401
|
Anakk S, Kalsotra A, Shen Q, Vu MT, Staudinger JL, Davies PJA, Strobel HW. Genomic characterization and regulation of CYP3a13: role of xenobiotics and nuclear receptors. FASEB J 2003; 17:1736-8. [PMID: 12958193 DOI: 10.1096/fj.02-1004fje] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report that CYP3a13 gene, located on mouse chromosome 5, spans 27.5 Kb and contains 13 exons. The transcription start site is 35 bp upstream of the coding region and results in a 109 bp 5' untranslated region. CYP3a13 promoter shows putative binding sites for retinoid X receptor, pregnane X receptor, and estrogen receptor. CYP3a13 shows a broad tissue distribution with predominant expression in liver. Although CYP3a13 shares 92% nucleotide identity with the female-specific rat CYP3A9, its expression does not exhibit sexual dimorphism. Ligand activation of peroxisomal proliferator-activated receptor-gamma and retinoid X receptor inhibit expression of CYP3a13 at the transcription level in a tissue-specific manner. Another novel finding is hepatic induction of CYP3a13 by dexamethasone occurring only in pregnane X receptor null mice. We also report that pregnane X receptor is essential to maintain robust in vivo basal levels of CYP3a13 in contrast to CYP3a11. CYP3a13 protein expressed in vitro can metabolize clinically active drugs ethylmorphine and erythromycin, as well as benzphetamine. We conclude that CYP3a13 is regulated differentially by various nuclear receptors. In humans this may lead to altered drug metabolism, as many of the newly synthesized ligands/drugs targeted toward these nuclear receptors could influence CYP3A gene expression.
Collapse
MESH Headings
- Animals
- Aryl Hydrocarbon Hydroxylases/genetics
- Aryl Hydrocarbon Hydroxylases/metabolism
- Cytochrome P-450 CYP3A
- Dexamethasone/pharmacology
- Female
- Gene Components
- Gene Expression Regulation
- Genomics
- Ligands
- Male
- Membrane Proteins
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Biological
- Oxidoreductases, N-Demethylating/genetics
- Oxidoreductases, N-Demethylating/metabolism
- Pregnane X Receptor
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Retinoic Acid/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/physiology
- Recombinant Proteins/metabolism
- Retinoid X Receptors
- Sex Characteristics
- Tissue Distribution
- Transcription Factors/metabolism
- Xenobiotics/metabolism
Collapse
Affiliation(s)
- Sayeepriyadarshini Anakk
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston 77225, USA
| | | | | | | | | | | | | |
Collapse
|
402
|
Watkins RE, Davis-Searles PR, Lambert MH, Redinbo MR. Coactivator binding promotes the specific interaction between ligand and the pregnane X receptor. J Mol Biol 2003; 331:815-28. [PMID: 12909012 DOI: 10.1016/s0022-2836(03)00795-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pregnane X receptor (PXR) detects the presence of a wide variety of endogenous and xenobiotic compounds, and is a master regulator of the expression of genes central to drug metabolism and excretion. We present the 2.0A crystal structure of the human PXR ligand-binding domain (LBD) in complex with the cholesterol-lowering compound SR12813 and a 25 amino acid residue fragment of the human steroid receptor coactivator-1 (SRC-1) containing one LXXLL motif. PXR crystallizes as a homodimer in the asymmetric unit in this structure and possesses a novel alpha2 helix adjacent to its ligand-binding cavity. The SRC-1 peptide forms two distinct helices and binds adjacent to the ligand-dependent transactivation AF-2 helix on the surface of PXR. In contrast with previous PXR structures, in which SR12813 bound in multiple orientations, the small SR12813 agonist in this structure binds in a single, unique orientation within the receptor's ligand-binding pocket and contacts the AF-2 helix. Thermal denaturation studies reveal that the SR12813 ligand and SRC-1 coactivator peptide each stabilize the LBD of PXR, and that together they exert an additive effect on the stability of the receptor. These results indicate that the binding of coactivator to the surface of PXR limits the ability of this promiscuous receptor to "breathe" and helps to trap a single, active conformation of SR12813. They further reveal that specificity is required for PXR activation.
Collapse
Affiliation(s)
- Ryan E Watkins
- Departments of Chemistry and Biochemistry & Biophysics, and the Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
403
|
Wyde ME, Bartolucci E, Ueda A, Zhang H, Yan B, Negishi M, You L. The environmental pollutant 1,1-dichloro-2,2-bis (p-chlorophenyl)ethylene induces rat hepatic cytochrome P450 2B and 3A expression through the constitutive androstane receptor and pregnane X receptor. Mol Pharmacol 2003; 64:474-81. [PMID: 12869653 DOI: 10.1124/mol.64.2.474] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
1,1-Dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE), a persistent environmental contaminant, is a metabolite of the pesticide 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT). DDE is similar to phenobarbital (PB) in that both compounds are inducers of rat hepatic cytochrome P450 2B and 3A (CYP 2B and 3A). The induction of CYP 2B and 3A by PB is known to be regulated through the nuclear receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR), respectively. In the current study, the induction of hepatic CYP 3A1 and 2B1 by DDE was correlated with CAR and PXR activity. Induction of 3A1 and 2B1 was observed in the livers of adult and developing male Sprague-Dawley rats following exposure to DDE. Increased hepatic expression of 3A1, but not 2B1, in developing rats exposed during gestation and lactation persisted into adulthood. In receptor transactivation assays, both CAR and PXR transcriptional activities were significantly enhanced by DDE. Nuclear accumulation of CAR, but not PXR, was observed in the liver tissue following DDE and PB treatment. These data support the idea that induction of hepatic 3A1 and 2B1 by DDE is mediated through the activation of CAR and PXR. This study suggests that regulation by environmental compounds of hepatic enzymes via CAR and PXR may have impact on the metabolism of endogenous and exogenous substrates.
Collapse
Affiliation(s)
- Michael E Wyde
- CIIT Centers for Health Research, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
404
|
Zhang W, Purchio AF, Chen K, Wu J, Lu L, Coffee R, Contag PR, West DB. A transgenic mouse model with a luciferase reporter for studying in vivo transcriptional regulation of the human CYP3A4 gene. Drug Metab Dispos 2003; 31:1054-64. [PMID: 12867495 DOI: 10.1124/dmd.31.8.1054] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cytochrome p450 3A4 (CYP3A4) plays an important role in drug metabolism, and the enzymatic activity of CYP3A4 contributes to many adverse drug-drug interactions. Here we describe a transgenic mouse model that is useful in monitoring the in vivo transcriptional regulation of the human CYP3A4 gene. A reporter construct consisting of 13 kilobases of the human CYP3A4 promoter controlling the firefly luciferase gene was used to generate a transgenic mouse line [FVB/N-Tg(CYP3A4-luc)Xen]. Reporter gene expression was assessed using an in vivo imaging system (IVIS) in anesthetized mice. Basal expression of the reporter was highest in liver and kidney, and moderate in the duodenum in male transgenic mice, whereas the basal luciferase activity was highest in the duodenum and lower in kidney and liver in females. Injections of pregnenolone, phenobarbital, rifampicin, nifedipine, dexamethasone, 5-pregnen-3beta-ol-20-one-16alpha-carbonitrile (PCN), and clotrimazole resulted in a time-dependent induction of luciferase expression, primarily in liver, that peaked at 6 h post injection. The greatest induction was found with clotrimazole, dexamethasone, and PCN, whereas the lowest induction followed pregnenolone, phenobarbital, and rifampicin injection. In general, male mice responded to these drugs more strongly than did females. Our results suggest that the human CYP3A4 promoter functions in transgenic mice and that this in vivo model can be used to study transcriptional regulation of the CYP3A4 gene.
Collapse
|
405
|
Rosenfeld JM, Vargas R, Xie W, Evans RM. Genetic profiling defines the xenobiotic gene network controlled by the nuclear receptor pregnane X receptor. Mol Endocrinol 2003; 17:1268-82. [PMID: 12663745 DOI: 10.1210/me.2002-0421] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The orphan nuclear receptor pregnane X receptor (PXR) is essential for the transcriptional regulation of hepatic xenobiotic enzymes including the cytochrome 3A isoenzymes. These enzymes are central to the catabolism and clearance of most endogenous sterol metabolites (endobiotics) and a vast diversity of foreign compounds (xenobiotics) including pharmaceuticals, pesticides, and toxins encountered through diet and environmental exposure. To explore a broader role of PXR in the mammalian xenobiotic response, we have conducted a unique microarray gene profiling analysis on liver samples derived from PXR knockout mice and mice expressing a constitutively active variant, VP-hPXR. This genetically guided expression analysis enables targeting and restriction of the PXR response to liver, and is devoid of side effects resulting from drugs and their metabolites. As with pharmacological studies, receptor-dependent genes include both phase I and phase II metabolic enzymes, as well as certain drug and anion transporters as principal PXR targets. Moreover, comparative analysis of data from both genetic and pharmacological arrays reveals a core network that represents a genetic description of the xenobiotic response.
