401
|
|
402
|
Chen W, Kalscheuer V, Tzschach A, Menzel C, Ullmann R, Schulz MH, Erdogan F, Li N, Kijas Z, Arkesteijn G, Pajares IL, Goetz-Sothmann M, Heinrich U, Rost I, Dufke A, Grasshoff U, Glaeser B, Vingron M, Ropers HH. Mapping translocation breakpoints by next-generation sequencing. Genome Res 2008; 18:1143-9. [PMID: 18326688 DOI: 10.1101/gr.076166.108] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Balanced chromosome rearrangements (BCRs) can cause genetic diseases by disrupting or inactivating specific genes, and the characterization of breakpoints in disease-associated BCRs has been instrumental in the molecular elucidation of a wide variety of genetic disorders. However, mapping chromosome breakpoints using traditional methods, such as in situ hybridization with fluorescent dye-labeled bacterial artificial chromosome clones (BAC-FISH), is rather laborious and time-consuming. In addition, the resolution of BAC-FISH is often insufficient to unequivocally identify the disrupted gene. To overcome these limitations, we have performed shotgun sequencing of flow-sorted derivative chromosomes using "next-generation" (Illumina/Solexa) multiplex sequencing-by-synthesis technology. As shown here for three different disease-associated BCRs, the coverage attained by this platform is sufficient to bridge the breakpoints by PCR amplification, and this procedure allows the determination of their exact nucleotide positions within a few weeks. Its implementation will greatly facilitate large-scale breakpoint mapping and gene finding in patients with disease-associated balanced translocations.
Collapse
Affiliation(s)
- Wei Chen
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
403
|
Le-Niculescu H, McFarland MJ, Ogden CA, Balaraman Y, Patel S, Tan J, Rodd ZA, Paulus M, Geyer MA, Edenberg HJ, Glatt SJ, Faraone SV, Nurnberger JI, Kuczenski R, Tsuang MT, Niculescu AB. Phenomic, convergent functional genomic, and biomarker studies in a stress-reactive genetic animal model of bipolar disorder and co-morbid alcoholism. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:134-66. [PMID: 18247375 DOI: 10.1002/ajmg.b.30707] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We had previously identified the clock gene D-box binding protein (Dbp) as a potential candidate gene for bipolar disorder and for alcoholism, using a Convergent Functional Genomics (CFG) approach. Here we report that mice with a homozygous deletion of DBP have lower locomotor activity, blunted responses to stimulants, and gain less weight over time. In response to a chronic stress paradigm, these mice exhibit a diametric switch in these phenotypes. DBP knockout mice are also activated by sleep deprivation, similar to bipolar patients, and that activation is prevented by treatment with the mood stabilizer drug valproate. Moreover, these mice show increased alcohol intake following exposure to stress. Microarray studies of brain and blood reveal a pattern of gene expression changes that may explain the observed phenotypes. CFG analysis of the gene expression changes identified a series of novel candidate genes and blood biomarkers for bipolar disorder, alcoholism, and stress reactivity.
Collapse
Affiliation(s)
- H Le-Niculescu
- Laboratory of Neurophenomics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
404
|
Tan HY, Callicott JH, Weinberger DR. Intermediate phenotypes in schizophrenia genetics redux: is it a no brainer? Mol Psychiatry 2008; 13:233-8. [PMID: 18285755 DOI: 10.1038/sj.mp.4002145] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
405
|
Karoutzou G, Emrich HM, Dietrich DE. The myelin-pathogenesis puzzle in schizophrenia: a literature review. Mol Psychiatry 2008; 13:245-60. [PMID: 17925796 DOI: 10.1038/sj.mp.4002096] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Schizophrenia is a serious and disabling mental disorder with symptoms such as auditory hallucinations, disordered thinking and delusions, avolition, anhedonia, blunted affect and apathy. In this review article we seek to present the current scientific findings from linkage studies and susceptible genes and the pathophysiology of white matter in schizophrenia. The article has been reviewed in two parts. The first part deals with the linkage studies and susceptible genes in schizophrenia in order to have a clear-cut picture of the involvement of chromosomes and their genes in schizophrenia. The genetic linkage results seem to be replicated in some cases but in others are not. From these results, we cannot draw a fine map to a single locus or gene, leading to the conclusion that schizophrenia is not caused by a single factor/gene. In the second part of the article we present the oligodendrocyte-related genes that are associated with schizophrenia, as we hypothesize a potential role of oligodendrocyte-related genes in the pathology of the disorder.
