401
|
Swinnen G, Goossens A, Pauwels L. Lessons from Domestication: Targeting Cis-Regulatory Elements for Crop Improvement. TRENDS IN PLANT SCIENCE 2016; 21:506-515. [PMID: 26876195 DOI: 10.1016/j.tplants.2016.01.014] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/21/2015] [Accepted: 01/12/2016] [Indexed: 05/20/2023]
Abstract
Domestication of wild plant species has provided us with crops that serve our human nutritional needs. Advanced DNA sequencing has propelled the unveiling of underlying genetic changes associated with domestication. Interestingly, many changes reside in cis-regulatory elements (CREs) that control the expression of an unmodified coding sequence. Sequence variation in CREs can impact gene expression levels, but also developmental timing and tissue specificity of expression. When genes are involved in multiple pathways or active in several organs and developmental stages CRE modifications are favored in contrast to mutations in coding regions, due to the lack of detrimental pleiotropic effects. Therefore, learning from domestication, we propose that CREs are interesting targets for genome editing to create new alleles for plant breeding.
Collapse
Affiliation(s)
- Gwen Swinnen
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium.
| | - Laurens Pauwels
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium.
| |
Collapse
|
402
|
Wong DCJ, Lopez Gutierrez R, Dimopoulos N, Gambetta GA, Castellarin SD. Combined physiological, transcriptome, and cis-regulatory element analyses indicate that key aspects of ripening, metabolism, and transcriptional program in grapes (Vitis vinifera L.) are differentially modulated accordingly to fruit size. BMC Genomics 2016; 17:416. [PMID: 27245662 PMCID: PMC4886440 DOI: 10.1186/s12864-016-2660-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In wine grape production, management practices have been adopted to optimize grape and wine quality attributes by producing, or screening for, berries of smaller size. Fruit size and composition are influenced by numerous factors that include both internal (e.g. berry hormone metabolism) and external (e.g. environment and cultural practices) factors. Combined physiological, biochemical, and transcriptome analyses were performed to improve our current understanding of metabolic and transcriptional pathways related to berry ripening and composition in berries of different sizes. RESULTS The comparison of berry physiology between small and large berries throughout development (from 31 to 121 days after anthesis, DAA) revealed significant differences in firmness, the rate of softening, and sugar accumulation at specific developmental stages. Small berries had significantly higher skin to berry weight ratio, lower number of seeds per berry, and higher anthocyanin concentration compared to large berries. RNA-sequencing analyses of berry skins at 47, 74, 103, and 121 DAA revealed a total of 3482 differentially expressed genes between small and large berries. Abscisic acid, auxin, and ethylene hormone pathway genes were differentially modulated between berry sizes. Fatty acid degradation and stilbenoid pathway genes were upregulated at 47 DAA while cell wall degrading and modification genes were downregulated at 74 DAA in small compared to large berries. In the late ripening stage, concerted upregulation of the general phenylpropanoid and stilbenoid pathway genes and downregulation of flavonoid pathway genes were observed in skins of small compared to large berries. Cis-regulatory element analysis of differentially expressed hormone, fruit texture, flavor, and aroma genes revealed an enrichment of specific regulatory motifs related to bZIP, bHLH, AP2/ERF, NAC, MYB, and MADS-box transcription factors. CONCLUSIONS The study demonstrates that physiological and compositional differences between berries of different sizes parallel transcriptome changes that involve fruit texture, flavor, and aroma pathways. These results suggest that, in addition to direct effects brought about by differences in size, key aspects involved in the regulation of ripening likely contribute to different quality profiles between small and large berries.
Collapse
Affiliation(s)
- D C J Wong
- Wine Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - R Lopez Gutierrez
- Wine Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - N Dimopoulos
- Wine Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - G A Gambetta
- Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, F-33140, Villenave d' Ornon, France
| | - S D Castellarin
- Wine Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
403
|
Discriminative gene co-expression network analysis uncovers novel modules involved in the formation of phosphate deficiency-induced root hairs in Arabidopsis. Sci Rep 2016; 6:26820. [PMID: 27220366 PMCID: PMC4879556 DOI: 10.1038/srep26820] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/10/2016] [Indexed: 12/22/2022] Open
Abstract
Cell fate and differentiation in the Arabidopsis root epidermis are genetically defined but remain plastic to environmental signals such as limited availability of inorganic phosphate (Pi). Root hairs of Pi-deficient plants are more frequent and longer than those of plants grown under Pi-replete conditions. To dissect genes involved in Pi deficiency-induced root hair morphogenesis, we constructed a co-expression network of Pi-responsive genes against a customized database that was assembled from experiments in which differentially expressed genes that encode proteins with validated functions in root hair development were over-represented. To further filter out less relevant genes, we combined this procedure with a search for common cis-regulatory elements in the promoters of the selected genes. In addition to well-described players and processes such as auxin signalling and modifications of primary cell walls, we discovered several novel aspects in the biology of root hairs induced by Pi deficiency, including cell cycle control, putative plastid-to-nucleus signalling, pathogen defence, reprogramming of cell wall-related carbohydrate metabolism, and chromatin remodelling. This approach allows the discovery of novel of aspects of a biological process from transcriptional profiles with high sensitivity and accuracy.
Collapse
|
404
|
Montero-Fernández M, Robaina RR, Garcia-Jimenez P. In silico characterization of DNA motifs associated with the differential expression of the ornithine decarboxylase gene during in vitro cystocarp development in the red seaweed Grateloupia imbricata. JOURNAL OF PLANT PHYSIOLOGY 2016; 195:31-38. [PMID: 26991607 DOI: 10.1016/j.jplph.2016.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/05/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
To gain a better understanding of the regulatory mechanism(s) modulating expression of the ornithine decarboxylase gene ODC during cystocarp development in the red seaweed Grateloupia imbricata, DNA motifs found in the 5'-upstream region of the gene were identified by in silico analysis. In addition, when infertile G. imbricata thalli were treated with ethylene, methyl jasmonate, or light as an elicitor of cystocarp development, different ODC expression patterns were observed. ODC expression correlated with (i) the elicitation (treatment) period and the period post-treatment just prior to observation of the first visible developing cystocarps (disclosure period), and (ii) the type of elicitor. Ethylene and light activated ODC expression during the elicitation period, and methyl jasmonate activated its expression during the disclosure period, suggesting that initiation and cystocarp development may involve more than one signaling pathway. In addition, expression of ODC was 450-fold greater when thalli were stimulated by ethylene compared with untreated control thalli, suggesting that G. imbricata mounts an efficient response to sense and activate ethylene-responsive signaling pathways. The patterns of differential ODC expression induced by the different elicitors during cystocarp development might provide an useful tool for characterizing the precise transcriptional regulation of ODC in G. imbricata.
Collapse
Affiliation(s)
- Montserrat Montero-Fernández
- Departamento de Biología, Facultad de Ciencias del Mar, Universidad of Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Rafael R Robaina
- Departamento de Biología, Facultad de Ciencias del Mar, Universidad of Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Pilar Garcia-Jimenez
- Departamento de Biología, Facultad de Ciencias del Mar, Universidad of Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria, Canary Islands, Spain.
| |
Collapse
|
405
|
Naoumkina M, Thyssen GN, Fang DD, Hinchliffe DJ, Florane CB, Jenkins JN. Small RNA sequencing and degradome analysis of developing fibers of short fiber mutants Ligon-lintles-1 (Li 1 ) and -2 (Li 2 ) revealed a role for miRNAs and their targets in cotton fiber elongation. BMC Genomics 2016; 17:360. [PMID: 27184029 PMCID: PMC4869191 DOI: 10.1186/s12864-016-2715-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/06/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The length of cotton fiber is an important agronomic trait that directly affects the quality of yarn and fabric. Understanding the molecular basis of fiber elongation would provide a means for improvement of fiber length. Ligon-lintless-1 (Li 1 ) and -2 (Li 2 ) are monogenic and dominant mutations that result in an extreme reduction in the length of lint fiber on mature seeds. In a near-isogenic state with wild type cotton these two short fiber mutants provide an effective model system to study the mechanisms of fiber elongation. Plant miRNAs regulate many aspects of growth and development. However, the mechanism underlying the miRNA-mediated regulation of fiber development is largely unknown. RESULTS Small RNA libraries constructed from developing fiber cells of the short fiber mutants Li 1 and Li 2 and their near-isogenic wild type lines were sequenced. We identified 24 conservative and 147 novel miRNA families with targets that were detected through degradome sequencing. The distribution of the target genes into functional categories revealed the largest set of genes were transcription factors. Expression profiles of 20 miRNAs were examined across a fiber developmental time course in wild type and short fiber mutations. We conducted correlation analysis between miRNA transcript abundance and the length of fiber for 11 diverse Upland cotton lines. The expression patterns of 4 miRNAs revealed significant negative correlation with fiber lengths of 11 cotton lines. CONCLUSIONS Our results suggested that the mutations have changed the regulation of miRNAs expression during fiber development. Further investigations of differentially expressed miRNAs in the Li 1 and Li 2 mutants will contribute to better understanding of the regulatory mechanisms of cotton fiber development. Four miRNAs negatively correlated with fiber length are good candidates for further investigations of miRNA regulation of important genotype dependent fiber traits. Thus, our results will contribute to further studies on the role of miRNAs in cotton fiber development and will provide a tool for fiber improvement through molecular breeding.
Collapse
Affiliation(s)
- Marina Naoumkina
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA.
| | - Gregory N Thyssen
- Cotton Chemistry and Utilization Research Unit, USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - Doug J Hinchliffe
- Cotton Chemistry and Utilization Research Unit, USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - Christopher B Florane
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - Johnie N Jenkins
- Genetics and Sustainable Agriculture Research Unit, USDA-ARS, 810 Highway 12 East, Mississippi State, MS, 39762, USA
| |
Collapse
|
406
|
Franco-Zorrilla JM, Solano R. Identification of plant transcription factor target sequences. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:21-30. [PMID: 27155066 DOI: 10.1016/j.bbagrm.2016.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 12/15/2022]
Abstract
Regulation of gene expression depends on specific cis-regulatory sequences located in the gene promoter regions. These DNA sequences are recognized by transcription factors (TFs) in a sequence-specific manner, and their identification could help to elucidate the regulatory networks that underlie plant physiological responses to developmental programs or to environmental adaptation. Here we review recent advances in high throughput methodologies for the identification of plant TF binding sites. Several approaches offer a map of the TF binding locations in vivo and of the dynamics of the gene regulatory networks. As an alternative, high throughput in vitro methods provide comprehensive determination of the DNA sequences recognized by TFs. These advances are helping to decipher the regulatory lexicon and to elucidate transcriptional network hierarchies in plants in response to internal or external cues. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| |
Collapse
|
407
|
Berkowitz O, De Clercq I, Van Breusegem F, Whelan J. Interaction between hormonal and mitochondrial signalling during growth, development and in plant defence responses. PLANT, CELL & ENVIRONMENT 2016; 39:1127-39. [PMID: 26763171 DOI: 10.1111/pce.12712] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 05/23/2023]
Abstract
Mitochondria play a central role in plant metabolism as they are a major source of ATP through synthesis by the oxidative phosphorylation pathway and harbour key metabolic reactions such as the TCA cycle. The energy and building blocks produced by mitochondria are essential to drive plant growth and development as well as to provide fuel for responses to abiotic and biotic stresses. The majority of mitochondrial proteins are encoded in the nuclear genome and have to be imported into the organelle. For the regulation of the corresponding genes intricate signalling pathways exist to adjust their expression. Signals directly regulate nuclear gene expression (anterograde signalling) to adjust the protein composition of the mitochondria to the needs of the cell. In parallel, mitochondria communicate back their functional status to the nucleus (retrograde signalling) to prompt transcriptional regulation of responsive genes via largely unknown signalling mechanisms. Plant hormones are the major signalling components regulating all layers of plant development and cellular functions. Increasing evidence is now becoming available that plant hormones are also part of signalling networks controlling mitochondrial function and their biogenesis. This review summarizes recent advances in understanding the interaction of mitochondrial and hormonal signalling pathways.
