401
|
Patel A, Harker N, Moreira-Santos L, Ferreira M, Alden K, Timmis J, Foster K, Garefalaki A, Pachnis P, Andrews P, Enomoto H, Milbrandt J, Pachnis V, Coles MC, Kioussis D, Veiga-Fernandes H. Differential RET signaling pathways drive development of the enteric lymphoid and nervous systems. Sci Signal 2012; 5:ra55. [PMID: 22855506 DOI: 10.1126/scisignal.2002734] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the early development of the gastrointestinal tract, signaling through the receptor tyrosine kinase RET is required for initiation of lymphoid organ (Peyer's patch) formation and for intestinal innervation by enteric neurons. RET signaling occurs through glial cell line-derived neurotrophic factor (GDNF) family receptor α co-receptors present in the same cell (signaling in cis). It is unclear whether RET signaling in trans, which occurs in vitro through co-receptors from other cells, has a biological role. We showed that the initial aggregation of hematopoietic cells to form lymphoid clusters occurred in a RET-dependent, chemokine-independent manner through adhesion-mediated arrest of lymphoid tissue initiator (LTin) cells. Lymphoid tissue inducer cells were not necessary for this initiation phase. LTin cells responded to all RET ligands in trans, requiring factors from other cells, whereas RET was activated in enteric neurons exclusively by GDNF in cis. Furthermore, genetic and molecular approaches revealed that the versatile RET responses in LTin cells were determined by distinct patterns of expression of the genes encoding RET and its co-receptors. Our study shows that a trans RET response in LTin cells determines the initial phase of enteric lymphoid organ morphogenesis, and suggests that differential co-expression of Ret and Gfra can control the specificity of RET signaling.
Collapse
Affiliation(s)
- Amisha Patel
- Division of Molecular Immunology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
402
|
Ferreira M, Domingues RG, Veiga-Fernandes H. Stroma cell priming in enteric lymphoid organ morphogenesis. Front Immunol 2012; 3:219. [PMID: 22837761 PMCID: PMC3402974 DOI: 10.3389/fimmu.2012.00219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/07/2012] [Indexed: 12/18/2022] Open
Abstract
The lymphoid system is equipped with a network of specialized platforms located at strategic sites, which grant strict immune-surveillance and efficient immune responses. The development of these peripheral secondary lymphoid organs (SLO) occurs mainly in utero, while tertiary lymphoid structures can form in adulthood generally in response to persistent infection and inflammation. Regardless of the lymphoid tissue and intrinsic cellular and molecular differences, it is now well established that the recruitment of fully functional lymphoid tissue inducer (LTi) cells to presumptive lymphoid organ sites, and their consequent close and reciprocal interaction with resident stroma cells, are central to SLO formation. In contrast, the nature of events that initially prime resident sessile stroma cells to recruit and retain LTi cells remains poorly understood. Recently, new findings revealed early phases of SLO development putting emphasis on mesenchymal and lymphoid tissue initiator cells. Herein we discuss the main tenets of enteric lymphoid organs genesis and focus in the most recent findings that open new perspectives to the understanding of the early phases of lymphoid morphogenesis.
Collapse
Affiliation(s)
- Manuela Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisboa, Portugal
| | | | | |
Collapse
|
403
|
Alden K, Timmis J, Andrews PS, Veiga-Fernandes H, Coles MC. Pairing experimentation and computational modeling to understand the role of tissue inducer cells in the development of lymphoid organs. Front Immunol 2012; 3:172. [PMID: 22826707 PMCID: PMC3399454 DOI: 10.3389/fimmu.2012.00172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 06/07/2012] [Indexed: 01/27/2023] Open
Abstract
The use of genetic tools, imaging technologies and ex vivo culture systems has provided significant insights into the role of tissue inducer cells and associated signaling pathways in the formation and function of lymphoid organs. Despite advances in experimental technologies, the molecular and cellular process orchestrating the formation of a complex three-dimensional tissue is difficult to dissect using current approaches. Therefore, a robust set of simulation tools have been developed to model the processes involved in lymphoid tissue development. Specifically, the role of different tissue inducer cell populations in the dynamic formation of Peyer’s patches has been examined. Utilizing approaches from systems engineering, an unbiased model of lymphoid tissue inducer cell function has been developed that permits the development of emerging behaviors that are statistically not different from that observed in vivo. These results provide the confidence to utilize statistical methods to explore how the simulator predicts cellular behavior and outcomes under different physiological conditions. Such methods, known as sensitivity analysis techniques, can provide insight into when a component part of the system (such as a particular cell type, adhesion molecule, or chemokine) begins to have an influence on observed behavior, and quantifies the effect a component part has on the end result: the formation of lymphoid tissue. Through use of such a principled approach in the design, calibration, and analysis of a computer simulation, a robust in silico tool can be developed which can both further the understanding of a biological system being explored, and act as a tool for the generation of hypotheses which can be tested utilizing experimental approaches.
Collapse
Affiliation(s)
- Kieran Alden
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School , York, UK
| | | | | | | | | |
Collapse
|
404
|
Pommerenke C, Wilk E, Srivastava B, Schulze A, Novoselova N, Geffers R, Schughart K. Global transcriptome analysis in influenza-infected mouse lungs reveals the kinetics of innate and adaptive host immune responses. PLoS One 2012; 7:e41169. [PMID: 22815957 PMCID: PMC3398930 DOI: 10.1371/journal.pone.0041169] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/18/2012] [Indexed: 12/15/2022] Open
Abstract
An infection represents a highly dynamic process involving complex biological responses of the host at many levels. To describe such processes at a global level, we recorded gene expression changes in mouse lungs after a non-lethal infection with influenza A virus over a period of 60 days. Global analysis of the large data set identified distinct phases of the host response. The increase in interferon genes and up-regulation of a defined NK-specific gene set revealed the initiation of the early innate immune response phase. Subsequently, infiltration and activation of T and B cells could be observed by an augmentation of T and B cell specific signature gene expression. The changes in B cell gene expression and preceding chemokine subsets were associated with the formation of bronchus-associated lymphoid tissue. In addition, we compared the gene expression profiles from wild type mice with Rag2 mutant mice. This analysis readily demonstrated that the deficiency in the T and B cell responses in Rag2 mutants could be detected by changes in the global gene expression patterns of the whole lung. In conclusion, our comprehensive gene expression study describes for the first time the entire host response and its kinetics to an acute influenza A infection at the transcriptome level.
