401
|
Rittman T. Neurological update: neuroimaging in dementia. J Neurol 2020; 267:3429-3435. [PMID: 32638104 PMCID: PMC7578138 DOI: 10.1007/s00415-020-10040-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Neuroimaging for dementia has made remarkable progress in recent years, shedding light on diagnostic subtypes of dementia, predicting prognosis and monitoring pathology. This review covers some updates in the understanding of dementia using structural imaging, positron emission tomography (PET), structural and functional connectivity, and using big data and artificial intelligence. Progress with neuroimaging methods allows neuropathology to be examined in vivo, providing a suite of biomarkers for understanding neurodegeneration and for application in clinical trials. In addition, we highlight quantitative susceptibility imaging as an exciting new technique that may prove to be a sensitive biomarker for a range of neurodegenerative diseases. There are challenges in translating novel imaging techniques to clinical practice, particularly in developing standard methodologies and overcoming regulatory issues. It is likely that clinicians will need to lead the way if these obstacles are to be overcome. Continued efforts applying neuroimaging to understand mechanisms of neurodegeneration and translating them to clinical practice will complete a revolution in neuroimaging.
Collapse
Affiliation(s)
- Timothy Rittman
- Department of Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
402
|
Mantyh WG, Spina S, Lee A, Iaccarino L, Soleimani-Meigooni D, Tsoy E, Mellinger TJ, Grant H, Vandevrede L, La Joie R, Lesman-Segev O, Gaus S, Possin KL, Grinberg LT, Miller BL, Seeley WW, Rabinovici GD. Tau Positron Emission Tomographic Findings in a Former US Football Player With Pathologically Confirmed Chronic Traumatic Encephalopathy. JAMA Neurol 2020; 77:517-521. [PMID: 31904765 DOI: 10.1001/jamaneurol.2019.4509] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Importance Biomarkers for chronic traumatic encephalopathy (CTE) are currently lacking. The radiotracer fluorine F 18-labeled (18F)-flortaucipir (FTP) detects tau pathology in Alzheimer disease, and positron emission tomography (PET) with FTP shows elevated binding in individuals at risk for CTE. No study, however, has assessed the correlation between in vivo FTP PET and postmortem tau in CTE. Objective To assess the regional association between in vivo FTP binding and postmortem tau pathology in a patient with pathologically confirmed CTE. Design, Setting, and Participants A white male former National Football League player with 17 years of US football exposure was clinically diagnosed with traumatic encephalopathy syndrome at a neurology tertiary referral center. 18F-Fludeoxyglucose, carbon 11-labeled Pittsburgh compound B, and FTP PET were performed 52 months prior to death, and magnetic resonance imaging, 50 months prior to death. Brain images were assessed qualitatively for abnormalities blinded to autopsy data. Autopsy was performed using a neurodegenerative research protocol. The FTP standardized uptake value ratios (inferior cerebellar gray reference region) and W-score (age-adjusted z-score) maps were compared with phosphorylated tau immunohistochemical analysis with monoclonal antibody CP13. Main Outcomes and Measures Qualitative and quantitative comparisons between antemortem FTP PET and tau pathology at autopsy. Results Flortaucipir uptake was distributed in a patchy, frontotemporal-predominant pattern that overlapped with regions showing neurodegeneration on magnetic resonance imaging and hypometabolism on 18F-fludeoxyglucose PET. Pathological assessment revealed stage 4 CTE; limbic argyrophilic grain disease; stage 2 limbic-predominant, age-related transactive response DNA-binding protein 43 encephalopathy; and Braak neurofibrillary tangle stage 3. 18F-Flortaucipir W-maps matched areas of high postmortem tau burden in left fusiform and inferior temporal gyri and juxtacortical frontal white matter. High FTP W-scores with low tau burden were found in the basal ganglia, thalamus, motor cortex, and calcarine cortex. No regions with low FTP W-scores corresponded to areas with high pathological tau burden. A modest correlation, which did not reach statistical significance (ρ = 0.35, P = .17), was found between FTP standardized uptake value ratio and tau area fraction at the regional level. Conclusions and Relevance In this patient, FTP PET findings during life showed a modest correspondence with postmortem pathology in CTE. These findings suggest that FTP may have limited utility as a tau biomarker in CTE.
Collapse
Affiliation(s)
- William G Mantyh
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Alex Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - David Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Elena Tsoy
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Taylor J Mellinger
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Harli Grant
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Lawren Vandevrede
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Orit Lesman-Segev
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Stephanie Gaus
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Katherine L Possin
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco.,Department of Pathology, University of California, San Francisco, San Francisco
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco.,Department of Pathology, University of California, San Francisco, San Francisco
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco.,Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco.,Associate Editor
| |
Collapse
|
403
|
Cao Q, Boyer DR, Sawaya MR, Ge P, Eisenberg DS. Cryo-EM structure and inhibitor design of human IAPP (amylin) fibrils. Nat Struct Mol Biol 2020; 27:653-659. [PMID: 32541896 PMCID: PMC8579859 DOI: 10.1038/s41594-020-0435-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) functions as a glucose-regulating hormone but deposits as amyloid fibrils in more than 90% of patients with type II diabetes (T2D). Here we report the cryo-EM structure of recombinant full-length hIAPP fibrils. The fibril is composed of two symmetrically related protofilaments with ordered residues 14-37. Our hIAPP fibril structure (i) supports the previous hypothesis that residues 20-29 constitute the core of the hIAPP amyloid; (ii) suggests a molecular mechanism for the action of the hIAPP hereditary mutation S20G; (iii) explains why the six residue substitutions in rodent IAPP prevent aggregation; and (iv) suggests regions responsible for the observed hIAPP cross-seeding with β-amyloid. Furthermore, we performed structure-based inhibitor design to generate potential hIAPP aggregation inhibitors. Four of the designed peptides delay hIAPP aggregation in vitro, providing a starting point for the development of T2D therapeutics and proof of concept that the capping strategy can be used on full-length cryo-EM fibril structures.
Collapse
Affiliation(s)
- Qin Cao
- Department of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - David R Boyer
- Department of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael R Sawaya
- Department of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peng Ge
- California NanoSystem Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - David S Eisenberg
- Department of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
404
|
Abstract
Amyloids are protein polymers that were initially linked to human diseases. Across the whole Tree of Life, many disease-unrelated proteins are now emerging for which amyloids represent distinct functional states. Most bacterial amyloids described are extracellular, contributing to biofilm formation. However, only a few have been found in the bacterial cytosol. This paper reviews from the perspective of synthetic biology (SynBio) our understanding of the subtle line that separates functional from pathogenic and transmissible amyloids (prions). Amyloids are protein polymers that were initially linked to human diseases. Across the whole Tree of Life, many disease-unrelated proteins are now emerging for which amyloids represent distinct functional states. Most bacterial amyloids described are extracellular, contributing to biofilm formation. However, only a few have been found in the bacterial cytosol. This paper reviews from the perspective of synthetic biology (SynBio) our understanding of the subtle line that separates functional from pathogenic and transmissible amyloids (prions). In particular, it is focused on RepA-WH1, a functional albeit unconventional natural amyloidogenic protein domain that participates in controlling DNA replication of bacterial plasmids. SynBio approaches, including protein engineering and the design of allosteric effectors such as diverse ligands and an optogenetic module, have enabled the generation in RepA-WH1 of an intracellular cytotoxic prion-like agent in bacteria. The synthetic RepA-WH1 prion has the potential to develop into novel antimicrobials.
Collapse
|
405
|
Scheres SH, Zhang W, Falcon B, Goedert M. Cryo-EM structures of tau filaments. Curr Opin Struct Biol 2020; 64:17-25. [PMID: 32603876 DOI: 10.1016/j.sbi.2020.05.011] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
Assembly of microtubule-associated protein tau into filamentous inclusions underlies many human neurodegenerative diseases, called tauopathies. Tau inclusions display distinct cellular and neuroanatomical distributions in different tauopathies. Morphological and biochemical differences suggest that tau filaments adopt disease-specific molecular conformers, similar to prion strains. Breakthroughs in electron cryo-microscopy have recently yielded atomic structures of tau filaments extracted from the brains of individuals with various tauopathies. Each disease is characterised by a unique tau filament fold, which is conserved among individuals with the same disease. In vitro aggregation yields different structures from those observed in brain. Tau isoform composition, post-translational modifications or interactions with cofactors may determine which structures are formed in brain. Understanding filament formation will be central to deciphering the molecular mechanisms that underlie human tauopathies.
Collapse
Affiliation(s)
- Sjors Hw Scheres
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom.
| | - Wenjuan Zhang
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Benjamin Falcon
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Michel Goedert
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom.
| |
Collapse
|
406
|
Dregni AJ, Duan P, Hong M. Hydration and Dynamics of Full-Length Tau Amyloid Fibrils Investigated by Solid-State Nuclear Magnetic Resonance. Biochemistry 2020; 59:2237-2248. [PMID: 32453948 PMCID: PMC7720860 DOI: 10.1021/acs.biochem.0c00342] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The microtubule-associated protein tau aggregates into distinct neurofibrillary tangles in brains afflicted with multiple neurodegenerative diseases such as Alzheimer's disease and corticobasal degeneration (CBD). The mechanism of tau misfolding and aggregation is poorly understood. Determining the structure, dynamics, and water accessibility of tau filaments may provide insight into the pathway of tau misfolding. Here, we investigate the hydration and dynamics of the β-sheet core of heparin-fibrillized 0N4R tau using solid-state nuclear magnetic resonance spectroscopy. This β-sheet core consists of the second and third microtubule-binding repeats, R2 and R3, respectively, which form a hairpin. Water-edited two-dimensional (2D) 13C-13C and 15N-13C correlation spectra show that most residues in R2 and R3 domains have low water accessibility, indicating that this hairpin is surrounded by other proteinaceous segments. However, a small number of residues, especially S285 and S316, are well hydrated compared to other Ser and Thr residues, suggesting that there is a small water channel in the middle of the hairpin. To probe whether water accessibility correlates with protein dynamics, we measured the backbone N-H dipolar couplings of the β-sheet core. Interestingly, residues in the fourth microtubule-binding repeat, R4, show rigid-limit N-H dipolar couplings, even though this domain exhibits weaker intensities in the 2D 15N-13C correlation spectra. These results suggest that the R4 domain participates in cross-β hydrogen bonding in some of the subunits but exhibits dynamic disorder in other subunits. Taken together, these hydration and dynamics data indicate that the R2-R3 hairpin of 0N4R tau is shielded from water by other proteinaceous segments on the exterior but contains a small water pore in the interior. This structural topology has various similarities with the CBD tau fibril structure but also shows specific differences. The disorder of the R4 domain and the presence of a small water channel in the heparin-fibrillized 4R tau have implications for the structure of tau fibrils in diseased brains.
Collapse
Affiliation(s)
| | | | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
407
|
Ferreira NDC, Caughey B. Proteopathic Seed Amplification Assays for Neurodegenerative Disorders. Clin Lab Med 2020; 40:257-270. [PMID: 32718498 DOI: 10.1016/j.cll.2020.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The need for etiological biomarkers for neurodegenerative diseases involving protein aggregation has prompted development of ultrasensitive cellular and cell-free assays based on the prion-like seeding capacity of such aggregates. Among them, prion RT-QuIC assays allow accurate antemortem Creutzfeldt-Jakob disease diagnosis using cerebrospinal fluid and nasal brushings. Analogous assays for synucleinopathies (e.g., Parkinson disease and dementia with Lewy bodies) provide unprecedented diagnostic sensitivity using cerebrospinal fluid. Biosensor cell and tau RT-QuIC assays can detect and discriminate tau aggregates associated with multiple tauopathies (e.g., Alzheimer disease and frontotemporal degeneration). An expanding panel of seed amplification assays should improve diagnostics and therapeutics development.