Collapse
Affiliation(s)
- Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Inge De Clercq
- Department of Animal, Plant and Soil Sciences, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
408
|
Gaudinier A, Brady SM. Mapping Transcriptional Networks in Plants: Data-Driven Discovery of Novel Biological Mechanisms. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:575-94. [PMID: 27128468 DOI: 10.1146/annurev-arplant-043015-112205] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In plants, systems biology approaches have led to the generation of a variety of large data sets. Many of these data are created to elucidate gene expression profiles and their corresponding transcriptional regulatory mechanisms across a range of tissue types, organs, and environmental conditions. In an effort to map the complexity of this transcriptional regulatory control, several types of experimental assays have been used to map transcriptional regulatory networks. In this review, we discuss how these methods can be best used to identify novel biological mechanisms by focusing on the appropriate biological context. Translating network biology back to gene function in the plant, however, remains a challenge. We emphasize the need for validation and insight into the underlying biological processes to successfully exploit systems approaches in an effort to determine the emergent properties revealed by network analyses.
Collapse
Affiliation(s)
- Allison Gaudinier
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616;
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616;
| |
Collapse
|
409
|
Abstract
Auxin is arguably the most important signaling molecule in plants, and the last few decades have seen remarkable breakthroughs in understanding its production, transport, and perception. Recent investigations have focused on transcriptional responses to auxin, providing novel insight into the functions of the domains of key transcription regulators in responses to the hormonal cue and prominently implicating chromatin regulation in these responses. In addition, studies are beginning to identify direct targets of the auxin-responsive transcription factors that underlie auxin modulation of development. Mechanisms to tune the response to different auxin levels are emerging, as are first insights into how this single hormone can trigger diverse responses. Key unanswered questions center on the mechanism for auxin-directed transcriptional repression and the identity of additional determinants of auxin response specificity. Much of what has been learned in model plants holds true in other species, including the earliest land plants.
Collapse
Affiliation(s)
- Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands;
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
410
|
Millar AJ. The Intracellular Dynamics of Circadian Clocks Reach for the Light of Ecology and Evolution. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:595-618. [PMID: 26653934 DOI: 10.1146/annurev-arplant-043014-115619] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A major challenge for biology is to extend our understanding of molecular regulation from the simplified conditions of the laboratory to ecologically relevant environments. Tractable examples are essential to make these connections for complex, pleiotropic regulators and, to go further, to link relevant genome sequences to field traits. Here, I review the case for the biological clock in higher plants. The gene network of the circadian clock drives pervasive, 24-hour rhythms in metabolism, behavior, and physiology across the eukaryotes and in some prokaryotes. In plants, the scope of chronobiology is now extending from the most tractable, intracellular readouts to the clock's many effects at the whole-organism level and across the life cycle, including biomass and flowering. I discuss five research areas where recent progress might be integrated in the future, to understand not only circadian functions in natural conditions but also the evolution of the clock's molecular mechanisms.
Collapse
Affiliation(s)
- Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, United Kingdom;
| |
Collapse
|
411
|
Positional distribution of transcription factor binding sites in Arabidopsis thaliana. Sci Rep 2016; 6:25164. [PMID: 27117388 PMCID: PMC4846880 DOI: 10.1038/srep25164] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/11/2016] [Indexed: 11/08/2022] Open
Abstract
Binding of a transcription factor (TF) to its DNA binding sites (TFBSs) is a critical step to initiate the transcription of its target genes. It is therefore interesting to know where the TFBSs of a gene are likely to locate in the promoter region. Here we studied the positional distribution of TFBSs in Arabidopsis thaliana, for which many known TFBSs are now available. We developed a method to identify the locations of TFBSs in the promoter sequences of genes in A. thaliana. We found that the distribution is nearly bell-shaped with a peak at 50 base pairs (bp) upstream of the transcription start site (TSS) and 86% of the TFBSs are in the region from -1,000 bp to +200 bp with respect to the TSS. Our distribution was supported by chromatin immunoprecipitation sequencing and microarray data and DNase I hypersensitive site sequencing data. When TF families were considered separately, differences in positional preference were observed between TF families. Our study of the positional distribution of TFBSs seems to be the first in a plant.
Collapse
|
412
|
Kumar K, Srivastava V, Purayannur S, Kaladhar VC, Cheruvu PJ, Verma PK. WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s). DNA Res 2016; 23:225-39. [PMID: 27060167 PMCID: PMC4909309 DOI: 10.1093/dnares/dsw010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/20/2016] [Indexed: 11/16/2022] Open
Abstract
The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes were found in chickpea and barrel medic, respectively. Comparative analysis suggests the presence of both conserved and unique WRKYs, and expansion of WRKY family in M. truncatula primarily by tandem duplication. Exclusively found in galegoid legumes, CaWRKY16 and its orthologues encode for a novel protein having a transmembrane and partial Exo70 domains flanking a group-III WD. Genomic region of galegoids, having CaWRKY16, is more dynamic when compared with millettioids. In onion cells, fused CaWRKY16-EYFP showed punctate fluorescent signals in cytoplasm. The chickpea WRKY group-III genes were further characterized for their transcript level modulation during pathogenic stress and treatments of abscisic acid, jasmonic acid, and salicylic acid (SA) by real-time PCR. Differential regulation of genes was observed during Ascochyta rabiei infection and SA treatment. Characterization of A. rabiei and SA inducible gene CaWRKY50 showed that it localizes to plant nucleus, binds to W-box, and have a C-terminal transactivation domain. Overexpression of CaWRKY50 in tobacco plants resulted in early flowering and senescence. The in-depth comparative account presented here for two legume WRKY genes will be of great utility in hastening functional characterization of crop legume WRKYs and will also help in characterization of Exo70Js.
Collapse
Affiliation(s)
- Kamal Kumar
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vikas Srivastava
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Savithri Purayannur
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - V Chandra Kaladhar
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Purnima Jaiswal Cheruvu
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
413
|
Vialette-Guiraud ACM, Andres-Robin A, Chambrier P, Tavares R, Scutt CP. The analysis of Gene Regulatory Networks in plant evo-devo. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2549-63. [PMID: 27006484 DOI: 10.1093/jxb/erw119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We provide an overview of methods and workflows that can be used to investigate the topologies of Gene Regulatory Networks (GRNs) in the context of plant evolutionary-developmental (evo-devo) biology. Many of the species that occupy key positions in plant phylogeny are poorly adapted as laboratory models and so we focus here on techniques that can be efficiently applied to both model and non-model species of interest to plant evo-devo. We outline methods that can be used to describe gene expression patterns and also to elucidate the transcriptional, post-transcriptional, and epigenetic regulatory mechanisms underlying these patterns, in any plant species with a sequenced genome. We furthermore describe how the technique of Protein Resurrection can be used to confirm inferences on ancestral GRNs and also to provide otherwise-inaccessible points of reference in evolutionary histories by exploiting paralogues generated in gene and whole genome duplication events. Finally, we argue for the better integration of molecular data with information from paleobotanical, paleoecological, and paleogeographical studies to provide the fullest possible picture of the processes that have shaped the evolution of plant development.
Collapse
Affiliation(s)
- Aurélie C M Vialette-Guiraud
- Laboratoire de Reproduction et Développement des Plantes (UMR 5667 - CNRS/INRA/ENS-Lyon/université Lyon 1/université de Lyon), Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Amélie Andres-Robin
- Laboratoire de Reproduction et Développement des Plantes (UMR 5667 - CNRS/INRA/ENS-Lyon/université Lyon 1/université de Lyon), Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Pierre Chambrier
- Laboratoire de Reproduction et Développement des Plantes (UMR 5667 - CNRS/INRA/ENS-Lyon/université Lyon 1/université de Lyon), Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Raquel Tavares
- Laboratoire de Biométrie et Biologie Évolutive (UMR 5558 - CNRS/université Lyon 1/université de Lyon), Bâtiment Gregor Mendel, 43 bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France
| | - Charles P Scutt
- Laboratoire de Reproduction et Développement des Plantes (UMR 5667 - CNRS/INRA/ENS-Lyon/université Lyon 1/université de Lyon), Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
414
|
Ashworth J, Turkarslan S, Harris M, Orellana MV, Baliga NS. Pan-transcriptomic analysis identifies coordinated and orthologous functional modules in the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum. Mar Genomics 2016; 26:21-8. [DOI: 10.1016/j.margen.2015.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 01/01/2023]
|
415
|
Huang CF, Chang YM, Lin JJ, Yu CP, Lin HH, Liu WY, Yeh S, Tu SL, Wu SH, Ku MS, Li WH. Insights into the regulation of C4 leaf development from comparative transcriptomic analysis. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:1-10. [PMID: 26828378 DOI: 10.1016/j.pbi.2015.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/20/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
C4 photosynthesis is more efficient than C3 photosynthesis for two reasons. First, C4 plants have evolved a repertoire of C4 enzymes to enhance CO2 fixation. Second, C4 leaves have Kranz anatomy with a high vein density in which the veins are surrounded by one layer of bundle sheath (BS) cells and one layer of mesophyll (M) cells. The BS and M cells are not only functionally well differentiated, but also well-coordinated for rapid transport of photo-assimilates between the two types of photosynthetic cells. Recent comparative transcriptomic and anatomical analyses of C3 and C4 leaves have revealed early onset of C4-related processes in leaf development, suggesting that delayed mesophyll differentiation contributes to higher C4 vein density, and have identified some candidate regulators for the higher vein density in C4 leaves. Moreover, comparative transcriptomics of maize husk (C3) and foliar leaves (C4) has identified a cohort of candidate regulators of Kranz anatomy development. In addition, there has been major progress in the identification of transcription factor binding sites, greatly increasing our knowledge of gene regulation in plants.