Collapse
Affiliation(s)
- Claudia Pommerenke
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
405
|
Abstract
The airways, similar to other mucosal surfaces, are continuously exposed to the outside environment and a barrage of antigens, allergens, and microorganisms. Of critical importance therefore is the ability to mount rapid and effective immune responses to control commensal and pathogenic microbes, while simultaneously limiting the extent of these responses to prevent immune pathology and chronic inflammation. The function of the adaptive immune response in controlling these processes at mucosal surfaces has been well documented but the important role of the innate immune system, particularly the recently identified family of innate lymphoid cells, has only lately become apparent. In this review, we give an overview of the innate lymphoid cells that exist in the airways and examine the evidence pertaining to their emerging roles in airways immunity, inflammation, and homeostasis.
Collapse
|
406
|
Gorantla S, Gendelman HE, Poluektova LY. Can humanized mice reflect the complex pathobiology of HIV-associated neurocognitive disorders? J Neuroimmune Pharmacol 2012; 7:352-62. [PMID: 22222956 PMCID: PMC3782112 DOI: 10.1007/s11481-011-9335-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 12/14/2011] [Indexed: 01/22/2023]
Abstract
There is a rebirth of humanized mouse models in reflecting human immunodeficiency virus (HIV) pathobiology. This has allowed new investigations of viral diversity, immunity and developmental therapeutics. In the past, HIV infection and disease were, in part, mirrored in immune deficient mice reconstituted with human hematopoietic stem cells. What remained from early studies reflected the ability to mirror central nervous system (CNS) disease. As the wide spread use of combination antiretroviral therapies has changed the severity, but not prevalence, of HIV-associated neurocognitive disorders (HAND), mimicking such virus-induced CNS morbidities in humanized animals is essential for HIV/AIDS research activities. To this end, we now review the evidence for how and under what circumstances humanized mice may be utilized for studies of HIV-1 neuropathogenesis.
Collapse
Affiliation(s)
- Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience and Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
407
|
Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol 2012; 33:297-305. [PMID: 22622061 PMCID: PMC7106385 DOI: 10.1016/j.it.2012.04.006] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/17/2012] [Accepted: 04/17/2012] [Indexed: 01/07/2023]
Abstract
The lymph nodes (LNs) and spleen have an optimal structure that allows the interaction between T cells, B cells and antigen-presenting dendritic cells (DCs) on a matrix made up by stromal cells. Such a highly organized structure can also be formed in tertiary lymphoid organs (TLOs) at sites of infection or chronic immune stimulation. This review focuses on the molecular mechanisms of TLO formation and maintenance, the controversies surrounding the nature of the inducing events, and the functions of these structures in infection, transplantation and autoimmunity.
Collapse
|
408
|
Pearson C, Uhlig HH, Powrie F. Lymphoid microenvironments and innate lymphoid cells in the gut. Trends Immunol 2012; 33:289-96. [PMID: 22578693 DOI: 10.1016/j.it.2012.04.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 02/08/2023]
Abstract
Gut-associated lymphoid tissue (GALT) is a sensor region for luminal content and plays an important role in lymphoid maturation, activation and differentiation. It comprises isolated and aggregated lymphoid follicles, cryptopatches (CPs) and tertiary lymphoid tissue. Innate lymphoid cells (ILCs) play a central role within GALT. Prenatal GALT development is dependent on ILC lymphoid-inducer function. Postnatally, these cells rapidly respond to commensal and pathogenic intestinal bacteria, parasites and food components by polarized cytokine production [such as interleukin (IL)-22, IL-17 or IL-13] and further contribute to GALT formation and function. Here, we discuss how ILCs shape lymphoid intestinal microenvironments and act as amplifier cells for innate and adaptive immune responses.
Collapse
Affiliation(s)
- Claire Pearson
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | | | | |
Collapse
|
409
|
Abstract
Recently a new lymphocyte subset called innate lymphoid cells has emerged and it includes key producers of interleukin (IL)-17 and IL-22 in the mucosal environment. Using Citrobacter rodentium infection to deliver a pathogenic insult to the colon, two studies have revealed an underlying role for lymphotoxin-β receptor signaling in the generation of IL-22 by these cells. This observation links a system well known for its ability to organize lymphoid microenvironments into a basic mucosal response.