Collapse
Affiliation(s)
- G Karoutzou
- Department of Clinical Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
406
|
Kilpinen H, Ylisaukko-Oja T, Hennah W, Palo OM, Varilo T, Vanhala R, Nieminen-von Wendt T, von Wendt L, Paunio T, Peltonen L. Association of DISC1 with autism and Asperger syndrome. Mol Psychiatry 2008; 13:187-96. [PMID: 17579608 DOI: 10.1038/sj.mp.4002031] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The DISC1 gene at 1q42 has generated considerable interest in various psychiatric diseases, since a balanced translocation interrupting the gene was found to cosegregate with schizophrenia and related mental illnesses in a large Scottish pedigree. To date, linkage and association findings to this locus have been replicated in several study samples ascertained for psychotic disorders. However, the biological function of DISC1 in neuronal development would suggest a potential role for this gene also in other, early onset neuropsychiatric disorders. Here we have addressed the allelic diversity of the DISC1, DISC2 and TRAX genes, clustered in 1q42, in Finnish families ascertained for infantile autism (97 families, n(affected)=138) and Asperger syndrome (29 families, n(affected)=143). We established association between autism and a DISC1 intragenic microsatellite (D1S2709; P=0.004). In addition, evidence for association to Asperger syndrome was observed with an intragenic single nucleotide polymorphism (SNP) of DISC1 (rs1322784; P=0.0058), as well as with a three-SNP haplotype (P=0.0013) overlapping the HEP3 haplotype, that was previously observed to associate with schizophrenia in Finnish families. The strongest associations were obtained with broad diagnostic categories for both disorders and with affected males only, in agreement with the previous sex-dependent effects reported for DISC1. These results would further support the involvement of DISC1 gene also in the etiopathogenesis of early onset neuropsychiatric disorders.
Collapse
Affiliation(s)
- H Kilpinen
- Department of Molecular Medicine, National Public Health Institute, Biomedicum, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
407
|
How has DISC1 enabled drug discovery? Mol Cell Neurosci 2008; 37:187-95. [DOI: 10.1016/j.mcn.2007.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 10/15/2007] [Accepted: 10/16/2007] [Indexed: 11/17/2022] Open
|
408
|
Yurov YB, Iourov IY, Vorsanova SG, Demidova IA, Kravetz VS, Beresheva AK, Kolotii AD, Monakchov VV, Uranova NA, Vostrikov VM, Soloviev IV, Liehr T. The schizophrenia brain exhibits low-level aneuploidy involving chromosome 1. Schizophr Res 2008; 98:139-47. [PMID: 17889509 DOI: 10.1016/j.schres.2007.07.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/26/2007] [Accepted: 07/27/2007] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Genetic instability manifested as loss or gain of whole chromosomes (aneuploidy) is a newly described feature of the human brain. Aneuploidy in the brain was hypothesized to be involved in schizophrenia pathogenesis. To gain further insights into the relationship between aneuploidy in the brain and schizophrenia pathogenesis, a molecular-cytogenetic study of chromosome 1 aneuploidy was performed. METHODS Interphase multiprobe fluorescence in situ hybridization (FISH) with quantitative FISH (QFISH) and interphase chromosome-specific multicolor banding (ICS-MCB) were used to define aneuploidy rate in 12 unaffected and 12 schizophrenia brains. RESULTS In the unaffected brain (n=12; 22,794 cells analyzed), average frequencies of stochastic chromosome 1 loss and gain were 0.3% (95%CI 0.2-0.4%) and 0.3% (95%CI 0.2-0.4%), respectively. The threshold level for stochastic chromosome gain and loss (the mean+3SD) in the normal brain was 0.7%. Average rate of aneuploidy in the schizophrenia brain (n=12; 28,482 cells analyzed) was 0.9% (95%CI 0.3-1.5%) for chromosome 1 loss and 0.9% (95%CI 0.2-1.7%) for chromosome 1 gain. Significantly increased level of mosaic aneuploidy involving chromosome 1 was revealed in two schizophrenia brains (3.6% and 4.7% of cells with chromosome 1 loss and gain, respectively). Stochastic aneuploidy rate for chromosome 1 in the schizophrenia brain without two outliers (n=10) reached 0.6% (95%CI 0.3-0.9%) for loss and 0.5% (0.2-0.9%) for gain and was higher than in controls (P=0.005 and P=0.001, respectively). CONCLUSIONS Our findings support the hypothesis suggesting that subtle genomic imbalances manifesting as low-level mosaic aneuploidy may contribute to schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Yuri B Yurov