Collapse
Affiliation(s)
- Chi-Fa Huang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yao-Ming Chang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jinn-Jy Lin
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan; Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Ping Yu
- Biotechnology Center, National Chung-Hsing Unviersity, Taichung 40227, Taiwan
| | - Hsin-Hung Lin
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Yu Liu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Suying Yeh
- Institute of Bioagricultural Science, National Chiayi University, Chiayi 600, Taiwan
| | - Shih-Long Tu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Maurice Sb Ku
- Institute of Bioagricultural Science, National Chiayi University, Chiayi 600, Taiwan; School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan; Department of Ecology and Evolution, University of Chicago, Chicago 60637, USA.
| |
Collapse
|
416
|
Proost S, Mutwil M. Tools of the trade: studying molecular networks in plants. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:143-150. [PMID: 26990519 DOI: 10.1016/j.pbi.2016.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
Driven by recent technological improvements, genes can be now studied in a larger biological context. Genes and their protein products rarely operate as a single entity and large-scale mapping by protein-protein interactions can unveil the molecular complexes that form in the cell to carry out various functions. Expression analysis under multiple conditions, supplemented with protein-DNA binding data can highlight when genes are active and how they are regulated. Representing these data in networks and finding strongly connected sub-graphs has proven to be a powerful tool to predict the function of unknown genes. As such networks are gradually becoming available for various plant species, it becomes possible to study how networks evolve. This review summarizes currently available network data and related tools for plants. Furthermore we aim to provide an outlook of future analyses that can be done in plants based on work done in other fields.
Collapse
Affiliation(s)
- Sebastian Proost
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Marek Mutwil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
417
|
Dinesh DC, Villalobos LIAC, Abel S. Structural Biology of Nuclear Auxin Action. TRENDS IN PLANT SCIENCE 2016; 21:302-316. [PMID: 26651917 DOI: 10.1016/j.tplants.2015.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/29/2015] [Accepted: 10/23/2015] [Indexed: 05/23/2023]
Abstract
Auxin coordinates plant development largely via hierarchical control of gene expression. During the past decades, the study of early auxin genes paired with the power of Arabidopsis genetics have unraveled key nuclear components and molecular interactions that perceive the hormone and activate primary response genes. Recent research in the realm of structural biology allowed unprecedented insight into: (i) the recognition of auxin-responsive DNA elements by auxin transcription factors; (ii) the inactivation of those auxin response factors by early auxin-inducible repressors; and (iii) the activation of target genes by auxin-triggered repressor degradation. The biophysical studies reviewed here provide an impetus for elucidating the molecular determinants of the intricate interactions between core components of the nuclear auxin response module.
Collapse
Affiliation(s)
- Dhurvas Chandrasekaran Dinesh
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Luz Irina A Calderón Villalobos
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany; Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany; Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
418
|
Cho SH, Kang K, Lee SH, Lee IJ, Paek NC. OsWOX3A is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice (Oryza sativa). JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1677-87. [PMID: 26767749 PMCID: PMC4783357 DOI: 10.1093/jxb/erv559] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The plant-specific WUSCHEL-related homeobox (WOX) nuclear proteins have important roles in the transcriptional regulation of many developmental processes. Among the rice (Oryza sativa) WOX proteins, a loss of OsWOX3A function in narrow leaf2 (nal2) nal3 double mutants (termed nal2/3) causes pleiotropic effects, such as narrow and curly leaves, opened spikelets, narrow grains, more tillers, and fewer lateral roots, but almost normal plant height. To examine OsWOX3A function in more detail, transgenic rice overexpressing OsWOX3A (OsWOX3A-OX) were generated; unexpectedly, all of them consistently exhibited severe dwarfism with very short and wide leaves, a phenotype that resembles that of gibberellic acid (GA)-deficient or GA-insensitive mutants. Exogenous GA3 treatment fully rescued the developmental defects of OsWOX3A-OX plants, suggesting that constitutive overexpression of OsWOX3A downregulates GA biosynthesis. Quantitative analysis of GA intermediates revealed significantly reduced levels of GA20 and bioactive GA1 in OsWOX3A-OX, possibly due to downregulation of the expression of KAO, which encodes ent-kaurenoic acid oxidase, a GA biosynthetic enzyme. Yeast one-hybrid and electrophoretic mobility shift assays revealed that OsWOX3A directly interacts with the KAO promoter. OsWOX3A expression is drastically and temporarily upregulated by GA3 and downregulated by paclobutrazol, a blocker of GA biosynthesis. These data indicate that OsWOX3A is a GA-responsive gene and functions in the negative feedback regulation of the GA biosynthetic pathway for GA homeostasis to maintain the threshold levels of endogenous GA intermediates throughout development.
Collapse
Affiliation(s)
- Sung-Hwan Cho
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea Present address: Division of Plant Science and Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Kiyoon Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Sang-Hwa Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - In-Jung Lee
- Division of Plant Biosciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| |
Collapse
|
419
|
Huang PY, Catinot J, Zimmerli L. Ethylene response factors in Arabidopsis immunity. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1231-41. [PMID: 26663391 DOI: 10.1093/jxb/erv518] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pathogen attack leads to transcriptional changes and metabolic modifications allowing the establishment of appropriate plant defences. Transcription factors (TFs) are key players in plant innate immunity. Notably, ethylene response factor (ERF) TFs are integrators of hormonal pathways and are directly responsible for the transcriptional regulation of several jasmonate (JA)/ethylene (ET)-responsive defence genes. Transcriptional activation or repression by ERFs is achieved through the binding to JA/ET-responsive gene promoters. In this review, we describe the regulation and mode of action at a molecular level of ERFs involved in Arabidopsis thaliana immunity. In particular, we focus on defence activators such as ERF1, ORA59, ERF6, and the recently described ERF96.
Collapse
|
420
|
Moreau F, Thévenon E, Blanvillain R, Lopez-Vidriero I, Franco-Zorrilla JM, Dumas R, Parcy F, Morel P, Trehin C, Carles CC. The Myb-domain protein ULTRAPETALA1 INTERACTING FACTOR 1 controls floral meristem activities in Arabidopsis. Development 2016; 143:1108-19. [PMID: 26903506 DOI: 10.1242/dev.127365] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 02/15/2016] [Indexed: 11/20/2022]
Abstract
Higher plants continuously and iteratively produce new above-ground organs in the form of leaves, stems and flowers. These organs arise from shoot apical meristems whose homeostasis depends on coordination between self-renewal of stem cells and their differentiation into organ founder cells. This coordination is stringently controlled by the central transcription factor WUSCHEL (WUS), which is both necessary and sufficient for stem cell specification in Arabidopsis thaliana ULTRAPETALA1 (ULT1) was previously identified as a plant-specific, negative regulator of WUS expression. However, molecular mechanisms underlying this regulation remain unknown. ULT1 protein contains a SAND putative DNA-binding domain and a B-box, previously proposed as a protein interaction domain in eukaryotes. Here, we characterise a novel partner of ULT1, named ULT1 INTERACTING FACTOR 1 (UIF1), which contains a Myb domain and an EAR motif. UIF1 and ULT1 function in the same pathway for regulation of organ number in the flower. Moreover, UIF1 displays DNA-binding activity and specifically binds to WUS regulatory elements. We thus provide genetic and molecular evidence that UIF1 and ULT1 work together in floral meristem homeostasis, probably by direct repression of WUS expression.
Collapse
Affiliation(s)
- Fanny Moreau
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble 38054, France CNRS, LPCV, UMR 5168, Grenoble 38054, France CEA, Direction des Sciences du Vivant, BIG, LPCV, Grenoble 38054, France INRA, LPCV, Grenoble 38054, France
| | - Emmanuel Thévenon
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble 38054, France CNRS, LPCV, UMR 5168, Grenoble 38054, France CEA, Direction des Sciences du Vivant, BIG, LPCV, Grenoble 38054, France INRA, LPCV, Grenoble 38054, France
| | - Robert Blanvillain
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble 38054, France CNRS, LPCV, UMR 5168, Grenoble 38054, France CEA, Direction des Sciences du Vivant, BIG, LPCV, Grenoble 38054, France INRA, LPCV, Grenoble 38054, France
| | - Irene Lopez-Vidriero
- Genomics Unit, Centro Nacional de Biotecnologia CNB- CSIC, Darwin 3, Madrid 28049, Spain
| | | | - Renaud Dumas
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble 38054, France CNRS, LPCV, UMR 5168, Grenoble 38054, France CEA, Direction des Sciences du Vivant, BIG, LPCV, Grenoble 38054, France INRA, LPCV, Grenoble 38054, France
| | - François Parcy
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble 38054, France CNRS, LPCV, UMR 5168, Grenoble 38054, France CEA, Direction des Sciences du Vivant, BIG, LPCV, Grenoble 38054, France INRA, LPCV, Grenoble 38054, France
| | - Patrice Morel
- Laboratoire de Reproduction et Développement des Plantes, Université Lyon1, CNRS, INRA, ENS, Lyon cedex 07 69347, France
| | - Christophe Trehin
- Laboratoire de Reproduction et Développement des Plantes, Université Lyon1, CNRS, INRA, ENS, Lyon cedex 07 69347, France
| | - Cristel C Carles
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble 38054, France CNRS, LPCV, UMR 5168, Grenoble 38054, France CEA, Direction des Sciences du Vivant, BIG, LPCV, Grenoble 38054, France INRA, LPCV, Grenoble 38054, France
| |
Collapse
|
421
|
Doidy J, Li Y, Neymotin B, Edwards MB, Varala K, Gresham D, Coruzzi GM. "Hit-and-Run" transcription: de novo transcription initiated by a transient bZIP1 "hit" persists after the "run". BMC Genomics 2016; 17:92. [PMID: 26843062 PMCID: PMC4738784 DOI: 10.1186/s12864-016-2410-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dynamic transcriptional regulation is critical for an organism's response to environmental signals and yet remains elusive to capture. Such transcriptional regulation is mediated by master transcription factors (TF) that control large gene regulatory networks. Recently, we described a dynamic mode of TF regulation named "hit-and-run". This model proposes that master TF can interact transiently with a set of targets, but the transcription of these transient targets continues after the TF dissociation from the target promoter. However, experimental evidence validating active transcription of the transient TF-targets is still lacking. RESULTS Here, we show that active transcription continues after transient TF-target interactions by tracking de novo synthesis of RNAs made in response to TF nuclear import. To do this, we introduced an affinity-labeled 4-thiouracil (4tU) nucleobase to specifically isolate newly synthesized transcripts following conditional TF nuclear import. Thus, we extended the TARGET system (Transient Assay Reporting Genome-wide Effects of Transcription factors) to include 4tU-labeling and named this new technology TARGET-tU. Our proof-of-principle example is the master TF Basic Leucine Zipper 1 (bZIP1), a central integrator of metabolic signaling in plants. Using TARGET-tU, we captured newly synthesized mRNAs made in response to bZIP1 nuclear import at a time when bZIP1 is no longer detectably bound to its target. Thus, the analysis of de novo transcripomics demonstrates that bZIP1 may act as a catalyst TF to initiate a transcriptional complex ("hit"), after which active transcription by RNA polymerase continues without the TF being bound to the gene promoter ("run"). CONCLUSION Our findings provide experimental proof for active transcription of transient TF-targets supporting a "hit-and-run" mode of action. This dynamic regulatory model allows a master TF to catalytically propagate rapid and broad transcriptional responses to changes in environment. Thus, the functional read-out of de novo transcripts produced by transient TF-target interactions allowed us to capture new models for genome-wide transcriptional control.