Collapse
Affiliation(s)
- J L Browning
- Department of Immunobiology, Biogen Idec, Cambridge, Massachusetts, USA.
| |
Collapse
|
410
|
Vonarbourg C, Diefenbach A. Multifaceted roles of interleukin-7 signaling for the development and function of innate lymphoid cells. Semin Immunol 2012; 24:165-74. [PMID: 22541512 DOI: 10.1016/j.smim.2012.03.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 03/22/2012] [Indexed: 12/20/2022]
Abstract
Recently, additional innate lymphocyte subsets have been identified that express germline encoded immunoreceptors and respond to cytokine cues. Among these, innate lymphoid cells (ILC) at mucosal surfaces are of significant interest because they were found to play important roles for lymphoid organogenesis, tissue homeostasis and repair, for immunity to various infections but also have been involved as disease-promoting cells in models of chronic inflammatory diseases and of autoimmunity. Their functional and transcriptional programs strikingly resemble that of the various T helper cell subsets suggesting that these programs are already pre-formed in the innate immune system and that these may be more conserved than previously appreciated. Interestingly, all ILC subsets express the interleukin 7 receptor α chain and IL-7 signaling has been involved in various aspects of their developmental and functional programs. Here, we will review the role of IL-7 signaling for the differentiation, maintenance and function of two important ILC subsets, lymphoid tissue inducer cells (i.e., RORγt(+) ILC) and natural helper cells (i.e., type 2 ILC). We will also put emphasis on the recently discovered role of IL-7 in controlling plasticity of RORγt(+) ILC.
Collapse
Affiliation(s)
- Cedric Vonarbourg
- Institute of Medical Microbiology & Hygiene, University of Freiburg, Hermann-Herder-Strasse 11, Freiburg, Germany
| | | |
Collapse
|
411
|
Abstract
Members of the tumour necrosis factor (TNF) superfamily have been implicated in a wide range of biological functions, and their expression by cells of the immune system makes them appealing targets for immunomodulation. One common theme for TNF superfamily members is their coordinated expression at the interface between antigen-specific T cells and antigen-presenting dendritic cells and, by virtue of this expression pattern, TNF superfamily members can shape T cell immune responses. Understanding how to manipulate such functions of the TNF superfamily may allow us to tip the balance between immunity and tolerance in the context of human disease.
Collapse
|
412
|
Hoorweg K, Peters CP, Cornelissen F, Aparicio-Domingo P, Papazian N, Kazemier G, Mjösberg JM, Spits H, Cupedo T. Functional Differences between Human NKp44(-) and NKp44(+) RORC(+) Innate Lymphoid Cells. Front Immunol 2012; 3:72. [PMID: 22566953 PMCID: PMC3342004 DOI: 10.3389/fimmu.2012.00072] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/22/2012] [Indexed: 11/30/2022] Open
Abstract
Human RORC+ lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines in human homeostasis and disease is hampered by a poor characterization of RORC+ innate cell subsets and a lack of knowledge on the distribution of these cells in adults. Here we show that functionally distinct subsets of human RORC+ innate lymphoid cells are enriched for secretion of IL-17a or IL-22. Both subsets have an activated phenotype and can be distinguished based on the presence or absence of the natural cytotoxicity receptor NKp44. NKp44+ IL-22 producing cells are present in tonsils while NKp44− IL-17a producing cells are present in fetal developing lymph nodes. Development of human intestinal NKp44+ ILC is a programmed event that is independent of bacterial colonization and these cells colonize the fetal intestine during the first trimester. In the adult intestine, NKp44+ ILC are the main ILC subset producing IL-22. NKp44− ILC remain present throughout adulthood in peripheral non-inflamed lymph nodes as resting, non-cytokine producing cells. However, upon stimulation lymph node ILC can swiftly initiate cytokine transcription suggesting that secondary human lymphoid organs may function as a reservoir for innate lymphoid cells capable of participating in inflammatory responses.
Collapse
Affiliation(s)
- Kerim Hoorweg
- Department of Hematology, Erasmus University Medical Center Rotterdam, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
413
|
Boehm T, Hess I, Swann JB. Evolution of lymphoid tissues. Trends Immunol 2012; 33:315-21. [PMID: 22483556 DOI: 10.1016/j.it.2012.02.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/16/2012] [Accepted: 02/16/2012] [Indexed: 01/04/2023]
Abstract
Lymphoid organs are integral parts of all vertebrate adaptive immune systems. Primary lymphoid tissues exhibit a remarkable functional dichotomy: T cells develop in specialized thymopoietic tissues located in the pharynx, whereas B cells develop in distinct areas of general hematopoietic areas, such as the kidney or bone marrow. Among secondary lymphoid tissues, the spleen is present in all vertebrates, whereas lymph nodes represent an innovation particular to mammals and some birds. A comparative analysis of anatomical, functional and genomic features thus reveals the core components of adaptive immune systems. Such information has guided recent attempts at reconstructing lymphopoietic functions in vivo and in the future might inspire the development of new strategies for medical interventions restoring and modulating immune functions.
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, D-79108 Freiburg, Germany.
| | | | | |
Collapse
|
414
|
Co-transplantation of pure blood stem cells with antigen-specific but not bulk T cells augments functional immunity. Proc Natl Acad Sci U S A 2012; 109:5820-5. [PMID: 22440752 DOI: 10.1073/pnas.1120237109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Impaired immunity is a fundamental obstacle to successful allogeneic hematopoietic cell transplantation. Mature graft T cells are thought to provide protection from infections early after transplantation, but can cause life-threatening graft-vs.-host disease. Human CMV is a major pathogen after transplantation. We studied reactivity against the mouse homologue, murine CMV (MCMV), in lethally irradiated mice given allogeneic purified hematopoietic stem cells (HSCs) or HSCs supplemented with T cells or T-cell subsets. Unexpectedly, recipients of purified HSCs mounted superior antiviral responses compared with recipients of HSC plus unselected bulk T cells. Furthermore, supplementation of purified HSC grafts with CD8(+) memory or MCMV-specific T cells resulted in enhanced antiviral reactivity. Posttransplantation lymphopenia promoted massive expansion of MCMV-specific T cells when no competing donor T cells were present. In recipients of pure HSCs, naive and memory T cells and innate lymphoid cell populations developed. In contrast, the lymphoid pool in recipients of bulk T cells was dominated by effector memory cells. These studies show that pure HSC transplantations allow superior protective immunity against a viral pathogen compared with unselected mature T cells. This reductionist transplant model reveals the impact of graft composition on regeneration of host, newly generated, and mature transferred T cells, and underscores the deleterious effects of bulk donor T cells. Our findings lead us to conclude that grafts composed of purified HSCs provide an optimal platform for in vivo expansion of selected antigen-specific cells while allowing the reconstitution of a naive T-cell pool.
