain content/isoform expression. However, the precise function of each smooth muscle myosin heavy chain isoform to muscle contraction remains to be determined. This review mainly focuses on the molecular basis of smooth muscle myosin heavy chain isoform diversity, its expression during development and disease, and its role in muscle physiology.
Collapse
Affiliation(s)
- G J Babu
- Laboratory of Molecular Cardiology, Division of Cardiology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | |
Collapse
|
436
|
Swank DM, Wells L, Kronert WA, Morrill GE, Bernstein SI. Determining structure/function relationships for sarcomeric myosin heavy chain by genetic and transgenic manipulation of Drosophila. Microsc Res Tech 2000; 50:430-42. [PMID: 10998634 DOI: 10.1002/1097-0029(20000915)50:6<430::aid-jemt2>3.0.co;2-e] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Drosophila melanogaster is an excellent system for examining the structure/function relationships of myosin. It yields insights into the roles of myosin in assembly and stability of myofibrils, in defining the mechanical properties of muscle fibers, and in dictating locomotory abilities. Drosophila has a single gene encoding muscle myosin heavy chain (MHC), with alternative RNA splicing resulting in stage- and tissue-specific isoform production. Localization of the alternative domains of Drosophila MHC on a three-dimensional molecular model suggests how they may determine functional differences between isoforms. We are testing these predictions directly by using biophysical and biochemical techniques to characterize myosin isolated from transgenic organisms. Null and missense mutations help define specific amino acid residues important in actin binding and ATP hydrolysis and the function of MHC in thick filament and myofibril assembly. Insights into the interaction of thick and thin filaments result from studying mutations in MHC that suppress ultrastructural defects induced by a troponin I mutation. Analysis of transgenic organisms expressing engineered versions of MHC shows that the native isoform of myosin is not critical for myofibril assembly but is essential for muscle function and maintenance of muscle integrity. We show that the C-terminus of MHC plays a pivotal role in the maintenance of muscle integrity. Transgenic studies using headless myosin reveal that the head is important for some, but not all, aspects of myofibril assembly. The integrative approach described here provides a multi-level understanding of the function of the myosin molecular motor.
Collapse
Affiliation(s)
- D M Swank
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, California 92182-4614, USA
| | | | | | | | | |
Collapse
|
437
|
Yamashita H, Tyska MJ, Warshaw DM, Lowey S, Trybus KM. Functional consequences of mutations in the smooth muscle myosin heavy chain at sites implicated in familial hypertrophic cardiomyopathy. J Biol Chem 2000; 275:28045-52. [PMID: 10882745 DOI: 10.1074/jbc.m005485200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (FHC) is frequently associated with mutations in the beta-cardiac myosin heavy chain. Many of the implicated residues are located in highly conserved regions of the myosin II class, suggesting that these mutations may impair the basic functions of the molecular motor. To test this hypothesis, we have prepared recombinant smooth muscle heavy meromyosin with mutations at sites homologous to those associated with FHC by using a baculovirus/insect cell expression system. Several of the heavy meromyosin mutants, in particular R403Q, showed an increase in actin filament velocity in a motility assay and an enhanced actin-activated ATPase activity. Single molecule mechanics, using a laser trap, gave unitary displacements and forces for the mutants that were similar to wild type, but the attachment times to actin following a unitary displacement were markedly reduced. These results suggest that the increases in activity are due to a change in kinetics and not due to a change in the intrinsic mechanical properties of the motor. In contrast to earlier reports, we find that mutations in residues implicated in FHC affect motor function by enhancing myosin activity rather than by a loss of function.