Collapse
Affiliation(s)
- Joan Doidy
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.
| | - Ying Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.
| | - Benjamin Neymotin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.
| | - Molly B Edwards
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.
| | - Kranthi Varala
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
422
|
Wang Y, Lu W, Deng D. Bioinformatic landscapes for plant transcription factor system research. PLANTA 2016; 243:297-304. [PMID: 26719053 DOI: 10.1007/s00425-015-2453-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
Diverse bioinformatic resources have been developed for plant transcription factor (TF) research. This review presents the bioinformatic resources and methodologies for the elucidation of plant TF-mediated biological events. Such information is helpful to dissect the transcriptional regulatory systems in the three reference plants Arabidopsis , rice, and maize and translation to other plants. Transcription factors (TFs) orchestrate diverse biological programs by the modulation of spatiotemporal patterns of gene expression via binding cis-regulatory elements. Advanced sequencing platforms accompanied by emerging bioinformatic tools revolutionize the scope and extent of TF research. The system-level integration of bioinformatic resources is beneficial to the decoding of TF-involved networks. Herein, we first briefly introduce general and specialized databases for TF research in three reference plants Arabidopsis, rice, and maize. Then, as proof of concept, we identified and characterized heat shock transcription factor (HSF) members through the TF databases. Finally, we present how the integration of bioinformatic resources at -omics layers can aid the dissection of TF-mediated pathways. We also suggest ways forward to improve the bioinformatic resources of plant TFs. Leveraging these bioinformatic resources and methodologies opens new avenues for the elucidation of transcriptional regulatory systems in the three model systems and translation to other plants.
Collapse
Affiliation(s)
- Yijun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Wenjie Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Dexiang Deng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
423
|
Liu W, Stewart CN. Plant synthetic promoters and transcription factors. Curr Opin Biotechnol 2016; 37:36-44. [DOI: 10.1016/j.copbio.2015.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
|
424
|
Lehmeyer M, Hanko EKR, Roling L, Gonzalez L, Wehrs M, Hehl R. A cis-regulatory sequence from a short intergenic region gives rise to a strong microbe-associated molecular pattern-responsive synthetic promoter. Mol Genet Genomics 2016; 291:1155-65. [PMID: 26833485 DOI: 10.1007/s00438-016-1173-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/20/2016] [Indexed: 01/28/2023]
Abstract
The high gene density in Arabidopsis thaliana leaves only relatively short intergenic regions for potential cis-regulatory sequences. To learn more about the regulation of genes harbouring only very short upstream intergenic regions, this study investigates a recently identified novel microbe-associated molecular pattern (MAMP)-responsive cis-sequence located within the 101 bp long intergenic region upstream of the At1g13990 gene. It is shown that the cis-regulatory sequence is sufficient for MAMP-responsive reporter gene activity in the context of its native promoter. The 3' UTR of the upstream gene has a quantitative effect on gene expression. In context of a synthetic promoter, the cis-sequence is shown to achieve a strong increase in reporter gene activity as a monomer, dimer and tetramer. Mutation analysis of the cis-sequence determined the specific nucleotides required for gene expression activation. In transgenic A. thaliana the synthetic promoter harbouring a tetramer of the cis-sequence not only drives strong pathogen-responsive reporter gene expression but also shows a high background activity. The results of this study contribute to our understanding how genes with very short upstream intergenic regions are regulated and how these regions can serve as a source for MAMP-responsive cis-sequences for synthetic promoter design.
Collapse
Affiliation(s)
- Mona Lehmeyer
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Erik K R Hanko
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Lena Roling
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Lilian Gonzalez
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Maren Wehrs
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Reinhard Hehl
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
425
|
Mei S, Liu T, Wang Z. Comparative Transcriptome Profile of the Cytoplasmic Male Sterile and Fertile Floral Buds of Radish (Raphanus sativus L.). Int J Mol Sci 2016; 17:E42. [PMID: 26751440 PMCID: PMC4730287 DOI: 10.3390/ijms17010042] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 11/16/2022] Open
Abstract
Radish cytoplasmic male sterility (CMS) has been widely used for breeding in Raphanus and Brassica genera. However, the detailed regulation network of the male sterility remains to be determined. Our previous work has shown that the abnormalities in a CMS radish appeared shortly after the tetrad stage when microspores were malformed and the tapetal cells grew abnormally large. In this work, histological analysis shows that anthers are at the tetrad stage when the radish buds are about 1.5 mm in length. Furthermore, a high throughput RNA sequencing technology was employed to characterize the transcriptome of radish buds with length about 1.5 mm from two CMS lines possessing the CMS-inducing orf138 gene and corresponding near-isogenic maintainer lines. A total of 67,140 unigenes were functionally annotated. Functional terms for these genes are significantly enriched in 55 Gene Ontology (GO) groups and 323 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The transcriptome detected transcripts for 72 out of a total of 79 protein genes encoded in the chloroplast genome from radish. In contrast, the radish mitochondrial genome contains 34 protein genes, but only 16 protein transcripts were detected from the transcriptome. The transcriptome comparison between CMS and near-isogenic maintainer lines revealed 539 differentially expressed genes (DEGs), indicating that the false positive rate for comparative transcriptome profiling was clearly decreased using two groups of CMS/maintainer lines with different nuclear background. The level of 127 transcripts was increased and 412 transcripts were decreased in the CMS lines. No change in levels of transcripts except CMS-inducing orf138 was identified from the mitochondrial and chloroplast genomes. Some DEGs which would be associated with the CMS, encoding MYB and bHLH transcription factors, pentatricopeptide repeat (PPR) proteins, heat shock transcription factors (HSFs) and heat shock proteins (HSPs), are discussed. The transcriptome dataset and comparative analysis will provide an important resource for further understanding anther development, the CMS mechanism and to improve molecular breeding in radish.
Collapse
Affiliation(s)
- Shiyong Mei
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Touming Liu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Zhiwei Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
426
|
Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL. Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions. FRONTIERS IN PLANT SCIENCE 2016; 7:1029. [PMID: 27471513 PMCID: PMC4943945 DOI: 10.3389/fpls.2016.01029] [Citation(s) in RCA: 360] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/30/2016] [Indexed: 05/18/2023]
Abstract
Increasing vulnerability of plants to a variety of stresses such as drought, salt and extreme temperatures poses a global threat to sustained growth and productivity of major crops. Of these stresses, drought represents a considerable threat to plant growth and development. In view of this, developing staple food cultivars with improved drought tolerance emerges as the most sustainable solution toward improving crop productivity in a scenario of climate change. In parallel, unraveling the genetic architecture and the targeted identification of molecular networks using modern "OMICS" analyses, that can underpin drought tolerance mechanisms, is urgently required. Importantly, integrated studies intending to elucidate complex mechanisms can bridge the gap existing in our current knowledge about drought stress tolerance in plants. It is now well established that drought tolerance is regulated by several genes, including transcription factors (TFs) that enable plants to withstand unfavorable conditions, and these remain potential genomic candidates for their wide application in crop breeding. These TFs represent the key molecular switches orchestrating the regulation of plant developmental processes in response to a variety of stresses. The current review aims to offer a deeper understanding of TFs engaged in regulating plant's response under drought stress and to devise potential strategies to improve plant tolerance against drought.
Collapse
Affiliation(s)
- Rohit Joshi
- Plant Stress Biology, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Shabir H. Wani
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of KashmirSrinagar, India
| | - Balwant Singh
- National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Abhishek Bohra
- Crop Improvement Division, Indian Institute of Pulses ResearchKanpur, India
| | - Zahoor A. Dar
- Dryland Agricultural Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology of KashmirBudgam, India
| | - Ajaz A. Lone
- Dryland Agricultural Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology of KashmirBudgam, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
- *Correspondence: Sneh L. Singla-Pareek,
| |
Collapse
|
427
|
Yamaguchi N, Jeong CW, Nole-Wilson S, Krizek BA, Wagner D. AINTEGUMENTA and AINTEGUMENTA-LIKE6/PLETHORA3 Induce LEAFY Expression in Response to Auxin to Promote the Onset of Flower Formation in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:283-93. [PMID: 26537561 PMCID: PMC4704571 DOI: 10.1104/pp.15.00969] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/03/2015] [Indexed: 05/06/2023]
Abstract
Proper timing of the onset to flower formation is critical for reproductive success. Monocarpic plants like Arabidopsis (Arabidopsis thaliana) switch from production of branches in the axils of leaves to that of flowers once in their lifecycle, during the meristem identity transition. The plant-specific transcription factor LEAFY (LFY) is necessary and sufficient for this transition. Previously, we reported that the plant hormone auxin induces LFY expression through AUXIN RESPONSE FACTOR5/MONOPTEROS (ARF5/MP). It is not known whether MP is solely responsible for auxin-directed transcriptional activation of LFY. Here, we show that two transcription factors belonging to the AINTEGUMENTA-LIKE/PLETHORA family, AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6/PLETHORA3 (AIL6/PLT3), act in parallel with MP to upregulate LFY in response to auxin. ant ail6 mutants display a delay in the meristem identity transition and in LFY induction. ANT and AIL6/PLT3 are expressed prior to LFY and bind to the LFY promoter to control LFY mRNA accumulation. Genetic and promoter/reporter studies suggest that ANT/AIL6 act in parallel with MP to promote LFY induction in response to auxin sensing. Our study highlights the importance of two separate auxin-controlled pathways in the meristem identity transition.
Collapse
Affiliation(s)
- Nobutoshi Yamaguchi
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018 (N.Y., C.W.J., D.W.); andDepartment of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (S.N.-W., B.A.K.)
| | - Cheol Woong Jeong
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018 (N.Y., C.W.J., D.W.); andDepartment of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (S.N.-W., B.A.K.)
| | - Staci Nole-Wilson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018 (N.Y., C.W.J., D.W.); andDepartment of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (S.N.-W., B.A.K.)
| | - Beth A Krizek
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018 (N.Y., C.W.J., D.W.); andDepartment of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (S.N.-W., B.A.K.)