Collapse
|
415
|
Abstract
The noncanonical nuclear factor-κB (NF-κB) signaling pathway mediates activation of the p52/RelB NF-κB complex and, thereby, regulates specific immunological processes. This NF-κB pathway relies on the inducible processing of NF-κB2 precursor protein, p100, as opposed to the degradation of IκBα in the canonical NF-κB pathway. A central signaling component of the noncanonical NF-κB pathway is NF-κB-inducing kinase (NIK), which functions together with a downstream kinase, IKKα (inhibitor of NF-κB kinase α), to induce phosphorylation-dependent ubiquitination and processing of p100. Under normal conditions, NIK is targeted for continuous degradation by a tumor necrosis factor (TNF) receptor-associated factor-3 (TRAF3)-dependent E3 ubiquitin ligase. In response to signals mediated by a subset of TNF receptor superfamily members, NIK becomes stabilized as a result of TRAF3 degradation, leading to the activation of noncanonical NF-κB. This review discusses both the historical perspectives and the recent progress in the regulation and biological function of the noncanonical NF-κB pathway.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
416
|
Zhu M, Fu YX. The role of core TNF/LIGHT family members in lymph node homeostasis and remodeling. Immunol Rev 2012; 244:75-84. [PMID: 22017432 DOI: 10.1111/j.1600-065x.2011.01061.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lymph nodes (LNs) maintain active homeostasis at steady state. However, in response to changes in the local environment, such as local infection, cancer, vaccination, and autoimmune disease, dramatic remodeling of LN occurs. This remodeling includes changes in size, lymph and blood flow, immune cell trafficking and cellularity, lymphatic and blood vessel growth and activation, as well as microarchitecture. Therefore, inflammatory conditions often lead to enlarged nodes; after local inflammation resolves, LNs actively regress in size and return to steady state. Remodeling of lymphatic vessels (LVs) and blood vessels (BVs) during both the expansion and regression phases are key steps in controlling LN size as well as function. The cells, membrane-associated molecules, and soluble cytokines that are essential for LV and BV homeostasis as well as dynamic changes in the expansion and regression phases have not been well defined. Understanding the underlying cellular and molecular mechanisms behind LN remodeling would help us to better control undesired immune responses (e.g. inflammation and autoimmune diseases) or promote desired responses (e.g. antitumor immunity and vaccination). In this review, we focus on how the closely related tumor necrosis factor (TNF) members: LIGHT (TNFSF14), lymphotoxin-αβ, and TNF-α contribute to the remodeling of LNs at various stages of inflammation.
Collapse
Affiliation(s)
- Mingzhao Zhu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
417
|
Littman DR, Pamer EG. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 2012; 10:311-23. [PMID: 22018232 DOI: 10.1016/j.chom.2011.10.004] [Citation(s) in RCA: 381] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The commensal microbiota that inhabit different parts of the gastrointestinal (GI) tract have been shaped by coevolution with the host species. The symbiotic relationship of the hundreds of microbial species with the host requires a tuned response that prevents host damage, e.g., inflammation, while tolerating the presence of the potentially beneficial microbes. Recent studies have begun to shed light on immunological processes that participate in maintenance of homeostasis with the microbiota and on how disturbance of host immunity or the microbial ecosystem can result in disease-provoking dysbiosis. Our growing appreciation of this delicate host-microbe relationship promises to influence our understanding of inflammatory diseases and infection by microbial pathogens and to provide new therapeutic opportunities.
Collapse
Affiliation(s)
- Dan R Littman
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
418
|
Lee JS, Cella M, Colonna M. AHR and the Transcriptional Regulation of Type-17/22 ILC. Front Immunol 2012; 3:10. [PMID: 22566896 PMCID: PMC3342302 DOI: 10.3389/fimmu.2012.00010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/16/2012] [Indexed: 12/30/2022] Open
Abstract
Mucosal innate lymphoid cells (ILCs) are an emerging population of diverse and heterogeneous immune cells, all with the unique ability to mount a rapid response against invading pathogens. They are further divided into subsets based on their differing cell surface markers as well as in their functional specialization. In this review, we summarize recent reports describing the importance of the transcription factor aryl hydrocarbon receptor (AHR) in regulating the development of one of these subsets, the Type-17/22 ILCs, as well as in the organization of postnatal lymphoid structures. We discuss the mechanisms behind the AHR dependence for development in Type-17/22 ILCs as well as reviewing the proposed physiological ligands that are mediating this effect.
Collapse
Affiliation(s)
- Jacob S Lee
- Department of Pathology and Immunology, Washington University School of Medicine St. Louis, MO, USA
| | | | | |
Collapse
|
419
|
Abstract
UNLABELLED During foetal development, neonatal period and childhood, the immune system is constantly maturing. In the foetus, infection responsiveness is low and associates with spontaneous abortion. During the neonatal period, the infection response shifts towards a more pro-inflammatory response. The immune system of the newborn acquires adaptive features as a result of exposure to microbes. CONCLUSION The development of the human immune system is a continuous process where both accelerated and retarded development is deleterious.