Collapse
Affiliation(s)
- Natália do Carmo Ferreira
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA.
| |
Collapse
|
408
|
Watanabe-Nakayama T, Sahoo BR, Ramamoorthy A, Ono K. High-Speed Atomic Force Microscopy Reveals the Structural Dynamics of the Amyloid-β and Amylin Aggregation Pathways. Int J Mol Sci 2020; 21:E4287. [PMID: 32560229 PMCID: PMC7352471 DOI: 10.3390/ijms21124287] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022] Open
Abstract
Individual Alzheimer's disease (AD) patients have been shown to have structurally distinct amyloid-β (Aβ) aggregates, including fibrils, in their brain. These findings suggest the possibility of a relationship between AD progression and Aβ fibril structures. Thus, the characterization of the structural dynamics of Aβ could aid the development of novel therapeutic strategies and diagnosis. Protein structure and dynamics have typically been studied separately. Most of the commonly used biophysical approaches are limited in providing substantial details regarding the combination of both structure and dynamics. On the other hand, high-speed atomic force microscopy (HS-AFM), which simultaneously visualizes an individual protein structure and its dynamics in liquid in real time, can uniquely link the structure and the kinetic details, and it can also unveil novel insights. Although amyloidogenic proteins generate heterogeneously aggregated species, including transient unstable states during the aggregation process, HS-AFM elucidated the structural dynamics of individual aggregates in real time in liquid without purification and isolation. Here, we review and discuss the HS-AFM imaging of amyloid aggregation and strategies to optimize the experiments showing findings from Aβ and amylin, which is associated with type II diabetes, shares some common biological features with Aβ, and is reported to be involved in AD.
Collapse
Affiliation(s)
| | - Bikash R. Sahoo
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, and Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA;
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA;
| | - Kenjiro Ono
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Hatanodai, Shinagawa district, Tokyo 142-8666, Japan;
| |
Collapse
|
409
|
Schmidt ME, Janssens L, Moechars D, Rombouts FJR, Timmers M, Barret O, Constantinescu CC, Madonia J, Russell DS, Sandiego CM, Kolb H. Clinical evaluation of [ 18F] JNJ-64326067, a novel candidate PET tracer for the detection of tau pathology in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2020; 47:3176-3185. [PMID: 32535652 PMCID: PMC7680304 DOI: 10.1007/s00259-020-04880-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/19/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE The accumulation of misfolded tau is a common feature of several neurodegenerative disorders, with Alzheimer's disease (AD) being the most common. Earlier we identified JNJ-64326067, a novel isoquinoline derivative with high affinity and selectivity for tau aggregates from human AD brain. We report the dosimetry of [18F] JNJ-64326067 and results of a proof-of-concept study comparing subjects with probable Alzheimer's disease to age-matched healthy controls. METHODS [18F] JNJ-64326067 PET scans were acquired for 90 min and then from 120 to 180 min in 5 participants with [18F]-florbetapir PET amyloid positive probable AD (73 ± 9 years) and 5 [18F]-florbetapir PET amyloid negative healthy controls (71 ± 7 years). Whole-body [18F] JNJ-64326067 PET CT scans were acquired in six healthy subjects for 5.5 h in 3 scanning sessions. Brain PET scans were visually reviewed. Regional quantification included kinetic analysis of distribution volume ration (DVR) estimated by Logan graphical analysis over the entire scan and static analysis of SUVr in late frames. Both methods used ventral cerebellar cortex as a reference region. RESULTS One of the healthy controls had focal areas of PET signal in occipital and parietal cortex underlying the site of a gunshot injury as an adolescent; the other four healthy subjects had no tau brain signal. Four of the 5 AD participants had visually apparent retention of [18F] JNJ-64326067 in relevant cortical regions. One of the AD subjects was visually negative. Cortical signal in visually positive subjects approached steady state by 120 min. Temporal and frontal cortical SUVr/DVR values in visually positive AD subjects ranged from 1.21 to 3.09/1.2 to 2.18 and from 0.92 to 1.28/0.91 to 1.16 in healthy controls. Whole-body effective dose was estimated to be 0.0257 mSv/MBq for females and 0.0254 mSv/MBq for males. CONCLUSIONS [18F] JNJ-64326067 could be useful for detection and quantitation of tau aggregates.
Collapse
Affiliation(s)
- Mark E Schmidt
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.
| | - Luc Janssens
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Diederik Moechars
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Maarten Timmers
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Olivier Barret
- Invicro, a Konica Minolta company, New Haven, CT, USA.,Laboratory of Neurodegenerative Diseases, Molecular Imaging Research Center, French Atomic Energy Commission, Fontenay-aux-roses, France
| | | | - Jennifer Madonia
- Invicro, a Konica Minolta company, New Haven, CT, USA.,Biohaven Pharmaceuticals, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
410
|
Motoi Y, Hanger DP, Hasegawa M. Editorial: Tau Propagation Mechanisms: Cell Models, Animal Models, and Beyond. Front Neurosci 2020; 14:456. [PMID: 32508569 PMCID: PMC7248213 DOI: 10.3389/fnins.2020.00456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/15/2020] [Indexed: 12/02/2022] Open
Affiliation(s)
- Yumiko Motoi
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Diane P Hanger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
411
|
Cryo-EM structure of an amyloid fibril formed by full-length human prion protein. Nat Struct Mol Biol 2020; 27:598-602. [PMID: 32514176 DOI: 10.1038/s41594-020-0441-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022]
Abstract
Prion diseases are caused by the misfolding of prion protein (PrP). Misfolded PrP forms protease-resistant aggregates in vivo (PrPSc) that are able to template the conversion of the native form of the protein (PrPC), a property shared by in vitro-produced PrP fibrils. Here we produced amyloid fibrils in vitro from recombinant, full-length human PrPC (residues 23-231) and determined their structure using cryo-EM, building a model for the fibril core comprising residues 170-229. The PrP fibril consists of two protofibrils intertwined in a left-handed helix. Lys194 and Glu196 from opposing subunits form salt bridges, creating a hydrophilic cavity at the interface of the two protofibrils. By comparison with the structure of PrPC, we propose that two α-helices in the C-terminal domain of PrPC are converted into β-strands stabilized by a disulfide bond in the PrP fibril. Our data suggest that different PrP mutations may play distinct roles in modulating the conformational conversion.
Collapse
|
412
|
Wray S. Modelling neurodegenerative disease using brain organoids. Semin Cell Dev Biol 2020; 111:60-66. [PMID: 32513498 DOI: 10.1016/j.semcdb.2020.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/04/2020] [Accepted: 05/19/2020] [Indexed: 12/29/2022]
Abstract
Neurodegenerative Diseases such as Alzheimer's Disease represent a major public health challenge, with no disease modifying therapies available. The availability of induced pluripotent stem cells from patients with phenotypes and genotypes of interest, that can be subsequently differentiated in vitro into disease-affected cell types, has revolutionised our ability to generate physiologically relevant disease models. The recent availability of brain organoids - self-organising in vitro tissue models - as enabled the generation of complex, multicellular systems to study brain development and disease. Although widely used for modelling neurodevelopment, early studies have demonstrated great promise in the use of organoids as models of neurodegenerative disease. Here, I will review recent progress to model neurodegenerative diseases using organoids and comment on future directions and challenges.
Collapse
Affiliation(s)
- Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 1PJ, United Kingdom.
| |
Collapse
|
413
|
Ait-Bouziad N, Chiki A, Limorenko G, Xiao S, Eliezer D, Lashuel HA. Phosphorylation of the overlooked tyrosine 310 regulates the structure, aggregation, and microtubule- and lipid-binding properties of Tau. J Biol Chem 2020; 295:7905-7922. [PMID: 32341125 PMCID: PMC7278352 DOI: 10.1074/jbc.ra119.012517] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/22/2020] [Indexed: 01/15/2023] Open
Abstract
The microtubule-associated protein Tau is implicated in the pathogenesis of several neurodegenerative disorders, including Alzheimer's disease. Increasing evidence suggests that post-translational modifications play critical roles in regulating Tau's normal functions and its pathogenic properties in tauopathies. Very little is known about how phosphorylation of tyrosine residues influences the structure, aggregation, and microtubule- and lipid-binding properties of Tau. Here, we sought to determine the relative contributions of phosphorylation of one or several of the five tyrosine residues in Tau (Tyr-18, -29, -197, -310, and -394) to the regulation of its biophysical, aggregation, and functional properties. We used a combination of site-specific mutagenesis and in vitro phosphorylation by c-Abl kinase to generate Tau species phosphorylated at all five tyrosine residues, all tyrosine residues except Tyr-310 or Tyr-394 (pTau-Y310F and pTau-Y394F, respectively) and Tau phosphorylated only at Tyr-310 or Tyr-394 (4F/pTyr-310 or 4F/pTyr-394). We observed that phosphorylation of all five tyrosine residues, multiple N-terminal tyrosine residues (Tyr-18, -29, and -197), or specific phosphorylation only at residue Tyr-310 abolishes Tau aggregation and inhibits its microtubule- and lipid-binding properties. NMR experiments indicated that these effects are mediated by a local decrease in β-sheet propensity of Tau's PHF6 domain. Our findings underscore Tyr-310 phosphorylation has a unique role in the regulation of Tau aggregation, microtubule, and lipid interactions. These results also highlight the importance of conducting further studies to elucidate the role of Tyr-310 in the regulation of Tau's normal functions and pathogenic properties.
Collapse
Affiliation(s)
- Nadine Ait-Bouziad
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Galina Limorenko
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Shifeng Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Department of Biochemistry and Program in Structural Biology, Weill Cornell Medical College, New York, New York
| | - David Eliezer
- Department of Biochemistry and Program in Structural Biology, Weill Cornell Medical College, New York, New York
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
414
|
Hasegawa M. Experimental models of prion‐like protein propagation. Neuropathology 2020; 40:460-466. [DOI: 10.1111/neup.12656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Masato Hasegawa
- Department of Dementia and Higher Brain Function Tokyo Metropolitan Institute of Medical Science Tokyo Japan
| |
Collapse
|
415
|
Zhao K, Li Y, Liu Z, Long H, Zhao C, Luo F, Sun Y, Tao Y, Su XD, Li D, Li X, Liu C. Parkinson's disease associated mutation E46K of α-synuclein triggers the formation of a distinct fibril structure. Nat Commun 2020; 11:2643. [PMID: 32457390 PMCID: PMC7250837 DOI: 10.1038/s41467-020-16386-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/28/2020] [Indexed: 01/20/2023] Open
Abstract
Amyloid aggregation of α-synuclein (α-syn) is closely associated with Parkinson's disease (PD) and other synucleinopathies. Several single amino-acid mutations (e.g. E46K) of α-syn have been identified causative to the early onset of familial PD. Here, we report the cryo-EM structure of an α-syn fibril formed by N-terminally acetylated E46K mutant α-syn (Ac-E46K). The fibril structure represents a distinct fold of α-syn, which demonstrates that the E46K mutation breaks the electrostatic interactions in the wild type (WT) α-syn fibril and thus triggers the rearrangement of the overall structure. Furthermore, we show that the Ac-E46K fibril is less resistant to harsh conditions and protease cleavage, and more prone to be fragmented with an enhanced seeding capability than that of the WT fibril. Our work provides a structural view to the severe pathology of the PD familial mutation E46K of α-syn and highlights the importance of electrostatic interactions in defining the fibril polymorphs.