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018 (N.Y., C.W.J., D.W.); andDepartment of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (S.N.-W., B.A.K.)
| |
Collapse
|
428
|
Parvathi MS, Nataraja KN. Emerging tools, concepts and ideas to track the modulator genes underlying plant drought adaptive traits: An overview. PLANT SIGNALING & BEHAVIOR 2016; 11:e1074370. [PMID: 26618613 PMCID: PMC4871659 DOI: 10.1080/15592324.2015.1074370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/15/2015] [Indexed: 06/05/2023]
Abstract
Crop vulnerability to multiple abiotic stresses is increasing at an alarming rate in the current global climate change scenario, especially drought. Crop improvement for adaptive adjustments to accomplish stress tolerance requires a comprehensive understanding of the key contributory processes. This requires the identification and careful analysis of the critical morpho-physiological plant attributes and their genetic control. In this review we try to discuss the crucial traits underlying drought tolerance and the various modes followed to understand their molecular level regulation. Plant stress biology is progressing into new dimensions and a conscious attempt has been made to traverse through the various approaches and checkpoints that would be relevant to tackle drought stress limitations for sustainable crop production.
Collapse
Affiliation(s)
- M S Parvathi
- Department of Crop Physiology; University of Agricultural Sciences; GKVK; Bangalore, India
| | - Karaba N Nataraja
- Department of Crop Physiology; University of Agricultural Sciences; GKVK; Bangalore, India
| |
Collapse
|
429
|
Salvini M, Fambrini M, Giorgetti L, Pugliesi C. Molecular aspects of zygotic embryogenesis in sunflower (Helianthus annuus L.): correlation of positive histone marks with HaWUS expression and putative link HaWUS/HaL1L. PLANTA 2016; 243:199-215. [PMID: 26377219 DOI: 10.1007/s00425-015-2405-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/06/2015] [Indexed: 06/05/2023]
Abstract
The link HaWUS/ HaL1L , the opposite transcriptional behavior, and the decrease/increase in positive histone marks bond to both genes suggest an inhibitory effect of WUS on HaL1L in sunflower zygotic embryos. In Arabidopsis, a group of transcription factors implicated in the earliest events of embryogenesis is the WUSCHEL-RELATED HOMEOBOX (WOX) protein family including WUSCHEL (WUS) and other 14 WOX protein, some of which contain a conserved WUS-box domain in addition to the homeodomain. WUS transcripts appear very early in embryogenesis, at the 16-cell embryo stage, but gradually become restricted to the center of the developing shoot apical meristem (SAM) primordium and continues to be expressed in cells of the niche/organizing center of SAM and floral meristems to maintain stem cell population. Moreover, WUS has decisive roles in the embryonic program presumably promoting the vegetative-to-embryonic transition and/or maintaining the identity of the embryonic stem cells. However, data on the direct interaction between WUS and key genes for seed development (as LEC1 and L1L) are not collected. The novelty of this report consists in the characterization of Helianthus annuus WUS (HaWUS) gene and in its analysis regarding the pattern of the methylated lysine 4 (K4) of the Histone H3 and of the acetylated histone H3 during the zygotic embryo development. Also, a parallel investigation was performed for HaL1L gene since two copies of the WUS-binding site (WUSATA), previously identified on HaL1L nucleotide sequence, were able to be bound by the HaWUS recombinant protein suggesting a not described effect of HaWUS on HaL1L transcription.
Collapse
Affiliation(s)
- Mariangela Salvini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Marco Fambrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Lucia Giorgetti
- Institute of Agricultural Biology and Biotechnology (IBBA), Italian National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
430
|
Hehl R, Norval L, Romanov A, Bülow L. Boosting AthaMap Database Content with Data from Protein Binding Microarrays. PLANT & CELL PHYSIOLOGY 2016; 57:e4. [PMID: 26542109 DOI: 10.1093/pcp/pcv156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/19/2015] [Indexed: 05/24/2023]
Abstract
The AthaMap database generates a map of predicted transcription factor binding sites (TFBS) and small RNA target sites for the whole Arabidopsis thaliana genome. With the advent of protein binding microarrays (PBM), the number of known TFBS for A. thaliana transcription factors (TFs) has increased dramatically. Using 113 positional weight matrices (PWMs) generated from a single PBM study and representing a total number of 68 different TFs, the number of predicted TFBS in AthaMap was now increased by about 3.8 × 10(7) to 4.9 × 10(7). The number of TFs with PWM-predicted TFBS annotated in AthaMap has increased to 126, representing a total of 29 TF families and newly including ARF, AT-Hook, YABBY, LOB/AS2 and SRS. Furthermore, links from all Arabidopsis TFs and genes to the newly established Arabidopsis Information Portal (AIP) have been implemented. With this qualitative and quantitative update, the improved AthaMap increases its value as a resource for the analysis of A. thaliana gene expression regulation at www.athamap.de.
Collapse
Affiliation(s)
- Reinhard Hehl
- Technische Universität Braunschweig, Institut für Genetik, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | - Leo Norval
- Technische Universität Braunschweig, Institut für Genetik, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | - Artyom Romanov
- Technische Universität Braunschweig, Institut für Genetik, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | - Lorenz Bülow
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Erwin-Baur-Str. 27, D-06484 Quedlinburg, Germany
| |
Collapse
|
431
|
Liu TL, Newton L, Liu MJ, Shiu SH, Farré EM. A G-Box-Like Motif Is Necessary for Transcriptional Regulation by Circadian Pseudo-Response Regulators in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:528-39. [PMID: 26586835 PMCID: PMC4704597 DOI: 10.1104/pp.15.01562] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/17/2015] [Indexed: 05/18/2023]
Abstract
PSEUDO-RESPONSE REGULATORs (PRRs) play overlapping and distinct roles in maintaining circadian rhythms and regulating diverse biological processes, including the photoperiodic control of flowering, growth, and abiotic stress responses. PRRs act as transcriptional repressors and associate with chromatin via their conserved C-terminal CCT (CONSTANS, CONSTANS-like, and TIMING OF CAB EXPRESSION 1 [TOC1/PRR1]) domains by a still-poorly understood mechanism. Here, we identified genome-wide targets of PRR9 using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) and compared them with PRR7, PRR5, and TOC1/PRR1 ChIP-seq data. We found that PRR binding sites are located within genomic regions of low nucleosome occupancy and high DNase I hypersensitivity. Moreover, conserved noncoding regions among Brassicaceae species are enriched around PRR binding sites, indicating that PRRs associate with functionally relevant cis-regulatory regions. The PRRs shared a significant number of binding regions, and our results indicate that they coordinately restrict the expression of target genes to around dawn. A G-box-like motif was overrepresented at PRR binding regions, and we showed that this motif is necessary for mediating transcriptional regulation of CIRCADIAN CLOCK ASSOCIATED 1 and PRR9 by the PRRs. Our results further our understanding of how PRRs target specific promoters and provide an extensive resource for studying circadian regulatory networks in plants.
Collapse
Affiliation(s)
- Tiffany L Liu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Linsey Newton
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Ming-Jung Liu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Eva M Farré
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
432
|
Gasch P, Fundinger M, Müller JT, Lee T, Bailey-Serres J, Mustroph A. Redundant ERF-VII Transcription Factors Bind to an Evolutionarily Conserved cis-Motif to Regulate Hypoxia-Responsive Gene Expression in Arabidopsis. THE PLANT CELL 2016; 28:160-80. [PMID: 26668304 PMCID: PMC4746684 DOI: 10.1105/tpc.15.00866] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/01/2015] [Indexed: 05/08/2023]
Abstract
The response of Arabidopsis thaliana to low-oxygen stress (hypoxia), such as during shoot submergence or root waterlogging, includes increasing the levels of ∼50 hypoxia-responsive gene transcripts, many of which encode enzymes associated with anaerobic metabolism. Upregulation of over half of these mRNAs involves stabilization of five group VII ethylene response factor (ERF-VII) transcription factors, which are routinely degraded via the N-end rule pathway of proteolysis in an oxygen- and nitric oxide-dependent manner. Despite their importance, neither the quantitative contribution of individual ERF-VIIs nor the cis-regulatory elements they govern are well understood. Here, using single- and double-null mutants, the constitutively synthesized ERF-VIIs RELATED TO APETALA2.2 (RAP2.2) and RAP2.12 are shown to act redundantly as principle activators of hypoxia-responsive genes; constitutively expressed RAP2.3 contributes to this redundancy, whereas the hypoxia-induced HYPOXIA RESPONSIVE ERF1 (HRE1) and HRE2 play minor roles. An evolutionarily conserved 12-bp cis-regulatory motif that binds to and is sufficient for activation by RAP2.2 and RAP2.12 is identified through a comparative phylogenetic motif search, promoter dissection, yeast one-hybrid assays, and chromatin immunopurification. This motif, designated the hypoxia-responsive promoter element, is enriched in promoters of hypoxia-responsive genes in multiple species.
Collapse
Affiliation(s)
- Philipp Gasch
- Plant Physiology, University Bayreuth, 95440 Bayreuth, Germany
| | | | - Jana T Müller
- Plant Physiology, University Bayreuth, 95440 Bayreuth, Germany
| | - Travis Lee
- Center for Plant Cell Biology and Botany and Plant Sciences Department, University of California, Riverside, California 92521
| | - Julia Bailey-Serres
- Center for Plant Cell Biology and Botany and Plant Sciences Department, University of California, Riverside, California 92521
| | | |
Collapse
|
433
|
Raines T, Shanks C, Cheng CY, McPherson D, Argueso CT, Kim HJ, Franco-Zorrilla JM, López-Vidriero I, Solano R, Vaňková R, Schaller GE, Kieber JJ. The cytokinin response factors modulate root and shoot growth and promote leaf senescence in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:134-47. [PMID: 26662515 DOI: 10.1111/tpj.13097] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/13/2015] [Accepted: 11/24/2015] [Indexed: 05/23/2023]
Abstract
The cytokinin response factors (CRFs) are a group of related AP2/ERF transcription factors that are transcriptionally induced by cytokinin. Here we explore the role of the CRFs in Arabidopsis thaliana growth and development by analyzing lines with decreased and increased CRF function. While single crf mutations have no appreciable phenotypes, disruption of multiple CRFs results in larger rosettes, delayed leaf senescence, a smaller root apical meristem (RAM), reduced primary and lateral root growth, and, in etiolated seedlings, shorter hypocotyls. In contrast, overexpression of CRFs generally results in the opposite phenotypes. The crf1,2,5,6 quadruple mutant is embryo lethal, indicating that CRF function is essential for embryo development. Disruption of the CRFs results in partially insensitivity to cytokinin in a root elongation assay and affects the basal expression of a significant number of cytokinin-regulated genes, including the type-A ARRs, although it does not impair the cytokinin induction of the type-A ARRs. Genes encoding homeobox transcription factors are mis-expressed in the crf1,3,5,6 mutant, including STIMPY/WOX9 that is required for root and shoot apical meristem maintenance roots and which has previously been linked to cytokinin. These results indicate that the CRF transcription factors play important roles in multiple aspects of plant growth and development, in part through a complex interaction with cytokinin signaling.