Collapse
Affiliation(s)
- Sofia Ygberg
- The Institution for Woman and Child Health, Unit of Clinical Pediatrics, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
420
|
Spits H, Cupedo T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol 2012; 30:647-75. [PMID: 22224763 DOI: 10.1146/annurev-immunol-020711-075053] [Citation(s) in RCA: 526] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Innate lymphoid cells (ILCs) are immune cells that lack a specific antigen receptor yet can produce an array of effector cytokines that in variety match that of T helper cell subsets. ILCs function in lymphoid organogenesis, tissue remodeling, antimicrobial immunity, and inflammation, particularly at barrier surfaces. Their ability to promptly respond to insults inflicted by stress-causing microbes strongly suggests that ILCs are critical in first-line immunological defenses. Here, we review current data on developmental requirements, lineage relationships, and effector functions of two families of ILCs: (a) Rorγt-expressing cells involved in lymphoid tissue formation, mucosal immunity, and inflammation and (b) type 2 ILCs that are important for helminth immunity. We also discuss the potential roles of ILCs in the pathology of immune-mediated inflammatory and infectious diseases including allergy.
Collapse
Affiliation(s)
- Hergen Spits
- Tytgat Institute of Liver and Intestinal Research of the Academic Medical Center, Amsterdam 1105 AZ, The Netherlands.
| | | |
Collapse
|
421
|
Lane PJL, Gaspal FM, McConnell FM, Kim MY, Anderson G, Withers DR. Lymphoid tissue inducer cells: innate cells critical for CD4+ T cell memory responses? Ann N Y Acad Sci 2012; 1247:1-15. [PMID: 22260374 DOI: 10.1111/j.1749-6632.2011.06284.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Lymphoid tissue inducer cells (LTi) are a relatively new arrival on the immunological cellular landscape, having first been characterized properly only 15 years ago. They are members of an emerging family of innate lymphoid cells (ILCs). Elucidation of their function reveals links not only with the ancient innate immune system, but also with adaptive immune responses, in particular the development of lymph nodes and CD4(+) T cell memory immune responses, which on one hand underpin the success of vaccination strategies, and on the other hand drive many human immunologically mediated diseases. This perspective article is not an exhaustive account of the role of LTi in the development of lymphoid tissues, as there have been many excellent reviews published already. Instead, we combine current knowledge of genetic phylogeny and comparative immunology, together with classical mouse genetics, to suggest how LTi might have evolved from a primitive lymphocytic innate cell in the ancestral 500-million-year-old vertebrate immune system into a cell critical for adaptive CD4(+) T cell immune responses in mammals.
Collapse
Affiliation(s)
- Peter J L Lane
- MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, UK.
| | | | | | | | | | | |
Collapse
|
422
|
Tertiary intratumor lymphoid tissue in colo-rectal cancer. Cancers (Basel) 2011; 4:1-10. [PMID: 24213222 PMCID: PMC3712686 DOI: 10.3390/cancers4010001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/15/2011] [Accepted: 12/21/2011] [Indexed: 12/21/2022] Open
Abstract
Ectopic (or tertiary) lymphoid tissue develops at sites of inflammation or infection in non lymphoid organs and is associated with chronic inflammation. In colon mucosa, small lymphoid aggregates are already present in homeostatic conditions, as part of the gut-associated lymphoid tissue and play an essential role in the immune response to perturbations of the mucosal microenvironment. Despite the recognized role of inflammation in tumor progression, the presence and biological function of lymphoid tissue in cancer has been poorly investigated. We identified aggregates of lymphocytes resembling tertiary lymphoid tissue in human colorectal cancer specimens; intratumor accumulations of lymphocytes display a high degree of compartmentalization, with B and T cells, mature dendritic cells and a network of CD21+ follicular dendritic cells (FDC). We analyzed the adaptation of colon lymphoid tissue in a murine model of colitis-associated cancer (AOM/DSS). B cell follicle formation increases in the context of the chronic inflammation associated to intestinal neoplasia, in this model. A network of lymphatic and haematic vessels surrounding B cell follicles is present and includes high endothelial venules (HEV). Future task is to determine whether lymphoid tissue contributes to the persistence of the tumor-associated inflammatory reaction, rather than represent a functional immune compartment, potentially participating to the anti tumor response.
Collapse
|
423
|
The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat Rev Immunol 2011; 12:9-23. [PMID: 22158411 DOI: 10.1038/nri3112] [Citation(s) in RCA: 371] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mucosal surfaces of the gut and airways have important barrier functions and regulate the induction of immunological tolerance. The rapidly increasing incidence of chronic inflammatory disorders of these surfaces, such as inflammatory bowel disease and asthma, indicates that the immune functions of these mucosae are becoming disrupted in humans. Recent data indicate that events in prenatal and neonatal life orchestrate mucosal homeostasis. Several environmental factors promote the perinatal programming of the immune system, including colonization of the gut and airways by commensal microorganisms. These complex microbial-host interactions operate in a delicate temporal and spatial manner and have an important role in the induction of homeostatic mechanisms.