- National Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow 119152, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
409
|
Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK. The DISC locus in psychiatric illness. Mol Psychiatry 2008; 13:36-64. [PMID: 17912248 DOI: 10.1038/sj.mp.4002106] [Citation(s) in RCA: 442] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 08/09/2007] [Accepted: 08/10/2007] [Indexed: 12/11/2022]
Abstract
The DISC locus is located at the breakpoint of a balanced t(1;11) chromosomal translocation in a large and unique Scottish family. This translocation segregates in a highly statistically significant manner with a broad diagnosis of psychiatric illness, including schizophrenia, bipolar disorder and major depression, as well as with a narrow diagnosis of schizophrenia alone. Two novel genes were identified at this locus and due to the high prevalence of schizophrenia in this family, they were named Disrupted-in-Schizophrenia-1 (DISC1) and Disrupted-in-Schizophrenia-2 (DISC2). DISC1 encodes a novel multifunctional scaffold protein, whereas DISC2 is a putative noncoding RNA gene antisense to DISC1. A number of independent genetic linkage and association studies in diverse populations support the original linkage findings in the Scottish family and genetic evidence now implicates the DISC locus in susceptibility to schizophrenia, schizoaffective disorder, bipolar disorder and major depression as well as various cognitive traits. Despite this, with the exception of the t(1;11) translocation, robust evidence for a functional variant(s) is still lacking and genetic heterogeneity is likely. Of the two genes identified at this locus, DISC1 has been prioritized as the most probable candidate susceptibility gene for psychiatric illness, as its protein sequence is directly disrupted by the translocation. Much research has been undertaken in recent years to elucidate the biological functions of the DISC1 protein and to further our understanding of how it contributes to the pathogenesis of schizophrenia. These data are the main subject of this review; however, the potential involvement of DISC2 in the pathogenesis of psychiatric illness is also discussed. A detailed picture of DISC1 function is now emerging, which encompasses roles in neurodevelopment, cytoskeletal function and cAMP signalling, and several DISC1 interactors have also been defined as independent genetic susceptibility factors for psychiatric illness. DISC1 is a hub protein in a multidimensional risk pathway for major mental illness, and studies of this pathway are opening up opportunities for a better understanding of causality and possible mechanisms of intervention.
Collapse
Affiliation(s)
- J E Chubb
- Medical Genetics Section, The Centre for Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, UK
| | | | | | | | | |
Collapse
|
410
|
Song W, Li W, Feng J, Heston LL, Scaringe WA, Sommer SS. Identification of high risk DISC1 structural variants with a 2% attributable risk for schizophrenia. Biochem Biophys Res Commun 2007; 367:700-6. [PMID: 18164685 DOI: 10.1016/j.bbrc.2007.12.117] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 12/14/2007] [Indexed: 12/31/2022]
Abstract
The causes of schizophrenia remain elusive. In a large Scottish pedigree, a balanced translocation t(1;11) (q42.1;q14.3) disrupting the DISC1 and DISC2 genes segregates with major mental illness, including schizophrenia and unipolar depression. A frame-shift carboxyl-terminal deletion was reported in DISC1 in an American family, but subsequently found in two controls. A few common structural variants have been associated with less than a 2-fold increased risk for schizophrenia, but replication has not been uniform. No large scale case-control mutation study has been performed. We have analyzed the regions of likely functional significance in the DISC1 gene in 288 patients with schizophrenia and 288 controls (5 megabases of genomic sequence analyzed). Six patients with schizophrenia were heterozygous for ultra-rare missense variants not found in the 288 controls (p=0.015) and shown to be ultra-rare by their absence in a pool of 10,000 control alleles. We conclude that ultra-rare structural variants in DISC1 are associated with an attributable risk of about 2% for schizophrenia. In addition, we confirm that two common structural variants (Q264R and S704C) elevate the risk for schizophrenia slightly (odds ratio 1.3, 95% CI: 1.0-1.7). DISC1 illustrates how common/moderate risk alleles suggested by the HapMap project might be followed up by resequencing to identify genes with high risk, low frequency alleles of clinical relevance.
Collapse
Affiliation(s)
- Wenjia Song
- