401
|
Abstract
Human placental development involves co-ordinated angiogenesis and trophoblast outgrowth that are compromised in intrauterine growth restriction. Adaptive angiogenesis in IUGR placental villi is a result of an imbalance in the orderly progression of the expression profile of vascular endothelial growth factor, placenta growth factor and angiopoietin during placental development. VEGF receptors and the angiopoietin receptor Tie-2 are expressed on trophoblast, and their activation leads to trophoblast proliferation, migration and production of nitric oxide. Thus, these vascular factors act as autocrine regulators of trophoblast behaviour in the development of the utero-/feto-placental circulation, an action independent of their well-established roles in vascular endothelium.
Collapse
Affiliation(s)
- A Ahmed
- Department of Reproductive and Vascular Biology, The Medical School, Birmingham, Edgbaston, B15 2TT, UK
| | | |
Collapse
|
402
|
Abstract
Signaling by vascular endothelial growth factors (VEGFs) through VEGF receptors (VEGFRs) plays important roles in vascular development and hematopoiesis. The authors analyzed the function of VEGF-C signaling through both VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis using a coculture of para-aortic splanchnopleural mesoderm (P-Sp) explants from mouse embryos with stromal cells (OP9). Vasculogenesis and angiogenesis were evaluated by the extent of vascular bed and network formation, respectively. Addition of VEGF-C to the P-Sp culture enhanced vascular bed formation and suppressed definitive hematopoiesis. Both vascular bed and network formations were completely suppressed by addition of soluble VEGFR-1–Fc competitor protein. Formation of vascular beds but not networks could be rescued by VEGF-C in the presence of the competitor, while both were rescued by VEGF-A. VEGFR-3–deficient embryos show the abnormal vasculature and severe anemia. Consistent with these in vivo findings, vascular bed formation in the P-Sp from the VEGFR-3–deficient embryos was enhanced to that in wild-type or heterozygous embryos, and hematopoiesis was severely suppressed. When VEGFR-3–Fc chimeric protein was added to trap endogenous VEGF-C in the P-Sp culture of the VEGFR-3–deficient embryos, vascular bed formation was suppressed and hematopoiesis was partially rescued. These results demonstrate that because VEGF-C signaling through VEGFR-2 works synergistically with VEGF-A, the binding of VEGF-C to VEGFR-3 consequently regulates VEGFR-2 signaling. In VEGFR-3–deficient embryos, an excess of VEGF-C signals through VEGFR-2 induced the disturbance of vasculogenesis and hematopoiesis during embryogenesis. This indicates that elaborated control through VEGFR-3 signaling is critical in vasculoangiogenesis and hematopoiesis.
Collapse
|
403
|
Abstract
Matrix metalloproteinases (MMP) are a family of structurally related proteinases most widely recognized for their ability to degrade extracellular matrix, although recent investigations have demonstrated other biologic functions for these enzymes. MMP are typically not constitutively expressed, but are regulated by: (1) cytokines, growth factors, and cell-cell and cell-matrix interactions that control gene expression; (2) activation of their proenzyme form; and (3) the presence of MMP inhibitors [tissue inhibitors of metalloproteinases, (TIMP)]. MMP have important roles in normal processes including development, wound healing, mammary gland, and uterine involution, but are also involved in angiogenesis, tumor growth, and metastasis. Angiogenesis, characteristically defined as the establishment of new vessels from pre-existing vasculature, is required for biologic processes such as wound healing and pathologic processes such as arthritis, tumor growth, and metastasis. Blocking of MMP activity has been studied for potential therapeutic efficacy in controlling such pathologic processes. Synthetic MMP inhibitors, most notably the hydroxymates, have been engineered for this purpose and are presently in clinical trial. These inhibitors may have broad versus specific MMP inhibitory activity. As increased non-matrix degrading capabilities of MMP are recognized, however, i.e., cytokine activation, processing of proteins to molecules of distinct biologic function, it becomes less clear whether the nonselective inhibition of MMP activity for all pathologic processes involving MMP is appropriate. This review focuses upon the contribution of MMP to the process of tumor invasion and angiogenesis, and discusses the design and use of MMP inhibitors as therapeutic agents in these processes.
Collapse
Affiliation(s)
- S L Raza
- Department of Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
404
|
Karkkainen MJ, Petrova TV. Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene 2000; 19:5598-605. [PMID: 11114740 DOI: 10.1038/sj.onc.1203855] [Citation(s) in RCA: 282] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
VEGFR-1 (Flt-1), VEGFR-2 (KDR) and VEGFR-3 (Flt4) are endothelial specific receptor tyrosine kinases, regulated by members of the vascular endothelial growth factor family. VEGFRs are indispensable for embryonic vascular development, and are involved in the regulation of many aspects of physiological and pathological angiogenesis. VEGF-C and VEGF-D, as ligands for VEGFR-3 are also capable of stimulating lymphangiogenesis and at least VEGF-C can enhance lymphatic metastasis. Recent studies have shown that missense mutations within the VEGFR-3 tyrosine kinase domain are associated with human hereditary lymphedema, suggesting an important role for this receptor in the development of the lymphatic vasculature.