Collapse
|
424
|
Burrell BE, Ding Y, Nakayama Y, Park KS, Xu J, Yin N, Bromberg JS. Tolerance and lymphoid organ structure and function. Front Immunol 2011; 2:64. [PMID: 22566853 PMCID: PMC3342028 DOI: 10.3389/fimmu.2011.00064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/07/2011] [Indexed: 12/11/2022] Open
Abstract
This issue of Frontiers in Immunologic Tolerance explores barriers to tolerance from a variety of views of cells, molecules, and processes of the immune system. Our laboratory has spent over a decade focused on the migration of the cells of the immune system, and dissecting the signals that determine how and where effector and suppressive regulatory T cells traffic from one site to another in order to reject or protect allografts. These studies have led us to a greater appreciation of the anatomic structure of the immune system, and the realization that the path taken by lymphocytes during the course of the immune response to implanted organs determines the final outcome. In particular, the structures, microanatomic domains, and the cells and molecules that lymphocytes encounter during their transit through blood, tissues, lymphatics, and secondary lymphoid organs are powerful determinants for whether tolerance is achieved. Thus, the understanding of complex cellular and molecular processes of tolerance will not come from “96-well plate immunology,” but from an integrated understanding of the temporal and spatial changes that occur during the response to the allograft. The study of the precise positioning and movement of cells in lymphoid organs has been difficult since it is hard to visualize cells within their three-dimensional setting; instead techniques have tended to be dominated by two-dimensional renderings, although advanced confocal and two-photon systems are changing this view. It is difficult to precisely modify key molecules and events in lymphoid organs, so that existing knockouts, transgenics, inhibitors, and activators have global and pleiotropic effects, rather than precise anatomically restricted influences. Lastly, there are no well-defined postal codes or tracking systems for leukocytes, so that while we can usually track cells from point A to point B, it is exponentially more difficult or even impossible to track them to point C and beyond. We believe this represents one of the fundamental barriers to understanding the immune system and devising therapeutic approaches that take into account anatomy and structure as major controlling principles of tolerance.
Collapse
Affiliation(s)
- Bryna E Burrell
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
425
|
Lee J, Cella M, McDonald K, Garlanda C, Kennedy GD, Nukaya M, Mantovani A, Kopan R, Bradfield CA, Newberry R, Colonna M. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 2011; 13:144-51. [PMID: 22101730 PMCID: PMC3468413 DOI: 10.1038/ni.2187] [Citation(s) in RCA: 586] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/14/2011] [Indexed: 12/13/2022]
Abstract
Innate lymphoid cells (ILCs) of the ILC22 type protect the intestinal mucosa from infection by secreting interleukin 22 (IL-22). ILC22 cells include NKp46(+) and lymphoid tissue-inducer (LTi)-like subsets that express the aryl hydrocarbon receptor (AHR). Here we found that Ahr(-/-) mice had a considerable deficit in ILC22 cells that resulted in less secretion of IL-22 and inadequate protection against intestinal bacterial infection. Ahr(-/-) mice also lacked postnatally 'imprinted' cryptopatches and isolated lymphoid follicles (ILFs), but not embryonically 'imprinted' Peyer's patches. AHR induced the transcription factor Notch, which was required for NKp46(+) ILCs, whereas LTi-like ILCs, cryptopatches and ILFs were partially dependent on Notch signaling. Thus, AHR was essential for ILC22 cells and postnatal intestinal lymphoid tissues. Moreover, ILC22 subsets were heterogeneous in their requirement for Notch and their effect on the generation of intestinal lymphoid tissues.
Collapse
Affiliation(s)
- Jacob Lee
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Keely McDonald
- Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Cecilia Garlanda
- Laboratory of Immunology and Inflammation, Istituto Clinico Humanitas, IRCCS, Milan, Italy
| | - Gregory D. Kennedy
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA
| | - Manabu Nukaya
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA
| | - Alberto Mantovani
- Laboratory of Immunology and Inflammation, Istituto Clinico Humanitas, IRCCS, Milan, Italy
| | - Raphael Kopan
- Developmental Biology and Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Christopher A. Bradfield
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA
| | - Rodney Newberry
- Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
426
|
|
427
|
Fava RA, Kennedy SM, Wood SG, Bolstad AI, Bienkowska J, Papandile A, Kelly JA, Mavragani CP, Gatumu M, Skarstein K, Browning JL. Lymphotoxin-beta receptor blockade reduces CXCL13 in lacrimal glands and improves corneal integrity in the NOD model of Sjögren's syndrome. Arthritis Res Ther 2011; 13:R182. [PMID: 22044682 PMCID: PMC3334628 DOI: 10.1186/ar3507] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/09/2011] [Accepted: 11/01/2011] [Indexed: 12/18/2022] Open
Abstract
Introduction In Sjögren's syndrome, keratoconjunctivitis sicca (dry eye) is associated with infiltration of lacrimal glands by leukocytes and consequent losses of tear-fluid production and the integrity of the ocular surface. We investigated the effect of blockade of the lymphotoxin-beta receptor (LTBR) pathway on lacrimal-gland pathology in the NOD mouse model of Sjögren's syndrome. Methods Male NOD mice were treated for up to ten weeks with an antagonist, LTBR-Ig, or control mouse antibody MOPC-21. Extra-orbital lacrimal glands were analyzed by immunohistochemistry for high endothelial venules (HEV), by Affymetrix gene-array analysis and real-time PCR for differential gene expression, and by ELISA for CXCL13 protein. Leukocytes from lacrimal glands were analyzed by flow-cytometry. Tear-fluid secretion-rates were measured and the integrity of the ocular surface was scored using slit-lamp microscopy and fluorescein isothiocyanate (FITC) staining. The chemokine CXCL13 was measured by ELISA in sera from Sjögren's syndrome patients (n = 27) and healthy controls (n = 30). Statistical analysis was by the two-tailed, unpaired T-test, or the Mann-Whitney-test for ocular integrity scores. Results LTBR blockade for eight weeks reduced B-cell accumulation (approximately 5-fold), eliminated HEV in lacrimal glands, and reduced the entry rate of lymphocytes into lacrimal glands. Affymetrix-chip analysis revealed numerous changes in mRNA expression due to LTBR blockade, including reduction of homeostatic chemokine expression. The reduction of CXCL13, CCL21, CCL19 mRNA and the HEV-associated gene GLYCAM-1 was confirmed by PCR analysis. CXCL13 protein increased with disease progression in lacrimal-gland homogenates, but after LTBR blockade for 8 weeks, CXCL13 was reduced approximately 6-fold to 8.4 pg/mg (+/- 2.7) from 51 pg/mg (+/-5.3) in lacrimal glands of 16 week old control mice. Mice given LTBR blockade exhibited an approximately two-fold greater tear-fluid secretion than control mice (P = 0.001), and had a significantly improved ocular surface integrity score (P = 0.005). The mean CXCL13 concentration in sera from Sjögren's patients (n = 27) was 170 pg/ml, compared to 92.0 pg/ml for sera from (n = 30) healthy controls (P = 0.01). Conclusions Blockade of LTBR pathways may have therapeutic potential for treatment of Sjögren's syndrome.