Collapse
MESH Headings
- Actins/metabolism
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Binding Sites
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/metabolism
- Chickens
- Conserved Sequence
- Crystallography, X-Ray
- Gizzard, Avian
- Humans
- Kinetics
- Models, Molecular
- Muscle, Smooth/metabolism
- Muscle, Smooth, Vascular/metabolism
- Mutagenesis, Site-Directed
- Myocardium/metabolism
- Myosin Heavy Chains/chemistry
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Myosins/chemistry
- Myosins/genetics
- Myosins/metabolism
- Point Mutation
- Protein Conformation
- Protein Structure, Secondary
Collapse
Affiliation(s)
- H Yamashita
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | |
Collapse
|
438
|
Abstract
The molecular mechanism of the powerstroke in muscle is examined by resonance energy transfer techniques. Recent models suggesting a pre-cocking of the myosin head involving an enormous rotation between the lever arm and the catalytic domain were tested by measuring separation distances among myosin subfragment-2, the nucleotide site, and the regulatory light chain in the presence of nucleotide transition state analogs. Only small changes (<0.5 nm) were detected that are consistent with internal conformational changes of the myosin molecule, but not with extreme differences in the average lever arm position suggested by some atomic models. These results were confirmed by stopped-flow resonance energy transfer measurements during single ATP turnovers on myosin. To examine the participation of actin in the powerstroke process, resonance energy transfer between the regulatory light chain on myosin subfragment-1 and the C-terminus of actin was measured in the presence of nucleotide transition state analogs. The efficiency of energy transfer was much greater in the presence of ADP-AlF(4), ADP-BeF(x), and ADP-vanadate than in the presence of ADP or no nucleotide. These data detect profound differences in the conformations of the weakly and strongly attached cross-bridges that appear to result from a conformational selection that occurs during the weak binding of the myosin head to actin.
Collapse
Affiliation(s)
- J Xu
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5220 USA
| | | |
Collapse
|
439
|
Shih WM, Gryczynski Z, Lakowicz JR, Spudich JA. A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin. Cell 2000; 102:683-94. [PMID: 11007486 DOI: 10.1016/s0092-8674(00)00090-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular motor myosin is proposed to bind to actin and swing its light-chain binding region through a large angle to produce an approximately 10 nm step in motion coupled to changes in the nucleotide state at the active site. To date, however, direct dynamic measurements have largely failed to show changes of that magnitude. Here, we use a cysteine engineering approach to create a high resolution, FRET-based sensor that reports a large, approximately 70 degree nucleotide-dependent angle change of the light-chain binding region. The combination of steady-state and time-resolved fluorescence resonance energy transfer measurements unexpectedly reveals two distinct prestroke states. The measurements also show that bound Mg.ADP.Pi, and not bound Mg.ATP, induces the myosin to adopt the prestroke states.
Collapse
Affiliation(s)
- W M Shih
- Department of Biochemistry, Stanford University School of Medicine, California 94305, USA
| | | | | | | |
Collapse
|
440
|
Sanbe A, Gulick J, Hayes E, Warshaw D, Osinska H, Chan CB, Klevitsky R, Robbins J. Myosin light chain replacement in the heart. Am J Physiol Heart Circ Physiol 2000; 279:H1355-64. [PMID: 10993803 DOI: 10.1152/ajpheart.2000.279.3.h1355] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myosin-actin cross-bridge kinetics are an important determinant for cardiac systolic and diastolic function. We compared the effects of myosin light chain substitutions on the ability of the fibers to contract in response to calcium and in their ability to produce power. Transgenesis was used to effect essentially complete replacement of the target contractile protein isoform specifically in the heart. Atrial and ventricular fibers derived from the various transgenic (TG) lines were skinned, and the force-velocity relationships, unloaded shortening velocities, and Ca(2+)-stimulated Mg(2+)-ATPase activities were determined. Replacement with an ectopic isoform resulted in significant changes in cross-bridge cycling kinetics but without any overt effects on morbidity or mortality. To confirm that this result was not light chain specific, a modified alpha-myosin heavy chain isoform that resulted in significant changes in force development was also engineered. The animals appeared healthy and have normal lifespans, and the changes in force development did not result in significant remodeling or overt hypertrophy. We conclude that myosin light chains can control aspects of cross-bridge cycling and alter force development. The myosin heavy chain data also show that changes in the kinetics of force development and power output do not necessarily lead to activation of the hypertrophic response or significant cardiac remodeling.