Collapse
Affiliation(s)
- John M Rosenfeld
- The Salk Institute for Biological Studies, La Jolla, California 90237, USA
| | | | | | | |
Collapse
|
406
|
Abstract
The pregnane X receptor (PXR), which is a member of the nuclear receptor family of ligand-activated transcription factors, is an integral component of the body's defense mechanism against toxic xenobiotics. PXR is activated by a broad spectrum of lipophilic xenobiotics including prescription drugs, herbs, pesticides, endocrine disruptors and other environmental contaminants. The promiscuous ligand-binding properties of PXR are facilitated by the large volume and smooth shape of its ligand-binding pocket. PXR binds to DNA as a heterodimer with the 9-cis retinoic acid receptor (RXR) and regulates a large number of genes involved in the detoxification and excretion of toxic substances. Although PXR evolved to protect the body, its activation by various prescription drugs and herbs such as St. John's wort represents the molecular basis for an important class of drug-drug interactions. Assays that detect PXR activation can now be used to predict and prevent these drug-drug interactions.
Collapse
Affiliation(s)
- Steven A Kliewer
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8594, USA.
| |
Collapse
|
407
|
Robertson GR, Field J, Goodwin B, Bierach S, Tran M, Lehnert A, Liddle C. Transgenic mouse models of human CYP3A4 gene regulation. Mol Pharmacol 2003; 64:42-50. [PMID: 12815159 DOI: 10.1124/mol.64.1.42] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
CYP3A4, the predominant but variably expressed cytochrome P450 of adult human liver, is subject to multifaceted constitutive regulation as well as transcriptional induction by a variety of structurally unrelated xenobiotics. Using transient transfections in HepG2 cells, we previously demonstrated the existence of a potent xenobiotic-responsive enhancer module located between - 7.2 and - 7.8 kilobases upstream of the CYP3A4 transcription start site. Induction is mediated by interaction of transcription factor binding sites in the XREM with the nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR). To determine the in vivo relevance of these findings and to establish a mouse model of human CYP3A4 regulation, we have generated transgenic mice carrying constructs comprising the upstream regulatory region of the human CYP3A4 gene linked to the lacZ reporter gene. Constitutive expression was observed in a developmental, tissue- and cell-specific fashion that mirrors the human situation. In addition, robust hepatic and intestinal induction with a range of reagents known to activate PXR and/or CAR (e.g., dexamethasone, pregnenolone 16alpha-carbonitrile, and phenobarbital) was observed. However, no expression or induction was apparent with a construct lacking upstream sequences beyond - 3.2 kilobases. Histochemical staining for beta-galactosidase activity revealed that dose-dependent increases in transgene levels were associated with a zonal expansion of lacZ expressing hepatocytes, suggesting that xenobiotic induction of CYP3A genes operates primarily through the recruitment of more cells committed to expression. In summary, CYP3A4/lacZ transgenic mice provide an in vivo model for the study of the molecular mechanisms involved in the regulation of a significant human drug metabolizing enzyme.
Collapse
Affiliation(s)
- Graham R Robertson
- Department of Clinical Medicine, University of Sydney, Molecular Pharmacology Laboratory. Westmead Millenium Institute, Westmead Hospital, Westmead, Australia
| | | | | | | | | | | | | |
Collapse
|
408
|
Chen C, Staudinger JL, Klaassen CD. Nuclear receptor, pregname X receptor, is required for induction of UDP-glucuronosyltranferases in mouse liver by pregnenolone-16 alpha-carbonitrile. Drug Metab Dispos 2003; 31:908-15. [PMID: 12814968 DOI: 10.1124/dmd.31.7.908] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine the role of pregnane X receptor (PXR) in the induction of UDP-glucuronosyltransferases (UGTs) by pregnenolone-16 alpha-carbonitrile (PCN). Four- to six-month-old male wild-type and PXR-null mice received control or PCN-treated (1500 ppm) diet for 21 days. On day 22, livers were taken to prepare microsomes and total RNA to determine UGT activity and mRNA levels, respectively. In wild-type mice, PCN treatment significantly increased UGT activities toward bilirubin, 1-naphthol, chloramphenicol, thyroxine, and triiodothyronine. On control diet, the UGT activities toward the above substrates (except for 1-naphthol) in the PXR-null mice were significantly higher than those of wild-type mice. However, UGT activities in PXR-null mice were not increased by PCN. In agreement with the above findings, mRNA levels of mouse Ugt1a1 and Ugt1a9, which are involved in the glucuronidation of bilirubin and phenolic compounds, were increased about 100% in wild-type mice following PCN treatment, whereas the expression of Ugt1a2, 1a6, and 2b5 was not affected. In contrast, PCN treatment had no effect on the mRNA levels of these UGTs in PXR-null mice. Taken together, these results indicate that PCN treatment induces glucuronidation in mouse liver, and that PXR regulates constitutive and PCN-inducible expression of some UGTs.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
409
|
Abstract
The metabolic nuclear receptors act as metabolic and toxicological sensors, enabling the organism to quickly adapt to environmental changes by inducing the appropriate metabolic genes and pathways. Ligands for these metabolic receptors are compounds from dietary origin, intermediates in metabolic pathways, drugs, or other environmental factors that, unlike classical nuclear receptor ligands, are present in high concentrations. Metabolic receptors are master regulators integrating the homeostatic control of (a) energy and glucose metabolism through peroxisome proliferator-activated receptor gamma (PPARgamma); (b) fatty acid, triglyceride, and lipoprotein metabolism via PPARalpha, beta/delta, and gamma; (c) reverse cholesterol transport and cholesterol absorption through the liver X receptors (LXRs) and liver receptor homolog-1 (LRH-1); (d) bile acid metabolism through the farnesol X receptor (FXR), LXRs, LRH-1; and (e) the defense against xeno- and endobiotics by the pregnane X receptor/steroid and xenobiotic receptor (PXR/SXR). The transcriptional control of these metabolic circuits requires coordination between these metabolic receptors and other transcription factors and coregulators. Altered signaling by this subset of receptors, either through chronic ligand excess or genetic factors, may cause an imbalance in these homeostatic circuits and contribute to the pathogenesis of common metabolic diseases such as obesity, insulin resistance and type 2 diabetes, hyperlipidemia and atherosclerosis, and gallbladder disease. Further studies should exploit the fact that many of these nuclear receptors are designed to respond to small molecules and turn them into therapeutic targets for the treatment of these disorders.
Collapse
Affiliation(s)
- Gordon A Francis
- CIHR Group on Molecular and Cell Biology of Lipids and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | |
Collapse
|
410
|
Westlind-Johnsson A, Malmebo S, Johansson A, Otter C, Andersson TB, Johansson I, Edwards RJ, Boobis AR, Ingelman-Sundberg M. Comparative analysis of CYP3A expression in human liver suggests only a minor role for CYP3A5 in drug metabolism. Drug Metab Dispos 2003; 31:755-61. [PMID: 12756208 DOI: 10.1124/dmd.31.6.755] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To study mechanisms behind the interindividual variability in CYP3A expression and the relative contribution of the different CYP3A enzymes to the overall CYP3A activity, we have analyzed CYP3A4, CYP3A5, CYP3A43, and PXR mRNA and CYP3A4 and CYP3A5 protein expression, catalytic activity, and polymorphism in the CYP3A5 gene in a panel of 46 Caucasian human livers. Protein quantification was performed by Western blotting using enzyme-specific antibodies directed to the C termini of CYP3A4 or CYP3A5, and carrier protein-coupled peptides as standards. The mRNA levels were determined by quantitative real-time PCR. CYP3A activity was measured by analysis of the rate of testosterone 6beta-hydroxylation. A correlation existed between all CYP3A and PXR mRNA transcripts measured. The interindividual variability in CYP3A4 and CYP3A5 mRNA expression was higher than that of CYP3A protein and activity. The CYP3A5 protein was expressed at quantifiable levels in 5 (10.9%) of the livers. Four of those were heterozygous for the CYP3A5*1 allele and had CYP3A5 protein at a mean level of 17% of that of total CYP3A, whereas one liver sample was from a CYP3A5*3 homozygote individual having lower amounts of CYP3A5. In total, CYP3A5 only contributed 2% of the overall CYP3A protein among all samples. In conclusion, our data indicate that CYP3A4, CYP3A5, CYP3A43, and PXR hepatic mRNA expression correlate, indicating common regulatory features, and that the contribution of CYP3A5 to hepatic drug metabolism in Caucasians is insignificant.
Collapse
Affiliation(s)
- Anna Westlind-Johnsson
- Division of Molecular Toxicology, IMM, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
411
|
Zhang W, Purchio A, Chen K, Burns SM, Contag CH, Contag PR. In vivo activation of the human CYP3A4 promoter in mouse liver and regulation by pregnane X receptors. Biochem Pharmacol 2003; 65:1889-96. [PMID: 12781341 DOI: 10.1016/s0006-2952(03)00188-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human cytochrome P450 3A4 (CYP3A4) is responsible for the metabolism of numerous xenobiotics in the human liver. We have examined the activation of the human CYP3A4 promoter in mouse liver by using in vivo bioluminescent imaging (BLI). Transcription of the CYP3A4 promoter occurs as a result of a ligand binding to a nuclear orphan receptor, pregnane X receptor (PXR), followed by dimerization with another nuclear receptor, retinoid X receptor (RXR). Since this heterodimer then binds to xenobiotic response elements to activate transcription of CYP3A4, we examined a 13kb promoter region of CYP3A4 for responsiveness to dexamethasone and rifampicin. A reporter vector CYP3A4-luc was constructed consisting of the CYP3A4 promoter driving the firefly luciferase gene. This DNA was injected into the tail veins of mice, and reporter gene expression was monitored in the liver region using BLI. Treatment of transfected mice with dexamethasone resulted in a 188-fold induction of luciferase, whereas treatment with rifampicin resulted in a 68-fold induction. Co-injection with a human PXR expression vector resulted in a dramatic increase in rifampicin-induced activity and a smaller increase of dexamethasone-induced activity. Co-injection of an antisense murine PXR construct with the CYP3A4-luc reduced both the dexamethasone- and rifampicin-induced responses, thus demonstrating that the murine PXR receptor can participate in the regulation of the human CYP3A4 promoter in mice. The approach described here will be of general use in studying the regulation of nuclear receptors in vivo.