Collapse
Affiliation(s)
- Kun Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaowang Li
- Key Laboratory of Protein Sciences (Tsinghua University), Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhenying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Houfang Long
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyu Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Luo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunpeng Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiao-Dong Su
- State Key Laboratory of Protein and Plant Gene Research, and Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xueming Li
- Key Laboratory of Protein Sciences (Tsinghua University), Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
416
|
Iverson GL, Gardner AJ, Shultz SR, Solomon GS, McCrory P, Zafonte R, Perry G, Hazrati LN, Keene CD, Castellani RJ. Chronic traumatic encephalopathy neuropathology might not be inexorably progressive or unique to repetitive neurotrauma. Brain 2020; 142:3672-3693. [PMID: 31670780 PMCID: PMC6906593 DOI: 10.1093/brain/awz286] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022] Open
Abstract
In the 20th century, chronic traumatic encephalopathy (CTE) was conceptualized as a neurological disorder affecting some active and retired boxers who had tremendous exposure to neurotrauma. In recent years, the two research groups in the USA who have led the field have asserted definitively that CTE is a delayed-onset and progressive neurodegenerative disease, with symptoms appearing in midlife or decades after exposure. Between 2005 and 2012 autopsy cases of former boxers and American football players described neuropathology attributed to CTE that was broad and diverse. This pathology, resulting from multiple causes, was aggregated and referred to, in toto, as the pathology ‘characteristic’ of CTE. Preliminary consensus criteria for defining the neuropathology of CTE were forged in 2015 and published in 2016. Most of the macroscopic and microscopic neuropathological findings described as characteristic of CTE, in studies published before 2016, were not included in the new criteria for defining the pathology. In the past few years, there has been steadily emerging evidence that the neuropathology described as unique to CTE may not be unique. CTE pathology has been described in individuals with no known participation in collision or contact sports and no known exposure to repetitive neurotrauma. This pathology has been reported in individuals with substance abuse, temporal lobe epilepsy, amyotrophic lateral sclerosis, multiple system atrophy, and other neurodegenerative diseases. Moreover, throughout history, some clinical cases have been described as not being progressive, and there is now evidence that CTE neuropathology might not be progressive in some individuals. Considering the current state of knowledge, including the absence of a series of validated sensitive and specific biomarkers, CTE pathology might not be inexorably progressive or specific to those who have experienced repetitive neurotrauma.
Collapse
Affiliation(s)
- Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA.,Spaulding Rehabilitation Hospital and Spaulding Research Institute, Boston, Massachusetts, USA.,MassGeneral Hospital for Children™ Sports Concussion Program, Boston, Massachusetts, USA.,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, Massachusetts, USA
| | - Andrew J Gardner
- Hunter New England Local Health District, Sports Concussion Program, University of Newcastle, Callaghan, NSW, Australia.,Centre for Stroke and Brain Injury, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Gary S Solomon
- Department of Neurological Surgery, Orthopaedic Surgery and Rehabilitation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Vanderbilt Sports Concussion Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Paul McCrory
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre - Austin Campus, Heidelberg, Victoria Australia
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA.,Spaulding Rehabilitation Hospital and Spaulding Research Institute, Boston, Massachusetts, USA.,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, Massachusetts, USA
| | - George Perry
- College of Sciences, University of Texas, San Antonio; San Antonio, Texas, USA
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - C Dirk Keene
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Rudolph J Castellani
- Department of Pathology, Anatomy and Laboratory Medicine, West Virginia University School of Medicine, Morgantown, USA.,Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, USA
| |
Collapse
|
417
|
Arena JD, Smith DH, Lee EB, Gibbons GS, Irwin DJ, Robinson JL, Lee VMY, Trojanowski JQ, Stewart W, Johnson VE. Tau immunophenotypes in chronic traumatic encephalopathy recapitulate those of ageing and Alzheimer's disease. Brain 2020; 143:1572-1587. [PMID: 32390044 PMCID: PMC7241956 DOI: 10.1093/brain/awaa071] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a risk factor for neurodegenerative disease, including chronic traumatic encephalopathy (CTE). Preliminary consensus criteria define the pathognomonic lesion of CTE as patchy tau pathology within neurons and astrocytes at the depths of cortical sulci. However, the specific tau isoform composition and post-translational modifications in CTE remain largely unexplored. Using immunohistochemistry, we performed tau phenotyping of CTE neuropathologies and compared this to a range of tau pathologies, including Alzheimer's disease, primary age-related tauopathy, ageing-related tau astrogliopathy and multiple subtypes of frontotemporal lobar degeneration with tau inclusions. Cases satisfying preliminary consensus diagnostic criteria for CTE neuropathological change (CTE-NC) were identified (athletes, n = 10; long-term survivors of moderate or severe TBI, n = 4) from the Glasgow TBI Archive and Penn Neurodegenerative Disease Brain Bank. In addition, material from a range of autopsy-proven ageing-associated and primary tauopathies in which there was no known history of exposure to TBI was selected as non-injured controls (n = 32). Each case was then stained with a panel of tau antibodies specific for phospho-epitopes (PHF1, CP13, AT100, pS262), microtubule-binding repeat domains (3R, 4R), truncation (Tau-C3) or conformation (GT-7, GT-38) and the extent and distribution of staining assessed. Cell types were confirmed with double immunofluorescent labelling. Results demonstrate that astroglial tau pathology in CTE is composed of 4R-immunoreactive thorn-shaped astrocytes, echoing the morphology and immunophenotype of astrocytes encountered in ageing-related tau astrogliopathy. In contrast, neurofibrillary tangles of CTE contain both 3R and 4R tau, with post-translational modifications and conformations consistent with Alzheimer's disease and primary age-related tauopathy. Our observations establish that the astroglial and neurofibrillary tau pathologies of CTE are phenotypically distinct from each other and recapitulate the tau immunophenotypes encountered in ageing and Alzheimer's disease. As such, the immunohistochemical distinction of CTE neuropathology from other mixed 3R/4R tauopathies of Alzheimer's disease and ageing may rest solely on the pattern and distribution of pathology.
Collapse
Affiliation(s)
- John D Arena
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Translational Neuropathology Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Garrett S Gibbons
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John L Robinson
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Virginia M -Y Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
418
|
Glynn C, Sawaya MR, Ge P, Gallagher-Jones M, Short CW, Bowman R, Apostol M, Zhou ZH, Eisenberg DS, Rodriguez JA. Cryo-EM structure of a human prion fibril with a hydrophobic, protease-resistant core. Nat Struct Mol Biol 2020; 27:417-423. [PMID: 32284600 PMCID: PMC7338044 DOI: 10.1038/s41594-020-0403-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/28/2020] [Indexed: 01/22/2023]
Abstract
Self-templating assemblies of the human prion protein are clinically associated with transmissible spongiform encephalopathies. Here we present the cryo-EM structure of a denaturant- and protease-resistant fibril formed in vitro spontaneously by a 9.7-kDa unglycosylated fragment of the human prion protein. This human prion fibril contains two protofilaments intertwined with screw symmetry and linked by a tightly packed hydrophobic interface. Each protofilament consists of an extended beta arch formed by residues 106 to 145 of the prion protein, a hydrophobic and highly fibrillogenic disease-associated segment. Such structures of prion polymorphs serve as blueprints on which to evaluate the potential impact of sequence variants on prion disease.
Collapse
Affiliation(s)
- Calina Glynn
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael R Sawaya
- Department of Biological Chemistry and Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Peng Ge
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Marcus Gallagher-Jones
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Connor W Short
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ronquiajah Bowman
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Marcin Apostol
- Department of Biological Chemistry and Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
- ADRx, Thousand Oaks, CA, USA
| | - Z Hong Zhou
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - David S Eisenberg
- Department of Biological Chemistry and Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jose A Rodriguez
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
419
|
Cell-to-Cell Transmission of Tau and α-Synuclein. Trends Mol Med 2020; 26:936-952. [PMID: 32371172 DOI: 10.1016/j.molmed.2020.03.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022]
Abstract
The stereotypical spread of pathological protein inclusions and clinicopathological heterogeneity are well described in neurodegenerative diseases. Accumulating evidence suggests that the former can be attributed to consecutive cell-to-cell transmission of pathological proteins between anatomically connected brain regions, while the latter has been hypothesized to result from the spread of conformationally distinct pathological protein aggregates, or strains. These emerging concepts have dramatically changed our understanding of neurodegenerative diseases. In this review, we first summarize the background and recent findings underpinning these concepts with a focus on two major pathological proteins: tau and α-synuclein. We then discuss their clinical implications for tauopathies and synucleinopathies and propose a working hypothesis for future research.
Collapse
|
420
|
Esmaili M, Tancowny BP, Wang X, Moses A, Cortez LM, Sim VL, Wille H, Overduin M. Native nanodiscs formed by styrene maleic acid copolymer derivatives help recover infectious prion multimers bound to brain-derived lipids. J Biol Chem 2020; 295:8460-8469. [PMID: 32358064 DOI: 10.1074/jbc.ra119.012348] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/14/2020] [Indexed: 11/06/2022] Open
Abstract
Prions are lipidated proteins that interact with endogenous lipids and metal ions. They also assemble into multimers and propagate into the infectious scrapie form known as PrPSc The high-resolution structure of the infectious PrPSc state remains unknown, and its analysis largely relies on detergent-based preparations devoid of endogenous ligands. Here we designed polymers that allow isolation of endogenous membrane:protein assemblies in native nanodiscs without exposure to conventional detergents that destabilize protein structures and induce fibrillization. A set of styrene-maleic acid (SMA) polymers including a methylamine derivative facilitated gentle release of the infectious complexes for resolution of multimers, and a thiol-containing version promoted crystallization. Polymer extraction from brain homogenates from Syrian hamsters infected with Hyper prions and WT mice infected with Rocky Mountain Laboratories prions yielded infectious prion nanoparticles including oligomers and microfilaments bound to lipid vesicles. Lipid analysis revealed the brain phospholipids that associate with prion protofilaments, as well as those that are specifically enriched in prion assemblies captured by the methylamine-modified copolymer. A comparison of the infectivity of PrPSc attached to SMA lipid particles in mice and hamsters indicated that these amphipathic polymers offer a valuable tool for high-yield production of intact, detergent-free prions that retain in vivo activity. This native prion isolation method provides an avenue for producing relevant prion:lipid targets and potentially other proteins that form multimeric assemblies and fibrils on membranes.
Collapse
Affiliation(s)
- Mansoore Esmaili
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Brian P Tancowny
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Xiongyao Wang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Audric Moses
- Lipidomics Core Facility, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Leonardo M Cortez
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.,Division of Neurology, Department of Medicine, Centre for Prions and Protein Folding Diseases, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Valerie L Sim
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.,Division of Neurology, Department of Medicine, Centre for Prions and Protein Folding Diseases, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada .,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
421
|
Vogels T, Leuzy A, Cicognola C, Ashton NJ, Smolek T, Novak M, Blennow K, Zetterberg H, Hromadka T, Zilka N, Schöll M. Propagation of Tau Pathology: Integrating Insights From Postmortem and In Vivo Studies. Biol Psychiatry 2020; 87:808-818. [PMID: 31735253 DOI: 10.1016/j.biopsych.2019.09.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022]
Abstract
Cellular accumulation of aggregated forms of the protein tau is a defining feature of so-called tauopathies such as Alzheimer's disease, progressive supranuclear palsy, and chronic traumatic encephalopathy. A growing body of literature suggests that conformational characteristics of tau filaments, along with regional vulnerability to tau pathology, account for the distinct histopathological morphologies, biochemical composition, and affected cell types seen across these disorders. In this review, we describe and discuss recent evidence from human postmortem and clinical biomarker studies addressing the differential vulnerability of brain areas to tau pathology, its cell-to-cell transmission, and characteristics of the different strains that tau aggregates can adopt. Cellular biosensor assays are increasingly used in human tissue to detect the earliest forms of tau pathology, before overt histopathological lesions (i.e., neurofibrillary tangles) are apparent. Animal models with localized tau expression are used to uncover the mechanisms that influence spreading of tau aggregates. Further, studies of human postmortem-derived tau filaments from different tauopathies injected in rodents have led to striking findings that recapitulate neuropathology-based staging of tau. Furthermore, the recent advent of tau positron emission tomography and novel fluid-based biomarkers render it possible to study the temporal progression of tau pathology in vivo. Ultimately, evidence from these approaches must be integrated to better understand the onset and progression of tau pathology across tauopathies. This will lead to improved methods for the detection and monitoring of disease progression and, hopefully, to the development and refinement of tau-based therapeutics.
Collapse
Affiliation(s)
- Thomas Vogels
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Antoine Leuzy
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | - Claudia Cicognola
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nicholas J Ashton
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom; Biomedical Research Unit for Dementia, NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, University College London, London, United Kingdom
| | - Tomas Smolek
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia; AXON Neuroscience SE, Larnaca, Cyprus
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom; UK Dementia Research Institute, University College London, London, United Kingdom
| | - Tomas Hromadka
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Norbert Zilka
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Memory Research Unit, Lund University, Malmö, Sweden; Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
422
|
Giamblanco N, Fichou Y, Janot JM, Balanzat E, Han S, Balme S. Mechanisms of Heparin-Induced Tau Aggregation Revealed by a Single Nanopore. ACS Sens 2020; 5:1158-1167. [PMID: 32216272 DOI: 10.1021/acssensors.0c00193] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein aggregation is involved in many diseases, including Parkinson's and Alzheimer's. The latter is characterized by intraneuronal deposition of amyloid aggregates composed of the tau protein. Although large and insoluble aggregates are typically found in affected brains, intermediate soluble oligomers are thought to represent crucial species for toxicity and spreading. Nanopore sensors constitute an emerging technology that allows the detection of the size and populations of molecular assembly present in a sample. Here, we employed conical nanopores to obtain the particle distributions during tau aggregation. We identified three distinct populations, monomers, oligomers, and fibrils, which we could quantify along the aggregation process. By comparing tau wild type with a mutant carrying the disease-associated P301L mutation, we showed that the latter mutation promotes the formation of oligomers. We furthermore highlighted that the P301L mutation promotes fibril breakage. This work demonstrates that conical nanopore is a powerful tool to measure and quantify transient protein aggregate intermediates.
Collapse
Affiliation(s)
- Nicoletta Giamblanco
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex
5, France
| | - Yann Fichou
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex
5, France
| | - Emmanuel Balanzat
- Centre de recherche sur les Ions, les Matériaux et la Photonique, UMR6252 CEA-CNRS-ENSICAEN, 6 Boulevard du Maréchal Juin, 14050 Caen Cedex 4, France
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex
5, France
| |
Collapse
|
423
|
Verelst J, Geukens N, Eddarkaoui S, Vliegen D, De Smidt E, Rosseels J, Franssens V, Molenberghs S, Francois C, Stoops E, Bjerke M, Engelborghs S, Laghmouchi M, Carmans S, Buée L, Vanmechelen E, Winderickx J, Thomas D. A Novel Tau Antibody Detecting the First Amino-Terminal Insert Reveals Conformational Differences Among Tau Isoforms. Front Mol Biosci 2020; 7:48. [PMID: 32296712 PMCID: PMC7136581 DOI: 10.3389/fmolb.2020.00048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/09/2020] [Indexed: 11/30/2022] Open
Abstract
As human Tau undergoes pathologically relevant post-translational modifications when expressed in yeast, the use of humanized yeast models for the generation of novel Tau monoclonal antibodies has previously been proven to be successful. In this study, human Tau2N4R-ΔK280 purified from yeast was used for the immunization of mice and subsequent selection of high affinity Tau-specific monoclonal antibodies. The characterization of four novel antibodies in different Tau model systems yielded a phosphorylation-dependent antibody (15A10), an antibody directed to the first microtubule-binding repeat domain (16B12), a carboxy-terminal antibody (20G10) and an antibody targeting an epitope on the hinge of the first and second amino-terminal insert (18F12). The latter was found to be conformation-dependent, suggesting structural differences between the Tau splicing isoforms and allowing insight in the roles played by the amino-terminal inserts. As this monoclonal antibody also has the capacity to detect tangle-like structures in different transgenic Tau mice and neurofibrillary tangles in brain sections of patients diagnosed with Alzheimer's disease, we also tested the diagnostic potential of 18F12 in a pilot study and found this monoclonal antibody to have the ability to discriminate Alzheimer's disease patients from control individuals based on increased Tau levels in the cerebrospinal fluid.
Collapse
Affiliation(s)
- Joke Verelst
- Functional Biology, KU Leuven, Heverlee, Belgium
| | | | - Sabiha Eddarkaoui
- Univ. Lille, Inserm, CHU-Lille, UMRS1172, Lille Neuroscience & Cognition, LabEx DISTALZ, Alzheimer & Tauopathies, Lille, France
| | | | | | | | | | | | | | | | - Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universtieit Brussel (VUB), Brussels, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universtieit Brussel (VUB), Brussels, Belgium
| | | | | | - Luc Buée
- Univ. Lille, Inserm, CHU-Lille, UMRS1172, Lille Neuroscience & Cognition, LabEx DISTALZ, Alzheimer & Tauopathies, Lille, France
| | | | | | | |
Collapse
|
424
|
Abstract
Astrocytes contribute to the pathogenesis of neurodegenerative proteinopathies as influencing neuronal degeneration or neuroprotection, and also act as potential mediators of the propagation or elimination of disease-associated proteins. Protein astrogliopathies can be observed in different forms of neurodegenerative conditions. Morphological characterization of astrogliopathy is used only for the classification of tauopathies. Currently, at least six types of astrocytic tau pathologies are distinguished. Astrocytic plaques (AP), tufted astrocytes (TAs), ramified astrocytes (RA), and globular astroglial inclusions are seen predominantly in primary tauopathies, while thorn-shaped astrocytes (TSA) and granular/fuzzy astrocytes (GFA) are evaluated in aging-related tau astrogliopathy (ARTAG). ARTAG can be seen in the white and gray matter and subpial, subependymal, and perivascular locations. Some of these overlap with the features of tau pathology seen in Chronic traumatic encephalopathy (CTE). Furthermore, gray matter ARTAG shares features with primary tauopathy-related astrocytic tau pathology. Sequential distribution patterns have been described for tau astrogliopathies. Importantly, astrocytic tau pathology in primary tauopathies can be observed in brain areas without neuronal tau deposition. The various morphologies of tau astrogliopathy might reflect a role in the propagation of pathological tau protein, an early response to a yet unidentified neurodegeneration-inducing event, or, particularly for ARTAG, a response to a repeated or prolonged pathogenic process such as blood-brain barrier dysfunction or local mechanical impact. The concept of tau astrogliopathies and ARTAG facilitated communication among research disciplines and triggered the investigation of the significance of astrocytic lesions in neurodegenerative conditions.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| |
Collapse
|
425
|
|
426
|
Penke B, Szűcs M, Bogár F. Oligomerization and Conformational Change Turn Monomeric β-Amyloid and Tau Proteins Toxic: Their Role in Alzheimer's Pathogenesis. Molecules 2020; 25:molecules25071659. [PMID: 32260279 PMCID: PMC7180792 DOI: 10.3390/molecules25071659] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
The structural polymorphism and the physiological and pathophysiological roles of two important proteins, β-amyloid (Aβ) and tau, that play a key role in Alzheimer's disease (AD) are reviewed. Recent results demonstrate that monomeric Aβ has important physiological functions. Toxic oligomeric Aβ assemblies (AβOs) may play a decisive role in AD pathogenesis. The polymorph fibrillar Aβ (fAβ) form has a very ordered cross-β structure and is assumed to be non-toxic. Tau monomers also have several important physiological actions; however, their oligomerization leads to toxic oligomers (TauOs). Further polymerization results in probably non-toxic fibrillar structures, among others neurofibrillary tangles (NFTs). Their structure was determined by cryo-electron microscopy at atomic level. Both AβOs and TauOs may initiate neurodegenerative processes, and their interactions and crosstalk determine the pathophysiological changes in AD. TauOs (perhaps also AβO) have prionoid character, and they may be responsible for cell-to-cell spreading of the disease. Both extra- and intracellular AβOs and TauOs (and not the previously hypothesized amyloid plaques and NFTs) may represent the novel targets of AD drug research.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
- Correspondence:
| | - Mária Szűcs
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
427
|
Kempuraj D, Ahmed ME, Selvakumar GP, Thangavel R, Dhaliwal AS, Dubova I, Mentor S, Premkumar K, Saeed D, Zahoor H, Raikwar SP, Zaheer S, Iyer SS, Zaheer A. Brain Injury-Mediated Neuroinflammatory Response and Alzheimer's Disease. Neuroscientist 2020; 26:134-155. [PMID: 31092147 PMCID: PMC7274851 DOI: 10.1177/1073858419848293] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Traumatic brain injury (TBI) is a major health problem in the United States, which affects about 1.7 million people each year. Glial cells, T-cells, and mast cells perform specific protective functions in different regions of the brain for the recovery of cognitive and motor functions after central nervous system (CNS) injuries including TBI. Chronic neuroinflammatory responses resulting in neuronal death and the accompanying stress following brain injury predisposes or accelerates the onset and progression of Alzheimer's disease (AD) in high-risk individuals. About 5.7 million Americans are currently living with AD. Immediately following brain injury, mast cells respond by releasing prestored and preactivated mediators and recruit immune cells to the CNS. Blood-brain barrier (BBB), tight junction and adherens junction proteins, neurovascular and gliovascular microstructural rearrangements, and dysfunction associated with increased trafficking of inflammatory mediators and inflammatory cells from the periphery across the BBB leads to increase in the chronic neuroinflammatory reactions following brain injury. In this review, we advance the hypothesis that neuroinflammatory responses resulting from mast cell activation along with the accompanying risk factors such as age, gender, food habits, emotional status, stress, allergic tendency, chronic inflammatory diseases, and certain drugs can accelerate brain injury-associated neuroinflammation, neurodegeneration, and AD pathogenesis.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Mohammad Ejaz Ahmed
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Arshdeep S. Dhaliwal
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Iuliia Dubova
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Shireen Mentor
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Keerthivaas Premkumar
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Daniyal Saeed
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Haris Zahoor
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Sudhanshu P. Raikwar
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Smita Zaheer
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Shankar S. Iyer
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Asgar Zaheer
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
428
|
Abstract
The spread of protein aggregates during disease progression is a common theme underlying many neurodegenerative diseases. The microtubule-associated protein tau (MAPT) plays a central role in the pathogenesis of several forms of dementia known as tauopathies, including Alzheimer’s disease (AD), frontotemporal dementia (FTD) and chronic traumatic encephalopathy (CTE)1. Progression of these diseases is characterized by the sequential spread and deposition of protein aggregates in a predictable pattern that correlates with clinical severity2. This observation and complementary experimental studies3,4 have suggested that tau can spread in a prion-like manner by passing to naïve cells where it templates misfolding and aggregation. However, while tau propagation has been extensively studied, the underlying cellular mechanisms remain poorly understood. Here we show that the low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) controls tau endocytosis and subsequent spread. Knockdown of LRP1 significantly reduced tau uptake in H4 neuroglioma cells and iPS-derived neurons. The interaction between tau and LRP1 is mediated by lysine residues in the microtubule binding repeat region of tau. Furthermore, we find that downregulation of LRP1 in an in vivo mouse model of tau spread effectively reduced tau propagation between neurons. Our results identify LRP1 as a key regulator of tau spread in the brain and, thus, as a novel target for diseases of tau spread and aggregation.