Collapse
Affiliation(s)
- M J Karkkainen
- Molecular Cancer Biology Laboratory, and the Ludwig Institute for Cancer Research, Haartman Institute, University of Helsinki, 00014 Helsinki, Finland
| | | |
Collapse
|
405
|
Hiltunen MO, Laitinen M, Turunen MP, Jeltsch M, Hartikainen J, Rissanen TT, Laukkanen J, Niemi M, Kossila M, Häkkinen TP, Kivelä A, Enholm B, Mansukoski H, Turunen AM, Alitalo K, Ylä-Herttuala S. Intravascular adenovirus-mediated VEGF-C gene transfer reduces neointima formation in balloon-denuded rabbit aorta. Circulation 2000; 102:2262-8. [PMID: 11056103 DOI: 10.1161/01.cir.102.18.2262] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Gene transfer to the vessel wall may provide new possibilities for the treatment of vascular disorders, such as postangioplasty restenosis. In this study, we analyzed the effects of adenovirus-mediated vascular endothelial growth factor (VEGF)-C gene transfer on neointima formation after endothelial denudation in rabbits. For comparison, a second group was treated with VEGF-A adenovirus and a third group with lacZ adenovirus. Clinical-grade adenoviruses were used for the study. METHODS AND RESULTS Aortas of cholesterol-fed New Zealand White rabbits were balloon-denuded, and gene transfer was performed 3 days later. Animals were euthanized 2 and 4 weeks after the gene transfer, and intima/media ratio (I/M), histology, and cell proliferation were analyzed. Two weeks after the gene transfer, I/M in the lacZ-transfected control group was 0. 57+/-0.04. VEGF-C gene transfer reduced I/M to 0.38+/-0.02 (P:<0.05 versus lacZ group). I/M in VEGF-A-treated animals was 0.49+/-0.17 (P:=NS). The tendency that both VEGF groups had smaller I/M persisted at the 4-week time point, when the lacZ group had an I/M of 0.73+/-0.16, the VEGF-C group 0.44+/-0.14, and the VEGF-A group 0. 63+/-0.21 (P:=NS). Expression of VEGF receptors 1, 2, and 3 was detected in the vessel wall by immunocytochemistry and in situ hybridization. As an additional control, the effect of adenovirus on cell proliferation was analyzed by performing gene transfer to intact aorta without endothelial denudation. No differences were seen in smooth muscle cell proliferation or I/M between lacZ adenovirus and 0.9% saline-treated animals. CONCLUSIONS Adenovirus-mediated VEGF-C gene transfer may be useful for the treatment of postangioplasty restenosis and vessel wall thickening after vascular manipulations.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/metabolism
- Angioplasty, Balloon/adverse effects
- Animals
- Aortic Valve Stenosis/etiology
- Aortic Valve Stenosis/metabolism
- Aortic Valve Stenosis/prevention & control
- Cell Division/drug effects
- Cells, Cultured
- Endothelial Growth Factors/biosynthesis
- Endothelial Growth Factors/genetics
- Endothelial Growth Factors/pharmacology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Gene Transfer Techniques
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Proto-Oncogene Proteins/biosynthesis
- Rabbits
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptors, Cell Surface/biosynthesis
- Receptors, Growth Factor/biosynthesis
- Receptors, Vascular Endothelial Growth Factor
- Transfection
- Tunica Intima/drug effects
- Tunica Intima/metabolism
- Tunica Intima/pathology
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factor C
- Vascular Endothelial Growth Factor Receptor-1
- Vascular Endothelial Growth Factor Receptor-3
Collapse
Affiliation(s)
- M O Hiltunen
- A.I. Virtanen Institute, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
406
|
Cullen VC, Mackarel AJ, Hislip SJ, O'Connor CM, Keenan AK. Investigation of vascular endothelial growth factor effects on pulmonary endothelial monolayer permeability and neutrophil transmigration. GENERAL PHARMACOLOGY 2000; 35:149-57. [PMID: 11744237 DOI: 10.1016/s0306-3623(01)00102-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study sought to determine whether vascular endothelial growth factor (VEGF)-induced permeabilisation of pulmonary endothelium to macromolecules could be related to a permissive role for neutrophil-derived VEGF in neutrophil transmigration. Treatment of human pulmonary artery endothelial cell (HPAEC) monolayers with 1, 10 or 100 ng/ml VEGF for 15 min or 1, 10 ng/ml for 90 min significantly increased endothelial permeability to trypan blue-labelled albumin (TB-BSA). These increases were correlated with changes in the cellular distribution of F-actin, as visualised by rhodamine-phalloidin staining: increased stress fibre formation, cellular elongation and formation of intercellular gaps after 15 min; at 90 min, there was also evidence of microspike formation and extension of spindle processes from the cell surface. Treatment of human neutrophil suspensions with 200 nM phorbol myristyl acetate (PMA), n-formyl-methionyl leucylphenylalanine (fMLP, 10 nM), interleukin-8 (IL-8, 10 nM) (but not with leukotriene B(4) (LTB(4)) 100 nM), for 30 min caused significant extracellular release of neutrophil VEGF stores. A permissive role for neutrophil-derived VEGF in facilitating migration across HPAEC monolayers was assessed in experiments using a functional blocking antihuman VEGF antibody. In the presence of this antibody (10 microg/ml), neutrophil migration in response to fMLP (10 nM), IL-8 (10 nM) or LTB(4) (100 nM) was not significantly different to that in the absence of antibody. We conclude that neutrophil-derived VEGF does not play a functional role in facilitating neutrophil migration across pulmonary vascular endothelium, despite its ability to induce cytoskeletal changes and enhance endothelial macromolecular permeability.
Collapse
Affiliation(s)
- V C Cullen
- Department of Pharmacology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
407
|
ULGER HARUN, KARABULUT AHMETK, PRATTEN MARGARETK. The growth promoting effects of bFGF, PD-ECGF and VEGF on cultured postimplantation rat embryos deprived of serum fractions. J Anat 2000; 197 ( Pt 2):207-19. [PMID: 11005713 PMCID: PMC1468120 DOI: 10.1046/j.1469-7580.2000.19720207.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serum components in which embryos are cultured in vitro are very important for normal embryonic development. In this study, rat serum was fractionated using Macrosep filters to study the effect of a single growth factor. The fractionated serum, both that containing only material greater than 30 kDa molecular weight (> 30 kDa) and that from which material between 30 kDa and 50 kDa had been removed (< 30 kDa+ > 50 kDa), caused significant embryonic growth retardation. Addition of different concentrations of basic fibroblast growth factor (bFGF, 18 kDa), vascular endothelial growth factor (VEGF, 45 kDa) and platelet-derived endothelial growth factor (PD-ECGF, 45 kDa), to fractionated serum (bFGF to > 30 kDa serum and VEGF or PD-ECGF to < 30 kDa+ > 50 kDa serum) partially restored embryonic growth and development according to a morphological scoring system and protein assay. This restoration was clear by all criteria, as well as in yolk sac vascularisation and heart development. The growth promoting effects of all 3 factors were significant but did not reach the level seen in embryos grown in whole rat serum. The effect of these growth factors was also investigated on anembryonic yolk sac development using a concentration for which maximum whole embryonic growth was seen (128 ng/ml bFGF, 1.6 ng/ml VEGF and 4 ng/ml PD-ECGF), and significant anembryonic yolk sac development was found. These findings suggest that the angiogenic factors may have a growth promoting effect on total embryonic development and vascularisation.
Collapse
Affiliation(s)
- HARUN ULGER
- Department of Anatomy, University of Erciyes, Kayseri, Turkey
| | | | - MARGARET K.
PRATTEN
- Department of Human Anatomy and Cell Biology, Queen's Medical Centre, Nottingham, UK
- Correspondence to Dr Margaret Pratten, School of Biomedical Sciences (Anatomy), The Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK. Tel.: +44 115 9709 429; fax: +44 115 9709 259; e-mail:
| |
Collapse
|
408
|
Peng J, Zhang L, Drysdale L, Fong GH. The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci U S A 2000; 97:8386-91. [PMID: 10880563 PMCID: PMC26957 DOI: 10.1073/pnas.140087397] [Citation(s) in RCA: 340] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have studied the role of the basic helix-loop-helix-PAS transcription factor EPAS-1/hypoxia-inducible factor 2alpha in vascular development by gene targeting. In ICR/129 Sv outbred background, more than half of the mutants displayed varying degrees of vascular disorganization, typically in the yolk sac, and died in utero between embryonic day (E)9.5 and E13.5. In mutant embryos directly derived from EPAS-1(-/-) embryonic stem cells (hence in 129 Sv background), all embryos developed severe vascular defects both in the yolk sac and embryo proper and died between E9.5 and E12.5. Normal blood vessels were formed by vasculogenesis but they either fused improperly or failed to assemble into larger vessels later during development. Our results suggest that EPAS-1 plays an important role at postvasculogenesis stages and is required for the remodeling of the primary vascular network into a mature hierarchy pattern.
Collapse
Affiliation(s)
- J Peng
- Lawson Research Institute, St. Joseph's Health Center, Departments of Pediatrics and Biochemistry, University of Western Ontario, London, ON, Canada N6A 4V2
| | | | | | | |
Collapse
|
409
|
Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood 2000. [DOI: 10.1182/blood.v96.2.546.014k12_546_553] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays a major role in tumor angiogenesis. VEGF-C, however, is thought to stimulate the growth of lymphatic vessels because an expression of its specific receptor, VEGF receptor-3 (VEGFR-3), was demonstrated to be restricted to lymphatic vessels. Here we demonstrate that the inactivation of VEGFR-3 by a novel blocking monoclonal antibody (mAb) suppresses tumor growth by inhibiting the neo-angiogenesis of tumor-bearing tissues. Although VEGFR-3 is not expressed in adult blood vessels, it is induced in vascular endothelial cells of the tumor-bearing tissues. Hence, VEGFR-3 is another receptor tyrosine kinase involved in tumor-induced angiogenesis. Micro-hemorrhage in the tumor-bearing tissue was the most conspicuous histologic finding specific to AFL4 mAb-treated mice. Scanning microscopy demonstrated disruptions of the endothelial lining of the postcapillary venule, probably the cause of micro-hemorrhage and the subsequent collapse of the proximal vessels. These findings suggest the involvement of VEGFR-3 in maintaining the integrity of the endothelial lining during angiogenesis. Moreover, our results suggest that the VEGF-C/VEGFR-3 pathway may serve another candidate target for cancer therapy.
Collapse
|
410
|
Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood 2000. [DOI: 10.1182/blood.v96.2.546] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Vascular endothelial growth factor (VEGF) plays a major role in tumor angiogenesis. VEGF-C, however, is thought to stimulate the growth of lymphatic vessels because an expression of its specific receptor, VEGF receptor-3 (VEGFR-3), was demonstrated to be restricted to lymphatic vessels. Here we demonstrate that the inactivation of VEGFR-3 by a novel blocking monoclonal antibody (mAb) suppresses tumor growth by inhibiting the neo-angiogenesis of tumor-bearing tissues. Although VEGFR-3 is not expressed in adult blood vessels, it is induced in vascular endothelial cells of the tumor-bearing tissues. Hence, VEGFR-3 is another receptor tyrosine kinase involved in tumor-induced angiogenesis. Micro-hemorrhage in the tumor-bearing tissue was the most conspicuous histologic finding specific to AFL4 mAb-treated mice. Scanning microscopy demonstrated disruptions of the endothelial lining of the postcapillary venule, probably the cause of micro-hemorrhage and the subsequent collapse of the proximal vessels. These findings suggest the involvement of VEGFR-3 in maintaining the integrity of the endothelial lining during angiogenesis. Moreover, our results suggest that the VEGF-C/VEGFR-3 pathway may serve another candidate target for cancer therapy.
Collapse
|
411
|
Hamada T, Ui-Tei K, Miyata Y. A novel gene derived from developing spinal cords, SCDGF, is a unique member of the PDGF/VEGF family. FEBS Lett 2000; 475:97-102. [PMID: 10858496 DOI: 10.1016/s0014-5793(00)01640-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We isolated a novel gene designated spinal cord-derived growth factor (SCDGF). Its expression was increased in chick spinal cords with embryonic development and decreased after hatching. The amino acid sequences of chick and human SCDGFs revealed a putative signal sequence followed by a CUB domain and a region homologous to the members of the platelet-derived growth factor/vascular endothelial growth factor family. Furthermore, human SCDGF secreted from the cells showed a mitogenic activity for 10T1/2 cells in vitro. These results led us to speculate that SCDGF plays an important role in the development of the spinal cord.
Collapse
Affiliation(s)
- T Hamada
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan
| | | | | |
Collapse
|
412
|
Abstract
The growth of human tumors and development of metastases depend on the de novo formation of blood vessels. The formation of new blood vessels is tightly regulated by specific growth factors that target receptor tyrosine kinases (RTKs). Vascular endothelial growth factor (VEGF) and the Flk-1/KDR RTK have been implicated as the key endothelial cell-specific factor signaling pathway required for pathological angiogenesis, including tumor neovascularization. Inhibition of the VEGF tyrosine kinase signaling pathway blocks new blood vessel formation in growing tumors, leading to stasis or regression of tumor growth. Advances in understanding the biology of angiogenesis have led to the development of several therapeutic modalities for the inhibition of the VEGF tyrosine kinase signaling pathway. A number of these modalities are under investigation in clinical studies to evaluate their potential to treat human cancers.
Collapse
Affiliation(s)
- G McMahon
- SUGEN, Inc., South San Francisco, California 94080, USA.
| |
Collapse
|
413
|
Carmeliet P, Collen D. Molecular basis of angiogenesis. Role of VEGF and VE-cadherin. Ann N Y Acad Sci 2000; 902:249-62; discussion 262-4. [PMID: 10865845 DOI: 10.1111/j.1749-6632.2000.tb06320.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formation of new blood vessels (angiogenesis) is essential for embryonic development and contributes to the pathogenesis of numerous disorders. In contrast, insufficient angiogenesis may lead to tissue ischemia and failure. The recent discovery of novel angiogenic molecules has initiated efforts to improve tissue perfusion via therapeutic angiogenesis. However, rational design of such treatment strategies mandates a better understanding of the molecular mechanisms of angiogenesis. In this brief review, the role of a prime angiogenic candidate, namely vascular endothelial growth factor (VEGF) and its homologues, in physiological and pathological angiogenesis will be discussed with particular attention to myocardial ischemia and heart failure. In addition, a novel interaction between the junctional protein vascular endothelial-cadherin (VE-cadherin) and VEGF, essential for the endothelial survival function of VEGF, will be reviewed.
Collapse
MESH Headings
- Animals
- Antigens, CD
- Cadherins/physiology
- Endothelial Growth Factors/genetics
- Endothelial Growth Factors/physiology
- Endothelium, Vascular/physiology
- Endothelium, Vascular/physiopathology
- Heart Diseases/genetics
- Humans
- Lymphokines/genetics
- Lymphokines/physiology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/physiopathology
- Neovascularization, Physiologic/genetics
- Neovascularization, Physiologic/physiology
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/physiology
- Receptors, Vascular Endothelial Growth Factor
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factor Receptor-1
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- P Carmeliet
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity, Belgium.
| | | |
Collapse
|
414
|
Achen MG, Roufail S, Domagala T, Catimel B, Nice EC, Geleick DM, Murphy R, Scott AM, Caesar C, Makinen T, Alitalo K, Stacker SA. Monoclonal antibodies to vascular endothelial growth factor-D block its interactions with both VEGF receptor-2 and VEGF receptor-3. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2505-15. [PMID: 10785369 DOI: 10.1046/j.1432-1327.2000.01257.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vascular endothelial growth factor-D (VEGF-D), the most recently discovered mammalian member of the VEGF family, is an angiogenic protein that activates VEGF receptor-2 (VEGFR-2/Flk1/KDR) and VEGFR-3 (Flt4). These receptor tyrosine kinases, localized on vascular and lymphatic endothelial cells, signal for angiogenesis and lymphangiogenesis. VEGF-D consists of a central receptor-binding VEGF homology domain (VHD) and N-terminal and C-terminal propeptides that are cleaved from the VHD to generate a mature, bioactive form consisting of dimers of the VHD. Here we report characterization of mAbs raised to the VHD of human VEGF-D in order to generate VEGF-D antagonists. The mAbs bind the fully processed VHD with high affinity and also bind unprocessed VEGF-D. We demonstrate, using bioassays for the binding and cross-linking of VEGFR-2 and VEGFR-3 and biosensor analysis with immobilized receptors, that one of the mAbs, designated VD1, is able to compete potently with mature VEGF-D for binding to both VEGFR-2 and VEGFR-3 for binding to mature VEGF-D. This indicates that the binding epitopes on VEGF-D for these two receptors may be in close proximity. Furthermore, VD1 blocks the mitogenic response of human microvascular endothelial cells to VEGF-D. The anti-(VEGF-D) mAbs raised to the bioactive region of this growth factor will be powerful tools for analysis of the biological functions of VEGF-D.
Collapse
Affiliation(s)
- M G Achen
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
415
|
Hiltunen MO, Turunen MP, Laitinen M, Ylä-Herttuala S. Insights into the molecular pathogenesis of atherosclerosis and therapeutic strategies using gene transfer. Vasc Med 2000; 5:41-8. [PMID: 10737155 DOI: 10.1177/1358836x0000500107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Gene therapy for the treatment of atherosclerosis and related diseases has shown its potential in animal models and in the first human trials. Gene transfer to the vascular system can be performed both via intravascular and extravascular periadventitial routes. Intravascular gene transfer can be done with several types of catheters under fluoroscopic control. Extravascular gene transfer, on the other hand, provides a well-targeted gene delivery route available during vascular surgery. It can be done with direct injection or by using perivascular cuffs or surgical collagen sheets. Ex vivo gene delivery via transfected smooth muscle cells or endothelial cells might be useful for the production of secreted therapeutic compounds. Gene transfer to the liver has been used for the treatment of hyperlipidemia. The first clinical trials for the induction of therapeutic angiogenesis in ischemic myocardium or peripheral muscles with VEGF or FGF gene transfer are under way and preliminary results are promising. VEGF has also been used for the prevention of postangioplasty restenosis because of its capability to induce endothelial repair and production of NO and prostacyclin. However, further basic research is needed to fully understand the pathophysiological mechanisms involved in conditions related to atherosclerosis. Also, further development of gene transfer vectors and gene delivery techniques will improve the efficacy and safety of human gene therapy.