Collapse
Affiliation(s)
- Weisheng Zhang
- Xenogen Corporation, 860 Atlantic Avenue, Alameda, CA 94501, USA.
| | | | | | | | | | | |
Collapse
|
412
|
Kamiya A, Inoue Y, Gonzalez FJ. Role of the hepatocyte nuclear factor 4alpha in control of the pregnane X receptor during fetal liver development. Hepatology 2003; 37:1375-84. [PMID: 12774017 DOI: 10.1053/jhep.2003.50212] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The fetal liver, the major site of hematopoiesis during embryonic development, acquires additional functions near birth. Among the important liver functions is the response to xenobiotic exposure due to expression of several cytochromes P450 (CYP) and drug efflux transporters. Expression of these genes is regulated by nuclear receptors such as the pregnane X receptor (PXR). In this study, regulation of xenobiotic responses during fetal liver development was analyzed using a fetal hepatocyte primary culture system derived from embryonic day 15 (E15) livers. Hepatocyte nuclear factor (HNF) 4alpha regulates the expression of many genes preferentially in the liver. Expression of several xenobiotic response genes as well as HNF4alpha was increased in fetal hepatocytes stimulated by the hepatic maturation factors oncostatin M (OSM) and Matrigel. To determine the contribution of HNF4alpha to xenobiotic responses in the fetal liver, fetal hepatocytes containing floxed HNF4alpha alleles were cultured and the HNF4alpha gene was inactivated by infection with an adenovirus containing the Cre gene. Expression of CYP3A11 and PXR was suppressed by inactivation of HNF4alpha. An HNF4alpha binding site was characterized in the PXR promoter and found to be required for activation of the PXR promoter in fetal hepatocytes. In conclusion, HNF4alpha is the key transcription factor regulating responses to xenobiotics through activation of the PXR gene during fetal liver development.
Collapse
Affiliation(s)
- Akihide Kamiya
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
413
|
|
414
|
Sachdeva K, Yan B, Chichester CO. Lipopolysaccharide and cecal ligation/puncture differentially affect the subcellular distribution of the pregnane X receptor but consistently cause suppression of its target genes CYP3A. Shock 2003; 19:469-74. [PMID: 12744492 DOI: 10.1097/01.shk.0000048903.46342.ec] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The repressed expression of cytochrome P450 (CYP) enzymes in septic patients contributes significantly to therapeutic failures. Mice treated with sepsis-inducing agent lipopolysaccharide (LPS) sequentially express reduced mRNA levels of the pregnane X receptor (PXR) and its target genes Cyp3a(s), suggesting that reduction of Cyp expression is associated with the repression of PXR. The present study was undertaken to determine whether septic rats induced by LPS and cecal ligation/puncture (CLP) express reduced levels of rat PXR protein and whether the subcellular distribution of PXR is altered in septic conditions. Rats were treated with LPS (55 vs. 1 mg/kg) or underwent CLP, and the expression of CYP3A and PXR was determined. In LPS-treated rats, the expression of CYP3A enzymes was consistently decreased regardless of the doses used. In contrast, high dose and repeated low dose of LPS caused significant decreases on the nuclear PXR, whereas the opposite was true with the cytosolic PXR. When rats were administered with only a single low dose of LPS, both nuclear and cytosolic PXR levels were significantly increased. In the CLP model, rats undergoing CLP for 30 h expressed significantly lower levels of CYP3A but the PXR levels were not significantly altered. In addition, when rats were treated with dexamethasone, a significant induction of CYP3A was detected. However, such an induction was markedly antagonized by the treatment with LPS. The differential changes on the levels of the nuclear PXR and CYP3A between LPS and CLP models suggest that PXR plays negligible roles in the constitutive expression of CYP3A. The antagonism of LPS against dexamethasone-mediated CYP3A induction suggests that endotoxemia minimizes the inducibility of PXR target genes.
Collapse
MESH Headings
- Animals
- Aryl Hydrocarbon Hydroxylases/genetics
- Cecum/pathology
- Cecum/physiology
- Cytochrome P-450 CYP3A
- Dexamethasone/pharmacology
- Disease Models, Animal
- Gene Expression Regulation/drug effects
- Lipopolysaccharides/toxicity
- Oxidoreductases, N-Demethylating/genetics
- Pregnane X Receptor
- Punctures
- Rabbits
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/drug effects
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Subcellular Fractions/drug effects
- Subcellular Fractions/metabolism
- Suppression, Genetic/drug effects
Collapse
Affiliation(s)
- Karuna Sachdeva
- Department of Biomedical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | |
Collapse
|
415
|
Lee MR, Kim YJ, Hwang DY, Kang TS, Hwang JH, Lim CH, Kang HK, Goo JS, Lim HJ, Ahn KS, Cho JS, Chae KR, Kim YK. An in vitro bioassay for xenobiotics using the SXR-driven human CYP3A4/lacZ reporter gene. Int J Toxicol 2003; 22:207-13. [PMID: 12851153 DOI: 10.1080/10915810305110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The dose and time effect of nine xenobiotics, including 17beta-estradiol, corticosterone, dexamethasone, progesterone, nifedipine, bisphenol A, rifampicin, methamphetamine, and nicotine were investigated, in vitro, using human steroid and xenobiotics receptor (SXR)-binding sites on the human CYP3A4 promoter, which can enhance the linked lacZ reporter gene transcription. To test this, liver-specific SAP (human serum amyloid P component)-SXR (SAP/SXR) and human CYP3A4 promoter-regulated lacZ (hCYP3A4/lacZ) constructs were transiently transfected into HepG2 and NIH3T3 cells to compare the xenobiotic responsiveness between human and nonhuman cell lines. In the HepG2 cells, rifampicin, followed by corticosterone, nicotine, methamphetamine, and dexamethasone, exhibited enhanced levels of the lacZ transcript, whereas those of bisphenol A and nifedipine were found to be reduced. No significant responses were observed with 17beta-estradiol or progesterone. In addition, 17beta-estradiol and progesterone did not change the levels of the lacZ transcripts in the HepG2 cells, but did induce significant increases in the transcripts of the NIH3T3 cells. Treatment with corticosterone and dexamethasone, which were highly expressed in the HepG2 cells, did not affect the levels of the lacZ transcript in NIH3T3 cells. These results show that lacZ transcripts can be measured, rapidly and reproducibly, using reverse transcriptase-polymerase chain reaction (RT-PCR) based on the expression of the hCYP3A4/lacZ reporter gene, and was mediated by the SXR. Thus, this in vitro reporter gene bioassay is useful for measuring xenobiotic activities, and is a means to a better relevant bioassay, using human cells, human genes and human promoters, in order to get a closer look at actual human exposure.
Collapse
Affiliation(s)
- Mi R Lee
- Division of Laboratory Animal Resources, National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
416
|
Abstract
Many administered drugs are first activated by phase I drug-metabolizing enzymes, such as cytochrome P450 (CYP), and then conjugated with ligands such as UDPGA, PAPS, and glutathione by phase II drug-metabolizing enzymes, and finally excreted by transporters. There are some defective activity mutants due to CYP polymorphisms. In these cases, drugs are not metabolized [poor metabolizer (PM)], the high drug levels in blood are maintained, and toxic effects appear in the patients. To clarify the ratio of PMs, in the general population, it is necessary to estimate the drug level to not only prevent toxic reactions, but also to provide more efficient drug therapies, according to their polymorphic information about CYPs. In Caucasians and Asians, PM and allele frequency levels of CYPs (CYP2A6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) are summarized from previous findings. In Caucasians, high PM ratios (7%) of CYP2D6 deriving from the high frequency of CYP2D6*4 and CYP2D6*5, and 2% CYP2C19 from CYP2C19*2, were found. Meanwhile, in Asians, high PM ratios (19%) of CYP2C19 from high frequencies of CYP2C19*2 and CYP2C19*3, and 2% to 4% CYP2A6 from CYP2A6*4, were found. In both populations, the PM frequencies of the CYP3A4 of major drug-metabolizing CYP and CYP2C9 were low.
