401
|
Payne D, Drinkwater S, Baretto R, Duddridge M, Browning MJ. Expression of chemokine receptors CXCR4, CXCR5 and CCR7 on B and T lymphocytes from patients with primary antibody deficiency. Clin Exp Immunol 2009; 156:254-62. [PMID: 19250276 DOI: 10.1111/j.1365-2249.2009.03889.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The interaction of chemokines and their receptors directs lymphocyte migration, and is involved in the distribution and organization of lymphocytes within lymphoid tissues. We reasoned that abnormal chemokine receptor expression might give rise to defects of lymphocyte migration into and within lymphoid tissues, and consequently be associated with defective antibody production in primary antibody deficiencies. In this study, we have investigated the expression of chemokine receptors CXCR4, CXCR5 and CCR7 on lymphocyte subpopulations (naive and memory B cells; CD4(+) and CD8(+) T cells) in a cohort of patients with primary antibody deficiency (n = 23), and compared these with a group of healthy controls (n = 19). We show that there were significant differences in both the proportions of lymphocytes expressing, and the levels of expression of, specific chemokine receptors on individual lymphocyte subpopulations between patients and controls. Furthermore, these changes appeared more pronounced in patients with more severe antibody deficiency. These data support the hypothesis that abnormal lymphocyte trafficking may be involved in the pathogenesis of primary antibody deficiencies.
Collapse
Affiliation(s)
- D Payne
- Department of Immunology, Leicester Royal Infirmary, Leicester, UK
| | | | | | | | | |
Collapse
|
402
|
Hamatake M, Aoki T, Futahashi Y, Urano E, Yamamoto N, Komano J. Ligand-independent higher-order multimerization of CXCR4, a G-protein-coupled chemokine receptor involved in targeted metastasis. Cancer Sci 2009; 100:95-102. [PMID: 19018754 PMCID: PMC11159631 DOI: 10.1111/j.1349-7006.2008.00997.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 09/01/2008] [Accepted: 09/07/2008] [Indexed: 11/30/2022] Open
Abstract
CXCR4, a G-protein-coupled receptor of CXCL12/stromal cell-derived factor-1alpha, mediates a wide range of physiological and pathological processes, including the targeted metastasis of cancer cells. CXCR4 has been shown to homo-oligomerize in several experimental systems. However, it remains unclear with which domains CXCR4 interacts homotypically, and whether it dimerizes or forms a higher-order complex. To address these issues, we used bioluminescent resonance energy transfer and bimolecular fluorescence complementation analyses to measure the homotypic interactions of CXCR4 in living cells. Both assays indicated that CXCR4 interacts homotypically, which is consistent with previous studies. By studying CXCR4 mutants lacking various domains, we found that multiple transmembrane domains probably serve as potential molecular interaction surfaces for oligomerization. The relative contribution of the amino- or carboxy-termini to oligomerization was small. To differentiate between a dimer and a multimer consisting of more than two molecules, bioluminescent resonance energy transfer-bimolecular fluorescence complementation analysis was conducted. It revealed that CXCR4 engages in higher-order oligomerization in a ligand-independent fashion. This is the first report providing direct experimental evidence for the higher-order multimerization of CXCR4 in vivo. We hypothesize that CXCR4 distributes to the cell surface as a multimer, in order to effectively sense, with increased avidity, the chemotaxis-inducing ligand in the microenvironment. Studying the structure and function of the oligomeric state of CXCR4 may lead us to develop novel CXCR4 inhibitors that disassemble the molecular cluster of CXCR4.
Collapse
Affiliation(s)
- Makiko Hamatake
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | |
Collapse
|
403
|
Raman D, Neel NF, Sai J, Mernaugh RL, Ham AJL, Richmond AJ. Characterization of chemokine receptor CXCR2 interacting proteins using a proteomics approach to define the CXCR2 "chemosynapse". Methods Enzymol 2009; 460:315-30. [PMID: 19446732 PMCID: PMC3140414 DOI: 10.1016/s0076-6879(09)05215-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemokine-receptor signaling is initiated upon ligand binding to the receptor and continues through the process of endocytic trafficking by the association of a variety of adaptor proteins with the chemokine receptor. In order to define the adaptor proteins that associate with CXCR2 before and after ligand activation, a protocol was developed using differentiated HL-60 cells transfected to express CXCR2 stimulated or not stimulated with ligand for one minute. CXCR2-associating proteins were isolated by immunoprecipitation with CXCR2 antibody and the eluted proteins were electrophoretically run into the separating gel directly without a stacking gel. The stained single band was subjected to in-gel trypsin digestion. The tryptic peptides were subjected to, LC/MS/MS proteomic analysis. Proteins identified in a minimum of three of four separate experiments with multiple peptides were then validated as CXCR2 adaptor proteins by coimmunoprecipitation, GST pull-down studies, and immunocytochemical CXCR2-colocalization experiments using dHL-60-CXCR2 cells. Subsequently, a functional analysis of the interaction between CXCR2 and CXCR2 interacting proteins was performed. This approach can be used to characterize chemokine receptor-associating proteins over time both before and after ligand stimulation, allowing definition of the dynamic spatial and temporal formation of a "chemosynapse."
Collapse
Affiliation(s)
- Dayanidhi Raman
- Department of Cancer Biology, and Veterans Affairs Medical Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
404
|
Rettig MP, Ramirez P, Nervi B, DiPersio JF. Chapter 2 CXCR4 and Mobilization of Hematopoietic Precursors. Methods Enzymol 2009; 460:57-90. [DOI: 10.1016/s0076-6879(09)05203-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
405
|
Abstract
PURPOSE OF REVIEW Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is characterized by susceptibility to human papilloma virus infection-induced warts and carcinomas; neutropenia, B-cell lymphopenia and hypogammaglobulinema-related infections; and bone marrow myelokathexis (myeloid hyperplasia with apoptosis). The purpose of this report is to review new findings about WHIM. RECENT FINDINGS Most WHIM patients have heterozygous C-terminus deletion mutations of the intracellular carboxy terminus of the chemokine receptor CXCR4. WHIM leukocytes have enhanced responses to CXCL12, the cognate ligand of CXCR4. Enhanced activity of CXCR4 delays release of mature neutrophils from bone marrow, resulting in neutropenia and apoptosis of mature neutrophils retained in the marrow. Finding two patients with WHIM who do not have detectable mutations of CXCR4 but whose cells are hyperresponsive to CXCL12 raises the possibility that there is more than one genetic basis for WHIM. One patient had low levels of G-protein receptor kinase 3, and the functional hyperactivity response to CXCL12 was corrected by forced gene transfer-mediated overexpression of G-protein receptor kinase 3, implicating defects in function of this protein as a potential alternate genetic cause of WHIM. SUMMARY Subjects reviewed include clinical presentation, diagnosis, and treatment of WHIM and advances in understanding the genetic basis of WHIM.
Collapse
Affiliation(s)
- Toshinao Kawai
- Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan
| | - Harry L. Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
406
|
Bauer TR, Adler RL, Hickstein DD. Potential large animal models for gene therapy of human genetic diseases of immune and blood cell systems. ILAR J 2009; 50:168-86. [PMID: 19293460 PMCID: PMC2806185 DOI: 10.1093/ilar.50.2.168] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Genetic mutations involving the cellular components of the hematopoietic system--red blood cells, white blood cells, and platelets--manifest clinically as anemia, infection, and bleeding. Although gene targeting has recapitulated many of these diseases in mice, these murine homologues are limited as translational models by their small size and brief life span as well as the fact that mutations induced by gene targeting do not always faithfully reflect the clinical manifestations of such mutations in humans. Many of these limitations can be overcome by identifying large animals with genetic diseases of the hematopoietic system corresponding to their human disease counterparts. In this article, we describe human diseases of the cellular components of the hematopoietic system that have counterparts in large animal species, in most cases carrying mutations in the same gene (CD18 in leukocyte adhesion deficiency) or genes in interacting proteins (DNA cross-link repair 1C protein and protein kinase, DNA-activated catalytic polypeptide in radiation-sensitive severe combined immunodeficiency). Furthermore, we describe the potential of these animal models to serve as disease-specific preclinical models for testing the efficacy and safety of clinical interventions such as hematopoietic stem cell transplantation or gene therapy before their use in humans with the corresponding disease.