Collapse
Affiliation(s)
- M O Hiltunen
- AI Virtanen Institute, University of Kuopio, Finland
| | | | | | | |
Collapse
|
416
|
Zhou Z, Apte SS, Soininen R, Cao R, Baaklini GY, Rauser RW, Wang J, Cao Y, Tryggvason K. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci U S A 2000; 97:4052-7. [PMID: 10737763 PMCID: PMC18145 DOI: 10.1073/pnas.060037197] [Citation(s) in RCA: 602] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Membrane-type matrix metalloproteinase I (MT1-MMP)-deficient mice were found to have severe defects in skeletal development and angiogenesis. The craniofacial, axial, and appendicular skeletons were severely affected, leading to a short and domed skull, marked deceleration of postnatal growth, and death by 3 wk of age. Shortening of bones is a consequence of decreased chondrocyte proliferation in the proliferative zone of the growth plates. Defective vascular invasion of cartilage leads to enlargement of hypertrophic zones of growth plates and delayed formation of secondary ossification centers in long bones. In an in vivo corneal angiogenesis assay, null mice did not have angiogenic response to implanted FGF-2, suggesting that the defect in angiogenesis is not restricted to cartilage alone. In tissues from null mice, activation of latent matrix metalloproteinase 2 was deficient, suggesting that MT1-MMP is essential for its activation in vivo.
Collapse
Affiliation(s)
- Z Zhou
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
417
|
Feng D, Nagy JA, Brekken RA, Pettersson A, Manseau EJ, Pyne K, Mulligan R, Thorpe PE, Dvorak HF, Dvorak AM. Ultrastructural localization of the vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) receptor-2 (FLK-1, KDR) in normal mouse kidney and in the hyperpermeable vessels induced by VPF/VEGF-expressing tumors and adenoviral vectors. J Histochem Cytochem 2000; 48:545-56. [PMID: 10727296 DOI: 10.1177/002215540004800412] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) interacts with two high-affinity tyrosine kinase receptors, VEGFR-1 and VEGFR-2, to increase microvascular permeability and induce angiogenesis. Both receptors are selectively expressed by vascular endothelial cells and are strikingly increased in tumor vessels. We used a specific antibody to localize VEGFR-2 (FLK-1, KDR) in microvascular endothelium of normal mouse kidneys and in the microvessels induced by the TA3/St mammary tumor or by infection with an adenoviral vector engineered to express VPF/VEGF. A pre-embedding method was employed at the light and electron microscopic levels using either nanogold or peroxidase as reporters. Equivalent staining was observed on both the luminal and abluminal surfaces of tumor- and adenovirus-induced vascular endothelium, but plasma membranes at interendothelial junctions were spared except at sites connected to vesiculovacuolar organelles (VVOs). VEGFR-2 was also localized to the membranes and stomatal diaphragms of some VVOs. This staining distribution is consistent with a model in which VPF/VEGF increases microvascular permeability by opening VVOs to allow the transendothelial cell passage of plasma and plasma proteins.
Collapse
Affiliation(s)
- D Feng
- Departments of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
418
|
Desai A, Lankford HA, Warren JS. Loxosceles deserta spider venom induces the expression of vascular endothelial growth factor (VEGF) in keratinocytes. Inflammation 2000; 24:1-9. [PMID: 10704059 DOI: 10.1023/a:1006995023982] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Evenomation by arachnids of the genus Loxosceles frequently results in disfiguring necrotic skin lesions. The cellular and molecular mechanisms which contribute to lesion development are incompletely defined but appear to involve participation of several pro-inflammatory mediators. We have recently observed that Loxosceles deserta venom induces the production of chemokines in human umbilical vein endothelial cells (HUVECs) and human pulmonary epithelial cells. In the present study we observed that Loxosceles deserta venom induces the expression of vascular endothelial growth factor (VEGF) in human keratinocytes but little in smooth muscle cells and none in pulmonary epithelial cells. A potent endothelial cell-specific mitogen, VEGF induces angiogenesis and vascular permeability in vivo. RNase protection assay data indicate that VEGF mRNA concentrations in keratinocytes are significantly increased at 2 h following venom exposure. These data suggest that keratinocyte-derived VEGF may contribute to the vasodilation, edema and erythema which occur following Loxosceles evenomation.