Collapse
Affiliation(s)
- A Sanbe
- The Children's Hospital Research Foundation, Department of Pediatrics, Division of Molecular Cardiovascular Biology, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | | | |
Collapse
|
441
|
Yengo CM, Chrin LR, Berger CL. Interaction of myosin LYS-553 with the C-terminus and DNase I-binding loop of actin examined by fluorescence resonance energy transfer. J Struct Biol 2000; 131:187-96. [PMID: 11052891 DOI: 10.1006/jsbi.2000.4296] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluorescence resonance energy transfer (FRET) experiments were carried out in the absence of nucleotide (rigor) or in the presence of MgADP between fluorescent donor probes (IAEDANS (5((((2-iodoacetyl)amino)ethyl)amino)-naphthalene-1-sulfonic acid) at Cys-374 or DANSYL (5-dimethylamino naphthalene-1-(N-(5-aminopentyl))sulfonamide) at Gln-41 of actin and acceptor molecules (FHS (6-[fluorescein-5(and 6)-carboxamido] hexanoic acid succinimidyl ester) at Lys-553 of skeletal muscle myosin subfragment 1. The critical Förster distance (R(0)) was determined to be 44 and 38 A for the IAEDANS-FHS and DANSYL-FHS donor-acceptor pairs, respectively. The efficiency of energy transfer between the acceptor molecules at Lys-553 of myosin and donor probes at Cys-374 or Gln-41 of actin was calculated to be 0.78 +/- 0.01 or 0.94 +/- 0.01, respectively, corresponding to distances of 35.6 +/- 0.4 A and 24.0 +/- 1.6 A, respectively. MgADP had no significant effect on the distances observed in rigor. Thus, rearrangements in the acto-myosin interface are likely to occur elsewhere than in the lower 50-kDa subdomain of myosin as its affinity for actin is weakened by MgADP binding.
Collapse
Affiliation(s)
- C M Yengo
- Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington, Vermont 05405-0068, USA
| | | | | |
Collapse
|
442
|
Seri M, Cusano R, Gangarossa S, Caridi G, Bordo D, Lo Nigro C, Ghiggeri GM, Ravazzolo R, Savino M, Del Vecchio M, d'Apolito M, Iolascon A, Zelante LL, Savoia A, Balduini CL, Noris P, Magrini U, Belletti S, Heath KE, Babcock M, Glucksman MJ, Aliprandis E, Bizzaro N, Desnick RJ, Martignetti JA. Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. The May-Heggllin/Fechtner Syndrome Consortium. Nat Genet 2000; 26:103-5. [PMID: 10973259 DOI: 10.1038/79063] [Citation(s) in RCA: 297] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The autosomal dominant, giant-platelet disorders, May-Hegglin anomaly (MHA; MIM 155100), Fechtner syndrome (FTNS; MIM 153640) and Sebastian syndrome (SBS), share the triad of thrombocytopenia, large platelets and characteristic leukocyte inclusions ('Döhle-like' bodies). MHA and SBS can be differentiated by subtle ultrastructural leukocyte inclusion features, whereas FTNS is distinguished by the additional Alport-like clinical features of sensorineural deafness, cataracts and nephritis. The similarities between these platelet disorders and our recent refinement of the MHA (ref. 6) and FTNS (ref. 7) disease loci to an overlapping region of 480 kb on chromosome 22 suggested that all three disorders are allelic. Among the identified candidate genes is the gene encoding nonmuscle myosin heavy chain 9 (MYH9; refs 8-10), which is expressed in platelets and upregulated during granulocyte differentiation. We identified six MYH9 mutations (one nonsense and five missense) in seven unrelated probands from MHA, SBS and FTNS families. On the basis of molecular modelling, the two mutations affecting the myosin head were predicted to impose electrostatic and conformational changes, whereas the truncating mutation deleted the unique carboxy-terminal tailpiece. The remaining missense mutations, all affecting highly conserved coiled-coil domain positions, imparted destabilizing electrostatic and polar changes. Thus, our results suggest that mutations in MYH9 result in three megakaryocyte/platelet/leukocyte syndromes and are important in the pathogenesis of sensorineural deafness, cataracts and nephritis.