Collapse
Affiliation(s)
- Thomas R Bauer
- Experimental Transplantation and Immunology Branch of the Center for Cancer Research at the National Cancer Institute of the National Institutes of Health in Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
407
|
Familial occurrence of warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome. Arch Immunol Ther Exp (Warsz) 2008; 56:419-25. [PMID: 19043667 PMCID: PMC2805795 DOI: 10.1007/s00005-008-0046-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 10/20/2008] [Indexed: 11/07/2022]
Abstract
Introduction: Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a rare immunodeficiency disorder with an autosomal-dominant pattern of inheritance and low fatality rate but significant lifelong morbidity. Materials and Methods: A 27-year-old mother of two children has been suffering from severe neutropenia and recurrent infections with the diagnosis of sporadic WHIM syndrome established by sequencing the CXCR4 gene and the finding of a heterozygous 1000 C→T nonsense mutation in the second CXCR4 exon. The first child was an apparently healthy boy delivered at full term. Umbilical cord blood cells were obtained for genetic analysis. Peripheral blood cells were also analyzed at 8 months of life. Both analyses revealed the same mutation as that of his mother. The child was in a good condition, manifesting neutropenia without infections until 11 months of life. He subsequently developed pneumonia requiring a more aggressive treatment. After that, the regular substitution of immunoglobulins (IVIGs) and G-CSF has been preventing serious infections. Six months ago the second boy was delivered who also demonstrated neutropenia without severe infections. Genetic studies using cord blood and also peripheral blood cells in the fourth month showed an identical mutation of the CXCR4 gene as in his mother. Moreover, the mother and her first son demonstrated monocytopenia. Results: The results indicate that genetic defects connected with WHIM syndrome may influence not only the granulocyte, but also the monocytic lineage. Moreover, a perinatal diagnosis of WHIM syndrome made by sequencing the CXCR4 gene should be performed in cases where either parent is known to be affected with this disease. Conclusions: This would facilitate an earlier detection of the deficiency in children, thereby allowing a more comprehensive follow-up and administration of appropriate therapy.
Collapse
|
408
|
Sung B, Jhurani S, Ahn KS, Mastuo Y, Yi T, Guha S, Liu M, Aggarwal BB. Zerumbone down-regulates chemokine receptor CXCR4 expression leading to inhibition of CXCL12-induced invasion of breast and pancreatic tumor cells. Cancer Res 2008; 68:8938-8944. [PMID: 18974138 DOI: 10.1158/0008-5472.can-08-2155] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CXC chemokine receptor 4 (CXCR4), initially linked with leukocyte trafficking, is now known to be expressed in various tumors including breast, ovary, prostate, gastrointestinal, head and neck, bladder, brain, and melanoma. This receptor mediates homing of tumor cells to specific organs that express the ligand CXCL12 for this receptor. Thus, agents that can down-regulate CXCR4 expression have potential against cancer metastasis. In this study, we report the identification of zerumbone, a component of subtropical ginger (Zingiber zerumbet), as a regulator of CXCR4 expression. This sesquiterpene down-regulated the expression of CXCR4 on HER2-overexpressing breast cancer cells in a dose- and time-dependent manner. The decrease in CXCR4 by zerumbone was found to be not cell type specific as its expression was abrogated in leukemic, skin, kidney, lung, and pancreatic cancer cell lines. The down-regulation of CXCR4 was not due to proteolytic degradation but rather to transcriptional regulation, as indicated by down-regulation of mRNA expression, inhibition of nuclear factor-kappaB activity, and suppression of chromatin immunoprecipitation activity. Suppression of CXCR4 expression by zerumbone correlated with the inhibition of CXCL12-induced invasion of both breast and pancreatic cancer cells. An analogue of zerumbone, alpha-humulene, which lacks the carbonyl group, was found to be inactive in inducing CXCR4 down-regulation. Overall, our results show that zerumbone is a novel inhibitor of CXCR4 expression and thus has a potential in the suppression of cancer metastasis.
Collapse
Affiliation(s)
- Bokyung Sung
- Department of Experimental Therapeutics, Cytokine Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
409
|
Vinurel H, Karkowski L, Freymond N, Pacheco Y, Rousset H, Devouassoux G, Sailler L. Verrues et infections pulmonaires à répétition. Rev Med Interne 2008; 29:943-5. [DOI: 10.1016/j.revmed.2008.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
410
|
von Vietinghoff S, Ley K. Homeostatic regulation of blood neutrophil counts. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:5183-8. [PMID: 18832668 PMCID: PMC2745132 DOI: 10.4049/jimmunol.181.8.5183] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Blood neutrophil counts are determined by the differentiation and proliferation of precursor cells, the release of mature neutrophils from the bone marrow, margination, trafficking and transmigration through the endothelial lining, neutrophil apoptosis, and uptake by phagocytes. This brief review summarizes the regulation of blood neutrophil counts, which is in part controlled by G-CSF, IL-17, and IL-23. Neutrophils are retained in the bone marrow through interaction of CXCL12 with its receptor CXCR4. The relevance of this mechanism is illustrated by rare diseases in which disrupting the desensitization of CXCR4 results in failure to release mature neutrophils from bone marrow. Although blood neutrophil numbers in inbred mouse strains and individual human subjects are tightly controlled, their large variation among outbred populations suggests genetic factors. One example is benign ethnic neutropenia, which is found in some African Americans. Reduced and elevated neutrophil counts, even within the normal range, are associated with excess all-cause mortality.
Collapse
Affiliation(s)
- Sibylle von Vietinghoff
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | |
Collapse
|
411
|
Abstract
The production and deployment of phagocytes are central functions of the hematopoietic system. In the 1950s, radioisotopic studies demonstrated the high production rate and short lifespan of neutrophils and allowed researchers to follow the monocytes as they moved from the marrow through the blood to become tissue macrophages, histiocytes, and dendritic cells. Subsequently, the discovery of the colony-stimulating factors greatly improved understanding the regulation of phagocyte production. The discovery of the microbicidal myeloperoxidase-H2O2-halide system and the importance of NADPH oxidase to the generation of H2O2 also stimulated intense interest in phagocyte disorders. More recent research has focused on membrane receptors and the dynamics of the responses of phagocytes to external factors including immunoglobulins, complement proteins, cytokines, chemokines, integrins, and selectins. Phagocytes express toll-like receptors that aid in the clearance of a wide range of microbial pathogens and their products. Phagocytes are also important sources of pro- and anti-inflammatory cytokines, thus participating in host defenses through a variety of mechanisms. Over the last 50 years, many genetic and molecular disorders of phagocytes have been identified, leading to improved diagnosis and treatment of conditions which predispose patients to the risk of recurrent fevers and infectious diseases.
Collapse
|
412
|
Abstract
Children with a history of recurrent or unusual infections present a diagnostic challenge. Differentiation between frequent infections caused by common risk factors, versus primary immune dysfunction should be based on a detailed history and physical examination and, if indicated, followed by appropriate laboratory studies. A high index of suspicion could lead to an early diagnosis and treatment of an underlying immune deficiency disease. This article presents to physicians an approach to the evaluation of children with recurrent infections. Important details from the history and physical examination, and an appropriate choice of screening laboratory test to be ordered in a given situation are discussed.