Collapse
Affiliation(s)
- Tracy Raines
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Carly Shanks
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Chia-Yi Cheng
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Duncan McPherson
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Cristiana T Argueso
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Hyo J Kim
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - José M Franco-Zorrilla
- Unidad de Genómica and Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049, Madrid, Spain
| | - Irene López-Vidriero
- Unidad de Genómica and Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049, Madrid, Spain
| | - Roberto Solano
- Unidad de Genómica and Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049, Madrid, Spain
| | - Radomíra Vaňková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojová 263, 165 02, Prague, Czech Republic
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
434
|
FootprintDB: Analysis of Plant Cis-Regulatory Elements, Transcription Factors, and Binding Interfaces. Methods Mol Biol 2016; 1482:259-77. [PMID: 27557773 DOI: 10.1007/978-1-4939-6396-6_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
FootprintDB is a database and search engine that compiles regulatory sequences from open access libraries of curated DNA cis-elements and motifs, and their associated transcription factors (TFs). It systematically annotates the binding interfaces of the TFs by exploiting protein-DNA complexes deposited in the Protein Data Bank. Each entry in footprintDB is thus a DNA motif linked to the protein sequence of the TF(s) known to recognize it, and in most cases, the set of predicted interface residues involved in specific recognition. This chapter explains step-by-step how to search for DNA motifs and protein sequences in footprintDB and how to focus the search to a particular organism. Two real-world examples are shown where this software was used to analyze transcriptional regulation in plants. Results are described with the aim of guiding users on their interpretation, and special attention is given to the choices users might face when performing similar analyses.
Collapse
|
435
|
Schwarz EM, Roeder AHK. Transcriptomic Effects of the Cell Cycle Regulator LGO in Arabidopsis Sepals. FRONTIERS IN PLANT SCIENCE 2016; 7:1744. [PMID: 27920789 PMCID: PMC5118908 DOI: 10.3389/fpls.2016.01744] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 11/04/2016] [Indexed: 05/03/2023]
Abstract
Endoreduplication is a specialized cell cycle in which DNA replication occurs, but mitosis is skipped creating enlarged polyploid cells. Endoreduplication is associated with the differentiation of many specialized cell types. In the Arabidopsis thaliana sepal epidermis endoreduplicated giant cells form interspersed between smaller cells. Both the transcription factor Arabidopsis thaliana MERISTEM LAYER1 (ATML1) and the plant-specific cyclin dependent kinase inhibitor LOSS OF GIANT CELLS FROM ORGANS (LGO)/SIAMESE RELATED1 (SMR1) are required for the formation of giant cells. Overexpression of LGO is sufficient to produce sepals covered in highly endoreduplicated giant cells. Here we ask whether overexpression of LGO changes the transcriptome of these mature sepals. We show that overexpression of LGO in the epidermis (LGOoe) drives giant cell formation even in atml1 mutant sepals. Using RNA-seq we show that LGOoe has significant effects on the mature sepal transcriptome that are primarily ATML1-independent changes of gene activity. Genes activated by LGOoe, directly or indirectly, predominantly encode proteins involved in defense responses, including responses to wounding, insects (a predator of Arabidopsis), and fungus. They also encode components of the glucosinolate biosynthesis pathway, a key biochemical pathway in defense against herbivores. LGOoe-activated genes include previously known marker genes of systemic acquired resistance such as PR1 through PR5. The defensive functions promoted by LGOoe in sepals overlap with functions recently shown to be transcriptionally activated by hyperimmune cpr5 mutants in a LGO-dependent manner. Our findings show that the cell cycle regulator LGO can directly or indirectly drive specific states of gene expression; in particular, they are consistent with recent findings showing LGO to be necessary for transcriptional activation of many defense genes in Arabidopsis.
Collapse
Affiliation(s)
- Erich M. Schwarz
- Department of Molecular Biology and Genetics, Cornell University, IthacaNY, USA
| | - Adrienne H. K. Roeder
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, IthacaNY, USA
- *Correspondence: Adrienne H. K. Roeder,
| |
Collapse
|
436
|
Thévenin J, Xu W, Vaisman L, Lepiniec L, Dubreucq B, Dubos C. The Physcomitrella patens System for Transient Gene Expression Assays. Methods Mol Biol 2016; 1482:151-61. [PMID: 27557766 DOI: 10.1007/978-1-4939-6396-6_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transient expression assays are valuable techniques to study in vivo the transcriptional regulation of gene expression. These methods allow to assess the transcriptional properties of a given transcription factor (TF) or a complex of regulatory proteins against specific DNA motifs, called cis-regulatory elements. Here, we describe a fast, efficient, and reliable method based on the use of Physcomitrella patens protoplasts that allows the study of gene expression in a qualitative and quantitative manner by combining the advantage of GFP (green fluorescent protein) as a marker of promoter activity with flow cytometry for accurate measurement of fluorescence in individual cells.
Collapse
Affiliation(s)
- Johanne Thévenin
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France.,AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France
| | - Wenjia Xu
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France.,AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France
| | - Louise Vaisman
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France.,AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France
| | - Loïc Lepiniec
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France.,AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France
| | - Bertrand Dubreucq
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France.,AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France
| | - Christian Dubos
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France. .,AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France. .,Biochimie et Physiologie Moleculaire des Plantes, UMR 5004, INRA/CNRS/SupAgro-M/UM2, 34060, Montpellier Cedex 1, France. .,Unité de Biochimie et Physiologie Moléculaire des Plantes (B&PMP), 2 Place Pierre Viala, 34060, Montpellier Cedex 02, France.
| |
Collapse
|
437
|
|
438
|
Barah P, B N MN, Jayavelu ND, Sowdhamini R, Shameer K, Bones AM. Transcriptional regulatory networks in Arabidopsis thaliana during single and combined stresses. Nucleic Acids Res 2015; 44:3147-64. [PMID: 26681689 PMCID: PMC4838348 DOI: 10.1093/nar/gkv1463] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 11/28/2015] [Indexed: 11/25/2022] Open
Abstract
Differentially evolved responses to various stress conditions in plants are controlled by complex regulatory circuits of transcriptional activators, and repressors, such as transcription factors (TFs). To understand the general and condition-specific activities of the TFs and their regulatory relationships with the target genes (TGs), we have used a homogeneous stress gene expression dataset generated on ten natural ecotypes of the model plant Arabidopsis thaliana, during five single and six combined stress conditions. Knowledge-based profiles of binding sites for 25 stress-responsive TF families (187 TFs) were generated and tested for their enrichment in the regulatory regions of the associated TGs. Condition-dependent regulatory sub-networks have shed light on the differential utilization of the underlying network topology, by stress-specific regulators and multifunctional regulators. The multifunctional regulators maintain the core stress response processes while the transient regulators confer the specificity to certain conditions. Clustering patterns of transcription factor binding sites (TFBS) have reflected the combinatorial nature of transcriptional regulation, and suggested the putative role of the homotypic clusters of TFBS towards maintaining transcriptional robustness against cis-regulatory mutations to facilitate the preservation of stress response processes. The Gene Ontology enrichment analysis of the TGs reflected sequential regulation of stress response mechanisms in plants.
Collapse
Affiliation(s)
- Pankaj Barah
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Mahantesha Naika B N
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bangalore 560 065, India
| | - Naresh Doni Jayavelu
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bangalore 560 065, India
| | - Khader Shameer
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bangalore 560 065, India
| | - Atle M Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| |
Collapse
|
439
|
Xu E, Vaahtera L, Brosché M. Roles of Defense Hormones in the Regulation of Ozone-Induced Changes in Gene Expression and Cell Death. MOLECULAR PLANT 2015; 8:1776-94. [PMID: 26348016 DOI: 10.1016/j.molp.2015.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/07/2015] [Accepted: 08/18/2015] [Indexed: 05/24/2023]
Abstract
Apoplast, the diffusional space between plant cell plasma membranes, is an important medium for signaling within and between the cells. Apoplastic reactive oxygen species (ROS) are crucial signaling molecules in various biological processes. ROS signaling is interconnected with the response to several hormones, including jasmonic acid (JA), salicylic acid (SA) and ethylene. Using ozone (O3) to activate apoplastic ROS signaling, we performed global and targeted analysis of transcriptional changes and cell death assays to dissect the contribution of hormone signaling and various transcription factors (TFs) in the regulation of gene expression and cell death. The contributions of SA, JA, and ethylene were assessed through analysis of single, double, and triple mutants deficient in biosynthesis or signaling for all three hormones. Even in the triple mutant, the global gene expression responses to O3 were mostly similar to the wild-type. Cell death in the JA receptor mutant coi1-16 was suppressed by impairment of the NADPH oxidase RBOHF, suggesting a role for a ROS signal in limiting the spread of cell death. In response to apoplastic ROS, there is not a single signaling pathway that regulates gene expression or cell death. Instead, several pathways regulate the apoplastic ROS response via combinatorial or overlapping mechanisms.
Collapse
Affiliation(s)
- Enjun Xu
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, PO Box 65 Viikinkaari 1, 00014 Helsinki, Finland
| | - Lauri Vaahtera
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, PO Box 65 Viikinkaari 1, 00014 Helsinki, Finland
| | - Mikael Brosché
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, PO Box 65 Viikinkaari 1, 00014 Helsinki, Finland; Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia.
| |
Collapse
|
440
|
Ming R, VanBuren R, Wai CM, Tang H, Schatz MC, Bowers JE, Lyons E, Wang ML, Chen J, Biggers E, Zhang J, Huang L, Zhang L, Miao W, Zhang J, Ye Z, Miao C, Lin Z, Wang H, Zhou H, Yim WC, Priest HD, Zheng C, Woodhouse M, Edger PP, Guyot R, Guo HB, Guo H, Zheng G, Singh R, Sharma A, Min X, Zheng Y, Lee H, Gurtowski J, Sedlazeck FJ, Harkess A, McKain MR, Liao Z, Fang J, Liu J, Zhang X, Zhang Q, Hu W, Qin Y, Wang K, Chen LY, Shirley N, Lin YR, Liu LY, Hernandez AG, Wright CL, Bulone V, Tuskan GA, Heath K, Zee F, Moore PH, Sunkar R, Leebens-Mack JH, Mockler T, Bennetzen JL, Freeling M, Sankoff D, Paterson AH, Zhu X, Yang X, Smith JAC, Cushman JC, Paull RE, Yu Q. The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 2015; 47:1435-42. [PMID: 26523774 PMCID: PMC4867222 DOI: 10.1038/ng.3435] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022]
Abstract
Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit. We sequenced the genomes of pineapple varieties F153 and MD2 and a wild pineapple relative, Ananas bracteatus accession CB5. The pineapple genome has one fewer ancient whole-genome duplication event than sequenced grass genomes and a conserved karyotype with seven chromosomes from before the ρ duplication event. The pineapple lineage has transitioned from C3 photosynthesis to CAM, with CAM-related genes exhibiting a diel expression pattern in photosynthetic tissues. CAM pathway genes were enriched with cis-regulatory elements associated with the regulation of circadian clock genes, providing the first cis-regulatory link between CAM and circadian clock regulation. Pineapple CAM photosynthesis evolved by the reconfiguration of pathways in C3 plants, through the regulatory neofunctionalization of preexisting genes and not through the acquisition of neofunctionalized genes via whole-genome or tandem gene duplication.