Collapse
Affiliation(s)
- Takaharu Mizutani
- Department of Drug Metabolism and Disposition, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
417
|
Nallani SC, Goodwin B, Maglich JM, Buckley DJ, Buckley AR, Desai PB. Induction of cytochrome P450 3A by paclitaxel in mice: pivotal role of the nuclear xenobiotic receptor, pregnane X receptor. Drug Metab Dispos 2003; 31:681-4. [PMID: 12695359 DOI: 10.1124/dmd.31.5.681] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Paclitaxel, a taxane anti-microtubule agent, is known to induce CYP3A in rat and human hepatocytes. Recent studies suggest that a member of the nuclear receptor family, pregnane X Receptor (PXR), is a key regulator of the expression of CYP3A in different species. We investigated the role of PXR activation, in vitro and in vivo, in mediating Cyp3a induction by paclitaxel. Pregnenolone 16 alpha-carbonitrile (PCN), an antiglucocorticoid, was employed as a positive control for mouse PXR (mPXR) activation in vitro, and Cyp3a induction in vivo. In cell based reporter gene assays paclitaxel and PCN activated mPXR with an EC(50) of 5.6 and 0.27 microM, respectively. Employing PXR wild-type and transgenic mice lacking functional PXR (-/-), we evaluated the expression and activity of CYP3A following treatment with paclitaxel and PCN. Paclitaxel significantly induced CYP3A11 mRNA and immunoreactive CYP3A protein in PXR wild-type mice. Consistent with kinetics of CYP3A induction, the V(max) of testosterone 6 beta-hydroxylation in microsomal fraction increased 15- and 30-fold in paclitaxel- and PCN-treated mice, respectively. The Cyp3a induction response was completely abolished in paclitaxel- and PCN-treated PXR-null mice. This suggests that paclitaxel-mediated CYP3A induction in vivo requires an intact PXR-signaling mechanism. Our study validates the use of PXR activation assays in screening newer taxanes for potential drug interactions that may be related to PXR-target gene induction.
Collapse
Affiliation(s)
- Srikanth C Nallani
- Division of Pharmaceutical Sciences, College of Pharmacy and the Department of Molecular and Cellular Physiology, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0004, USA
| | | | | | | | | | | |
Collapse
|
418
|
Silvestri L, Sonzogni L, De Silvestri A, Gritti C, Foti L, Zavaglia C, Leveri M, Cividini A, Mondelli MU, Civardi E, Silini EM. CYP enzyme polymorphisms and susceptibility to HCV-related chronic liver disease and liver cancer. Int J Cancer 2003; 104:310-7. [PMID: 12569554 DOI: 10.1002/ijc.10937] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cancer risk can be influenced by the exposure to endogenous or environmental toxins. Polymorphic enzymes involved in the metabolic activation/detoxification of carcinogens may account for individual variations of risk. We studied the polymorphisms of five enzymes of the P450 superfamily, CYP1A1, CYP1A2, CYP2D6, CYP2E1 and CY3A4, as risk factors for liver disease progression and cancer in hepatitis C virus-infected patients. CYP genotyping was performed by polymerase chain reaction (PCR) restriction fragment length polymorphism or allele-specific PCR. Different stages of disease were considered, as follows: 90 asymptomatic carriers and 87 chronic hepatitis, 92 cirrhosis and 91 hepatocellular carcinoma (HCC) cases. Reference allele frequencies were obtained from 99 blood donors. Allele distributions among categories were compared using the chi(2) test. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to express relative risks. Independent associations were modeled by correspondence analysis and logistic regression. Frequencies of the CYP1A1 highly inducible alleles, MspI m2 and Val, were increased in liver disease patients compared with carriers; no specific association with HCC was found. The high-activity CYP2E1 c2 allele was underrepresented among HCC patients with respect to other HCV categories, including cirrhosis. CYP2D6 poor metabolizer (PM) genotypes were significantly more frequent in healthy subjects (7.1%) and carriers (11.1%) than in hepatitis/cirrhosis (4.6%) and HCC (1.2%) patients. This was confirmed by multivariable analysis. PM genotypes protected against progressive disease as ORs reduced proportionally to stage. The age at diagnosis for HCC was anticipated in non-PM individuals. No differences were seen for CYP1A2 and CYP3A4 genes. Polymorphic variants of CYP genes may contribute to the progression of liver disease and HCC risk in HCV-infected subjects.
Collapse
Affiliation(s)
- Laura Silvestri
- Associazione Studi Avanzati Epatiti Virali, Bonate Sotto (BG), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
419
|
Huang W, Zhang J, Chua SS, Qatanani M, Han Y, Granata R, Moore DD. Induction of bilirubin clearance by the constitutive androstane receptor (CAR). Proc Natl Acad Sci U S A 2003; 100:4156-61. [PMID: 12644704 PMCID: PMC153064 DOI: 10.1073/pnas.0630614100] [Citation(s) in RCA: 293] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2002] [Accepted: 01/30/2003] [Indexed: 01/03/2023] Open
Abstract
Bilirubin clearance is one of the numerous important functions of the liver. Defects in this process result in jaundice, which is particularly common in neonates. Elevated bilirubin levels can be decreased by treatment with phenobarbital. Because the nuclear hormone receptor constitutive androstane receptor (CAR) mediates hepatic effects of this xenobiotic inducer, we hypothesized that CAR could be a regulator of bilirubin clearance. Activation of the nuclear hormone receptor CAR increases hepatic expression of each of five components of the bilirubin-clearance pathway. This induction is absent in homozygous CAR null mice but is observed in mice expressing human CAR instead of mouse CAR. Pretreatment with xenobiotic inducers markedly increases the rate of clearance of an exogenous bilirubin load in wild-type but not CAR knockout animals. Bilirubin itself can also activate CAR, and mice lacking CAR are defective in clearing chronically elevated bilirubin levels. Unexpectedly, CAR expression is very low in livers of neonatal mice and humans. We conclude that CAR directs a protective response to elevated bilirubin levels and suggest that a functional deficit of CAR activity may contribute to neonatal jaundice.
Collapse
Affiliation(s)
- Wendong Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
420
|
Xie W, Yeuh MF, Radominska-Pandya A, Saini SPS, Negishi Y, Bottroff BS, Cabrera GY, Tukey RH, Evans RM. Control of steroid, heme, and carcinogen metabolism by nuclear pregnane X receptor and constitutive androstane receptor. Proc Natl Acad Sci U S A 2003; 100:4150-5. [PMID: 12644700 PMCID: PMC153063 DOI: 10.1073/pnas.0438010100] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2002] [Indexed: 12/15/2022] Open
Abstract
Through a multiplex promoter spanning 218 kb, the phase II UDP-glucuronosyltransferase 1A (UGT1) gene encodes at least eight differently regulated mRNAs whose protein products function as the principal means to eliminate a vast array of steroids, heme metabolites, environmental toxins, and drugs. The orphan nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) were originally identified as sensors able to respond to numerous environmentally derived foreign compounds (xenobiotics) to promote detoxification by phase I cytochrome P450 genes. In this report, we show that both receptors can induce specific UGT1A isoforms including those involved in estrogen, thyroxin, bilirubin, and carcinogen metabolism. Transgenic mice expressing a constitutively active form of human PXR show markedly increased UGT activity toward steroid, heme, and carcinogens, enhanced bilirubin clearance, as well as massively increased steroid clearance. The ability of PXR and constitutive androstane receptor and their ligands to transduce both the phase I and phase II adaptive hepatic response defines a unique transcriptional interface that bridges the ingestion and metabolism of environmental compounds to body physiology.
Collapse
Affiliation(s)
- Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
421
|
Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 2003; 83:633-71. [PMID: 12663868 DOI: 10.1152/physrev.00027.2002] [Citation(s) in RCA: 697] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Molecular medicine has led to rapid advances in the characterization of hepatobiliary transport systems that determine the uptake and excretion of bile salts and other biliary constituents in the liver and extrahepatic tissues. The bile salt pool undergoes an enterohepatic circulation that is regulated by distinct bile salt transport proteins, including the canalicular bile salt export pump BSEP (ABCB11), the ileal Na(+)-dependent bile salt transporter ISBT (SLC10A2), and the hepatic sinusoidal Na(+)- taurocholate cotransporting polypeptide NTCP (SLC10A1). Other bile salt transporters include the organic anion transporting polypeptides OATPs (SLC21A) and the multidrug resistance-associated proteins 2 and 3 MRP2,3 (ABCC2,3). Bile salt transporters are also present in cholangiocytes, the renal proximal tubule, and the placenta. Expression of these transport proteins is regulated by both transcriptional and posttranscriptional events, with the former involving nuclear hormone receptors where bile salts function as specific ligands. During bile secretory failure (cholestasis), bile salt transport proteins undergo adaptive responses that serve to protect the liver from bile salt retention and which facilitate extrahepatic routes of bile salt excretion. This review is a comprehensive summary of current knowledge of the molecular characterization, function, and regulation of bile salt transporters in normal physiology and in cholestatic liver disease and liver regeneration.
Collapse
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Karl-Franzens University, School of Medicine, Graz, Austria
| | | |
Collapse
|
422
|
Abstract
Until recently, inductive drug-drug interactions have proved difficult to predict prior to formal pharmacokinetic studies in man. Even then, important interactions have often gone unrecognized until clinical sequelae have occurred in the postmarketing phase. Recent advances in the molecular and cellular biology of nuclear receptors have revealed that there are 'sensors' for xenobiotics, which in turn transactivate genes involved in drug metabolism and excretion. Knowledge of these mechanisms has allowed the development of assay systems that detect the potential of drugs to cause gene induction, well before human studies are contemplated.