Collapse
Affiliation(s)
- Roy A Fava
- Immunology Research Department, Department of Veterans Affairs Medical Center, 215 North Main Street, White River Junction, VT 05009, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
428
|
Mortha A, Diefenbach A. Natural killer cell receptor-expressing innate lymphocytes: more than just NK cells. Cell Mol Life Sci 2011; 68:3541-55. [PMID: 21904914 PMCID: PMC11114688 DOI: 10.1007/s00018-011-0803-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 12/17/2022]
Abstract
Recently, additional subsets that extend the family of innate lymphocytes have been discovered. Among these newly identified innate lymphoid cells is a subset sharing phenotypic characteristics of natural killer cells and lymphoid tissue inducer cells. These cells co-express the transcription factor RORγt and activating NK cell receptors (NKR), but their lineage and functional qualities remain poorly defined. Here, we discuss recent proposals to place these NKR(+)RORγt(+) innate lymphocytes on hematopoietic lineage maps. An overview of the transcriptional circuitry determining fate decisions of innate lymphocytes and a summary of current concepts concerning plasticity and stability of innate lymphocyte effector fates are provided. We will conclude by discussing the function of RORγt-expressing innate lymphocytes during inflammatory bowel diseases and in the immune response to tumors.
Collapse
Affiliation(s)
- Arthur Mortha
- IMMH, Institute of Medical Microbiology and Hygiene, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, 79104 Freiburg, Germany
- Research Training Group (GRK1104) of Organogenesis, 79104 Freiburg, Germany
| | - Andreas Diefenbach
- IMMH, Institute of Medical Microbiology and Hygiene, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, 79104 Freiburg, Germany
- Research Training Group (GRK1104) of Organogenesis, 79104 Freiburg, Germany
| |
Collapse
|
429
|
|
430
|
Abstract
A growing body of evidence highlights the importance of a mother's nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a "layered" expansion of increasingly complex defenses, which may be permanently altered by maternal malnutrition. One programming mechanism involves activation of the maternal hypothalamic-pituitary-adrenal axis in response to nutritional stress. Fetal or neonatal exposure to elevated stress hormones is linked in animal studies to permanent changes in neuroendocrine-immune interactions, with diverse manifestations such as an attenuated inflammatory response or reduced resistance to tumor colonization. Maternal malnutrition may also have a direct influence, as evidenced by nutrient-driven epigenetic changes to developing T regulatory cells and subsequent risk of allergy or asthma. A 3rd programming pathway involves placental or breast milk transfer of maternal immune factors with immunomodulatory functions (e.g. cytokines). Maternal malnutrition can directly affect transfer mechanisms or influence the quality or quantity of transferred factors. The public health implications of nutrition-mediated immune programming are of particular importance in the developing world, where prevalent maternal undernutrition is coupled with persistent infectious challenges. However, early alterations to the immune system, resulting from either nutritional deficiencies or excesses, have broad relevance for immune-mediated diseases, such as asthma, and chronic inflammatory conditions like cardiovascular disease.
Collapse
|
431
|
Aparicio-Domingo P, Cupedo T. Rorγt+ innate lymphoid cells in intestinal homeostasis and immunity. J Innate Immun 2011; 3:577-84. [PMID: 21893962 DOI: 10.1159/000330668] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/27/2011] [Indexed: 12/27/2022] Open
Abstract
Innate lymphoid cells (ILC) combine innate and adaptive immune functions and are part of the first line of defense against mucosal infections. ILC are set apart from adaptive lymphocytes by their independence on RAG genes and the resulting absence of specific antigen receptors. In this review, we will discuss the biology and function of intestinal ILC that express the nuclear hormone receptor Rorγt (encoded by the Rorc gene) and highlight their role in intestinal homeostasis and immunity.