Collapse
Affiliation(s)
- Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Robert VanBuren
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Ching Man Wai
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Haibao Tang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- iPlant Collaborative/University of Arizona, Tuscon, AZ 85719, USA
| | | | - John E. Bowers
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Eric Lyons
- iPlant Collaborative/University of Arizona, Tuscon, AZ 85719, USA
| | - Ming-Li Wang
- Hawaii Agriculture Research Center, Kunia, HI 96759, USA
| | - Jung Chen
- Department of Tropical Plant and Soil Sciences, University of Hawaii, Honolulu, HI 96822, USA
| | - Eric Biggers
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724, USA
| | - Jisen Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lixian Huang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lingmao Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wenjing Miao
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jian Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhangyao Ye
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Chenyong Miao
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhicong Lin
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Hao Wang
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Hongye Zhou
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Won C. Yim
- Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV 89557-0330, USA
| | | | - Chunfang Zheng
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada K1N 6N5
| | - Margaret Woodhouse
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Patrick P. Edger
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Romain Guyot
- IRD, UMR DIADE, EVODYN, BP 64501, 34394 Montpellier Cedex 5, France
| | - Hao-Bo Guo
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Hong Guo
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Guangyong Zheng
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ratnesh Singh
- Texas A&M AgriLife Research, Department of Plant Pathology & Microbiology, Texas A&M University System, Dallas, TX 75252, USA
| | - Anupma Sharma
- Texas A&M AgriLife Research, Department of Plant Pathology & Microbiology, Texas A&M University System, Dallas, TX 75252, USA
| | - Xiangjia Min
- Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555, USA
| | - Yun Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Hayan Lee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724, USA
| | - James Gurtowski
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724, USA
| | | | - Alex Harkess
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | - Zhenyang Liao
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jingping Fang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Juan Liu
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaodan Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Qing Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Weichang Hu
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yuan Qin
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Kai Wang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Li-Yu Chen
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Neil Shirley
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus Urrbrae, South Australia 5064, Australia
| | - Yann-Rong Lin
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan
| | - Li-Yu Liu
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan
| | - Alvaro G. Hernandez
- W.M. Keck Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chris L. Wright
- W.M. Keck Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Vincent Bulone
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus Urrbrae, South Australia 5064, Australia
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Katy Heath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Francis Zee
- USDA-ARS, Pacific Basin Agricultural Research Center, Hilo, HI 96720, USA
| | - Paul H. Moore
- Hawaii Agriculture Research Center, Kunia, HI 96759, USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, 246 Noble Research Center, Oklahoma State University, Stillwater, OK 74078, USA
| | | | - Todd Mockler
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | - Michael Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada K1N 6N5
| | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Xinguang Zhu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - J. Andrew C. Smith
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - John C. Cushman
- Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV 89557-0330, USA
| | - Robert E. Paull
- Department of Tropical Plant and Soil Sciences, University of Hawaii, Honolulu, HI 96822, USA
| | - Qingyi Yu
- Texas A&M AgriLife Research, Department of Plant Pathology & Microbiology, Texas A&M University System, Dallas, TX 75252, USA
| |
Collapse
|
441
|
Husbands AY, Benkovics AH, Nogueira FTS, Lodha M, Timmermans MCP. The ASYMMETRIC LEAVES Complex Employs Multiple Modes of Regulation to Affect Adaxial-Abaxial Patterning and Leaf Complexity. THE PLANT CELL 2015; 27:3321-35. [PMID: 26589551 PMCID: PMC4707451 DOI: 10.1105/tpc.15.00454] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/16/2015] [Accepted: 11/02/2015] [Indexed: 05/22/2023]
Abstract
Flattened leaf architecture is not a default state but depends on positional information to precisely coordinate patterns of cell division in the growing primordium. This information is provided, in part, by the boundary between the adaxial (top) and abaxial (bottom) domains of the leaf, which are specified via an intricate gene regulatory network whose precise circuitry remains poorly defined. Here, we examined the contribution of the ASYMMETRIC LEAVES (AS) pathway to adaxial-abaxial patterning in Arabidopsis thaliana and demonstrate that AS1-AS2 affects this process via multiple, distinct regulatory mechanisms. AS1-AS2 uses Polycomb-dependent and -independent mechanisms to directly repress the abaxial determinants MIR166A, YABBY5, and AUXIN RESPONSE FACTOR3 (ARF3), as well as a nonrepressive mechanism in the regulation of the adaxial determinant TAS3A. These regulatory interactions, together with data from prior studies, lead to a model in which the sequential polarization of determinants, including AS1-AS2, explains the establishment and maintenance of adaxial-abaxial leaf polarity. Moreover, our analyses show that the shared repression of ARF3 by the AS and trans-acting small interfering RNA (ta-siRNA) pathways intersects with additional AS1-AS2 targets to affect multiple nodes in leaf development, impacting polarity as well as leaf complexity. These data illustrate the surprisingly multifaceted contribution of AS1-AS2 to leaf development showing that, in conjunction with the ta-siRNA pathway, AS1-AS2 keeps the Arabidopsis leaf both flat and simple.
Collapse
Affiliation(s)
- Aman Y Husbands
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Anna H Benkovics
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | | | - Mukesh Lodha
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Marja C P Timmermans
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Center for Plant Molecular Biology, University of Tübingen, 72076 Tuebingen, Germany
| |
Collapse
|
442
|
King GJ. Crop epigenetics and the molecular hardware of genotype × environment interactions. FRONTIERS IN PLANT SCIENCE 2015; 6:968. [PMID: 26594221 PMCID: PMC4635209 DOI: 10.3389/fpls.2015.00968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/22/2015] [Indexed: 05/04/2023]
Abstract
Crop plants encounter thermal environments which fluctuate on a diurnal and seasonal basis. Future climate resilient cultivars will need to respond to thermal profiles reflecting more variable conditions, and harness plasticity that involves regulation of epigenetic processes and complex genomic regulatory networks. Compartmentalization within plant cells insulates the genomic central processing unit within the interphase nucleus. This review addresses the properties of the chromatin hardware in which the genome is embedded, focusing on the biophysical and thermodynamic properties of DNA, histones and nucleosomes. It explores the consequences of thermal and ionic variation on the biophysical behavior of epigenetic marks such as DNA cytosine methylation (5mC), and histone variants such as H2A.Z, and how these contribute to maintenance of chromatin integrity in the nucleus, while enabling specific subsets of genes to be regulated. Information is drawn from theoretical molecular in vitro studies as well as model and crop plants and incorporates recent insights into the role epigenetic processes play in mediating between environmental signals and genomic regulation. A preliminary speculative framework is outlined, based on the evidence of what appears to be a cohesive set of interactions at molecular, biophysical and electrostatic level between the various components contributing to chromatin conformation and dynamics. It proposes that within plant nuclei, general and localized ionic homeostasis plays an important role in maintaining chromatin conformation, whilst maintaining complex genomic regulation that involves specific patterns of epigenetic marks. More generally, reversible changes in DNA methylation appear to be consistent with the ability of nuclear chromatin to manage variation in external ionic and temperature environment. Whilst tentative, this framework provides scope to develop experimental approaches to understand in greater detail the internal environment of plant nuclei. It is hoped that this will generate a deeper understanding of the molecular mechanisms underlying genotype × environment interactions that may be beneficial for long-term improvement of crop performance in less predictable climates.
Collapse
Affiliation(s)
- Graham J. King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Crops for the Future, Biotechnology and Breeding Systems, Semenyih, Malaysia
| |
Collapse
|
443
|
Mathelier A, Fornes O, Arenillas DJ, Chen CY, Denay G, Lee J, Shi W, Shyr C, Tan G, Worsley-Hunt R, Zhang AW, Parcy F, Lenhard B, Sandelin A, Wasserman WW. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 2015; 44:D110-5. [PMID: 26531826 PMCID: PMC4702842 DOI: 10.1093/nar/gkv1176] [Citation(s) in RCA: 746] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/22/2015] [Indexed: 11/28/2022] Open
Abstract
JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release.
Collapse
Affiliation(s)
- Anthony Mathelier
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, BC, Canada
| | - Oriol Fornes
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, BC, Canada
| | - David J Arenillas
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, BC, Canada
| | - Chih-Yu Chen
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, BC, Canada
| | - Grégoire Denay
- Laboratoire Physiologie Cellulaire & Végétale, Université Grenoble Alpes, CNRS, CEA, iRTSV, INRA, 38054 Grenoble, France
| | - Jessica Lee
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, BC, Canada
| | - Wenqiang Shi
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, BC, Canada
| | - Casper Shyr
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, BC, Canada
| | - Ge Tan
- Computational Regulatory Genomics, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Rebecca Worsley-Hunt
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, BC, Canada
| | - Allen W Zhang
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, BC, Canada
| | - François Parcy
- Laboratoire Physiologie Cellulaire & Végétale, Université Grenoble Alpes, CNRS, CEA, iRTSV, INRA, 38054 Grenoble, France
| | - Boris Lenhard
- Computational Regulatory Genomics, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology and Biotech Research and Innovation Centre, Copenhagen University, Ole Maaloes Vej 5, DK-2200, Denmark
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, BC, Canada
| |
Collapse
|
444
|
Boter M, Golz JF, Giménez-Ibañez S, Fernandez-Barbero G, Franco-Zorrilla JM, Solano R. FILAMENTOUS FLOWER Is a Direct Target of JAZ3 and Modulates Responses to Jasmonate. THE PLANT CELL 2015; 27:3160-74. [PMID: 26530088 PMCID: PMC4682293 DOI: 10.1105/tpc.15.00220] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/28/2015] [Accepted: 10/15/2015] [Indexed: 05/21/2023]
Abstract
The plant hormone jasmonate (JA) plays an important role in regulating growth, development, and immunity. Activation of the JA-signaling pathway is based on the hormone-triggered ubiquitination and removal of transcriptional repressors (JASMONATE-ZIM DOMAIN [JAZ] proteins) by an SCF receptor complex (SCF(COI1)/JAZ). This removal allows the rapid activation of transcription factors (TFs) triggering a multitude of downstream responses. Identification of TFs bound by the JAZ proteins is essential to better understand how the JA-signaling pathway modulates and integrates different responses. In this study, we found that the JAZ3 repressor physically interacts with the YABBY (YAB) family transcription factor FILAMENTOUS FLOWER (FIL)/YAB1. In Arabidopsis thaliana, FIL regulates developmental processes such as axial patterning and growth of lateral organs, shoot apical meristem activity, and inflorescence phyllotaxy. Phenotypic analysis of JA-regulated responses in loss- and gain-of-function FIL lines suggested that YABs function as transcriptional activators of JA-triggered responses. Moreover, we show that MYB75, a component of the WD-repeat/bHLH/MYB complex regulating anthocyanin production, is a direct transcriptional target of FIL. We propose that JAZ3 interacts with YABs to attenuate their transcriptional function. Upon perception of JA signal, degradation of JAZ3 by the SCF(COI1) complex releases YABs to activate a subset of JA-regulated genes in leaves leading to anthocyanin accumulation, chlorophyll loss, and reduced bacterial defense.