Collapse
|
429
|
Ling H, Gelpi E, Davey K, Jaunmuktane Z, Mok KY, Jabbari E, Simone R, R'Bibo L, Brandner S, Ellis MJ, Attems J, Mann D, Halliday GM, Al-Sarraj S, Hedreen J, Ironside JW, Kovacs GG, Kovari E, Love S, Vonsattel JPG, Allinson KSJ, Hansen D, Bradshaw T, Setó-Salvia N, Wray S, de Silva R, Morris HR, Warner TT, Hardy J, Holton JL, Revesz T. Fulminant corticobasal degeneration: a distinct variant with predominant neuronal tau aggregates. Acta Neuropathol 2020; 139:717-734. [PMID: 31950334 PMCID: PMC7096362 DOI: 10.1007/s00401-019-02119-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 02/01/2023]
Abstract
Corticobasal degeneration typically progresses gradually over 5–7 years from onset till death. Fulminant corticobasal degeneration cases with a rapidly progressive course were rarely reported (RP-CBD). This study aimed to investigate their neuropathological characteristics. Of the 124 autopsy-confirmed corticobasal degeneration cases collected from 14 centres, we identified 6 RP-CBD cases (4.8%) who died of advanced disease within 3 years of onset. These RP-CBD cases had different clinical phenotypes including rapid global cognitive decline (N = 2), corticobasal syndrome (N = 2) and Richardson’s syndrome (N = 2). We also studied four corticobasal degeneration cases with an average disease duration of 3 years or less, who died of another unrelated illness (Intermediate-CBD). Finally, we selected 12 age-matched corticobasal degeneration cases out of a cohort of 110, who had a typical gradually progressive course and reached advanced clinical stage (End-stage-CBD). Quantitative analysis showed high overall tau burden (p = 0.2) and severe nigral cell loss (p = 0.47) in both the RP-CBD and End-stage-CBD groups consistent with advanced pathological changes, while the Intermediate-CBD group (mean disease duration = 3 years) had milder changes than End-stage-CBD (p < 0.05). These findings indicated that RP-CBD cases had already developed advanced pathological changes as those observed in End-stage-CBD cases (mean disease duration = 6.7 years), but within a significantly shorter duration (2.5 years; p < 0.001). Subgroup analysis was performed to investigate the cellular patterns of tau aggregates in the anterior frontal cortex and caudate by comparing neuronal-to-astrocytic plaque ratios between six RP-CBD cases, four Intermediate-CBD and 12 age-matched End-stage-CBD. Neuronal-to-astrocytic plaque ratios of Intermediate-CBD and End-stage-CBD, but not RP-CBD, positively correlated with disease duration in both the anterior frontal cortex and caudate (p = 0.02). In contrast to the predominance of astrocytic plaques we previously reported in preclinical asymptomatic corticobasal degeneration cases, neuronal tau aggregates predominated in RP-CBD exceeding those in Intermediate-CBD (anterior frontal cortex: p < 0.001, caudate: p = 0.001) and End-stage-CBD (anterior frontal cortex: p = 0.03, caudate: p = 0.01) as demonstrated by its higher neuronal-to-astrocytic plaque ratios in both anterior frontal cortex and caudate. We did not identify any difference in age at onset, any pathogenic tau mutation or concomitant pathologies that could have contributed to the rapid progression of these RP-CBD cases. Mild TDP-43 pathology was observed in three RP-CBD cases. All RP-CBD cases were men. The MAPT H2 haplotype, known to be protective, was identified in one RP-CBD case (17%) and 8 of the matched End-stage-CBD cases (67%). We conclude that RP-CBD is a distinct aggressive variant of corticobasal degeneration with characteristic neuropathological substrates resulting in a fulminant disease process as evident both clinically and pathologically. Biological factors such as genetic modifiers likely play a pivotal role in the RP-CBD variant and should be the subject of future research.
Collapse
Affiliation(s)
- Helen Ling
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK.
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona, Spain
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Karen Davey
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Zane Jaunmuktane
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospital Trust, Queen Square, London, UK
| | - Kin Y Mok
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Division of Life Science, Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, Hong Kong, China
| | - Edwin Jabbari
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Roberto Simone
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Lea R'Bibo
- UK Dementia Research Institute, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospital Trust, Queen Square, London, UK
| | - Matthew J Ellis
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Johannes Attems
- Newcastle Brain Tissue Resource, Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - David Mann
- Manchester Brain Bank, University of Manchester, Manchester, UK
| | - Glenda M Halliday
- Sydney Brain Bank, Neuroscience Research Australia (NeuRA), Sydney, Australia
- Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - S Al-Sarraj
- The London Neurodegeneration Brain Bank, The Institute of Psychiatry Psychology and Neurosciences (IOPPN), Kings College London, London, UK
| | - J Hedreen
- The Harvard Brain Tissue Resource Centre, McLean Hospital, Belmont, USA
| | - James W Ironside
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Gabor G Kovacs
- University of Toronto, University Health Network, and Tanz Centre for Research in Neurodegenerative Disease, Toronto, Canada
| | - E Kovari
- Department of Psychiatry, HUG Belle-Idée, University of Geneva School of Medicine, Geneva, Switzerland
| | - S Love
- South West Dementia Brain Bank, University of Bristol, Bristol, UK
| | - Jean Paul G Vonsattel
- Taub Institute for Research on AD and the Aging Brain, Columbia University Medical Center, New York, USA
| | | | - Daniela Hansen
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Teisha Bradshaw
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Núria Setó-Salvia
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Selina Wray
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rohan de Silva
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Huw R Morris
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Thomas T Warner
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - John Hardy
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK.
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
430
|
Burke CM, Walsh DJ, Mark KMK, Deleault NR, Nishina KA, Agrimi U, Di Bari MA, Supattapone S. Cofactor and glycosylation preferences for in vitro prion conversion are predominantly determined by strain conformation. PLoS Pathog 2020; 16:e1008495. [PMID: 32294141 PMCID: PMC7185723 DOI: 10.1371/journal.ppat.1008495] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/27/2020] [Accepted: 03/24/2020] [Indexed: 11/18/2022] Open
Abstract
Prion diseases are caused by the misfolding of a host-encoded glycoprotein, PrPC, into a pathogenic conformer, PrPSc. Infectious prions can exist as different strains, composed of unique conformations of PrPSc that generate strain-specific biological traits, including distinctive patterns of PrPSc accumulation throughout the brain. Prion strains from different animal species display different cofactor and PrPC glycoform preferences to propagate efficiently in vitro, but it is unknown whether these molecular preferences are specified by the amino acid sequence of PrPC substrate or by the conformation of PrPSc seed. To distinguish between these two possibilities, we used bank vole PrPC to propagate both hamster or mouse prions (which have distinct cofactor and glycosylation preferences) with a single, common substrate. We performed reconstituted sPMCA reactions using either (1) phospholipid or RNA cofactor molecules, or (2) di- or un-glycosylated bank vole PrPC substrate. We found that prion strains from either species are capable of propagating efficiently using bank vole PrPC substrates when reactions contained the same PrPC glycoform or cofactor molecule preferred by the PrPSc seed in its host species. Thus, we conclude that it is the conformation of the input PrPSc seed, not the amino acid sequence of the PrPC substrate, that primarily determines species-specific cofactor and glycosylation preferences. These results support the hypothesis that strain-specific patterns of prion neurotropism are generated by selection of differentially distributed cofactors molecules and/or PrPC glycoforms during prion replication.
Collapse
Affiliation(s)
- Cassandra M. Burke
- Departments of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Daniel J. Walsh
- Departments of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Kenneth M. K. Mark
- Departments of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Nathan R. Deleault
- Departments of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Koren A. Nishina
- Departments of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Michele A. Di Bari
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Surachai Supattapone
- Departments of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
431
|
New insights on the structure of alpha-synuclein fibrils using cryo-electron microscopy. Curr Opin Neurobiol 2020; 61:89-95. [DOI: 10.1016/j.conb.2020.01.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/08/2023]
|
432
|
Abstract
Most neurodegenerative diseases are characterized by the intracellular or extracellular aggregation of misfolded proteins such as amyloid-β and tau in Alzheimer disease, α-synuclein in Parkinson disease, and TAR DNA-binding protein 43 in amyotrophic lateral sclerosis. Accumulating evidence from both human studies and disease models indicates that intercellular transmission and the subsequent templated amplification of these misfolded proteins are involved in the onset and progression of various neurodegenerative diseases. The misfolded proteins that are transferred between cells are referred to as 'pathological seeds'. Recent studies have made exciting progress in identifying the characteristics of different pathological seeds, particularly those isolated from diseased brains. Advances have also been made in our understanding of the molecular mechanisms that regulate the transmission process, and the influence of the host cell on the conformation and properties of pathological seeds. The aim of this Review is to summarize our current knowledge of the cell-to-cell transmission of pathological proteins and to identify key questions for future investigation.