Collapse
Affiliation(s)
- Christopher Liddle
- Department of Clinical Pharmacology, Storr Liver Unit, Westmead Millennium Institute and University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia.
| | | |
Collapse
|
423
|
Haag M, Fautrel A, Guillouzo A, Frossard N, Pons F. Expression of cytochromes P450 3A in mouse lung: effects of dexamethasone and pregnenolone 16alpha-carbonitrile. Arch Toxicol 2003; 77:145-9. [PMID: 12632254 DOI: 10.1007/s00204-002-0426-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2002] [Accepted: 10/15/2002] [Indexed: 11/28/2022]
Abstract
Expression of cytochromes P450 3A (CYP3A) has been reported in the lung, but its regulation has received little attention. In the present study, we assessed lung levels of Cyp3a mRNA, protein and activity in control mice and in mice treated with either dexamethasone (DEX), pregnenolone 16alpha-carbonitrile (PCN) or a mixture of DEX+PCN. Lung expression of the pregnane X receptor (PXR) was also investigated. Constitutive levels of Cyp3a mRNA were found in the lung from control mice by polymerase chain reaction after reverse transcription of total RNA (RT-PCR). These levels were significantly increased (2.0-fold, P<0.05) in mice treated with DEX and further enhanced (2.7-fold increase, P<0.01) in mice treated with DEX+PCN. In control mice, basal levels of Cyp3a protein and activity were also found, as assessed by western blot and measure of testosterone 6beta-hydroxylation, respectively. In mice treated with DEX or DEX+PCN, changes in Cyp3a protein and activity exhibited the same pattern as those in Cyp3a mRNA. In contrast, PCN alone failed to trigger consistent increases in lung Cyp3a mRNA, protein and activity. PXR mRNA was not detected in the lung from control or PCN-treated mice by RT-PCR, but was found at significant levels in the lungs from mice treated with DEX or DEX+PCN. Our results show that expression of Cyp3a is upregulated by glucocorticoids in mouse lung, and that this effect is potentiated by antiglucocorticoids. This potentiation may involve PXR, expression of which is induced in the lung of glucocorticoid-treated mice.
Collapse
Affiliation(s)
- Muriel Haag
- Inserm U425, Neuroimmunopharmacologie pulmonaire, Faculté de Pharmacie, Université Louis Pasteur Strasbourg-I, 74 Route du Rhin, BP 2467401, Illkirch cedex, France
| | | | | | | | | |
Collapse
|
424
|
Kawana K, Ikuta T, Kobayashi Y, Gotoh O, Takeda K, Kawajiri K. Molecular mechanism of nuclear translocation of an orphan nuclear receptor, SXR. Mol Pharmacol 2003; 63:524-31. [PMID: 12606758 DOI: 10.1124/mol.63.3.524] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The steroid and xenobiotic receptor (SXR) is an orphan nuclear receptor that plays a key role in the regulation of xenobiotic response by controlling the expression of drug metabolizing and clearance enzymes. We observed that pregnane X receptor (PXR), the mouse ortholog of SXR, was retained in the cytoplasm of hepatic cells of untreated mice, whereas PXR was translocated to the nucleus after administration of a ligand, pregnenolone 16 alpha-carbonitrile. To understand the molecular mechanisms underlying the xenochemical-dependent nuclear translocation of SXR, we identified the signal sequence of SXR that regulates its nuclear translocation; using an in vitro expression system, we allocated the nuclear localization signal (NLS) to amino acid residues 66 to 92 within the DNA binding domain of SXR. The NLS of SXR is characterized as the bipartite type, and is recognized by the three molecular species of importin alpha: Rch1 (PTAC58), NPI1, and Qip1, in the presence of PTAC97 of importin beta to target the nuclear pore. The nuclear translocation of SXR was observed as an essential regulatory event for transcription of its target genes such as CYP3A4. These results strongly suggest that the molecular mechanism of the nuclear import of SXR was different from that of another xenosensor, the constitutively active receptor, whose translocation into the nucleus is mediated by a leucine-rich xenochemical response signal in its ligand binding domain.
Collapse
Affiliation(s)
- Katsuyoshi Kawana
- Research Institute, Saitama Cancer Center, Ina-machi, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
425
|
Moore JT, Moore LB, Maglich JM, Kliewer SA. Functional and structural comparison of PXR and CAR. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1619:235-8. [PMID: 12573482 DOI: 10.1016/s0304-4165(02)00481-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nuclear receptors pregnane X receptor (PXR, NR1I2) and constitutive active receptor (CAR, NR1I3) have both been proposed to function as xenosensors, but the details of their respective physiological roles are still being elucidated. We have contrasted these two receptors in a variety of experiments including gene expression assays, cell-based ligand profiling assays, and crystallographic/structural modeling analyses. These data highlight key differences between PXR and CAR.
Collapse
Affiliation(s)
- John T Moore
- Nuclear Receptor Discovery Research, GlaxoSmithKline, 5 Moore Drive, V116-1b, Research Triangle Park, NC 27709, USA.
| | | | | | | |
Collapse
|
426
|
Akiyama TE, Gonzalez FJ. Regulation of P450 genes by liver-enriched transcription factors and nuclear receptors. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1619:223-34. [PMID: 12573481 DOI: 10.1016/s0304-4165(02)00480-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cytochrome P450s (P450s) constitute a superfamily of heme-proteins that play an important role in the activation of chemical carcinogens, detoxification of numerous xenobiotics as well as in the oxidative metabolism of endogenous compounds such as steroids, fatty acids, prostaglandins, and leukotrienes. In addition, some P450s have important roles in physiological processes, such as steroidogenesis and the maintenance of bile acid and cholesterol homeostasis. Given their importance, the molecular mechanisms of P450 gene regulation have been intensely studied. Direct interactions between transcription factors, including nuclear receptors, with the promoters of P450 genes represent one of the primary means by which the expression of these genes is controlled. In this review, several liver-enriched transcription factors that play a role in the tissue-specific, developmental, and temporal regulation of P450s are discussed. In addition, the nuclear receptors that play a role in the fine control of cholesterol and bile acid homeostasis, in part, through their modulation of specific P450s, are discussed.
Collapse
Affiliation(s)
- Taro E Akiyama
- Laboratory of Metabolism, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | |
Collapse
|
427
|
Dussault I, Yoo HD, Lin M, Wang E, Fan M, Batta AK, Salen G, Erickson SK, Forman BM. Identification of an endogenous ligand that activates pregnane X receptor-mediated sterol clearance. Proc Natl Acad Sci U S A 2003; 100:833-8. [PMID: 12569201 PMCID: PMC298687 DOI: 10.1073/pnas.0336235100] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The nuclear receptor PXR (pregnane X receptor) is a broad-specificity sensor that recognizes a wide variety of synthetic drugs and xenobiotic agents. On activation by these compounds, PXR coordinately induces a network of transporters, cytochrome P450 enzymes, and other genes that effectively clear xenobiotics from the liver and intestine. Like PXR, the majority of its target genes also possess a broad specificity for exogenous compounds. Thus, PXR is both a sensor and effector in a well integrated and generalized pathway for chemical immunity. Although it is clear that PXR responds to numerous foreign compounds, it is unclear whether it possesses an endogenous ligand. To address this issue, we noted that there is substantial overlap in the substrate specificities of PXR and its critical CYP3A target gene. This prompted us to ask whether endogenous CYP3A substrates also serve as PXR ligands. We demonstrate that 5beta-cholestane-3alpha,7alpha,12alpha-triol (triol), a cholesterol-derived CYP3A substrate, is a potent PXR agonist that effectively induces cyp3a expression in mice. This defines a critical salvage pathway that can be autoinduced to minimize triol accumulation. In contrast, triol can accumulate to very high levels in humans, and unlike mice, these people develop the severe clinical manifestations of cerebrotendinous xanthomatosis. The reason for these dramatic species differences has remained unclear. We now demonstrate that triol fails to activate human PXR or induce the CYP3A-salvage pathway. This explains why humans are more susceptible to sterol accumulation and suggests that synthetic ligands for human PXR could be used to treat cerebrotendinous xanthomatosis and other disorders of cholesterol excess.
Collapse
Affiliation(s)
- Isabelle Dussault
- Division of Molecular Medicine and Department of Diabetes and Gonda Diabetes Research Center, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
428
|
Jones SA, Moore LB, Wisely GB, Kliewer SA. Use of in vitro pregnane X receptor assays to assess CYP3A4 induction potential of drug candidates. Methods Enzymol 2003; 357:161-70. [PMID: 12424907 DOI: 10.1016/s0076-6879(02)57675-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Stacey A Jones
- Department of Nuclear Receptor Functional Analysis, High Throughput Biology, GlaxoSmithKline, Inc., Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
429
|
Abstract
The metabolism and elimination of drugs is mainly mediated by cytochrome P450 (CYP) enzymes, aided by conjugative enzymes and transport proteins. An integral aspect of this elimination process is the induction of drug metabolism through activation of gene expression of metabolic and transport proteins. There is compelling evidence that induction is regulated by drug-activated nuclear receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR). This review outlines the basic properties of CAR and PXR, their ligands and target genes, and the mechanisms of the induction process. The implications of nuclear receptor-mediated induction for drug research are also discussed.