Collapse
Affiliation(s)
- Marta Boter
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - John F Golz
- School of BioSciences, University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Selena Giménez-Ibañez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Gemma Fernandez-Barbero
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Roberto Solano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| |
Collapse
|
445
|
Zhang Y, Butelli E, Alseekh S, Tohge T, Rallapalli G, Luo J, Kawar PG, Hill L, Santino A, Fernie AR, Martin C. Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nat Commun 2015; 6:8635. [PMID: 26497596 PMCID: PMC4639801 DOI: 10.1038/ncomms9635] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/14/2015] [Indexed: 02/06/2023] Open
Abstract
Phenylpropanoids comprise an important class of plant secondary metabolites. A number of transcription factors have been used to upregulate-specific branches of phenylpropanoid metabolism, but by far the most effective has been the fruit-specific expression of AtMYB12 in tomato, which resulted in as much as 10% of fruit dry weight accumulating as flavonols and hydroxycinnamates. We show that AtMYB12 not only increases the demand of flavonoid biosynthesis but also increases the supply of carbon from primary metabolism, energy and reducing power, which may fuel the shikimate and phenylalanine biosynthetic pathways to supply more aromatic amino acids for secondary metabolism. AtMYB12 directly binds promoters of genes encoding enzymes of primary metabolism. The enhanced supply of precursors, energy and reducing power achieved by AtMYB12 expression can be harnessed to engineer high levels of novel phenylpropanoids in tomato fruit, offering an effective production system for bioactives and other high value ingredients. Metabolic engineering offers an effective strategy for producing valuable bioactive compounds in plants. Here, the authors show that by harnessing transcriptional regulation of carbon flux, tomato fruit metabolism can be optimized for the production of phenylpropanoids.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Eugenio Butelli
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | | | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070 Wuhan, China
| | - Prashant G Kawar
- Division of Crop Improvement, Indian Council of Agricultural Research - Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India
| | - Lionel Hill
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Angelo Santino
- Institute of Sciences of Food Production C.N.R. Unit of Lecce, Via Monteroni, 73100 Lecce, Italy
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Cathie Martin
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
446
|
Sornaraj P, Luang S, Lopato S, Hrmova M. Basic leucine zipper (bZIP) transcription factors involved in abiotic stresses: A molecular model of a wheat bZIP factor and implications of its structure in function. Biochim Biophys Acta Gen Subj 2015; 1860:46-56. [PMID: 26493723 DOI: 10.1016/j.bbagen.2015.10.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/19/2015] [Accepted: 10/16/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Basic leucine zipper (bZIP) genes encode transcription factors (TFs) that control important biochemical and physiological processes in plants and all other eukaryotic organisms. SCOPE OF REVIEW Here we present (i) the homo-dimeric structural model of bZIP consisting of basic leucine zipper and DNA binding regions, in complex with the synthetic Abscisic Acid-Responsive Element (ABREsyn); (ii) discuss homo- and hetero-dimerisation patterns of bZIP TFs; (iii) summarise the current progress in understanding the molecular mechanisms of function of bZIP TFs, including features determining the specificity of their binding to DNA cis-elements, and (iv) review information on interaction partners of bZIPs during plant development and stress response, as well as on types and roles of post-translational modifications, and regulatory aspects of protein-degradation mediated turn-over. Finally, we (v) recapitulate on the recent advances regarding functional roles of bZIP factors in major agricultural crops, and discuss the potential significance of bZIP-based genetic engineering in improving crop yield and tolerance to abiotic stresses. MAJOR CONCLUSIONS An accurate analysis and understanding of roles of plant bZIP TFs in different biological processes requires the knowledge of interacting partners, time and location of expression in plant organs, and the information on mechanisms of homo- and hetero-dimerisation of bZIP TFs. GENERAL SIGNIFICANCE Studies on molecular mechanisms of plant bZIP TFs at the atomic levels will provide novel insights into the regulatory processes during plant development, and responses to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Pradeep Sornaraj
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Sukanya Luang
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Sergiy Lopato
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Maria Hrmova
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|
447
|
Analysis of the DNA-Binding Activities of the Arabidopsis R2R3-MYB Transcription Factor Family by One-Hybrid Experiments in Yeast. PLoS One 2015; 10:e0141044. [PMID: 26484765 PMCID: PMC4613820 DOI: 10.1371/journal.pone.0141044] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/02/2015] [Indexed: 12/20/2022] Open
Abstract
The control of growth and development of all living organisms is a complex and dynamic process that requires the harmonious expression of numerous genes. Gene expression is mainly controlled by the activity of sequence-specific DNA binding proteins called transcription factors (TFs). Amongst the various classes of eukaryotic TFs, the MYB superfamily is one of the largest and most diverse, and it has considerably expanded in the plant kingdom. R2R3-MYBs have been extensively studied over the last 15 years. However, DNA-binding specificity has been characterized for only a small subset of these proteins. Therefore, one of the remaining challenges is the exhaustive characterization of the DNA-binding specificity of all R2R3-MYB proteins. In this study, we have developed a library of Arabidopsis thaliana R2R3-MYB open reading frames, whose DNA-binding activities were assayed in vivo (yeast one-hybrid experiments) with a pool of selected cis-regulatory elements. Altogether 1904 interactions were assayed leading to the discovery of specific patterns of interactions between the various R2R3-MYB subgroups and their DNA target sequences and to the identification of key features that govern these interactions. The present work provides a comprehensive in vivo analysis of R2R3-MYB binding activities that should help in predicting new DNA motifs and identifying new putative target genes for each member of this very large family of TFs. In a broader perspective, the generated data will help to better understand how TF interact with their target DNA sequences.
Collapse
|
448
|
Chow CN, Zheng HQ, Wu NY, Chien CH, Huang HD, Lee TY, Chiang-Hsieh YF, Hou PF, Yang TY, Chang WC. PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res 2015; 44:D1154-60. [PMID: 26476450 PMCID: PMC4702776 DOI: 10.1093/nar/gkv1035] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/29/2015] [Indexed: 12/17/2022] Open
Abstract
Transcription factors (TFs) are sequence-specific DNA-binding proteins acting as critical regulators of gene expression. The Plant Promoter Analysis Navigator (PlantPAN; http://PlantPAN2.itps.ncku.edu.tw) provides an informative resource for detecting transcription factor binding sites (TFBSs), corresponding TFs, and other important regulatory elements (CpG islands and tandem repeats) in a promoter or a set of plant promoters. Additionally, TFBSs, CpG islands, and tandem repeats in the conserve regions between similar gene promoters are also identified. The current PlantPAN release (version 2.0) contains 16 960 TFs and 1143 TF binding site matrices among 76 plant species. In addition to updating of the annotation information, adding experimentally verified TF matrices, and making improvements in the visualization of transcriptional regulatory networks, several new features and functions are incorporated. These features include: (i) comprehensive curation of TF information (response conditions, target genes, and sequence logos of binding motifs, etc.), (ii) co-expression profiles of TFs and their target genes under various conditions, (iii) protein-protein interactions among TFs and their co-factors, (iv) TF-target networks, and (v) downstream promoter elements. Furthermore, a dynamic transcriptional regulatory network under various conditions is provided in PlantPAN 2.0. The PlantPAN 2.0 is a systematic platform for plant promoter analysis and reconstructing transcriptional regulatory networks.
Collapse
Affiliation(s)
- Chi-Nga Chow
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Han-Qin Zheng
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Nai-Yun Wu
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Hung Chien
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsien-Da Huang
- Department of Biological Science and Technology, Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Tzong-Yi Lee
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li 320, Taiwan
| | - Yi-Fan Chiang-Hsieh
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Ping-Fu Hou
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan College of Biosciences and Biotechnology, Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Tien-Yi Yang
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Chi Chang
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
449
|
Windram O, Denby KJ. Modelling signaling networks underlying plant defence. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:165-71. [PMID: 26295907 DOI: 10.1016/j.pbi.2015.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/14/2015] [Accepted: 07/17/2015] [Indexed: 05/10/2023]
Abstract
Transcriptional reprogramming plays a significant role in governing plant responses to pathogens. The underlying regulatory networks are complex and dynamic, responding to numerous input signals. Most network modelling studies to date have used large-scale expression data sets from public repositories but defence network models with predictive ability have also been inferred from single time series data sets, and sophisticated biological insights generated from focused experiments containing multiple network perturbations. Using multiple network inference methods, or combining network inference with additional data, such as promoter motifs, can enhance the ability of the model to predict gene function or regulatory relationships. Network topology can highlight key signaling components and provides a systems level understanding of plant defence.
Collapse
Affiliation(s)
- Oliver Windram
- Department of Life Sciences, Imperial College London, Silwood Park SL5 7PY, UK
| | - Katherine J Denby
- School of Life Sciences and Warwick Systems Biology Centre, University of Warwick, CV4 7AL, UK.
| |
Collapse
|
450
|
Zhai Q, Zhang X, Wu F, Feng H, Deng L, Xu L, Zhang M, Wang Q, Li C. Transcriptional Mechanism of Jasmonate Receptor COI1-Mediated Delay of Flowering Time in Arabidopsis. THE PLANT CELL 2015; 27:2814-28. [PMID: 26410299 PMCID: PMC4682329 DOI: 10.1105/tpc.15.00619] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/09/2015] [Indexed: 05/03/2023]
Abstract
Flowering time of plants must be tightly regulated to maximize reproductive success. Plants have evolved sophisticated signaling network to coordinate the timing of flowering in response to their ever-changing environmental conditions. Besides being a key immune signal, the lipid-derived plant hormone jasmonate (JA) also regulates a wide range of developmental processes including flowering time. Here, we report that the CORONATINE INSENSITIVE1 (COI1)-dependent signaling pathway delays the flowering time of Arabidopsis thaliana by inhibiting the expression of the florigen gene FLOWERING LOCUS T (FT). We provide genetic and biochemical evidence that the APETALA2 transcription factors (TFs) TARGET OF EAT1 (TOE1) and TOE2 interact with a subset of JAZ (jasmonate-ZIM domain) proteins and repress the transcription of FT. Our results support a scenario that, when plants encounter stress conditions, bioactive JA promotes COI1-dependent degradation of JAZs. Degradation of the JAZ repressors liberates the transcriptional function of the TOEs to repress the expression of FT and thereby triggers the signaling cascades to delay flowering. Our study identified interacting pairs of TF and JAZ transcriptional regulators that underlie JA-mediated regulation of flowering, suggesting that JA signals are converted into specific context-dependent responses by matching pairs of TF and JAZ proteins.
Collapse
Affiliation(s)
- Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Fangming Wu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailong Feng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Xu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|