Collapse
Affiliation(s)
- M Seri
- Laboratory of Molecular Genetics, Institute G. Gaslini, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
443
|
Pliszka B, Karczewska E, Wawro B. Nucleotide-induced movements in the myosin head near the converter region. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1481:55-62. [PMID: 10962092 DOI: 10.1016/s0167-4838(00)00124-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Structural changes in subfragment 1 of skeletal muscle myosin were investigated by cross-linking trypsin-cleaved S1 with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. In the absence of nucleotide the alkali light chains are cross-linked to the 27 kDa heavy chain fragment; the presence of MgATP reduces the efficiency of this reaction. On the other hand, MgATP promotes the cross-link formation between the N-terminal 27 kDa and C-terminal 20 kDa fragments of the heavy chain. The chemical cleavage of the cross-linked heavy chains fragments with N-chlorosuccinimide and hydroxylamine indicates that the cross-links are formed between the regions spanning residues 131-204 and 699-809. These results indicate that the two regions of the heavy chain that are relatively distant in nucleotide-free skeletal S1 [Rayment et al. (1993) Science 261, 50-58] can potentially interact upon addition of nucleotide.
Collapse
Affiliation(s)
- B Pliszka
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., PL-02-093 Warsaw, Poland.
| | | | | |
Collapse
|
444
|
Yengo CM, Chrin LR, Rovner AS, Berger CL. Tryptophan 512 is sensitive to conformational changes in the rigid relay loop of smooth muscle myosin during the MgATPase cycle. J Biol Chem 2000; 275:25481-7. [PMID: 10827189 DOI: 10.1074/jbc.m002910200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To examine the structural basis of the intrinsic fluorescence changes that occur during the MgATPase cycle of myosin, we generated three mutants of smooth muscle myosin motor domain essential light chain (MDE) containing a single conserved tryptophan residue located at Trp-441 (W441-MDE), Trp-512 (W512-MDE), or Trp-597 (W597-MDE). Although W441- and W597-MDE were insensitive to nucleotide binding, the fluorescence intensity of W512-MDE increased in the presence of MgADP-berellium fluoride (BeF(X)) (31%), MgADP-AlF(4)(-) (31%), MgATP (36%), and MgADP (30%) compared with the nucleotide-free environment (rigor), which was similar to the results of wild type-MDE. Thus, Trp-512 may be the sole ATP-sensitive tryptophan residue in myosin. In addition, acrylamide quenching indicated that Trp-512 was more protected from solvent in the presence of MgATP or MgADP-AlF(4)(-) than in the presence of MgADP-BeF(X), MgADP, or in rigor. Furthermore, the degree of energy transfer from Trp-512 to 2'(3')-O-(N-methylanthraniloyl)-labeled nucleotides was greater in the presence of MgADP-BeF(X), MgATP, or MgADP-AlF(4)(-) than MgADP. We conclude that the conformation of the rigid relay loop containing Trp-512 is altered upon MgATP hydrolysis and during the transition from weak to strong actin binding, establishing a communication pathway from the active site to the actin-binding and converter/lever arm regions of myosin during muscle contraction.