Collapse
MESH Headings
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Cells, Cultured
- Endothelial Growth Factors/genetics
- Endothelial Growth Factors/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Humans
- Interleukin-1/pharmacology
- Keratinocytes/drug effects
- Keratinocytes/metabolism
- Lung/cytology
- Lung/drug effects
- Lung/metabolism
- Lymphokines/genetics
- Lymphokines/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphoric Diester Hydrolases/pharmacology
- RNA, Messenger/metabolism
- Recombinant Proteins/pharmacology
- Spider Venoms/pharmacology
- Tumor Necrosis Factor-alpha/pharmacology
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- A Desai
- Department of Pathology, University of Michigan Medical School, Ann Arbor 48109-0602, USA
| | | | | |
Collapse
|
419
|
Munshi N, Groopman JE, Gill PS, Ganju RK. c-Src mediates mitogenic signals and associates with cytoskeletal proteins upon vascular endothelial growth factor stimulation in Kaposi's sarcoma cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:1169-74. [PMID: 10640727 DOI: 10.4049/jimmunol.164.3.1169] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vascular endothelial growth factor (VEGF) appears to be a critical cytokine modulating the growth and spread of Kaposi's sarcoma (KS). Furthermore, infection with the KS herpes virus results in up-regulation of VEGF and triggering of VEGF receptor activation. The molecular mechanisms regulating such cytokine-driven proliferation of KS cells are not well characterized. We investigated the role of Src-related tyrosine kinases in VEGF-mediated signaling in model KS 38 tumor cells. VEGF stimulation specifically activated c-Src kinase activity but not that of other related Src kinases such as Lyn, Fyn, or Hck in KS cells. Pyrazolopyrimidine, a selective inhibitor of Src family tyrosine kinases, significantly blocked the VEGF-induced growth of KS cells. Further studies using mutants of c-Src kinase revealed that Src mediates mitogen-activated protein kinase activation induced by VEGF. We also observed that VEGF stimulation resulted in increased tyrosine phosphorylation of the focal adhesion components paxillin and p130cas. Furthermore, VEGF induction enhanced the complex formation between Src kinase and paxillin. Src kinase appears to play an important functional role in VEGF-induced signaling in KS cells and may act to link pathways from the VEGF receptor to mitogen-activated protein kinase and cytoskeletal components, thereby effecting tumor proliferation and migration.
Collapse
Affiliation(s)
- N Munshi
- Robert Mapplethorpe Laboratory, Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
420
|
Bunone G, Vigneri P, Mariani L, Butó S, Collini P, Pilotti S, Pierotti MA, Bongarzone I. Expression of angiogenesis stimulators and inhibitors in human thyroid tumors and correlation with clinical pathological features. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:1967-76. [PMID: 10595926 PMCID: PMC1866941 DOI: 10.1016/s0002-9440(10)65515-0] [Citation(s) in RCA: 315] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Experimental evidence has shown, both in vitro and in animal models, that neoplastic growth and subsequent metastasis formation depend on the tumor's ability to induce an angiogenic switch. This requires a change in the balance of angiogenic stimulators and inhibitors. To assess the potential role of angiogenesis factors in human thyroid tumor growth and spread, we analyzed their expression by semiquantitative RT-PCR and immunohistochemistry in normal thyroid tissues, benign lesions, and different thyroid carcinomas. Compared to normal tissues, in thyroid neoplasias we observed a consistent increase in vascular endothelial growth factor (VEGF), VEGF-C, and angiopoietin-2 and in their tyrosine kinase receptors KDR, Flt-4, and Tek. In particular, we report the overexpression of angiopoietin-2 and VEGF in thyroid tumor progression from a prevascular to a vascular phase. In fact, we found a strong association between tumor size and high levels of VEGF and angiopoietin-2. Furthermore, our results show an increased expression of VEGF-C in lymph node invasive thyroid tumors and, on the other hand, a decrease of thrombospondin-1, an angioinhibitory factor, in thyroid malignancies capable of hematic spread. These results suggest that, in human thyroid tumors, angiogenesis factors seem involved in neoplastic growth and aggressiveness. Moreover, our findings are in keeping with a recent hypothesis that in the presence of VEGF, angiopoietin-2 may collaborate at the front of invading vascular sprouts, serving as an initial angiogenic signal that accompanies tumor growth.
Collapse
Affiliation(s)
- G Bunone
- Division of Experimental Oncology, Istituto Nazionale Tumori, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
421
|
Abstract
Endothelial growth factors and their receptors may provide important therapeutic tools for the treatment of pathological conditions characterised by defective or aberrant angiogenesis. Vascular endothelial growth factor (VEGF) is pivotal for vasculogenesis and for angiogenesis in normal and pathological conditions. VEGF-B and VEGF-C provide this gene family with additional functions, for example, VEGF-C also regulates lymphangiogenesis.
Collapse
Affiliation(s)
- B Olofsson
- Ludwig Institute for Cancer Research, Box 240, Stockholm, SE-171 77, Sweden
| | | | | | | |
Collapse
|
422
|
Lymboussaki A, Olofsson B, Eriksson U, Alitalo K. Vascular endothelial growth factor (VEGF) and VEGF-C show overlapping binding sites in embryonic endothelia and distinct sites in differentiated adult endothelia. Circ Res 1999; 85:992-9. [PMID: 10571529 DOI: 10.1161/01.res.85.11.992] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a key modulator of angiogenesis during development and in adult tissues, whereas the related VEGF-C has been shown to induce both lymphangiogenesis and angiogenesis. To better understand the specific functions of these growth factors, we have here analyzed their binding to sections of mouse embryonic and adult tissues and compared the distribution of the bound growth factors with the expression patterns of the 3 known members of the VEGF receptor family as well as with neuropilin-1, a coreceptor for VEGF(165). Partially overlapping patterns of VEGF and VEGF-C binding were obtained in embryonic tissues, consistent with the expression of all known VEGF receptors by vascular endothelial cells. However, the most striking differences of binding were observed in the developing and adult heart, in which VEGF decorated all vessels, whereas strong VEGF-C signals were obtained only from epicardial vessels. In the lymph nodes, VEGF and VEGF-C showed distinct binding patterns in agreement with the differential location of their specific receptors. These results show that both VEGF-C and VEGF target embryonic blood vessels, whereas a more selective binding of VEGF-C occurs to its lymphatic vascular receptor in certain adult tissues. Our results suggest that VEGF and VEGF-C have both overlapping and distinct activities via their endothelial receptors.