Collapse
Affiliation(s)
- Mark Ballow
- Division of Allergy/Clinical Immunology, Department of Pediatrics, Women & Children's Hospital of Buffalo, SUNY Buffalo School of Medicine and Biomedical Sciences, 219 Bryant Street, Buffalo, NY 14222, USA.
| |
Collapse
|
413
|
Hachet-Haas M, Balabanian K, Rohmer F, Pons F, Franchet C, Lecat S, Chow KYC, Dagher R, Gizzi P, Didier B, Lagane B, Kellenberger E, Bonnet D, Baleux F, Haiech J, Parmentier M, Frossard N, Arenzana-Seisdedos F, Hibert M, Galzi JL. Small neutralizing molecules to inhibit actions of the chemokine CXCL12. J Biol Chem 2008; 283:23189-99. [PMID: 18556651 DOI: 10.1074/jbc.m803947200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The chemokine CXCL12 and the receptor CXCR4 play pivotal roles in normal vascular and neuronal development, in inflammatory responses, and in infectious diseases and cancer. For instance, CXCL12 has been shown to mediate human immunodeficiency virus-induced neurotoxicity, proliferative retinopathy and chronic inflammation, whereas its receptor CXCR4 is involved in human immunodeficiency virus infection, cancer metastasis and in the rare disease known as the warts, hypogammaglobulinemia, immunodeficiency, and myelokathexis (WHIM) syndrome. As we screened chemical libraries to find inhibitors of the interaction between CXCL12 and the receptor CXCR4, we identified synthetic compounds from the family of chalcones that reduce binding of CXCL12 to CXCR4, inhibit calcium responses mediated by the receptor, and prevent CXCR4 internalization in response to CXCL12. We found that the chemical compounds display an original mechanism of action as they bind to the chemokine but not to CXCR4. The highest affinity molecule blocked chemotaxis of human peripheral blood lymphocytes ex vivo. It was also active in vivo in a mouse model of allergic eosinophilic airway inflammation in which we detected inhibition of the inflammatory infiltrate. The compound showed selectivity for CXCL12 and not for CCL5 and CXCL8 chemokines and blocked CXCL12 binding to its second receptor, CXCR7. By analogy to the effect of neutralizing antibodies, this molecule behaves as a small organic neutralizing compound that may prove to have valuable pharmacological and therapeutic potential.
Collapse
Affiliation(s)
- Muriel Hachet-Haas
- Institut Gilbert Laustriat Biomolécules, Biotechnologie, Innovation thérapeutique, Université Louis Pasteur, 67401 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
414
|
|
415
|
|
416
|
Boztug K, Welte K, Zeidler C, Klein C. Congenital Neutropenia Syndromes. Immunol Allergy Clin North Am 2008; 28:259-75, vii-viii. [DOI: 10.1016/j.iac.2008.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
417
|
CXCR4 dimerization and beta-arrestin-mediated signaling account for the enhanced chemotaxis to CXCL12 in WHIM syndrome. Blood 2008; 112:34-44. [PMID: 18436740 DOI: 10.1182/blood-2007-07-102103] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome is an immune deficiency linked in many cases to heterozygous mutations causing truncations in the cytoplasmic tail of CXC chemokine receptor 4 (CXCR4). Leukocytes expressing truncated CXCR4 display enhanced responses to the receptor ligand CXCL12, including chemotaxis, which likely impair their trafficking and contribute to the immunohematologic clinical manifestations of the syndrome. CXCR4 desensitization and endocytosis are dependent on beta-arrestin (betaarr) recruitment to the cytoplasmic tail, so that the truncated CXCR4 are refractory to these processes and so have enhanced G protein-dependent signaling. Here, we show that the augmented responsiveness of WHIM leukocytes is also accounted for by enhanced betaarr2-dependent signaling downstream of the truncated CXCR4 receptor. Indeed, the WHIM-associated receptor CXCR4(1013) maintains association with betaarr2 and triggers augmented and prolonged betaarr2-dependent signaling, as revealed by ERK1/2 phosphorylation kinetics. Evidence is also provided that CXCR4(1013)-mediated chemotaxis critically requires betaarr2, and disrupting the SHSK motif in the third intracellular loop of CXCR4(1013) abrogates betaarr2-mediated signaling, but not coupling to G proteins, and normalizes chemotaxis. We also demonstrate that CXCR4(1013) spontaneously forms heterodimers with wild-type CXCR4. Accordingly, we propose a model where enhanced functional interactions between betaarr2 and receptor dimers account for the altered responsiveness of WHIM leukocytes to CXCL12.
Collapse
|
418
|
Balabanian K, Levoye A, Klemm L, Lagane B, Hermine O, Harriague J, Baleux F, Arenzana-Seisdedos F, Bachelerie F. Leukocyte analysis from WHIM syndrome patients reveals a pivotal role for GRK3 in CXCR4 signaling. J Clin Invest 2008; 118:1074-84. [PMID: 18274673 DOI: 10.1172/jci33187] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 12/19/2007] [Indexed: 01/17/2023] Open
Abstract
Leukocytes from individuals with warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome, a rare immunodeficiency, and bearing a wild-type CXCR4 ORF (WHIM(WT)) display impaired CXCR4 internalization and desensitization upon exposure to CXCL12. The resulting enhanced CXCR4-dependent responses, including chemotaxis, probably impair leukocyte trafficking and account for the immunohematologic clinical manifestations of WHIM syndrome. We provided here evidence that GPCR kinase-3 (GRK3) specifically regulates CXCL12-promoted internalization and desensitization of CXCR4. GRK3-silenced control cells displayed altered CXCR4 attenuation and enhanced chemotaxis, as did WHIM(WT) cells. These findings identified GRK3 as a negative regulator of CXCL12-induced chemotaxis and as a candidate responsible for CXCR4 dysfunction in WHIM(WT) leukocytes. Consistent with this, we showed that GRK3 overexpression in both leukocytes and skin fibroblasts from 2 unrelated WHIM(WT) patients restored CXCL12-induced internalization and desensitization of CXCR4 and normalized chemotaxis. Moreover, we found in cells derived from one patient a profound and selective decrease in GRK3 products that probably resulted from defective mRNA synthesis. Taken together, these results have revealed a pivotal role for GRK3 in regulating CXCR4 attenuation and have provided a mechanistic link between the GRK3 pathway and the CXCR4-related WHIM(WT) disorder.
Collapse
|
419
|
Abstract
PURPOSE OF REVIEW This review summarizes the recent advances in the diagnosis and molecular characterization of isolated and syndromal forms of severe congenital neutropenia. RECENT FINDINGS It has become evident that severe congenital neutropenia comprises several genetically distinct entities. In 1999, mutations were identified in the neutrophil elastase gene ELA2. ELA2 mutations have been found in cyclic, sporadic and autosomal dominant neutropenia. Recently, homozygous mutations in the antiapoptotic gene HAX1 were found in patients with autosomal recessive severe congenital neutropenia. Ongoing linkage studies suggest that more and, as yet unidentified, genes may be involved in the pathophysiology of severe congenital neutropenia. In other patients, congenital neutropenia is not an isolated finding but is associated with other abnormalities, in particular, lymphoid immunodeficiency and pigmentation defects such as Chédiak-Higashi syndrome, Griscelli syndrome type 2, Hermansky-Pudlak syndrome type 2, or deficiency of the endosomal adaptor p14. The molecular identification of these disorders originating from mutations in lysosome (related) proteins has advanced our knowledge of intracellular protein trafficking. SUMMARY Recent insights into the molecular etiology of severe congenital neutropenia provide the opportunity for a definitive genetic classification system. Based on this knowledge, disease-related risks may be recognized and optimized therapeutic options may become available.
Collapse
|
420
|
Desjardins SF, Berchiche YA, Haddad E, Heveker N. [Multiple talents of the chemokine receptor-CXCR4]. Med Sci (Paris) 2008; 23:980-4. [PMID: 18021711 DOI: 10.1051/medsci/20072311980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
CXCR4 is a clinically relevant chemokine receptor that has first gained attention as one of the cofactors for HIV entry into target cells. Moreover, the receptor is involved in cancer cell migration to distant metastatic sites and immune effector recruitment in inflammatory diseases such as asthma and rheumatoid arthritis. Unfortunately, pharmacologic intervention is complicated by the vital function of CXCR4 in the organism. The most prominent of these functions is its role in stem cell homing. The CXCR4 chemokine ligand, produced by bone marrow stromal cells, leads both to migration of hematopoietic stem cells towards this niche and their retention in this compartment. As models of G-protein coupled receptor (GPCR) activation evolve, it becomes clear that multiple factors modulate the functional outcome of ligand binding to a receptor. Modulation of GPCR activity, for example by allosteric ligands, may permit more subtle therapeutic approaches adapted to long term treatment. In addition, GPCR signalling can be altered by hetero-oligomerization of GPCRs. In this perspective, it might be possible to achieve modulation of GPCR signalling by also targeting the oligomerization partner of a given receptor. This approach is described using the example of strategies that aim at the optimization of stem cell homing in the context of cord blood-derived hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Sonia F Desjardins
- Département de Biochimie, Université de Montréal, Montréal (Québec), H3T 1J4 Canada
| | | | | | | |
Collapse
|
421
|
Minina S, Reichman-Fried M, Raz E. Control of receptor internalization, signaling level, and precise arrival at the target in guided cell migration. Curr Biol 2008; 17:1164-72. [PMID: 17600713 DOI: 10.1016/j.cub.2007.05.073] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/24/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
Activation of the chemokine receptor CXCR4 by SDF1 controls a variety of biological processes in development, immune response, and disease [1-5]. The carboxyl-terminal region of CXCR4 is subject to phosphorylation that allows binding of regulatory proteins [5]; this results in downregulation of CXCR4 signaling and receptor internalization [6]. Notably, truncations of this part of CXCR4 have been implicated in WHIM syndrome, a dominantly inherited immunodeficiency disorder [7, 8]. Despite its importance in receptor signaling and the clinical relevance of its regulation, the precise function of regulating signaling level and internalization in controlling cell behavior is not known. Whereas a number of in vitro studies suggested that the carboxyl terminus of CXCR4 positively regulates chemotaxis (e.g., [9]), others reached the opposite conclusion [8, 10, 11]. These conflicting results highlight the importance of investigating this process under physiological conditions in the live animal. In this study, we demonstrate the significance of internalization and of controlling receptor signaling level for SDF-1-guided migration. We found that whereas internalization and the control over signaling intensity are dispensable for cell motility and directional sensing, they are essential for fine-tuning of migration in vivo, allowing precise arrival of zebrafish PGCs at their target, the region where the gonad develops.
Collapse
Affiliation(s)
- Sofia Minina
- Germ Cell Development, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | | | | |
Collapse
|
422
|
Host Defenses Against Human Papillomaviruses: Lessons from Epidermodysplasia Verruciformis. Curr Top Microbiol Immunol 2008; 321:59-83. [DOI: 10.1007/978-3-540-75203-5_3] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
423
|
Schäffer AA, Klein C. Genetic heterogeneity in severe congenital neutropenia: how many aberrant pathways can kill a neutrophil? Curr Opin Allergy Clin Immunol 2007; 7:481-94. [PMID: 17989524 PMCID: PMC2720578 DOI: 10.1097/aci.0b013e3282f1d690] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Severe congenital neutropenia is a primary immunodeficiency in which lack of neutrophils causes inadequate innate immune host response to bacterial infections. Severe congenital neutropenia occurs with sporadic, autosomal dominant, autosomal recessive and X-linked recessive inheritance, as well as in a variety of multisystem syndromes. A principal stimulus for this review is the identification of novel genetic defects and pathophysiological insights into the role of neutrophil apoptosis. RECENT FINDINGS The recent findings include identification of mutations in HAX1 in autosomal recessive severe congenital neutropenia (Kostmann disease), a large epidemiological study estimating the risk of progression from severe congenital neutropenia to leukemia, a better understanding of how heterozygous mutations in neutrophil elastase (ELA2) cause severe congenital neutropenia, molecular characterization of a novel syndromic form of severe congenital neutropenia called p14 deficiency and new animal models for several syndromic forms of severe congenital neutropenia. SUMMARY We consider the numerous genes mutated in severe congenital neutropenia, the many attempts to make animal models of severe congenital neutropenia, and the results from both human and mouse studies investigating the molecular mechanisms of neutrophil apoptosis. Investigations of how severe congenital neutropenia genes and apoptosis pathways are connected should lead to a better understanding of the pathogenesis of neutropenia and apoptosis pathways relevant to many cell types.
Collapse
Affiliation(s)
- Alejandro A. Schäffer
- Computational Biology Branch, National Center for Biotechnology Information, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20894 USA
| | - Christoph Klein
- Department of Pediatric Hematology/Oncology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
424
|
Affiliation(s)
- John B Hagan
- Division of Allergic Diseases and Division of Hematopathology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
425
|
Imami N, Westrop S, Cranage A, Burton C, Gotch F. Combined use of cytokines, hormones and therapeutic vaccines during effective antiretroviral therapy. ACTA ACUST UNITED AC 2007. [DOI: 10.2217/17469600.1.2.171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immune-based therapies using vaccines, cytokines and hormones are being considered in the context of effective antiretroviral therapy to induce immunologically defined long-term nonprogressor status in chronically infected HIV-1 patients. Such immunotherapy must allow induction or regeneration of anti-HIV-1 immune responses with the potential to control viremia, activate and eradicate viral reservoirs, and alleviate the immunosuppression caused by HIV-1, eventually possibly reaching the status of a virologically defined ‘elite controller’ with an absence of detectable viremia and no progression to disease over a long period of time. This article summarizes pilot studies utilizing therapeutic vaccines, cytokines and/or hormones in treated HIV-1 infection, and focuses on novel agents and immunotherapeutic options that may have the potential to augment or replace existing antiretroviral therapy with the aim of inducing nonprogressor status in the infected host.
Collapse
Affiliation(s)
- Nesrina Imami
- Imperial College London, Department of Immunology, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - Samantha Westrop
- Imperial College London, Department of Immunology, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - Alison Cranage
- Imperial College London, Department of Immunology, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - Catherine Burton
- Imperial College London, Department of Immunology, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - Frances Gotch
- Imperial College London, Department of Immunology, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| |
Collapse
|
426
|
De La Luz Sierra M, Gasperini P, McCormick PJ, Zhu J, Tosato G. Transcription factor Gfi-1 induced by G-CSF is a negative regulator of CXCR4 in myeloid cells. Blood 2007; 110:2276-85. [PMID: 17596540 PMCID: PMC1988943 DOI: 10.1182/blood-2007-03-081448] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mechanisms underlying granulocyte-colony stimulating factor (G-CSF)-induced mobilization of granulocytic lineage cells from the bone marrow to the peripheral blood remain elusive. We provide evidence that the transcriptional repressor growth factor independence-1 (Gfi-1) is involved in G-CSF-induced mobilization of granulocytic lineage cells from the bone marrow to the peripheral blood. We show that in vitro and in vivo G-CSF promotes expression of Gfi-1 and down-regulates expression of CXCR4, a chemokine receptor essential for the retention of hematopoietic stem cells and granulocytic cells in the bone marrow. Gfi-1 binds to DNA sequences upstream of the CXCR4 gene and represses CXCR4 expression in myeloid lineage cells. As a consequence, myeloid cell responses to the CXCR4 unique ligand SDF-1 are reduced. Thus, Gfi-1 not only regulates hematopoietic stem cell function and myeloid cell development but also probably promotes the release of granulocytic lineage cells from the bone marrow to the peripheral blood by reducing CXCR4 expression and function.
Collapse
Affiliation(s)
- Maria De La Luz Sierra
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
427
|
Erdos M, Maródi L. WHIM syndrome. Orv Hetil 2007; 148:1173-9. [PMID: 17573253 DOI: 10.1556/oh.2007.28074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A WHIM-szindróma ritka, autoszomális domináns öröklődésmenetű primer immunhiány-betegség, amelyre vírusos szemölcsök, hypogammaglobulinaemia, visszatérő fertőzések és myelokathexis jellemző. A közleményben a szerzők egy esetismertetés kapcsán mutatják be a betegség klinikumát, laboratóriumi eltéréseit, összefoglalják a kórkép molekuláris patomechanizmusával kapcsolatos ismereteket és kezelésének lehetőségeit. A szerzők szerint a betegség inkomplett megjelenése a késői felismerés és kezelés gyakori oka gyermekkorban.
Collapse
Affiliation(s)
- Melinda Erdos
- Debreceni Egyetem, Orvos- és Egészségtudományi Centrum Infektológiai és Gyermekimmunológiai Tanszék Debrecen.
| | | |
Collapse
|
428
|
Arya M, Ahmed H, Silhi N, Williamson M, Patel HRH. Clinical importance and therapeutic implications of the pivotal CXCL12-CXCR4 (chemokine ligand-receptor) interaction in cancer cell migration. Tumour Biol 2007; 28:123-131. [PMID: 17510563 DOI: 10.1159/000102979] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 12/01/2006] [Indexed: 12/20/2022] Open
Abstract
Chemokines are small, secreted proteins and are now the largest known cytokine family. They mediate their effects through a family of G-protein-coupled receptors and were initially recognized for their ability to act as chemo-attractants and activators of specific types of leucocytes in a variety of immune and inflammatory responses. However, during the past 5 years there has been a chemokine revolution in cancer and all scientists and clinicians in oncology-related fields are now aware of their crucial role at all stages of neoplastic transformation and progression. The most important chemokine ligand-receptor interaction is that of the CXCL12 (stromal cell-derived factor-1, SDF-1) ligand with its exclusive receptor CXCR4; this interaction has a pivotal role in the directional migration of cancer cells during the metastatic process. This has been demonstrated by in vitro and in vivo experiments in addition to retrospective clinical studies. These findings have exciting implications in the field of cancer therapeutics, with several small molecule CXCR4 antagonists having been developed, which may provide clinical benefit in the therapy of cancer metastasis. Interestingly, it is likely that the effect of the anti-HER2 antibody [trastuzumab (Herceptin] in breast cancer involves downregulation of the CXCR4 receptor. Unfortunately, a major problem is that chemokine receptors are expressed in other cells within the body, particularly those of the immune system and it is not clear what effects long-term CXCR4 antagonism could have on innate and adaptive immunity. However, there is little doubt that the great strides made in elucidating the complex relationship between chemokines and their role in cancer will soon translate into significant survival benefits for patients.
Collapse
|
429
|
Schäffer AA, Salzer U, Hammarström L, Grimbacher B. Deconstructing common variable immunodeficiency by genetic analysis. Curr Opin Genet Dev 2007; 17:201-12. [PMID: 17467261 DOI: 10.1016/j.gde.2007.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 04/12/2007] [Indexed: 11/25/2022]
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic primary immunodeficiency. Patients have recurrent bacterial infections and an increased risk of developing autoimmune diseases, lung damage, and selected cancers. Since 2003, four genes have been shown to be mutated in CVID patients: ICOS, TNFRSF13B (encoding TACI), TNFRSF13C (encoding BAFF-R) and CD19. Heterozygous mutations in TNFRSF13B are also associated with CVID, whereas the other three genes are purely recessive. Recent genetic linkage studies have also identified possible loci for dominant CVID genes on chromosomes 4q, 5p and 16q. These findings markedly improved the genetic diagnosis of CVID and point towards new strategies for future genetic studies. In addition, some CVID genes might be relevant to more common diseases such as asthma and stroke.
Collapse
Affiliation(s)
- Alejandro A Schäffer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Heath and Human Services, 8600 Rockvile Pike, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
430
|
Tsuchida S, Kagi A, Takahashi T. Characterization of cDNA and genomic sequences encoding a canine chemokine receptor, CXCR4 and its ligand CXCL12. Vet Immunol Immunopathol 2007; 116:219-25. [PMID: 17316828 DOI: 10.1016/j.vetimm.2007.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 01/11/2007] [Accepted: 01/19/2007] [Indexed: 11/27/2022]
Abstract
The interaction of chemokine receptor CXCR4 and its functional ligand CXCL12 plays a key role in bone marrow hematopoiesis, neuronal and cardiovascular development, and organization of the immune system. Despite the importance of the CXCL12-CXCR4 axis for regulating hematopoiesis, information on the canine CXCR4 and CXCL12 genes is insufficient. In this present study, we identified the canine counterparts of the CXCR4 and CXCL12 cDNAs and genes. The amino acid sequence encoding canine CXCR4 showed the structural characteristics of seven transmembrane domain G protein-coupled receptors and high homology with those of humans and other animals. Two isoforms, CXCL12 alpha and CXCL12 beta, were identified in dogs, as described in human and other animals. The gene structures for canine CXCR4 and CXCL12 were similar to those of other animals. The canine CXCL12 gene structure indicated that the transcripts of the isoforms arose from alternative mRNA splicing. A single nucleotide polymorphism (SNP) with synonymous substitution was observed in the exon of the canine CXCL12 gene. mRNAs encoding canine CXCR4 and CXCL12 were expressed widely and constitutively. Molecular homology and constitutive expression of CXCR4 and CXCL12 mRNAs in canine normal tissues suggests critical roles in hematopoiesis and trafficking of leukocytes, as shown in other animals.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Base Sequence
- Chemokine CXCL12
- Chemokines, CXC/chemistry
- Chemokines, CXC/genetics
- Chemokines, CXC/metabolism
- Cloning, Molecular
- DNA, Complementary/genetics
- Dogs
- Exons
- Female
- Humans
- Ligands
- Male
- Polymorphism, Single Nucleotide
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, CXCR4/chemistry
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- Shuichi Tsuchida
- Laboratory of Comparative Cellular Biology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.
| | | | | |
Collapse
|
431
|
Busillo JM, Benovic JL. Regulation of CXCR4 signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:952-63. [PMID: 17169327 PMCID: PMC1952230 DOI: 10.1016/j.bbamem.2006.11.002] [Citation(s) in RCA: 478] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 11/04/2006] [Indexed: 12/31/2022]
Abstract
The chemokine receptor CXCR4 belongs to the large superfamily of G protein-coupled receptors, and is directly involved in a number of biological processes including organogenesis, hematopoiesis, and immune response. Recent evidence has highlighted the role of CXCR4 in a variety of diseases including HIV, cancer, and WHIM syndrome. Importantly, the involvement of CXCR4 in cancer metastasis and WHIM syndrome appears to be due to dysregulation of the receptor leading to enhanced signaling. Herein we review what is currently known regarding the regulation of CXCR4 and how dysregulation contributes to disease progression.
Collapse
Affiliation(s)
- John M. Busillo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jeffrey L. Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
432
|
Nakayama T, Mutsuga N, Tosato G. Effect of fibroblast growth factor 2 on stromal cell-derived factor 1 production by bone marrow stromal cells and hematopoiesis. J Natl Cancer Inst 2007; 99:223-35. [PMID: 17284717 DOI: 10.1093/jnci/djk031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Reduction of intramedullary hematopoiesis and the development of myelofibrosis and splenic hematopoiesis are frequent complications of clonal myeloid disorders that cause severe morbidity and death and present a therapeutic challenge. However, the pathogenesis of these complications is still unknown. We evaluated the effect of fibroblast growth factor 2 (FGF-2), the level of which is elevated in patients with clonal myeloid disorders, on bone marrow stromal cell expression of stromal cell-derived factor 1 (SDF-1), a chemokine that is essential for normal hematopoiesis. METHODS Reverse transcription-polymerase chain reaction analysis, immunoblot analysis, and enzyme-linked immunosorbent assays were used to examine effects of human recombinant FGF-2 exposure on SDF-1 expression in mouse stromal MS-5 and S-17 cells. Cocultures of human CD34-positive peripheral blood stem cells or mouse pre-B DW34 cells with mouse stromal cells were used to characterize the functional relevance of the effects of FGF-2 on SDF-1 expression. The in vivo hematologic effects of FGF-2 were determined by systemic administration to mice (n = 10). All statistical tests were two-sided. RESULTS FGF-2 reduced constitutive SDF-1 mRNA expression and secretion in stromal cells (SDF-1 levels in supernatants: MS-5 cells cultured for 3 days in medium only versus in medium with FGF-2, 95.4 ng/mL versus 22.2 ng/mL, difference = 73.2 ng/mL, 95% confidence interval [CI] = 60.52 to 85.87 ng/mL; P = .002, two-sided Student's t test; S-17 cultured in medium only versus in medium with FGF-2, 203.53 ng/mL versus 32.36 ng/mL, difference = 171.17 ng/mL, 95% CI = 161.8 to 180.6 ng/mL; P<.001). These effects of FGF-2 were reversible. FGF-2 compromised stromal cell support of the growth and survival of pre-B DW34 and myeloid lineage cells, and these effects were reversed in part by exogenous recombinant SDF-1alpha (rSDF-1alpha) (DW34 pre-B cells recovery on S-17 stromal cells, expressed as a percentage of DW34 cells recovered from medium only: with FGF-2 versus without FGF-2, 27.6% versus 100%, difference = 72.4%, 95% CI = 45.34% to 99.51%, P = .008; with FGF-2 plus rSDF1 versus with FGF-2 only, 60.3% versus 27.6%, difference = 32.7%, 95% CI = 9.35% to 56.08%, P = .034; fold increase in number of myeloid lineage cells after culture on S-17 stromal cells: with FGF-2 versus without FGF-2, 0.25-fold versus 3.8-fold, difference = 3.55-fold, 95% CI = 2.66- to 4.44-fold, P<.001; recovery of myeloid cells on S-17 stromal cells, expressed as a percentage of myeloid cells recovered from medium only: FGF-2 plus rSDF-1alpha versus FGF-2 only, 76.5% versus 32.4%, difference = 44.1%, 95% CI = 32.58% to 55.68%, P<.001). Administration of FGF-2 to mice reversibly reduced bone marrow levels of SDF-1 and cellularity and induced immature myeloid cell mobilization, extramedullary hematopoiesis, and splenomegaly. CONCLUSIONS Systemic administration of FGF-2 in mice disrupts normal bone marrow hematopoiesis in part through reduced expression of SDF-1. Thus, endogenous FGF-2 may represent a potential therapeutic target in clonal myeloid disorders characterized by bone marrow failure.
Collapse
Affiliation(s)
- Takayuki Nakayama
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
433
|
Futahashi Y, Komano J, Urano E, Aoki T, Hamatake M, Miyauchi K, Yoshida T, Koyanagi Y, Matsuda Z, Yamamoto N. Separate elements are required for ligand-dependent and -independent internalization of metastatic potentiator CXCR4. Cancer Sci 2007; 98:373-9. [PMID: 17270027 PMCID: PMC11158236 DOI: 10.1111/j.1349-7006.2007.00388.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The C-terminal cytoplasmic domain of the metastatic potentiator CXCR4 regulates its function and spatiotemporal expression. However, little is known about the mechanism underlying constitutive internalization of CXCR4 compared to internalization mediated by its ligand, stromal cell-derived factor-1 alpha (SDF-1alpha)/CXCL12. We established a system to analyze the role of the CXCR4 cytoplasmic tail in steady-state internalization using the NP2 cell line, which lacks endogenous CXCR4 and SDF-1alpha. Deleting more than six amino acids from the C-terminus dramatically reduced constitutive internalization of CXCR4. Alanine substitution mutations revealed that three of those amino acids Ser(344) Glu(345) Ser(346) are essential for efficient steady-state internalization of CXCR4. Mutating Glu(345) to Asp did not disrupt internalization, suggesting that the steady-state internalization motif is S(E/D)S. When responses to SDF-1alpha were tested, cells expressing CXCR4 mutants lacking the C-terminal 10, 14, 22, 31 or 44 amino acids did not show downregulation of cell surface CXCR4 or the cell migration induced by SDF-1alpha. Interestingly, however, we identified two mutants, one with E344A mutation and the other lacking the C-terminal 17 amino acids, that were defective in constitutive internalization but competent in ligand-promoted internalization and cell migration. These data demonstrate that ligand-dependent and -independent internalization is genetically separable and that, between amino acids 336 and 342, there is a negative regulatory element for ligand-promoted internalization. Potential involvement of this novel motif in cancer metastasis and other CXCR4-associated disorders such as warts, hypogammaglobulinemia, infections and myelokathexis (WHIM) syndrome is discussed.
Collapse
Affiliation(s)
- Yuko Futahashi
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
434
|
Kremer KN, Kumar A, Hedin KE. Haplotype-independent costimulation of IL-10 secretion by SDF-1/CXCL12 proceeds via AP-1 binding to the human IL-10 promoter. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:1581-8. [PMID: 17237407 PMCID: PMC2905171 DOI: 10.4049/jimmunol.178.3.1581] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Costimulation by the chemokine, stromal cell-derived factor-1 (SDF-1)/CXCL12, has been shown to increase the amount of IL-10 secreted by TCR-stimulated human T cells; however, the molecular mechanisms of this response are unknown. Knowledge of this signaling pathway may be useful because extensive evidence indicates that deficient IL-10 secretion promotes autoimmunity. The human IL-10 locus is highly polymorphic. We report in this study that SDF-1 costimulates IL-10 secretion from T cells containing all three of the most common human IL-10 promoter haplotypes that are identified by single-nucleotide polymorphisms at -1082, -819, and -592 bp (numbering is relative to the transcription start site). We further show that SDF-1 primarily costimulates IL-10 secretion by a diverse population of CD45RA(-) ("memory") phenotype T cells that includes cells expressing the presumed regulatory T cell marker, Foxp3. To address the molecular mechanisms of this response, we showed that SDF-1 costimulates the transcriptional activities in normal human T cells of reporter plasmids containing 1.1 kb of all three of the common IL-10 promoter haplotypes. IL-10 promoter activity was ablated by mutating two nonpolymorphic binding sites for the AP-1 transcription factor, and chromatin immunoprecipitation assays of primary human T cells revealed that SDF-1 costimulation enhances AP-1 binding to both of these sites. Together, these results delineate the molecular mechanisms responsible for SDF-1 costimulation of T cell IL-10 secretion. Because it is preserved among several human haplotypes and in diverse T cell populations including Foxp3(+) T cells, this pathway of IL-10 regulation may represent a key mechanism for modulating expression of this important immunoregulatory cytokine.
Collapse
Affiliation(s)
- Kimberly N. Kremer
- Department of Immunology, Mayo Clinic College of Medicine; Mayo Clinic; Rochester, MN 55905
| | - Ashok Kumar
- Department of Immunology, Mayo Clinic College of Medicine; Mayo Clinic; Rochester, MN 55905
| | - Karen E. Hedin
- Department of Immunology, Mayo Clinic College of Medicine; Mayo Clinic; Rochester, MN 55905
| |
Collapse
|
435
|
Abstract
PURPOSE OF REVIEW Neutrophils are an essential component of the innate immune response and a major contributor to inflammation. Consequently, neutrophil number in the blood is tightly regulated. Herein, we review recent studies that have greatly advanced our understanding of the mechanisms controlling neutrophil homeostasis. RECENT FINDINGS Accumulating evidence shows that stromal derived factor-1 (CXCL12) through interaction with its major receptor CXCR4 provides a key retention signal for neutrophils in the bone marrow. Granulocyte colony-stimulating factor induces neutrophil release from the bone marrow, in major part, by disrupting stromal derived factor-1/CXCR4 signaling. Granulocyte colony-stimulating factor expression is regulated by a novel feedback loop that senses neutrophil emigration into tissues. Specifically, engulfment of apoptotic neutrophils by tissue phagocytes initiates a cytokine cascade that includes interleukin-23, interleukin-17, and ultimately granulocyte colony-stimulating factor. SUMMARY Granulocyte colony-stimulating factor plays a central role in the dynamic regulation of neutrophil production and release from the bone marrow in response to environmental stresses. Recent studies have begun to elucidate both the pathways linking neutrophil clearance to granulocyte colony-stimulating factor expression and the mechanisms by which the factor induces neutrophil release from the bone marrow. These studies may lead to novel strategies to modulate neutrophil responses in host defense and inflammation.
Collapse
Affiliation(s)
- Matthew J Christopher
- Division of Oncology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | |
Collapse
|
436
|
Elloumi HZ, Holland SM. Diagnostic assays for chronic granulomatous disease and other neutrophil disorders. Methods Mol Biol 2007; 412:505-23. [PMID: 18453131 DOI: 10.1007/978-1-59745-467-4_31] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inasmuch as neutrophils are the primary cellular defense against bacterial and fungal infections, disorders that affect these white cells typically predispose individuals to severe and recurrent infections. Therefore, diagnosis of such disorders is an important first step in directing long-term treatment/care for the patient. Herein, we describe methods to identify chronic granulomatous disease (CGD), leukocyte adhesion deficiency (LAD), and neutropenia. The assays are relatively simple to perform, cost-effective, and can be performed with equipment available in most laboratories.