Collapse
Affiliation(s)
- C M Yengo
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington 05405-0068, USA
| | | | | | | |
Collapse
|
445
|
Rosenfeld SS, Xing J, Whitaker M, Cheung HC, Brown F, Wells A, Milligan RA, Sweeney HL. Kinetic and spectroscopic evidence for three actomyosin:ADP states in smooth muscle. J Biol Chem 2000; 275:25418-26. [PMID: 10827085 DOI: 10.1074/jbc.m002685200] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smooth muscle myosin II undergoes an additional movement of the regulatory domain with ADP release that is not seen with fast skeletal muscle myosin II. In this study, we have examined the interactions of smooth muscle myosin subfragment 1 with ADP to see if this additional movement corresponds to an identifiable state change. These studies indicate that for this myosin:ADP, both the catalytic site and the actin-binding site can each assume one of two conformations. Relatively loose coupling between these two binding sites leads to three discrete actin-associated ADP states. Following an initial, weakly bound state, binding of myosin:ADP to actin shifts the equilibrium toward a mixture of two states that each bind actin strongly but differ in the conformation of their catalytic sites. By contrast, fast myosins, including Dictyostelium myosin II, have reciprocal coupling between the actin- and ADP-binding sites, so that either actin or nucleotide, but not both, can be tightly bound. This uncoupling, which generates a second strongly bound actomyosin ADP state in smooth muscle, would prolong the fraction of the ATPase cycle time that this actomyosin spends in a force-generating conformation and may be central to explaining the physiologic differences between this and other myosins.
Collapse
Affiliation(s)
- S S Rosenfeld
- Department of Neurology, University of Alabama at Birmingham, 35294, USA.
| | | | | | | | | | | | | | | |
Collapse
|
446
|
Abstract
Members of the myosin superfamily of actin-based motor proteins were previously thought to move only towards the barbed end of the actin filament. In an extraordinary reversal of this dogma, an abundant and widespread unconventional myosin known as myosin VI has recently been shown to move towards the pointed end of the actin filament - the opposite direction of all other characterized myosins. This discovery raises novel and intriguing questions about the molecular mechanisms of reversal and the biological roles of this 'backwards' myosin.
Collapse
Affiliation(s)
- O C Rodriguez
- Dept of Cell and Molecular Physiology, School of Medicine, University of North Carolina at Chapel Hill, 27599-7545, USA
| | | |
Collapse
|
447
|
Abstract
X-ray crystallography shows the myosin cross-bridge to exist in two conformations, the beginning and end of the "power stroke." A long lever-arm undergoes a 60 degrees to 70 degrees rotation between the two states. This rotation is coupled with changes in the active site (OPEN to CLOSED) and phosphate release. Actin binding mediates the transition from CLOSED to OPEN. Kinetics shows that the binding of myosin to actin is a two-step process which affects ATP and ADP affinity. The structural basis of these effects is not explained by the presently known conformers of myosin. Therefore, other states of the myosin cross-bridge must exist. Moreover, cryoelectronmicroscopy has revealed other angles of the cross-bridge lever arm induced by ADP binding. These structural states are presently being characterized by site-directed mutagenesis coupled with kinetic analysis.
Collapse
Affiliation(s)
- M A Geeves
- Department of Biosciences, University of Kent, Canterbury, United Kingdom.
| | | |
Collapse
|
448
|
Kelly TR, Silva RA, De Silva H, Jasmin S, Zhao Y. A Rationally Designed Prototype of a Molecular Motor. J Am Chem Soc 2000; 122:6935-6949. [PMID: 29857351 DOI: 10.1021/ja001048f] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A proof of principle of the first rationally designed, chemically powered, molecular-scale motor is described. The thermodynamic considerations leading to the choice of 6a and 7a as the initial prototypes are provided, and the synthesis of 6a and 7a and the separation of them from their atropisomers are detailed. The phosgene-powered unidirectional rotation of 6a to its rotamer 6b is demonstrated. It is further established that shortening the length of the tether (→7a) changes the rate-limiting step and accelerates the speed of rotation.