Collapse
|
433
|
Kuang G, Murugan NA, Zhou Y, Nordberg A, Ågren H. Computational Insight into the Binding Profile of the Second-Generation PET Tracer PI2620 with Tau Fibrils. ACS Chem Neurosci 2020; 11:900-908. [PMID: 32069017 DOI: 10.1021/acschemneuro.9b00578] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abnormal deposition of hyperphosphorylated tau as neurofibrillary tangles (NFTs) is an important pathological hallmark of Alzheimer's disease (AD) and of other neurodegenerative disorders. A noninvasive positron emission tomography (PET) tracer that quantifies neurofibrillary tangles in vivo can enhance the clinical diagnosis of AD and can also be used to evaluate the efficacy of therapeutics aimed at reducing the abnormal aggregation of the tau fibril in the brain. In this paper, we study the binding profile of fibrillar tau aggregates with a PET tracer PI2620, which is a new second generation tau PET tracer that is presently experimentally and clinically studied. The target structure for the tau fibril is based on cryo-electron microscopy (cryo-EM) structure. A multiscale simulation workflow including molecular docking, molecular dynamics simulation, metadynamics simulation, and free energy calculations was implemented. We find that PI2620 can bind to eight surface binding sites, three core binding sites, and one entry site. The binding at the core sites and entry site is found to be much more favorable than that on the surface sites due to stronger hydrophobic interactions and less solvent exposure. Furthermore, the entry site which is formed by the terminal β-sheets of the fibril is found to have the highest binding affinity to PI2620. Importantly, the binding capacity at the entry site can be much higher than that at other core sites, due to its easy accessibility. Therefore, the entry site is believed to be the major binding site for PI2620. A previous computational study on tracers with tau fibrils reports a maximum of four binding sites. Through use of methods that allow us to locate "cryptic binding sites", we report here additional core sites available for binding and we address the limitation of using the cryo-EM structure alone for structure-based tracer design. Our results could be helpful for elucidating the binding mechanism of imaging tracers with the fibrillar form of tau, a knowledge that in turn can be used to guide the development of compounds with higher affinity and selectivity for tau using structure-based design strategies.
Collapse
Affiliation(s)
- Guanglin Kuang
- Department of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH), AlbaNova University Center, Stockholm 10691, Sweden
| | - N. Arul Murugan
- Department of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH), AlbaNova University Center, Stockholm 10691, Sweden
| | - Yang Zhou
- Department of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH), AlbaNova University Center, Stockholm 10691, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Center for Alzheimer Research, Stockholm 17177, Sweden
- Aging Theme, Karolinska University Hospital, Stockholm 14186, Sweden
| | - Hans Ågren
- Department of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH), AlbaNova University Center, Stockholm 10691, Sweden
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
434
|
Haj‐Yahya M, Gopinath P, Rajasekhar K, Mirbaha H, Diamond MI, Lashuel HA. Site-Specific Hyperphosphorylation Inhibits, Rather than Promotes, Tau Fibrillization, Seeding Capacity, and Its Microtubule Binding. Angew Chem Int Ed Engl 2020; 59:4059-4067. [PMID: 31863676 PMCID: PMC7065254 DOI: 10.1002/anie.201913001] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/11/2019] [Indexed: 12/14/2022]
Abstract
The consistent observation of phosphorylated tau in the pathology of Alzheimer's disease has contributed to the emergence of a model where hyperphosphorylation triggers both tau disassociation from microtubules and its subsequent aggregation. Herein, we applied a total chemical synthetic approach to site-specifically phosphorylate the microtubule binding repeat domain of tau (K18) at single (pS356) or multiple (pS356/pS262 and pS356/pS262/pS258) residues. We show that hyperphosphorylation of K18 inhibits 1) its aggregation in vitro, 2) its seeding activity in cells, 3) its binding to microtubules, and 4) its ability to promote microtubule polymerization. The inhibition increased with increasing the number of phosphorylated sites, with phosphorylation at S262 having the strongest effect. Our results argue against the hyperphosphorylation hypothesis and underscore the importance of revisiting the role of site-specific hyperphosphorylation in regulating tau functions in health and disease.
Collapse
Affiliation(s)
- Mahmood Haj‐Yahya
- Laboratory of Molecular and Chemical Biology of NeurodegenerationBrain Mind InstituteFaculty of Life SciencesEcole Polytechnique Fédérale de Lausanne1015LausanneSwitzerland
| | - Pushparathinam Gopinath
- Laboratory of Molecular and Chemical Biology of NeurodegenerationBrain Mind InstituteFaculty of Life SciencesEcole Polytechnique Fédérale de Lausanne1015LausanneSwitzerland
- Current Address: Department of ChemistrySRM Institute of Science and TechnologyChennaiTamilNaduIndia
| | - Kolla Rajasekhar
- Laboratory of Molecular and Chemical Biology of NeurodegenerationBrain Mind InstituteFaculty of Life SciencesEcole Polytechnique Fédérale de Lausanne1015LausanneSwitzerland
| | - Hilda Mirbaha
- Center for Alzheimer's and Neurodegenerative DiseasesPeter O'Donnell Jr. Brain InstituteUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Marc I. Diamond
- Center for Alzheimer's and Neurodegenerative DiseasesPeter O'Donnell Jr. Brain InstituteUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of NeurodegenerationBrain Mind InstituteFaculty of Life SciencesEcole Polytechnique Fédérale de Lausanne1015LausanneSwitzerland
| |
Collapse
|
435
|
Corbett GT, Wang Z, Hong W, Colom-Cadena M, Rose J, Liao M, Asfaw A, Hall TC, Ding L, DeSousa A, Frosch MP, Collinge J, Harris DA, Perkinton MS, Spires-Jones TL, Young-Pearse TL, Billinton A, Walsh DM. PrP is a central player in toxicity mediated by soluble aggregates of neurodegeneration-causing proteins. Acta Neuropathol 2020; 139:503-526. [PMID: 31853635 PMCID: PMC7035229 DOI: 10.1007/s00401-019-02114-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022]
Abstract
Neurodegenerative diseases are an enormous public health problem, affecting tens of millions of people worldwide. Nearly all of these diseases are characterized by oligomerization and fibrillization of neuronal proteins, and there is great interest in therapeutic targeting of these aggregates. Here, we show that soluble aggregates of α-synuclein and tau bind to plate-immobilized PrP in vitro and on mouse cortical neurons, and that this binding requires at least one of the same N-terminal sites at which soluble Aβ aggregates bind. Moreover, soluble aggregates of tau, α-synuclein and Aβ cause both functional (impairment of LTP) and structural (neuritic dystrophy) compromise and these deficits are absent when PrP is ablated, knocked-down, or when neurons are pre-treated with anti-PrP blocking antibodies. Using an all-human experimental paradigm involving: (1) isogenic iPSC-derived neurons expressing or lacking PRNP, and (2) aqueous extracts from brains of individuals who died with Alzheimer's disease, dementia with Lewy bodies, and Pick's disease, we demonstrate that Aβ, α-synuclein and tau are toxic to neurons in a manner that requires PrPC. These results indicate that PrP is likely to play an important role in a variety of late-life neurodegenerative diseases and that therapeutic targeting of PrP, rather than individual disease proteins, may have more benefit for conditions which involve the aggregation of more than one protein.
Collapse
Affiliation(s)
- Grant T Corbett
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Zemin Wang
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Wei Hong
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Marti Colom-Cadena
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH89JZ, UK
| | - Jamie Rose
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH89JZ, UK
| | - Meichen Liao
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Adhana Asfaw
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Tia C Hall
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Lai Ding
- Program for Interdisciplinary Neuroscience, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Alexandra DeSousa
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Matthew P Frosch
- Massachusetts General Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH89JZ, UK
| | - Tracy L Young-Pearse
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Andrew Billinton
- Neuroscience, IMED Biotechnology Unit, AstraZeneca, Cambridge, CB21 6GH, UK
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA.
| |
Collapse
|
436
|
Thierry M, Boluda S, Delatour B, Marty S, Seilhean D, Potier MC, Duyckaerts C. Human subiculo-fornico-mamillary system in Alzheimer's disease: Tau seeding by the pillar of the fornix. Acta Neuropathol 2020; 139:443-461. [PMID: 31822997 DOI: 10.1007/s00401-019-02108-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 02/07/2023]
Abstract
In Alzheimer's disease (AD), Tau and Aβ aggregates involve sequentially connected regions, sometimes distantly separated. These alterations were studied in the pillar of the fornix (PoF), an axonal tract, to analyse the role of axons in their propagation. The PoF axons mainly originate from the subicular neurons and project to the mamillary body. Forty-seven post-mortem cases at various Braak stages (Tau) and Thal phases (Aβ) were analysed by immunohistochemistry. The distribution of the lesions showed that the subiculum was affected before the mamillary body, but neither Tau aggregation nor Aβ deposition was consistently first. The subiculum and the mamillary body contained Gallyas positive neurofibrillary tangles, immunolabelled by AT8, TG3, PHF1, Alz50 and C3 Tau antibodies. In the PoF, only thin and fragmented threads were observed, exclusively in the cases with neurofibrillary tangles in the subiculum. The threads were made of Gallyas negative, AT8 and TG3 positive Tau. They were intra-axonal and devoid of paired helical filaments at electron microscopy. We tested PoF homogenates containing Tau AT8 positive axons in a Tau P301S biosensor HEK cell line and found a seeding activity. There was no Aβ immunoreactivity detected in the PoF. We could follow microcryodissected AT8 positive axons entering the mamillary body; contacts between Tau positive endings and Aβ positive diffuse or focal deposits were observed in CLARITY-cleared mamillary body. In conclusion, we show that non-fibrillary, hyperphosphorylated Tau is transported by the axons of the PoF from the subiculum to the mamillary body and has a seeding activity. Either Tau aggregation or Aβ accumulation may occur first in this system: this inconstant order is incompatible with a cause-and-effects relationship. However, both pathologies were correlated and intimately associated, indicating an interaction of the two processes, once initiated.
Collapse
Affiliation(s)
- Manon Thierry
- Alzheimer's and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France
- Laboratoire de Neuropathologie Raymond Escourolle, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, 47, Blvd de l'Hôpital, 75651, Paris Cedex 13, France
| | - Susana Boluda
- Alzheimer's and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France
- Laboratoire de Neuropathologie Raymond Escourolle, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, 47, Blvd de l'Hôpital, 75651, Paris Cedex 13, France
| | - Benoît Delatour
- Alzheimer's and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France
| | - Serge Marty
- Alzheimer's and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France
| | - Danielle Seilhean
- Laboratoire de Neuropathologie Raymond Escourolle, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, 47, Blvd de l'Hôpital, 75651, Paris Cedex 13, France
| | - Marie-Claude Potier
- Alzheimer's and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France
| | - Charles Duyckaerts
- Alzheimer's and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France.
- Laboratoire de Neuropathologie Raymond Escourolle, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, 47, Blvd de l'Hôpital, 75651, Paris Cedex 13, France.
| |
Collapse
|
437
|
Zivanov J, Nakane T, Scheres SHW. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCRJ 2020; 7:253-267. [PMID: 32148853 PMCID: PMC7055373 DOI: 10.1107/s2052252520000081] [Citation(s) in RCA: 485] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/06/2020] [Indexed: 05/21/2023]
Abstract
Methods are presented that detect three types of aberrations in single-particle cryo-EM data sets: symmetrical and antisymmetrical optical aberrations and magnification anisotropy. Because these methods only depend on the availability of a preliminary 3D reconstruction from the data, they can be used to correct for these aberrations for any given cryo-EM data set, a posteriori. Using five publicly available data sets, it is shown that considering these aberrations improves the resolution of the 3D reconstruction when these effects are present. The methods are implemented in version 3.1 of the open-source software package RELION.
Collapse
Affiliation(s)
- Jasenko Zivanov
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England
- Biozentrum, University of Basel, Switzerland
| | - Takanori Nakane
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England
| | - Sjors H. W. Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England
| |
Collapse
|
438
|
Abstract
Although Alzheimer's disease (AD) was described over a century ago, there are no effective approaches to its prevention and treatment. Such a slow progress is explained, at least in part, by our incomplete understanding of the mechanisms underlying the pathogenesis of AD. Here, I champion a hypothesis whereby AD is initiated on a disruption of the blood-brain barrier (BBB) caused by either genetic or non-genetic risk factors. The BBB disruption leads to an autoimmune response against pyramidal neurons located in the allo- and neocortical structures involved in memory formation and storage. The response caused by the adaptive immune system is not strong enough to directly kill neurons but may be sufficient to make them selectively vulnerable to neurofibrillary pathology. This hypothesis is based on the recent data showing that memory formation is associated with epigenetic chromatin modifications and, therefore, may be accompanied by expression of memory-specific proteins recognized by the immune system as "non-self" antigens. The autoimmune hypothesis is testable, and I discuss potential ways for its experimental and clinical verification. If confirmed, this hypothesis can radically change therapeutic approaches to AD prevention and treatment.
Collapse
Affiliation(s)
- Yuri I Arshavsky
- BioCircuits Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
439
|
Pearce AJ, Sy J, Lee M, Harding A, Mobbs R, Batchelor J, Suter CM, Buckland ME. Chronic traumatic encephalopathy in a former Australian rules football player diagnosed with Alzheimer's disease. Acta Neuropathol Commun 2020; 8:23. [PMID: 32098626 PMCID: PMC7043040 DOI: 10.1186/s40478-020-0895-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/05/2020] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alan J Pearce
- College of Science, Health and Engineering, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Joanne Sy
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Maggie Lee
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
- Brain & Mind Centre, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Antony Harding
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
- Brain & Mind Centre, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Rowena Mobbs
- Brain & Mind Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- Macquarie University, Macquarie Park, NSW, 2109, Australia
| | | | - Catherine M Suter
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia.
- Brain & Mind Centre, University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
440
|
Metrick MA, Ferreira NDC, Saijo E, Kraus A, Newell K, Zanusso G, Vendruscolo M, Ghetti B, Caughey B. A single ultrasensitive assay for detection and discrimination of tau aggregates of Alzheimer and Pick diseases. Acta Neuropathol Commun 2020; 8:22. [PMID: 32087764 PMCID: PMC7036215 DOI: 10.1186/s40478-020-0887-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/26/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple neurodegenerative diseases are characterized by aggregation of tau molecules. Adult humans express six isoforms of tau that contain either 3 or 4 microtubule binding repeats (3R or 4R tau). Different diseases involve preferential aggregation of 3R (e.g Pick disease), 4R (e.g. progressive supranuclear palsy), or both 3R and 4R tau molecules [e.g. Alzheimer disease and chronic traumatic encephalopathy]. Three ultrasensitive cell-free seed amplification assays [called tau real-time quaking induced conversion (tau RT-QuIC) assays] have been developed that preferentially detect 3R, 4R, or 3R/4R tau aggregates in biospecimens. In these reactions, low-fg amounts of a given self-propagating protein aggregate (the seed) are incubated with a vast excess of recombinant tau monomers (the substrate) in multi-well plates. Over time, the seeds incorporate the substrate to grow into amyloids that can then be detected using thioflavin T fluorescence. Here we describe a tau RT-QuIC assay (K12 RT-QuIC) that, using a C-terminally extended recombinant 3R tau substrate (K12CFh), enables sensitive detection of Pick disease, Alzheimer disease, and chronic traumatic encephalopathy seeds in brain homogenates. The discrimination of Pick disease from Alzheimer disease and chronic traumatic encephalopathy cases is then achieved through the quantitative differences in K12 RT-QuIC assay thioflavin T responses, which correlate with structural properties of the reaction products. In particular, Fourier transform infrared spectroscopy analysis of the respective K12CFh amyloids showed distinct β-sheet conformations, suggesting at least partial propagation of the original seed conformations in vitro. Thus, K12 RT-QuIC provides a single assay for ultrasensitive detection and discrimination of tau aggregates comprised mainly of 3R, or both 3R and 4R, tau isoforms.
Collapse
Affiliation(s)
- Michael A. Metrick
- LPVD, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840 USA
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
| | | | - Eri Saijo
- LPVD, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840 USA
| | - Allison Kraus
- LPVD, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840 USA
| | - Kathy Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Gianluigi Zanusso
- Department of Neurosciences, University of Verona, 37129 Verona, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Byron Caughey
- LPVD, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840 USA
| |
Collapse
|
441
|
Arakhamia T, Lee CE, Carlomagno Y, Duong DM, Kundinger SR, Wang K, Williams D, DeTure M, Dickson DW, Cook CN, Seyfried NT, Petrucelli L, Fitzpatrick AWP. Posttranslational Modifications Mediate the Structural Diversity of Tauopathy Strains. Cell 2020; 180:633-644.e12. [PMID: 32032505 PMCID: PMC7491959 DOI: 10.1016/j.cell.2020.01.027] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 01/21/2023]
Abstract
Tau aggregation into insoluble filaments is the defining pathological hallmark of tauopathies. However, it is not known what controls the formation and templated seeding of strain-specific structures associated with individual tauopathies. Here, we use cryo-electron microscopy (cryo-EM) to determine the structures of tau filaments from corticobasal degeneration (CBD) human brain tissue. Cryo-EM and mass spectrometry of tau filaments from CBD reveal that this conformer is heavily decorated with posttranslational modifications (PTMs), enabling us to map PTMs directly onto the structures. By comparing the structures and PTMs of tau filaments from CBD and Alzheimer's disease, it is found that ubiquitination of tau can mediate inter-protofilament interfaces. We propose a structure-based model in which cross-talk between PTMs influences tau filament structure, contributing to the structural diversity of tauopathy strains. Our approach establishes a framework for further elucidating the relationship between the structures of polymorphic fibrils, including their PTMs, and neurodegenerative disease.
Collapse
Affiliation(s)
- Tamta Arakhamia
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Christina E Lee
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sean R Kundinger
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kevin Wang
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dewight Williams
- John M. Cowley Center for High Resolution Electron Microscopy, Arizona State University, Tempe, AZ 85287, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Casey N Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Anthony W P Fitzpatrick
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
442
|
Ebo JS, Guthertz N, Radford SE, Brockwell DJ. Using protein engineering to understand and modulate aggregation. Curr Opin Struct Biol 2020; 60:157-166. [PMID: 32087409 PMCID: PMC7132541 DOI: 10.1016/j.sbi.2020.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
Abstract
Protein aggregation occurs through a variety of mechanisms, initiated by the unfolded, non-native, or even the native state itself. Understanding the molecular mechanisms of protein aggregation is challenging, given the array of competing interactions that control solubility, stability, cooperativity and aggregation propensity. An array of methods have been developed to interrogate protein aggregation, spanning computational algorithms able to identify aggregation-prone regions, to deep mutational scanning to define the entire mutational landscape of a protein's sequence. Here, we review recent advances in this exciting and emerging field, focussing on protein engineering approaches that, together with improved computational methods, hold promise to predict and control protein aggregation linked to human disease, as well as facilitating the manufacture of protein-based therapeutics.
Collapse
Affiliation(s)
- Jessica S Ebo
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
443
|
Lin Y, Fichou Y, Zeng Z, Hu NY, Han S. Electrostatically Driven Complex Coacervation and Amyloid Aggregation of Tau Are Independent Processes with Overlapping Conditions. ACS Chem Neurosci 2020; 11:615-627. [PMID: 31971365 DOI: 10.1021/acschemneuro.9b00627] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyloid aggregation of the microtubule binding protein tau is a hallmark of many neurodegenerative diseases. Recently, tau has been found to undergo liquid-liquid phase separation (LLPS) by an electrostatically driven complex coacervation (CC) mechanism near physiological conditions. Although LLPS and aggregation have been shown to simultaneously occur under certain common conditions, it is unclear whether LLPS promotes aggregation of tau, or whether they are two independent processes. In this study, we address this question by combining multiple biochemical and biophysical assays in vitro. We investigate the impacts of LLPS-CC on cofactor-induced tau aggregation by evaluating the conformation of tau, kinetics of aggregation, and fibril quantity. We showed that none of these properties are influenced directly by LLPS-CC and that LLPS-CC and cofactor-induced aggregation of tau merely occur under overlapping conditions of enhanced intermolecular interactions and localization but are two independent processes. We furthermore showed that tau LLPS can be driven by nonelectrostatic interaction using high-salt concentrations. Under these conditions, LLPS strongly correlated with increased aggregation propensity. Whether LLPS of tau formed under different conditions or of different constituents may actively promote aggregation of tau remains an open question, but this study shows that the readily accessible electrostatically driven condensation of tau into LLPS in and of itself is not sufficient to promote aggregation.
Collapse
Affiliation(s)
- Yanxian Lin
- Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, United States
| | - Yann Fichou
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Zhikai Zeng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Nicole Y. Hu
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
444
|
Boyer DR, Li B, Sun C, Fan W, Zhou K, Hughes MP, Sawaya MR, Jiang L, Eisenberg DS. The α-synuclein hereditary mutation E46K unlocks a more stable, pathogenic fibril structure. Proc Natl Acad Sci U S A 2020; 117:3592-3602. [PMID: 32015135 PMCID: PMC7035510 DOI: 10.1073/pnas.1917914117] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aggregation of α-synuclein is a defining molecular feature of Parkinson's disease, Lewy body dementia, and multiple systems atrophy. Hereditary mutations in α-synuclein are linked to both Parkinson's disease and Lewy body dementia; in particular, patients bearing the E46K disease mutation manifest a clinical picture of parkinsonism and Lewy body dementia, and E46K creates more pathogenic fibrils in vitro. Understanding the effect of these hereditary mutations on α-synuclein fibril structure is fundamental to α-synuclein biology. We therefore determined the cryo-electron microscopy (cryo-EM) structure of α-synuclein fibrils containing the hereditary E46K mutation. The 2.5-Å structure reveals a symmetric double protofilament in which the molecules adopt a vastly rearranged, lower energy fold compared to wild-type fibrils. We propose that the E46K misfolding pathway avoids electrostatic repulsion between K46 and K80, a residue pair which form the E46-K80 salt bridge in the wild-type fibril structure. We hypothesize that, under our conditions, the wild-type fold does not reach this deeper energy well of the E46K fold because the E46-K80 salt bridge diverts α-synuclein into a kinetic trap-a shallower, more accessible energy minimum. The E46K mutation apparently unlocks a more stable and pathogenic fibril structure.