Collapse
|
432
|
Brandtzaeg P. The gut as communicator between environment and host: immunological consequences. Eur J Pharmacol 2011; 668 Suppl 1:S16-32. [PMID: 21816150 DOI: 10.1016/j.ejphar.2011.07.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/01/2011] [Accepted: 07/07/2011] [Indexed: 12/18/2022]
Abstract
During human evolution, the mucosal immune system developed two anti-inflammatory mechanisms: immune exclusion by secretory antibodies (SIgA and SIgM) to control epithelial colonization of microorganisms and inhibit penetration of harmful substances; and immunosuppression to counteract local and peripheral hypersensitivity against innocuous antigens such as food proteins. The latter function is referred to as oral tolerance when induced via the gut. Similar mechanisms also control immunity to commensal bacteria. The development of immune homeostasis depends on "windows of opportunity" where adaptive and innate immunities are coordinated by antigen-presenting cells; their function is not only influenced by microbial products but also by dietary constituents, including vitamin A and lipids like polyunsaturated omega-3 fatty acids. These factors can in several ways exert beneficial effects on the immunophenotype of the infant. Also breast milk provides immune-modulating factors and SIgA antibodies - reinforcing the gut barrier. Mucosal immunity is most abundantly expressed in the gut, and the intestinal mucosa of an adult contains at least 80% of the body's activated B cells - terminally differentiated to plasmablasts and plasma cells (PCs). Most mucosal PCs produce dimeric IgA which is exported by secretory epithelia expressing the polymeric Ig receptor (pIgR), also called membrane secretory component (SC). Immune exclusion is therefore performed mainly by SIgA. Notably, pIgR knockout mice which lack SIgs show increased uptake of food and microbial antigens and they have a hyper-reactive immune system with disposition for anaphylaxis; but this untoward development is counteracted by cognate oral tolerance induction as a homeostatic back-up mechanism.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology, Centre for Immune Regulation, University of Oslo, and Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| |
Collapse
|
433
|
|
434
|
Mackall CL, Fry TJ, Gress RE. Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol 2011; 11:330-42. [PMID: 21508983 DOI: 10.1038/nri2970] [Citation(s) in RCA: 426] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin-7 (IL-7) is required for T cell development and for maintaining and restoring homeostasis of mature T cells. IL-7 is a limiting resource under normal conditions, but it accumulates during lymphopaenia, leading to increased T cell proliferation. The administration of recombinant human IL-7 to normal or lymphopenic mice, non-human primates and humans results in widespread T cell proliferation, increased T cell numbers, modulation of peripheral T cell subsets and increased T cell receptor repertoire diversity. These effects raise the prospect that IL-7 could mediate therapeutic benefits in several clinical settings. This Review summarizes the biology of IL-7 and the results of its clinical use that are available so far to provide a perspective on the opportunities for clinical application of this cytokine.
Collapse
Affiliation(s)
- Crystal L Mackall
- Immunology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
435
|
Milićević NM, Miljković MD, Milićević Z, Labudović-Borović M, Wang X, Laan M, Peterson P, Randall TD, Westermann J. Role of CCL19/21 and its possible signaling through CXCR3 in development of metallophilic macrophages in the mouse thymus. Histochem Cell Biol 2011; 135:593-601. [PMID: 21611855 DOI: 10.1007/s00418-011-0818-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2011] [Indexed: 01/01/2023]
Abstract
We have already shown that metallophilic macrophages, which represent an important component in the thymus physiology, are lacking in lymphotoxin-β receptor-deficient mice. However, further molecular requirements for the development and correct tissue positioning of these cells are unknown. To this end, we studied a panel of mice deficient in different chemokine ligand or receptor genes. In contrast to normal mice, which have these cells localized in the thymic cortico-medullary zone (CMZ) as a distinct row positioned between the cortex and medulla, in plt/plt (paucity of lymph node T cells) mice lacking the functional CCL19/CCL21 chemokines, metallophilic macrophages are not present in the thymic tissue. Interestingly, in contrast to the CCL19/21-deficient thymus, metallophilic macrophages are present in the CCR7-deficient thymus. However, these cells are not appropriately located in the CMZ, but are mostly crowded in central parts of thymic medulla. The double staining revealed that these metallophilic macrophages are CCR7-negative and CXCR3-positive. In the CXCL13-deficient thymus the number, morphology and localization of metallophilic macrophages are normal. Thus, our study shows that CCL19/21 and its possible signaling through CXCR3 are required for the development of thymic metallophilic macrophages, whereas the CXCL13-CXCR5 signaling is not necessary.
Collapse
Affiliation(s)
- Novica M Milićević
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | | | | | | | |
Collapse
|
436
|
Cornelissen F, Aparicio Domingo P, Reijmers RM, Cupedo T. Activation and effector functions of human RORC+ innate lymphoid cells. Curr Opin Immunol 2011; 23:361-7. [PMID: 21561752 DOI: 10.1016/j.coi.2011.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
Abstract
Innate lymphoid cells expressing the nuclear hormone receptor RORC have emerged as important players in human mucosal immunity. These cells combine innate modes of activation such as Toll-like receptor signaling with secretion of adaptive effector molecules including IL-2, BAFF and the Th17 cytokines IL-17 and IL-22. This endows these cells with the ability to rapidly respond to changes in cytokine milieu as well as changes in microbial composition and to affect both intestinal homeostasis and activation of adaptive immune cells.
Collapse
Affiliation(s)
- Ferry Cornelissen
- Department of Hematology, Erasmus University Medical Center, PO Box 2040, 3000CA Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
437
|
Abstract
NF-κB was first discovered and characterized 25 years ago as a key regulator of inducible gene expression in the immune system. Thus, it is not surprising that the clearest biological role of NF-κB is in the development and function of the immune system. Both innate and adaptive immune responses as well as the development and maintenance of the cells and tissues that comprise the immune system are, at multiple steps, under the control of the NF-κB family of transcription factors. Although this is a well-studied area of NF-κB research, new and significant findings continue to accumulate. This review will focus on these areas of recent progress while also providing a broad overview of the roles of NF-κB in mammalian immunobiology.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
438
|
Spits H, Di Santo JP. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol 2010; 12:21-7. [PMID: 21113163 DOI: 10.1038/ni.1962] [Citation(s) in RCA: 655] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Research has identified what can be considered a family of innate lymphoid cells (ILCs) that includes not only natural killer (NK) cells and lymphoid tissue-inducer (LTi) cells but also cells that produce interleukin 5 (IL-5), IL-13, IL-17 and/or IL-22. These ILC subsets are developmentally related, requiring expression of the transcriptional repressor Id2 and cytokine signals through the common γ-chain of the IL-2 receptor. The functional differentiation of ILC subsets is orchestrated by distinct transcription factors. Analogous to helper T cell subsets, these evolutionarily conserved yet distinct ILCs seem to have important roles in protective immunity, and their dysregulation can promote immune pathology.
Collapse
Affiliation(s)
- Hergen Spits
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Centre, Amsterdam, The Netherlands.
| | | |
Collapse
|
439
|
|