Collapse
Affiliation(s)
- Paavo Honkakoski
- Department of Pharmaceutics, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | |
Collapse
|
430
|
Wei P, Zhang J, Dowhan DH, Han Y, Moore DD. Specific and overlapping functions of the nuclear hormone receptors CAR and PXR in xenobiotic response. THE PHARMACOGENOMICS JOURNAL 2002; 2:117-26. [PMID: 12049174 DOI: 10.1038/sj.tpj.6500087] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The products of the cytochrome P450 (CYP) genes play an important role in the detoxification of xenobiotics and environmental contaminants, and many foreign chemicals or xenobiotics can induce their expression. We have previously shown that the nuclear hormone receptor CAR (Constitutive Androstane Receptor, NR113) mediates the well studied induction of CYP2B10 gene expression by phenobarbital (PB) and 1, 4-bis-[2-(3, 5,-dichloropyridyloxy)] benzene (TCPOBOP). We have used the CAR knockout mouse model to explore the broader functions of this xenobiotic receptor. In addition to the liver, CAR is expressed in the epithelial cells of the villi in the small intestine, and this expression is required for CYP2B10 induction in response to PB and TCPOBOP in those cells. In agreement with previous observations that CAR can bind to regulatory elements in CYP3A genes, CAR is also required for induction of expression of CYP3A11 in response to both PB and TCPOBOP in liver. In males, CAR is also required for induction of liver CYP2A4 expression. In wild type animals, pretreatment with the CAR inverse agonist androstenol blocks the response of both the CYP2B10 and CYP3A11 genes to PB and TCPOBOP, and decreases basal CYP3A11 expression. CAR is also required for the response of CYP2B10 to several additional xenobiotic inducers, including chlorpromazine, clotrimazole and dieldrin, but not dexamethasone, an agonist for both the xenobiotic receptor PXR (Pregnane X Receptor NR112) and the glucocorticoid receptor. Chlorpromazine induction of CYP3A11 is also absent in CAR-deficient animals, but the responses to clotrimazole and dieldrin are retained, indicating that both of these inducers can also activate PXR (Pregnane X Receptor NR112). We conclude that CAR has broad functions in xenobiotic responses. Some are specific to CAR but others, including induction of the important drug metabolizing enzyme CYP3A, overlap with those of PXR.
Collapse
Affiliation(s)
- P Wei
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
431
|
Ekins S, Mirny L, Schuetz EG. A ligand-based approach to understanding selectivity of nuclear hormone receptors PXR, CAR, FXR, LXRalpha, and LXRbeta. Pharm Res 2002; 19:1788-800. [PMID: 12523656 DOI: 10.1023/a:1021429105173] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In recent years discussion of nuclear hormone receptors, transporters, and drug-metabolizing enzymes has begun to take place as our knowledge of the overlapping ligand specificity of each of these proteins has deepened. This ligand specificity is potentially valuable information for influencing future drug design, as it is important to avoid certain enzymes or transporters in order to circumvent potential drug-drug interactions. Similarly, it is critical that the induction of these same proteins via nuclear hormone receptors is avoided, as this can result in further toxicities. Using a ligand-based approach in this review we describe new and previously published computational models for PXR, CAR, FXR, LXRalpha, and LXRbeta that may help in understanding the complexity of interactions between transporters and enzymes. The value of these types of models is that they may enable us to design molecules to selectively modulate pathways for therapeutic effect and in addition predict the potential for drug interactions more reliably. Simultaneously, we might learn which came first: the transporter, the enzyme, or the nuclear hormone receptor?
Collapse
Affiliation(s)
- Sean Ekins
- Concurrent Pharmaceuticals Inc., Fort Washington, Pennsylvania 19034, USA.
| | | | | |
Collapse
|
432
|
Abstract
The ATP-binding cassette (ABC) transporters are a family of large proteins in membranes and are able to transport a variety of compounds through membranes against steep concentration gradients at the cost of ATP hydrolysis. The available outline of the human genome contains 48 ABC genes; 16 of these have a known function and 14 are associated with a defined human disease. Major physiological functions of ABC transporters include the transport of lipids, bile salts, toxic compounds, and peptides for antigen presentation or other purposes. We review the functions of mammalian ABC transporters, emphasizing biochemical mechanisms and genetic defects. Our overview illustrates the importance of ABC transporters in human physiology, toxicology, pharmacology, and disease. We focus on three topics: (a) ABC transporters transporting drugs (xenotoxins) and drug conjugates. (b) Mammalian secretory epithelia using ABC transporters to excrete a large number of substances, sometimes against a steep concentration gradient. Several inborn errors in liver metabolism are due to mutations in one of the genes for these pumps; these are discussed. (c) A rapidly increasing number of ABC transporters are found to play a role in lipid transport. Defects in each of these transporters are involved in human inborn or acquired diseases.
Collapse
Affiliation(s)
- P Borst
- Division of Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | | |
Collapse
|
433
|
Coumoul X, Diry M, Barouki R. PXR-dependent induction of human CYP3A4 gene expression by organochlorine pesticides. Biochem Pharmacol 2002; 64:1513-9. [PMID: 12417264 DOI: 10.1016/s0006-2952(02)01298-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OCP are xenobiotics which display various toxic effects on animal and human health. One of their effects is to bind and activate estrogen receptor alpha (ERalpha). We have previously studied the down-regulation of induced CYP1A1 (cytochrome P450) expression by this class of molecules in mammary carcinoma cells and shown the importance of ERalpha in this process. However, an alternative mechanism was suggested by those experiments in hepatoma cells. In this study, we have performed Northern blot and transient transfection assays in various cell lines and shown that OCP activate human pregnane X receptor (PXR) and subsequent CYP3A4 mRNA expression. This effect is mediated by the distal xenobiotic responsive element modulator of the promoter. The induction of CYP3A4 by OCP was dose-dependent within the 1-10 microM range. The data suggest that chronic exposure to OCP could alter a major metabolite pathway in human liver and putatively modify the pharmacokinetics of drugs and pollutants.
Collapse
Affiliation(s)
- Xavier Coumoul
- INSERM Unit 490, Université René Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | | | | |
Collapse
|
434
|
Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, Nakamura T, Itadani H, Tanaka K. Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun 2002; 298:714-9. [PMID: 12419312 DOI: 10.1016/s0006-291x(02)02550-0] [Citation(s) in RCA: 753] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bile acids play an essential role in the solubilization and absorption of dietary fat and lipid-soluble vitamins. Bile acids also modulate the transcription of various genes for enzymes and transport proteins for their own and cholesterol homeostasis through binding to nuclear receptors. Here we report a novel category of bile acid receptor, a membrane-type G protein-coupled receptor (GPCR), BG37. Bile acids induced rapid and dose-dependent elevation of intracellular cAMP levels in BG37-expressing cells, but not in mock-transfected cells, independently of nuclear receptor expression. The rank order of potency of various bile acids for BG37-expressing cells was different from that for the nuclear receptor-mediated response. These observations demonstrate the presence of two independent signaling pathways for bile acids; membrane-type GPCR for rapid signaling and nuclear receptors for delayed signaling. Expression of BG37 was detected in various specific tissues, suggesting its physiological role, although it remains to be further characterized.
Collapse
Affiliation(s)
- Takaharu Maruyama
- Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., Okubo 3, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
435
|
Fukuen S, Fukuda T, Matsuda H, Sumida A, Yamamoto I, Inaba T, Azuma J. Identification of the novel splicing variants for the hPXR in human livers. Biochem Biophys Res Commun 2002; 298:433-8. [PMID: 12413960 DOI: 10.1016/s0006-291x(02)02469-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human pregnane X receptor (hPXR) plays a key role in the regulation of both drug metabolism and efflux by inducing the expression of CYP3A4 and MDR1 gene. Using reverse transcription-polymerase chain reaction (RT-PCR) analysis, we identified seven novel splicing variants of hPXR in tissue from a single human liver. The expression of hPXR-related transcripts in the liver samples of 15 Caucasian individuals was subsequently determined by RT-PCR assays. The pattern of expression levels of these transcripts varied among liver samples. These results suggest that the hPXR is expressed as several different transcripts in liver tissues, apparently due to alternative as well as defective gene splicing. Furthermore, because this study provides the possibility of interindividual differences in hPXR transcript profiles, these alternative splicings for hPXR may largely contribute to the interindividual variability in CYP3A4 and P-glycoprotein induction.
Collapse
Affiliation(s)
- Shuichi Fukuen
- Clinical Evaluation of Medicines and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
436
|
Pelkonen O, Hukkanen J, Honkakoski P, Hakkola J, Viitala P, Raunio H. In vitro screening of cytochrome P450 induction potential. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2002:105-37. [PMID: 11975192 DOI: 10.1007/978-3-662-04383-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- O Pelkonen
- Department of Pharmacology and Toxicology, University of Oulu, 90014 Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
437
|
Li-Hawkins J, Gåfvels M, Olin M, Lund EG, Andersson U, Schuster G, Björkhem I, Russell DW, Eggertsen G. Cholic acid mediates negative feedback regulation of bile acid synthesis in mice. J Clin Invest 2002. [DOI: 10.1172/jci0216309] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
438
|
Sonoda J, Xie W, Rosenfeld JM, Barwick JL, Guzelian PS, Evans RM. Regulation of a xenobiotic sulfonation cascade by nuclear pregnane X receptor (PXR). Proc Natl Acad Sci U S A 2002; 99:13801-6. [PMID: 12370413 PMCID: PMC129778 DOI: 10.1073/pnas.212494599] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The nuclear receptor PXR (pregnane X receptor) protects the body from hepatotoxicity of secondary bile acids such as lithocholic acid (LCA) by inducing expression of the hydroxylating cytochrome P450 enzyme CYP3A and promoting detoxification. We found that activation of PXR also increases the activity and gene expression of the phase II conjugating enzyme dehydroepiandrosterone sulfotransferase (STD) known to sulfate LCA to facilitate its elimination. This activation is direct and appears to extend to other xenobiotic sulfotransferases as well as to 3'-phosphoadenosine 5'-phosphosulfate synthetase 2 (PAPSS2), an enzyme that generates the donor cofactor for the reaction. Because sulfation plays an important role in the metabolism of many xenobiotics, prescription drugs, and toxins, we propose that PXR serves as a master regulator of the phase I and II responses to facilitate rapid and efficient detoxification and elimination of foreign chemicals.