Collapse
Affiliation(s)
- A Lymboussaki
- Molecular/Cancer Biology Laboratory, Haartman Institute, University of Helsinki, Finland
| | | | | | | |
Collapse
|
423
|
Abstract
Angiogenesis, or development of blood vessels from preexisting vasculature, has important functions under both normal and pathophysiological conditions. Vascular endothelial growth factor receptors 1-3, also known as flt-1, KDR, and flt-4, are endothelial cell-specific receptor tyrosine kinases which serve as key mediators of the angiogenic responses. The review focuses on the signaling pathways that are initiated from these receptors and the recently identified VEGF coreceptor neuroplilin-1.
Collapse
Affiliation(s)
- T V Petrova
- Molecular/Cancer Biology Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
424
|
Stacker SA, Stenvers K, Caesar C, Vitali A, Domagala T, Nice E, Roufail S, Simpson RJ, Moritz R, Karpanen T, Alitalo K, Achen MG. Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers. J Biol Chem 1999; 274:32127-36. [PMID: 10542248 DOI: 10.1074/jbc.274.45.32127] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial growth factor-D (VEGF-D) binds and activates the endothelial cell tyrosine kinase receptors VEGF receptor-2 (VEGFR-2) and VEGF receptor-3 (VEGFR-3), is mitogenic for endothelial cells, and shares structural homology and receptor specificity with VEGF-C. The primary translation product of VEGF-D has long N- and C-terminal polypeptide extensions in addition to a central VEGF homology domain (VHD). The VHD of VEGF-D is sufficient to bind and activate VEGFR-2 and VEGFR-3. Here we report that VEGF-D is proteolytically processed to release the VHD. Studies in 293EBNA cells demonstrated that VEGF-D undergoes N- and C-terminal cleavage events to produce numerous secreted polypeptides including a fully processed form of M(r) approximately 21,000 consisting only of the VHD, which is predominantly a non-covalent dimer. Biosensor analysis demonstrated that the VHD has approximately 290- and approximately 40-fold greater affinity for VEGFR-2 and VEGFR-3, respectively, compared with unprocessed VEGF-D. In situ hybridization demonstrated that embryonic lung is a major site of expression of the VEGF-D gene. Processed forms of VEGF-D were detected in embryonic lung indicating that VEGF-D is proteolytically processed in vivo.
Collapse
Affiliation(s)
- S A Stacker
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
425
|
Marchiò S, Primo L, Pagano M, Palestro G, Albini A, Veikkola T, Cascone I, Alitalo K, Bussolino F. Vascular endothelial growth factor-C stimulates the migration and proliferation of Kaposi's sarcoma cells. J Biol Chem 1999; 274:27617-22. [PMID: 10488101 DOI: 10.1074/jbc.274.39.27617] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent evidence suggesting vascular endothelial growth factor-C (VEGF-C), which is a regulator of lymphatic and vascular endothelial development, raised the question whether this molecule could be involved in Kaposi's sarcoma (KS), a strongly angiogenic and inflammatory tumor often associated with infection by human immunodeficiency virus-1. This disease is characterized by the presence of a core constituted of three main populations of "spindle" cells, having the features of lymphatic/vascular endothelial cells, macrophagic/dendritic cells, and of a mixed macrophage-endothelial phenotype. In this study we evaluated the biological response of KS cells to VEGF-C, using an immortal cell line derived from a KS lesion (KS IMM), which retains most features of the parental tumor and can induce KS-like sarcomas when injected subcutaneously in nude mice. We show that VEGFR-3, the specific receptor for VEGF-C, is expressed by KS IMM cells grown in vitro and in vivo. In vitro, VEGF-C induces the tyrosine phosphorylation of VEGFR-2, a receptor also for VEGF-A, as well as that of VEGFR-3. The activation of these two receptors in KS IMM cells is followed by a dose-responsive mitogenic and motogenic response. The stimulation of KS IMM cells with a mutant VEGF-C unable to bind and activate VEFGR-2 resulted in no proliferative response and in a weak motogenic stimulation, suggesting that VEGFR-2 is essential in transducing a proliferative signal and cooperates with VEGFR-3 in inducing cell migration. Our data add new insights on the pathogenesis of KS, suggesting that the involvement of endothelial growth factors may not only determine KS-associated angiogenesis, but also play a critical role in controlling KS cell growth and/or migration and invasion.
Collapse
MESH Headings
- Animals
- Cell Division/drug effects
- Cells, Cultured
- Chemotaxis/drug effects
- Endothelial Growth Factors/pharmacology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Humans
- Mice
- Mice, Nude
- Mutagenesis, Site-Directed
- Phosphorylation
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Recombinant Proteins/pharmacology
- Sarcoma, Kaposi/pathology
- Sarcoma, Kaposi/physiopathology
- Transplantation, Heterologous
- Tumor Cells, Cultured
- Tyrosine
- Umbilical Veins
- Vascular Endothelial Growth Factor C
- Vascular Endothelial Growth Factor Receptor-3
Collapse
Affiliation(s)
- S Marchiò
- Institute for Cancer Research and Treatment, Department of Genetics, University of Torino Medical School, 10060 Candiolo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
426
|
Abstract
The lack of specific markers has raised problems in documenting the precise manner by which the lymphatic system develops. Here we report that the homeobox gene Prox1 is expressed in a subpopulation of endothelial cells that by budding and sprouting give rise to the lymphatic system. The initial localization of these cells in the veins and their subsequent budding are both polarized, suggesting that unidentified guidance signals regulate this process. In Prox1 null mice, budding and sprouting is arrested, although vasculogenesis and angiogenesis of the vascular system is unaffected. These findings suggest that Prox1 is a specific and required regulator of the development of the lymphatic system and that the vascular and lymphatic systems develop independently.