Collapse
Affiliation(s)
- Houda Zghal Elloumi
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
437
|
What is WHIM syndrome? Blood 2007. [DOI: 10.1182/blood-2006-10-050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
438
|
Abstract
WHIM (warts-hypogammaglobulinemia-infections-myelokathexis) syndrome is a recently described primary immunodeficiency disorder caused by mutation of the CXCR4 chemokine receptor gene. We report here of a 6.5-yr-old girl with bacterial infections, severe chronic neutropenia, and hypogammaglobulinemia. Sequencing the CXCR4 gene revealed a c.1013C > G sequence variant suggesting WHIM syndrome. Recurrent c.1013C > G sequence variant of the CXCR4 gene resulting in p.S338X truncation mutation of this chemokine receptor protein is first reported here.
Collapse
Affiliation(s)
- Krisztina Alapi
- Department of Infectious and Pediatric Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen, Hungary
| | | | | | | |
Collapse
|
439
|
Ratajczak MZ, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J. The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 2006; 20:1915-1924. [PMID: 16900209 DOI: 10.1038/sj.leu.2404357] [Citation(s) in RCA: 311] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 07/05/2006] [Accepted: 07/06/2006] [Indexed: 12/30/2022]
Abstract
Proper response of normal stem cells (NSC) to motomorphogens and chemoattractants plays a pivotal role in organ development and renewal/regeneration of damaged tissues. Similar chemoattractants may also regulate metastasis of cancer stem cells (CSC). Growing experimental evidence indicates that both NSC and CSC express G-protein-coupled seven-transmembrane span receptor CXCR4 and respond to its specific ligand alpha-chemokine stromal derived factor-1 (SDF-1), which is expressed by stroma cells from different tissues. In addition, a population of very small embryonic-like (VSEL) stem cells that express CXCR4 and respond robustly to an SDF-1 gradient was recently identified in adult tissues. VSELs express several markers of embryonic and primordial germ cells. It is proposed that these cells are deposited early in the development as a dormant pool of embryonic/pluripotent NSC. Expression of both CXCR4 and SDF-1 is upregulated in response to tissue hypoxia and damage signal attracting circulating NSC and CSC. Thus, pharmacological modulation of the SDF-1-CXCR4 axis may lead to the development of new therapeutic strategies to enhance mobilization of CXCR4+ NSC and their homing to damaged organs as well as inhibition of the metastasis of CXCR4+ cancer cells.
Collapse
Affiliation(s)
- M Z Ratajczak
- Stem Cell Biology Program at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | |
Collapse
|
440
|
Orth G. Genetics of epidermodysplasia verruciformis: Insights into host defense against papillomaviruses. Semin Immunol 2006; 18:362-74. [PMID: 17011789 DOI: 10.1016/j.smim.2006.07.008] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 07/14/2006] [Indexed: 10/24/2022]
Abstract
Epidermodysplasia verruciformis (EV) is a rare autosomal recessive genodermatosis associated with a high risk of skin carcinoma. EV results from an abnormal susceptibility to infection by specific human papillomavirus (HPV) genotypes (beta-papillomaviruses) which include the potentially oncogenic HPV5. EV-specific HPVs are considered as harmless for the general population. EV was recently found to be caused by invalidating mutations in two adjacent, related, novel genes, EVER1/TMC6 and EVER2/TMC8. EVER genes encode transmembrane proteins located in the endoplasmic reticulum, which are likely to function as modifiers of ion transporters or channels and to be involved in signal transduction. It was proposed that EV was a primary defect of innate immunity. Our hypothesis is that EVER proteins act as restriction factors for EV-specific HPVs in keratinocytes, and that EV represents a primary deficiency of intrinsic immunity against certain papillomaviruses.
Collapse
Affiliation(s)
- Gérard Orth
- Department of Virology, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
441
|
Shearman JR, Zhang QY, Wilton AN. Exclusion of CXCR4 as the cause of trapped neutrophil syndrome in Border Collies using five microsatellites on canine chromosome 19. Anim Genet 2006; 37:89. [PMID: 16441310 DOI: 10.1111/j.1365-2052.2005.01413.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- J R Shearman
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
442
|
Arenzana-Seisdedos F, Parmentier M. Genetics of resistance to HIV infection: Role of co-receptors and co-receptor ligands. Semin Immunol 2006; 18:387-403. [PMID: 16978874 DOI: 10.1016/j.smim.2006.07.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 07/14/2006] [Indexed: 11/30/2022]
Abstract
Susceptibility to HIV infection and AIDS progression is variable among individuals and populations, and in part genetically determined. Genetic variants of genes encoding HIV co-receptors and their chemokine ligands have been described, and some of these variants were associated with resistance to HIV infection and/or disease progression. We review here the reported data regarding the variants of the CCR5, CCR2, CX3CR1, MIP-1alpha/CCL3, MIP-1beta/CCL4, RANTES/CCL5 and SDF-1/CXCL12 genes. The Delta32 deletion mutant of CCR5, resulting in a non-functional receptor not reaching the cell surface, is unambiguously associated with strong, although incomplete, resistance to HIV infection for homozygotes, and retarded progression for heterozygotes. Specific haplotypes encompassing the CCR5 and CCR2 loci, and the copy number of the CCL3L1 gene, have also been convincingly correlated with delayed progression. For other gene variants, involving CXCL12/SDF-1 and CX3CR1, conclusive evidence for their relevance in the frame of HIV susceptibility is still lacking.
Collapse
Affiliation(s)
- Fernando Arenzana-Seisdedos
- Unité de Pathogénie Virale Moléculaire, Département de Virologie, INSERM, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex, France.
| | | |
Collapse
|
443
|
Kawai T, Choi U, Cardwell L, DeRavin SS, Naumann N, Whiting-Theobald NL, Linton GF, Moon J, Murphy PM, Malech HL. WHIM syndrome myelokathexis reproduced in the NOD/SCID mouse xenotransplant model engrafted with healthy human stem cells transduced with C-terminus-truncated CXCR4. Blood 2006; 109:78-84. [PMID: 16946301 PMCID: PMC1785067 DOI: 10.1182/blood-2006-05-025296] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
WHIM(warts, hypogammaglobulinemia, recurrent bacterial infection, and myelokathexis) syndrome is a rare immunodeficiency caused in many cases by autosomal dominant C-terminal truncation mutations in the chemokine receptor CXCR4. A prominent and unexplained feature of WHIM is myelokathexis (hypercellularity with apoptosis of mature myeloid cells in bone marrow and neutropenia). We transduced healthy human CD34(+) peripheral blood-mobilized stem cells (PBSCs) with retrovirus vector encoding wild-type (wt) CXCR4 or WHIM-type mutated CXCR4 and studied these cells ex vivo in culture and after engraftment in a nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse xenograft model. Neither wt CXCR4 nor mutated CXCR4 transgene expression itself enhanced apoptosis of neutrophils arising in transduced PBSC cultures even with stimulation by a CXCR4 agonist, stromal cell-derived factor-1 (SDF-1 [CXCL12]). Excess wt CXCR4 expression by transduced human PBSCs enhanced marrow engraftment, but did not affect bone marrow (BM) apoptosis or the release of transduced leukocytes into PB. However, mutated CXCR4 transgene expression further enhanced BM engraftment, but was associated with a significant increase in apoptosis of transduced cells in BM and reduced release of transduced leukocytes into PB. We conclude that increased apoptosis of mature myeloid cells in WHIM is secondary to a failure of marrow release and progression to normal myeloid cell senescence, and not a direct effect of activation of mutated CXCR4.
Collapse
Affiliation(s)
- Toshinao Kawai
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
- Department of Gene Therapy, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan
- Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan
| | - Uimook Choi
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Lanise Cardwell
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Suk See DeRavin
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Nora Naumann
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Narda L. Whiting-Theobald
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Gilda F. Linton
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Jaehyun Moon
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | | | - Harry L. Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
- Correspondence: Harry L. Malech,
Laboratory of Host Defenses, NIAID, NIH, Bldg 10-CRC 5-West Labs, Rm 5-3750, 10 Center Dr MSC 1456, Bethesda, MD 20892-1456; e-mail:
| |
Collapse
|
444
|
Sanmun D, Garwicz D, Smith CIE, Palmblad J, Fadeel B. Stromal-derived factor-1 abolishes constitutive apoptosis of WHIM syndrome neutrophils harbouring a truncating CXCR4 mutation. Br J Haematol 2006; 134:640-4. [PMID: 16899028 DOI: 10.1111/j.1365-2141.2006.06240.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Warts, hypogammaglobulinaemia, infections, myelokathexis (WHIM) syndrome is an inherited immune disorder associated with CXCR4 gene mutations. Recent studies suggested that impaired receptor downregulation and enhanced chemotactic responsiveness to stromal-derived factor-1 (SDF-1), the sole cognate ligand for CXCR4, may account for the characteristic features of WHIM patients. This study evaluated whether the interaction of SDF-1 with CXCR4 could block constitutive apoptosis of peripheral blood neutrophils from congenital neutropenia patients and controls. SDF-1 was found to be a potent anti-apoptotic factor for WHIM neutrophils harbouring a truncating CXCR4 mutation, but not for neutrophils from control individuals, thus supporting the notion that such mutations may confer enhanced functional responses.
Collapse
Affiliation(s)
- Duangmanee Sanmun
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
445
|
Abstract
The molecular bases of approximately one hundred primary immune deficiencies (PID) have been identified over the last 15 years. In adults, the diagnosis of PID cannot be evoked before ruling out acquired immunodeficiencies, which are far more frequent. The search for specific PIDs may be oriented by the type of agent responsible for severe and/or recurrent infection. More rarely, other clinical manifestations such as granulomatosis, autoimmune manifestations, hemophagocytic syndrome, lymphoproliferation, or solid tumors may also lead to the identification of PID.
Collapse
Affiliation(s)
- Luc Mouthon
- Service de médecine interne, Hôpital Cochin, AP-HP, Université Paris-Descartes, Faculté de médecine, Paris (75).
| | | | | | | |
Collapse
|
446
|
Palmesino E, Moepps B, Gierschik P, Thelen M. Differences in CXCR4-mediated signaling in B cells. Immunobiology 2006; 211:377-89. [PMID: 16716807 DOI: 10.1016/j.imbio.2005.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/01/2005] [Indexed: 01/09/2023]
Abstract
Among all chemokine receptors CXCR4 possesses a unique response profile and distinguishes itself through a prolonged signaling capacity. Here, we investigated the signaling capacity of CXCR4 to its so far known unique ligand CXCL12 in B cell lines and primary CD19(+) B lymphocytes. During lymphopoiesis, CXCR4 is continuously expressed on the surface of B cells. However, its signaling profile changes inasmuch preB and proB cells migrate towards CXCL12, mobilize intracellular calcium and activate the small GTPases Rac1 and Cdc42, whereas mature B cells do not show these responses, albeit the cells retain the capability to migrate in response to CXCL13 and CCL21. By contrast, stimulation of B cells with CXCL12 at all stages of development results in the activation of the MAP-kinase cascade and in rapid CXCR4 internalization. The pathways leading to ERK1/2 activation are different in preB and mature B cell lines. In either case, ERK1/2 activation is pertussis toxin sensitive, but only in mature B-cells inhibition of PI3-kinase causes an almost complete block of ERK1/2 activation. Taken together, the results show that CXCR4 changes its coupling to downstream signal-transduction pathways in B cells, suggesting that receptor activity may depend on accessory proteins.
Collapse
Affiliation(s)
- Elena Palmesino
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| | | | | | | |
Collapse
|
447
|
Glasser L, Meloni-Ehrig A, Joseph P, Mendiola J. Benign chronic neutropenia with abnormalities involving 16q22, affecting mother and daughter. Am J Hematol 2006; 81:262-70. [PMID: 16550514 DOI: 10.1002/ajh.20550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report a case of familial, chronic, benign neutropenia in a 17-year-old female showing (1) the spontaneous expression of a heritable rare fragile site at 16q22 and (2) a deletion at the same region. The del(16)(q22), which most likely originated from the fragile site, was the main clonal abnormality detected in the patient's bone marrow cells, whereas a few cells with either del(16)(q22) or fra(16)(q22) were seen in the patient's peripheral blood. Interestingly, the del(16q) was also detected in the patient's uncultured cells, as demonstrated by FISH, excluding an in vitro origin of the del(16q) during culture. The bone marrow was hypocellular with decreased neutrophils and their precursors. Absolute neutrophil counts ranged from (0.62 to 1.24) x 10(9)/L with a median value of 1.02 x 10(9)/L. The patient had a more severe neutropenia than her mother, which correlated with the presence of more cells with del(16q) in the marrow. The patient's mother, who was also diagnosed with neutropenia, revealed only a few cells with the rare fra(16)(q22) in her peripheral blood cells, whereas her bone marrow showed cells with both fra(16)(q22) and del(16)(q22), although the del(16q) was present in only 2/20 cells. Some possible candidate genes contributing to the pathogenesis of the neutropenia are discussed. Chromosome abnormalities involving the 16q22 breakpoint have been observed in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). In this patient, the del(16)(q22) risk factor is unknown for subsequent development of MDS or AML. Another point to consider is the need to determine the origin of a chromosome abnormality, particularly when the clinical picture does not fit the chromosome findings. Although, the observation of a constitutional structural abnormality in a mosaic form is an extremely rare event, it is somewhat different in the case of a fragile site expression, which can, as in this case, be present in some cells and not in others.
Collapse
Affiliation(s)
- Lewis Glasser
- Department of Pathology, Rhode Island Hospital/Brown Medical School, Providence, Rhode Island 02903, USA.
| | | | | | | |
Collapse
|
448
|
Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 2006; 7:311-7. [PMID: 16462739 DOI: 10.1038/ni1309] [Citation(s) in RCA: 1298] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 01/10/2006] [Indexed: 02/06/2023]
Abstract
Monocytes recruited to tissues mediate defense against microbes or contribute to inflammatory diseases. Regulation of the number of circulating monocytes thus has implications for disease pathogenesis. However, the mechanisms controlling monocyte emigration from the bone marrow niche where they are generated remain undefined. We demonstrate here that the chemokine receptor CCR2 was required for emigration of Ly6C(hi) monocytes from bone marrow. Ccr2(-/-) mice had fewer circulating Ly6C(hi) monocytes and, after infection with Listeria monocytogenes, accumulated activated monocytes in bone marrow. In blood, Ccr2(-/-) monocytes could traffic to sites of infection, demonstrating that CCR2 is not required for migration from the circulation into tissues. Thus, CCR2-mediated signals in bone marrow determine the frequency of Ly6C(hi) monocytes in the circulation.
Collapse
Affiliation(s)
- Natalya V Serbina
- Infectious Disease Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, Immunology Program, Sloan-Kettering Institute, New York, New York 10021, USA.
| | | |
Collapse
|
449
|
Abstract
The study of inherited immunodeficiencies has proven valuable in elucidating molecular signaling cascades underlying the developmental and functional regulation of the human immune system. The first example of a human immunologic disease caused by mutation of a chemokine receptor was provided by WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome, a rare, combined immunodeficiency featuring an unusual form of neutropenia. Subsequent studies following the initial description of mutations in the CXCR4 gene have revealed a striking concordance in the types of mutations observed, suggesting that impaired regulation of receptor signaling by truncation of the cytoplasmic tail domain is an essential aspect in disease pathogenesis. Biochemical studies have provided support for the model that impaired receptor downregulation leads to the characteristic immunologic and hematologic disturbances. Interestingly, these genetic studies have also identified phenocopies with the same clinical features but without mutation of CXCR4, suggesting that mutations in as yet uncharacterized downstream regulators of the receptor may be involved in a proportion of cases.
Collapse
Affiliation(s)
- George A Diaz
- Department of Human Genetics, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1498, New York, NY 10029, USA.
| | | |
Collapse
|
450
|
Abstract
Neutrophils are critical components of the innate immune response, and persistent neutropenia is associated with a marked susceptibility to infection. There are a number of inherited clinical syndromes in which neutropenia is a prominent feature. A study of these rare disorders has provided insight into the mechanisms regulating normal neutrophil homeostasis. Tremendous progress has been made at defining the genetic basis of these disorders. Herein, progress in understanding the genetic basis and molecular mechanisms of these disorders is discussed. We have focused our discussion on inherited disorders in which neutropenia is the sole or major hematopoietic defect.
Collapse
Affiliation(s)
- David S Grenda
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | |
Collapse
|