Collapse
Affiliation(s)
- T Ross Kelly
- Contribution from the Department of Chemistry, E. F. Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467
| | - Richard A Silva
- Contribution from the Department of Chemistry, E. F. Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467
| | - Harshani De Silva
- Contribution from the Department of Chemistry, E. F. Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467
| | - Serge Jasmin
- Contribution from the Department of Chemistry, E. F. Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467
| | - Yajun Zhao
- Contribution from the Department of Chemistry, E. F. Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467
| |
Collapse
|
449
|
Bobkov AA, Reisler E. Is SH1-SH2-cross-linked myosin subfragment 1 a structural analog of the weakly-bound state of myosin? Biophys J 2000; 79:460-7. [PMID: 10866971 PMCID: PMC1300949 DOI: 10.1016/s0006-3495(00)76307-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Myosin subfragment 1 (S1) with SH1 (Cys(707)) and SH2 (Cys(697)) groups cross-linked by p-phenylenedimaleimide (pPDM-S1) is thought to be an analog of the weakly bound states of myosin bound to actin. The structural properties of pPDM-S1 were compared in this study to those of S1.ADP.BeF(x) and S1.ADP.AlF(4)(-), i.e., the established structural analogs of the myosin weakly bound states. To distinguish between the conformational effects of SH1-SH2 cross-linking and those due to their monofunctional modification, we used S1 with the SH1 and SH2 groups labeled with N-phenylmaleimide (NPM-S1) as a control in our experiments. The state of the nucleotide pocket was probed using a hydrophobic fluorescent dye, 3-[4-(3-phenyl-2-pyrazolin-1-yl)benzene-1-sulfonylamido]phen ylboronic acid (PPBA). Differential scanning calorimetry (DSC) was used to study the thermal stability of S1. By both methods the conformational state of pPDM-S1 was different from that of unmodified S1 in the S1.ADP.BeF(x) and S1.ADP.AlF(4)(-) complexes and closer to that of nucleotide-free S1. Moreover, BeF(x) and AlF(4)(-) binding failed to induce conformational changes in pPDM-S1 similar to those observed in unmodified S1. Surprisingly, when pPDM cross-linking was performed on S1.ADP.BeF(x) complex, ADP.BeF(x) protected to some extent the nucleotide pocket of S1 from the effects of pPDM modification. NPM-S1 behaved similarly to pPDM-S1 in our experiments. Overall, this work presents new evidence that the conformational state of pPDM-S1 is different from that of the weakly bound state analogs, S1.ADP.BeF(x) and S1.ADP.AlF(4)(-). The similar structural effects of pPDM cross-linking of SH1 and SH2 groups and their monofunctional labeling with NPM are ascribed to the inhibitory effects of these modifications on the flexibility/mobility of the SH1-SH2 helix.
Collapse
Affiliation(s)
- A A Bobkov
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
450
|
Irving M, Piazzesi G, Lucii L, Sun YB, Harford JJ, Dobbie IM, Ferenczi MA, Reconditi M, Lombardi V. Conformation of the myosin motor during force generation in skeletal muscle. NATURE STRUCTURAL BIOLOGY 2000; 7:482-5. [PMID: 10881196 PMCID: PMC8397617 DOI: 10.1038/75890] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2000] [Accepted: 04/10/2000] [Indexed: 11/09/2022]
Abstract
Myosin motors drive muscle contraction, cytokinesis and cell locomotion, and members of the myosin superfamily have been implicated in an increasingly diverse range of cell functions. Myosin can displace a bound actin filament several nanometers in a single interaction. Crystallographic studies suggest that this 'working stroke' involves bending of the myosin head between its light chain and catalytic domains. Here we used X-ray fiber diffraction to test the crystallographic model and measure the interdomain bending during force generation in an intact single muscle fiber. The observed bending has two components: an elastic distortion and an active rotation that generates force. The average bend of the force-generating myosin heads in a muscle fiber is intermediate between those in crystal structures with different bound nucleotides, and the C-terminus of the head is displaced by 7 nm along the actin filament axis compared with the in vitro conformation seen in the absence of nucleotide.
Collapse
Affiliation(s)
- M Irving
- School of Biomedical Sciences, King's College London, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|