Collapse
Affiliation(s)
- Junichiro Sonoda
- Howard Hughes Medical Institute, Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
439
|
Li-Hawkins J, Gåfvels M, Olin M, Lund EG, Andersson U, Schuster G, Björkhem I, Russell DW, Eggertsen G. Cholic acid mediates negative feedback regulation of bile acid synthesis in mice. J Clin Invest 2002; 110:1191-200. [PMID: 12393855 PMCID: PMC150802 DOI: 10.1172/jci16309] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cholesterol is converted into dozens of primary and secondary bile acids through pathways subject to negative feedback regulation mediated by the nuclear receptor farnesoid X receptor (FXR) and other effectors. Disruption of the sterol 12alpha-hydroxylase gene (Cyp8b1) in mice prevents the synthesis of cholate, a primary bile acid, and its metabolites. Feedback regulation of the rate-limiting biosynthetic enzyme cholesterol 7alpha-hydroxylase (CYP7A1) is lost in Cyp8b1(-/-) mice, causing expansion of the bile acid pool and alterations in cholesterol metabolism. Expression of other FXR target genes is unaltered in these mice. Cholate restores CYP7A1 regulation in vivo and in vitro. The results implicate cholate as an important negative regulator of bile acid synthesis and provide preliminary evidence for ligand-specific gene activation by a nuclear receptor.
Collapse
Affiliation(s)
- Jia Li-Hawkins
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9046, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
440
|
Abstract
The human cytochrome P450 (CYP) superfamily comprises 57 genes. These genes code for enzymes that can have a role in: metabolism of drugs, foreign chemicals, arachidonic acid and eicosanoids; cholesterol metabolism and bile-acid biosynthesis; steroid synthesis and metabolism; vitamin D(3) synthesis and metabolism; retinoic acid hydroxylation; and those of still unknown function. Cytochrome P450 was once believed to be mainly a hepatic drug detoxication system, but is now understood to include a myriad of enzymic reactions implicated in important life processes. Mutations in many CYP genes cause inborn errors of metabolism and contribute to many clinically relevant diseases.
Collapse
Affiliation(s)
- Daniel W Nebert
- Center for Environmental Genetics and Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA.
| | | |
Collapse
|
441
|
Zhang J, Huang W, Chua SS, Wei P, Moore DD. Modulation of acetaminophen-induced hepatotoxicity by the xenobiotic receptor CAR. Science 2002; 298:422-4. [PMID: 12376703 DOI: 10.1126/science.1073502] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have identified the xenobiotic receptor CAR (constitutive androstane receptor) as a key regulator of acetaminophen metabolism and hepatotoxicity. Known CAR activators as well as high doses of acetaminophen induced expression of three acetaminophen-metabolizing enzymes in wild-type but not in CAR null mice, and the CAR null mice were resistant to acetaminophen toxicity. Inhibition of CAR activity by administration of the inverse agonist ligand androstanol 1 hour after acetaminophen treatment blocked hepatotoxicity in wild type but not in CAR null mice. These results suggest an innovative therapeutic approach for treating the adverse effects of acetaminophen and potentially other hepatotoxic agents.
Collapse
MESH Headings
- Acetaminophen/metabolism
- Acetaminophen/toxicity
- Acetylcysteine/pharmacology
- Alanine Transaminase/blood
- Analgesics, Non-Narcotic/metabolism
- Analgesics, Non-Narcotic/toxicity
- Androstanols/pharmacology
- Animals
- Aryl Hydrocarbon Hydroxylases/genetics
- Aryl Hydrocarbon Hydroxylases/metabolism
- Benzoquinones/metabolism
- Constitutive Androstane Receptor
- Cytochrome P-450 CYP1A2/genetics
- Cytochrome P-450 CYP1A2/metabolism
- Cytochrome P-450 CYP2E1/genetics
- Cytochrome P-450 CYP2E1/metabolism
- Cytochrome P-450 CYP3A
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Glutathione/metabolism
- Glutathione S-Transferase pi
- Glutathione Transferase/genetics
- Glutathione Transferase/metabolism
- Humans
- Imines/metabolism
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Mice
- Mice, Knockout
- Mice, Transgenic
- Oxidoreductases, N-Demethylating/genetics
- Oxidoreductases, N-Demethylating/metabolism
- Phenobarbital/pharmacology
- Pyridines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Time Factors
- Transcription Factors/agonists
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Jun Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
442
|
Yu SJ, Keenan SM, Tong W, Welsh WJ. Influence of the structural diversity of data sets on the statistical quality of three-dimensional quantitative structure-activity relationship (3D-QSAR) models: predicting the estrogenic activity of xenoestrogens. Chem Res Toxicol 2002; 15:1229-34. [PMID: 12387618 DOI: 10.1021/tx0255875] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Federal legislation has resulted in the two-tiered in vitro and in vivo screening of some 80 000 structurally diverse chemicals for possible endocrine disrupting effects. To maximize efficiency and minimize expense, prioritization of these chemicals with respect to their estrogenic disrupting potential prior to this time-consuming and labor-intensive screening process is essential. Computer-based quantitative structure-activity relationship (QSAR) models, such as those obtained using comparative molecular field analysis (CoMFA), have been demonstrated as useful for risk assessment in this application. In general, however, CoMFA models to predict estrogenicity have been developed from data sets with limited structural diversity. In this study, we constructed CoMFA models based on biological data for a structurally diverse set of compounds spanning eight chemical families. We also compared two standard alignment schemes employed in CoMFA, namely, atom-fit and flexible field-fit, with respect to the predictive capabilities of their respective models for structurally diverse data sets. The present analysis indicates that flexible field-fit alignment fares better than atom-fit alignment as the structural diversity of the data set increases. Values of log(RP), where RP = relative potency, predicted by the final flexible field-fit CoMFA models are in good agreement with the corresponding experimental values. These models should be effective for predicting the endocrine disrupting potential of existing chemicals as well as prospective and newly prepared chemicals before they enter the environment.
Collapse
Affiliation(s)
- Seong Jae Yu
- Department of Pharmacology, University of Medicine & Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
443
|
Abstract
The nuclear pregnane X receptor (PXR; NR1I2) is an important component of the body's adaptive defense mechanism against toxic substances including foreign chemicals (xenobiotics). PXR is activated by a large number of endogenous and exogenous chemicals including steroids, antibiotics, antimycotics, bile acids, and the herbal antidepressant St. John's wort. Elucidation of the three-dimensional structure of the PXR ligand binding domain revealed that it has a large, spherical ligand binding cavity that allows it to interact with a wide range of hydrophobic chemicals. Thus, unlike other nuclear receptors that interact selectively with their physiological ligands, PXR serves as a generalized sensor of hydrophobic toxins. PXR binds as a heterodimer with the 9-cis retinoic acid receptor (NR2B) to DNA response elements in the regulatory regions of cytochrome P450 3A monooxygenase genes and a number of other genes involved in the metabolism and elimination of xenobiotics from the body. Although PXR evolved to protect the body, its activation by a variety of prescription drugs represents the molecular basis for an important class of harmful drug-drug interactions. Thus, assays that detect PXR activity will be useful in developing safer prescription drugs.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Aryl Hydrocarbon Hydroxylases/genetics
- Bile Acids and Salts/metabolism
- Binding Sites
- Cell Nucleus/chemistry
- Cloning, Molecular
- Cytochrome P-450 CYP3A
- DNA/metabolism
- Dimerization
- Gene Expression Regulation/drug effects
- Humans
- Molecular Sequence Data
- Molecular Structure
- Oxidoreductases, N-Demethylating/genetics
- Polymorphism, Genetic
- Pregnane X Receptor
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Retinoic Acid/metabolism
- Receptors, Steroid/chemistry
- Receptors, Steroid/genetics
- Receptors, Steroid/physiology
- Response Elements
- Retinoid X Receptors
- Transcription Factors/metabolism
- Xenobiotics/metabolism
- Xenobiotics/pharmacology
Collapse
Affiliation(s)
- Steven A Kliewer
- Nuclear Receptor Discovery Research, GlaxoSmithKline, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
444
|
Ostberg T, Bertilsson G, Jendeberg L, Berkenstam A, Uppenberg J. Identification of residues in the PXR ligand binding domain critical for species specific and constitutive activation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4896-904. [PMID: 12354121 DOI: 10.1046/j.1432-1033.2002.03207.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cytochrome P450 family of enzymes has long been known to metabolize a wide range of compounds, including many of today's most common drugs. A novel nuclear receptor called PXR has been established as an activator of several of the cytochrome P450 genes, including CYP3A4. This enzyme is believed to account for the metabolism of more than 50% of all prescription drugs. PXR is therefore used as a negative selector target and discriminatory filter in preclinical drug development. In this paper we describe the design, construction and characterization by transient transfection of mutant receptors of the human and mouse PXR ligand binding domains. By modeling the human PXR ligand binding domain we have identified and mutated two polar residues in the putative ligand binding pocket which differ between the human and the mouse receptor. The first residue (Q285 in human/I282 in mouse) was mutated between the two species with the corresponding amino acids. These mutants showed that this residue is important for the species specific activation of PXR by the ligand pregnenolone-16alpha-carbonitrile (PCN), while having a less pronounced role in receptor activation by rifampicin. The second residue to be mutated (H407 in human/Q404 in mouse) unexpectedly proved to be important for the basal level of activation of PXR. The H407A mutant of the human receptor showed a high level of constitutive activity, while the Q404H mutant of the mouse receptor demonstrated a sharply decreased basal activity compared to wild-type.