Collapse
Affiliation(s)
- J T Wigle
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
427
|
Simpson DA, Murphy GM, Bhaduri T, Gardiner TA, Archer DB, Stitt AW. Expression of the VEGF gene family during retinal vaso-obliteration and hypoxia. Biochem Biophys Res Commun 1999; 262:333-40. [PMID: 10462475 DOI: 10.1006/bbrc.1999.1201] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular insufficiency and retinal ischaemia precede many proliferative retinopathies and stimulate secretion of vasoactive growth factors. Vascular endothelial growth factor (VEGF) plays a major role and we therefore investigated the other members of the VEGF family: Placental growth factor (PlGF), VEGF-B, -C, and -D, and platelet derived growth factors (PDGF) A and B. Neonatal mice were exposed to hyperoxia for 5 days and then returned to room air (resulting in acute retinal ischaemia). RT-PCR demonstrated that all the members of the VEGF family are expressed in the retina and in situ hybridization (ISH) located their mRNAs primarily in ganglion cells. Similarly to VEGF itself, VEGF-C, PDGF-A, and PDGF-B were upregulated during retinal ischaemia (P < 0.05). Only PlGF gene expression increased during hyperoxia (P < 0.01). The expression pattern of these growth factors suggests a role in the normal retina and during vaso-obliterative and ischaemic phases.
Collapse
Affiliation(s)
- D A Simpson
- Department of Ophthalmology, Queen's University of Belfast, Northern Ireland, United Kingdom
| | | | | | | | | | | |
Collapse
|
428
|
Marconcini L, Marchio S, Morbidelli L, Cartocci E, Albini A, Ziche M, Bussolino F, Oliviero S. c-fos-induced growth factor/vascular endothelial growth factor D induces angiogenesis in vivo and in vitro. Proc Natl Acad Sci U S A 1999; 96:9671-6. [PMID: 10449752 PMCID: PMC22268 DOI: 10.1073/pnas.96.17.9671] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
c-fos-induced growth factor/vascular endothelial growth factor D (Figf/Vegf-D) is a secreted factor of the VEGF family that binds to the vessel and lymphatic receptors VEGFR-2 and VEGFR-3. Here we report that Figf/Vegf-D is a potent angiogenic factor in rabbit cornea in vivo in a dose-dependent manner. In vitro Figf/Vegf-D induces tyrosine phosphorylation of VEGFR-2 and VEGFR-3 in primary human umbilical cord vein endothelial cells (HUVECs) and in an immortal cell line derived from Kaposi's sarcoma lesion (KS-IMM). The treatment of HUVECs with Figf/Vegf-D induces dose-dependent cell growth. Figf/VEGF-D also induces HUVEC elongation and branching to form an extensive network of capillary-like cords in three-dimensional matrix. In KS-IMM cells Figf/Vegf-D treatment results in dose-dependent mitogenic and motogenic activities. Taken together with the previous observations that Figf/Vegf-D expression is under the control of the nuclear oncogene c-fos, our data uncover a link between a nuclear oncogene and angiogenesis, suggesting that Figf/Vegf-D may play a critical role in tumor cell growth and invasion.
Collapse
Affiliation(s)
- L Marconcini
- Dipartimento di Biologia Molecolare Università degli Studi di Siena, via Fiorentina 1-53100 Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
429
|
Abstract
Angiogenesis, the formation of new blood vessels from pre--existing ones, is central for both normal development and homeostasis as well as in certain pathological conditions. The vascular endothelial growth factors (VEGFs) and their receptors are prime regulators of both physiological and pathological angiogenesis. The different VEGFs have overlapping but specific roles in controlling the growth of new blood vessels. The VEGF receptors transduce signals mediating endothelial cell proliferation, migration, organization into functional vessels and remodeling of the vessel network. In recent years, rapid progress has been made in understanding the receptor-ligand interactions that orchestrate the neovascularization process.
Collapse
Affiliation(s)
- T Veikkola
- Molecular/Cancer Biology Laboratory, Haartman Institute (Haatmaninkatu 3), 00014 University of Helsinki, Finland
| | | |
Collapse
|
430
|
Valtola R, Salven P, Heikkilä P, Taipale J, Joensuu H, Rehn M, Pihlajaniemi T, Weich H, deWaal R, Alitalo K. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:1381-90. [PMID: 10329591 PMCID: PMC1866582 DOI: 10.1016/s0002-9440(10)65392-8] [Citation(s) in RCA: 413] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recently, monoclonal antibodies against the human vascular endothelial growth factor receptor VEGFR-3 were shown to provide a specific antigenic marker for lymphatic endothelium in various normal tissues. In this study we have investigated the expression of VEGFR-3 and its ligand VEGF-C in normal breast tissue and in breast tumors by immunohistochemistry. VEGFR-3 was weakly expressed in capillaries of normal breast tissue and in fibroadenomas. In intraductal breast carcinomas, VEGFR-3 was prominent in the "necklace" vessels adjacent to the basal lamina of the tumor-filled ducts. VEGF receptor 1 and 2 as well as blood vessel endothelial and basal lamina markers were colocalized with VEGFR-3 in many of these vessels. Antibodies against smooth muscle alpha-actin gave a weak staining of the necklace vessels, suggesting that they were incompletely covered by pericytes/smooth muscle cells. A highly elevated number of VEGFR-3 positive vessels was found in invasive breast cancer in comparison with histologically normal breast tissue (P < 0.0001, the Mann-Whitney test). VEGF-C was located in the cytoplasm of intraductal and invasive cancer cells. The results demonstrate that the expression of VEGFR-3 becomes up-regulated in the endothelium of angiogenic blood vessels in breast cancer. The results also suggest that VEGF-C secreted by the intraductal carcinoma cells acts predominantly as an angiogenic growth factor for blood vessels, although this paracrine signaling network between the cancer cells and the endothelium may also be involved in modifying the permeabilities of both blood and lymphatic vessels and metastasis formation.
Collapse
Affiliation(s)
- R Valtola
- Molecular/Cancer Biology Laboratory, Department of Pathology, Haartman Institute, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
431
|
Affiliation(s)
- S A Stacker
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Victoria, Australia.
| | | |
Collapse
|