Collapse
Affiliation(s)
- David R Boyer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
- Department of Energy Institute, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095
| | - Binsen Li
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Chuanqi Sun
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Weijia Fan
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Kang Zhou
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - Michael P Hughes
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
- Department of Energy Institute, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095
| | - Michael R Sawaya
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
- Department of Energy Institute, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095
| | - Lin Jiang
- Molecular Biology Institute, University of California, Los Angeles, CA 90095;
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - David S Eisenberg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095;
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
- Department of Energy Institute, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
445
|
Vasilevskaya A, Taghdiri F, Burke C, Tarazi A, Naeimi SA, Khodadadi M, Goswami R, Sato C, Grinberg M, Moreno D, Wennberg R, Mikulis D, Green R, Colella B, Davis KD, Rusjan P, Houle S, Tator C, Rogaeva E, Tartaglia MC. Interaction of APOE4 alleles and PET tau imaging in former contact sport athletes. Neuroimage Clin 2020; 26:102212. [PMID: 32097865 PMCID: PMC7037542 DOI: 10.1016/j.nicl.2020.102212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Genetic polymorphisms like apolipoprotein E (APOE) and microtubule-associated protein tau (MAPT) genes increase the risk of neurodegeneration. METHODS 38 former players (age 52.63±14.02) of contact sports underwent neuroimaging, biofluid collection, and comprehensive neuropsychological assessment. The [F-18]AV-1451 tracer signal was compared in the cortical grey matter between APOE4 allele carriers and non-carriers as well as carriers of MAPT H1H1 vs non-H1H1. Participants were then divided into the high (N = 13) and low (N = 13) groups based on cortical PET tau standard uptake value ratios (SUVRs) for comparison. FINDINGS Cortical grey matter PET tau SUVR values were significantly higher in APOE4 carriers compared to non-carriers (p = 0.020). In contrast, there was no significant difference in SUVR between MAPT H1H1 vs non-H1H1 carrier genes (p = 1.00). There was a significantly higher APOE4 allele frequency in the high cortical grey matter PET tau group, comparing to low cortical grey matter PET tau group (p = 0.048). No significant difference in neuropsychological function was found between APOE4 allele carriers and non-carriers. INTERPRETATION There is an association between higher cortical grey matter tau burden as seen with [F-18]AV-1451 PET tracer SUVR, and the APOE4 allele in former professional and semi-professional players at high risk of concussions. APOE4 allele may be a risk factor for tau accumulation in former contact sports athletes at high risk of neurodegeneration. FUNDING Toronto General and Western Hospital Foundations; Weston Brain Institute; Canadian Consortium on Neurodegeneration in ageing; Krembil Research Institute. There was no role of the funders in this study.
Collapse
Affiliation(s)
- Anna Vasilevskaya
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Foad Taghdiri
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Charles Burke
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; School of Medicine & Dentistry, Western University, Windsor, ON, Canada
| | - Apameh Tarazi
- Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Seyed Ali Naeimi
- Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Mozghan Khodadadi
- Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Ruma Goswami
- Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada
| | - Mark Grinberg
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada
| | - Danielle Moreno
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada
| | - Richard Wennberg
- Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - David Mikulis
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Robin Green
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Department of Rehabilitation Sciences, University of Toronto, 500 University Ave, Toronto, ON, M5G 1V7, Canada
| | - Brenda Colella
- Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Department of Rehabilitation Sciences, University of Toronto, 500 University Ave, Toronto, ON, M5G 1V7, Canada
| | - Karen D Davis
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Department of Surgery, University of Toronto, 149 College St., Toronto, ON, M5T 1P5, Canada
| | - Pablo Rusjan
- Research Imaging Centre, Campbell Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
| | - Sylvain Houle
- Research Imaging Centre, Campbell Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
| | - Charles Tator
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Division of Neurosurgery, Toronto Western Hospital, Krembil Brain Institute, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada; Department of Medicine, Division of Neurology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Maria C Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
446
|
Abstract
Corticobasal degeneration (CBD) is a neurodegenerative tauopathy that is characterised by motor and cognitive disturbances (1–3). A higher frequency of the H1 haplotype of MAPT, the tau gene, is present in cases of CBD than in controls (4,5) and genome-wide association studies have identified additional risk factors (6). By histology, astrocytic plaques are diagnostic of CBD (7,8), as are detergent-insoluble tau fragments of 37 kDa by SDS-PAGE (9). Like progressive supranuclear palsy (PSP), globular glial tauopathy (GGT) and argyrophilic grain disease (AGD) (10), CBD is characterised by abundant filamentous tau inclusions that are made of isoforms with four microtubule-binding repeats (4R) (11–15). This distinguishes 4R tauopathies from Pick’s disease, filaments of which are made of three-repeat (3R) tau isoforms, and from Alzheimer’s disease and chronic traumatic encephalopathy (CTE), where both 3R and 4R tau isoforms are found in the filaments (16). Here we report the structures of tau filaments extracted from the brains of three individuals with CBD using electron cryo-microscopy (cryo-EM). They were identical between cases, but distinct from those of Alzheimer’s disease, Pick’s disease and CTE (17–19). The core of CBD filaments comprises residues K274-E380 of tau, spanning the last residue of R1, the whole of R2, R3 and R4, as well as 12 amino acids after R4. It adopts a novel four-layered fold, which encloses a large non-proteinaceous density. The latter is surrounded by the side chains of lysine residues 290 and 294 from R2 and 370 from the sequence after R4. CBD is the first 4R tauopathy with filaments of known structure.
Collapse
|
447
|
Roberts M, Sevastou I, Imaizumi Y, Mistry K, Talma S, Dey M, Gartlon J, Ochiai H, Zhou Z, Akasofu S, Tokuhara N, Ogo M, Aoyama M, Aoyagi H, Strand K, Sajedi E, Agarwala KL, Spidel J, Albone E, Horie K, Staddon JM, de Silva R. Pre-clinical characterisation of E2814, a high-affinity antibody targeting the microtubule-binding repeat domain of tau for passive immunotherapy in Alzheimer's disease. Acta Neuropathol Commun 2020; 8:13. [PMID: 32019610 PMCID: PMC7001291 DOI: 10.1186/s40478-020-0884-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022] Open
Abstract
Tau deposition in the brain is a pathological hallmark of many neurodegenerative disorders, including Alzheimer's disease (AD). During the course of these tauopathies, tau spreads throughout the brain via synaptically-connected pathways. Such propagation of pathology is thought to be mediated by tau species ("seeds") containing the microtubule binding region (MTBR) composed of either three repeat (3R) or four repeat (4R) isoforms. The tau MTBR also forms the core of the neuropathological filaments identified in AD brain and other tauopathies. Multiple approaches are being taken to limit tau pathology, including immunotherapy with anti-tau antibodies. Given its key structural role within fibrils, specifically targetting the MTBR with a therapeutic antibody to inhibit tau seeding and aggregation may be a promising strategy to provide disease-modifying treatment for AD and other tauopathies. Therefore, a monoclonal antibody generating campaign was initiated with focus on the MTBR. Herein we describe the pre-clinical generation and characterisation of E2814, a humanised, high affinity, IgG1 antibody recognising the tau MTBR. E2814 and its murine precursor, 7G6, as revealed by epitope mapping, are antibodies bi-epitopic for 4R and mono-epitopic for 3R tau isoforms because they bind to sequence motif HVPGG. Functionally, both antibodies inhibited tau aggregation in vitro. They also immunodepleted a variety of MTBR-containing tau protein species. In an in vivo model of tau seeding and transmission, attenuation of deposition of sarkosyl-insoluble tau in brain could also be observed in response to antibody treatment. In AD brain, E2814 bound different types of tau filaments as shown by immunogold labelling and recognised pathological tau structures by immunohistochemical staining. Tau fragments containing HVPGG epitopes were also found to be elevated in AD brain compared to PSP or control. Taken together, the data reported here have led to E2814 being proposed for clinical development.
Collapse
Affiliation(s)
- Malcolm Roberts
- Hatfield Research Laboratories, Eisai Limited, Hatfield, UK.
| | - Ioanna Sevastou
- Reta Lila Weston Institute & Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK
| | | | - Kavita Mistry
- Hatfield Research Laboratories, Eisai Limited, Hatfield, UK
| | - Sonia Talma
- Hatfield Research Laboratories, Eisai Limited, Hatfield, UK
| | - Madhurima Dey
- Hatfield Research Laboratories, Eisai Limited, Hatfield, UK
| | - Jane Gartlon
- Hatfield Research Laboratories, Eisai Limited, Hatfield, UK
| | - Hiroshi Ochiai
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Zhi Zhou
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Shigeru Akasofu
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Naoki Tokuhara
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Makoto Ogo
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Muneo Aoyama
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Hirofumi Aoyagi
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Kate Strand
- Reta Lila Weston Institute & Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK
| | - Ezat Sajedi
- Reta Lila Weston Institute & Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK
| | | | | | | | - Kanta Horie
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | | | - Rohan de Silva
- Reta Lila Weston Institute & Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK.
| |
Collapse
|
448
|
Scheres SHW. Amyloid structure determination in RELION-3.1. Acta Crystallogr D Struct Biol 2020; 76:94-101. [PMID: 32038040 PMCID: PMC7008511 DOI: 10.1107/s2059798319016577] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022] Open
Abstract
Helical reconstruction in RELION is increasingly being used to determine the atomic structures of amyloid filaments from electron cryo-microscopy (cryo-EM) images. However, because the energy landscape of amyloid refinements is typically fraught with local optima, amyloid structure determination is often difficult. This paper aims to help RELION users in this process. It discusses aspects of helical reconstruction that are particularly relevant to amyloids, it illustrates the problem of local optima in refinement and how to detect them, and it introduces a new method to calculate 3D initial models from reference-free 2D class averages. By providing starting models that are closer to the global optimum, this method makes amyloid structure determination easier. All methods described are open-source and distributed within RELION-3.1. Their use is illustrated using a publicly available data set on tau filaments from the brain of an individual with Alzheimer's disease.
Collapse
Affiliation(s)
- Sjors H. W. Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, England
| |
Collapse
|
449
|
Gallardo R, Ranson NA, Radford SE. Amyloid structures: much more than just a cross-β fold. Curr Opin Struct Biol 2020; 60:7-16. [PMID: 31683043 DOI: 10.1016/j.sbi.2019.09.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/04/2019] [Indexed: 01/10/2023]
Abstract
In recent years our understanding of amyloid structure has been revolutionised by innovations in cryo-electron microscopy, electron diffraction and solid-state NMR. These techniques have yielded high-resolution structures of fibrils isolated from patients with neurodegenerative disease, as well as those formed from amyloidogenic proteins in vitro. The results not only show the expected cross-β amyloid structure, but also reveal that the amyloid fold is unexpectedly diverse and complex. Here, we discuss this diversity, highlighting dynamic regions, ligand binding motifs, cavities, non-protein components, and structural polymorphism. Collectively, these variations combine to allow the generic amyloid fold to be realised in three dimensions in different ways, and this diversity may be related to the roles of fibrils in disease.
Collapse
Affiliation(s)
- Rodrigo Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
450
|
Li D, Liu C. Structural Diversity of Amyloid Fibrils and Advances in Their Structure Determination. Biochemistry 2020; 59:639-646. [PMID: 31967790 DOI: 10.1021/acs.biochem.9b01069] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein amyloid fibrils are originally identified as pathological entities in a variety of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Recent studies have revealed that amyloid fibrils also serve as functional protein assemblies to fulfill a wide range of biological functions. Deciphering the molecular basis underlying the assembly of amyloid fibrils is essential for understanding their biological and pathological functions. Here, we summarize recent advances in the atomic structure determination of amyloid fibrils formed by both amyloidogenic peptides and full-length proteins. Furthermore, we demonstrate the diversity of amyloid fibrils, with a primary focus on the reversible fibrils, in sequence composition, self-assembled architecture, and physiochemical and pathological properties. Finally, we raise questions that will be answered by the future study of amyloid fibril structure.
Collapse
Affiliation(s)
- Dan Li
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education , Shanghai Jiao Tong University , Shanghai 200030 , China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 201210 , China
| |
Collapse
|