Collapse
Affiliation(s)
- Tove Ostberg
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
445
|
Maglich JM, Stoltz CM, Goodwin B, Hawkins-Brown D, Moore JT, Kliewer SA. Nuclear pregnane x receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol Pharmacol 2002; 62:638-46. [PMID: 12181440 DOI: 10.1124/mol.62.3.638] [Citation(s) in RCA: 517] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nuclear pregnane X receptor (PXR) and constitutive androstane receptor (CAR) play central roles in protecting the body against environmental chemicals (xenobiotics). PXR and CAR are activated by a wide range of xenobiotics and regulate cytochrome P450 and other genes whose products are involved in the detoxification of these chemicals. In this report, we have used receptor-selective agonists together with receptor-null mice to identify PXR and CAR target genes in the liver and small intestine. Our results demonstrate that PXR and CAR regulate overlapping but distinct sets of genes involved in all phases of xenobiotic metabolism, including oxidative metabolism, conjugation, and transport. Among the murine genes regulated by PXR were those encoding PXR and CAR. We provide evidence that PXR regulates a similar program of genes involved in xenobiotic metabolism in human liver. Among the genes regulated by PXR in primary human hepatocytes were the aryl hydrocarbon receptor and its target genes CYP1A1 and CYP1A2. These findings underscore the importance of these two nuclear receptors in defending the body against a broad array of potentially harmful xenobiotics.
Collapse
Affiliation(s)
- Jodi M Maglich
- Nuclear Receptor Discovery Research, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
446
|
Schuetz E, Lan L, Yasuda K, Kim R, Kocarek TA, Schuetz J, Strom S. Development of a real-time in vivo transcription assay: application reveals pregnane X receptor-mediated induction of CYP3A4 by cancer chemotherapeutic agents. Mol Pharmacol 2002; 62:439-45. [PMID: 12181418 DOI: 10.1124/mol.62.3.439] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We report the development of a rapid real-time assay that measures the transcription of luciferase reporter genes in transduced mouse hepatic cells in vivo. Luciferase activity is noninvasively measured by whole-body optical imaging within hours of the hydrodynamic injection of as little as 1 microg of naked DNA. Transcription of genes introduced as linearized DNA can be serially assayed for weeks in each animal. Transcription was quantified by extracorporal monitoring of bioluminescence as well as or better than by traditional in vitro bioluminescence assay. Our assay allows the measurement of transcription as it occurs, under the most informative biological conditions (i.e., in a living, intact organ). Furthermore, it substantially reduces the cost, time, and number of animals required for analysis of gene expression. The utility of the method is demonstrated in the discovery that topotecan and etoposide are ligands of pregnane X receptor that induce CYP3A4 transcription.
Collapse
Affiliation(s)
- Erin Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | | | | | | | | | | | |
Collapse
|
447
|
Handschin C, Podvinec M, Amherd R, Looser R, Ourlin JC, Meyer UA. Cholesterol and bile acids regulate xenosensor signaling in drug-mediated induction of cytochromes P450. J Biol Chem 2002; 277:29561-7. [PMID: 12045201 DOI: 10.1074/jbc.m202739200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochromes P450 (CYP) constitute the major enzymatic system for metabolism of xenobiotics. Here we demonstrate that transcriptional activation of CYPs by the drug-sensing nuclear receptors pregnane X receptor, constitutive androstane receptor, and the chicken xenobiotic receptor (CXR) can be modulated by endogenous cholesterol and bile acids. Bile acids induce the chicken drug-activated CYP2H1 via CXR, whereas the hydroxylated metabolites of bile acids and oxysterols inhibit drug induction. The cholesterol-sensing liver X receptor competes with CXR, pregnane X receptor, or constitutive androstane receptor for regulation of drug-responsive enhancers from chicken CYP2H1, human CYP3A4, or human CYP2B6, respectively. Thus, not only cholesterol 7 alpha-hydroxylase (CYP7A1), but also drug-inducible CYPs, are diametrically affected by these receptors. Our findings reveal new insights into the increasingly complex network of nuclear receptors regulating lipid homeostasis and drug metabolism.
Collapse
Affiliation(s)
- Christoph Handschin
- Division of Pharmacology/Neurobiology, Biozentrum of the University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
448
|
Goodwin B, Hodgson E, D'Costa DJ, Robertson GR, Liddle C. Transcriptional regulation of the human CYP3A4 gene by the constitutive androstane receptor. Mol Pharmacol 2002; 62:359-65. [PMID: 12130689 DOI: 10.1124/mol.62.2.359] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 3A4 (CYP3A4), the predominant P450 expressed in adult human liver, is both constitutively expressed and transcriptionally activated by a variety of structurally diverse xenochemicals. In this study, we examined the role of the constitutive androstane receptor (CAR), a member of the steroid/retinoid/thyroid hormone receptor superfamily, in the transcriptional regulation of CYP3A4. Herein, we demonstrate that CAR is capable of trans-activating expression of the CYP3A4 gene, both in vitro and in vivo. Induction of CYP3A4 is dependent on cooperativity between elements within the promoter proximal region of the gene and the distal xenobiotic-responsive enhancer module. CAR responsiveness was shown to be primarily mediated by two high-affinity binding motifs located within the CYP3A4 gene 5'-flanking region, approximately 7720 and 150 bases upstream of the transcription initiation site. Importantly, the human CAR response elements also mediate trans-activation of CYP3A4 by the human pregnane X receptor, suggesting that interplay between these receptors is likely to be an important determinant of CYP3A4 expression.
Collapse
Affiliation(s)
- Bryan Goodwin
- Department of Clinical Pharmacology and Storr Liver Unit, University of Sydney, Westmead Millennium Institute, Westmead, New South Wales, Australia
| | | | | | | | | |
Collapse
|
449
|
Mäkinen J, Frank C, Jyrkkärinne J, Gynther J, Carlberg C, Honkakoski P. Modulation of mouse and human phenobarbital-responsive enhancer module by nuclear receptors. Mol Pharmacol 2002; 62:366-78. [PMID: 12130690 DOI: 10.1124/mol.62.2.366] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The constitutive androstane receptor (CAR) regulates mouse and human CYP2B genes through binding to the direct repeat-4 (DR4) motifs present in the phenobarbital-responsive enhancer module (PBREM). The preference of PBREM elements for nuclear receptors and the extent of cross-talk between CAR and other nuclear receptors are currently unknown. Our transient transfection and DNA binding experiments indicate that binding to DR4 motifs does not correlate with the activation response and that mouse and human PBREM are efficiently 'insulated' from the effects of other nuclear receptors despite their substantial affinity for DR4 motifs. Certain nuclear receptors that do not bind to DR4 motifs, such as peroxisome proliferator-activated receptor-alpha and farnesoid X receptor, can suppress PBREM function via a coactivator-dependent process that may have relevance in vivo. In competition experiments, mouse PBREM is clearly more selective for CAR than human PBREM. Pregnane X, vitamin D, and thyroid hormone receptors can potentially compete with human CAR on human PBREM. In contrast to the selective nature of PBREM, CYP3A enhancers are highly and comparably responsive to CAR, pregnane X receptor, and vitamin D receptor. In addition, the ligand specificities of human and mouse CAR were defined by mammalian cotransfection and yeast two-hybrid techniques. Our results provide new mechanistic explanations to several previously unresolved aspects of CYP2B and CYP3A gene regulation.
Collapse
Affiliation(s)
- Janne Mäkinen
- Department of Pharmaceutics, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
450
|
Burk O, Tegude H, Koch I, Hustert E, Wolbold R, Glaeser H, Klein K, Fromm MF, Nuessler AK, Neuhaus P, Zanger UM, Eichelbaum M, Wojnowski L. Molecular mechanisms of polymorphic CYP3A7 expression in adult human liver and intestine. J Biol Chem 2002; 277:24280-24288. [PMID: 11940601 DOI: 10.1074/jbc.m202345200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human CYP3A enzymes play a pivotal role in the metabolism of many drugs, and the variability of their expression among individuals may have a strong impact on the efficacy of drug treatment. However, the individual contributions of the four CYP3A genes to total CYP3A activity remain unclear. To elucidate the role of CYP3A7, we have studied its expression in human liver and intestine. In both organs, expression of CYP3A7 mRNA was polymorphic. The recently identified CYP3A7*1C allele was a consistent marker of increased CYP3A7 expression both in liver and intestine, whereas the CYP3A7*1B allele was associated with increased CYP3A7 expression only in liver. Because of the replacement of part of the CYP3A7 promoter by the corresponding region of CYP3A4, the CYP3A7*1C allele contains the proximal ER6 motif of CYP3A4. The pregnane X and constitutively activated receptors were shown to bind with higher affinity to CYP3A4-ER6 than to CYP3A7-ER6 motifs and transactivated only promoter constructs containing CYP3A4-ER6. Furthermore, we identified mutations in CYP3A7*1C in addition to the ER6 motif that were necessary only for activation by the constitutively activated receptor. We conclude that the presence of the ER6 motif of CYP3A4 mediates the high expression of CYP3A7 in subjects carrying CYP3A7*1C.
Collapse
Affiliation(s)
- Oliver Burk
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstrasse 112, D-70376 Stuttgart, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|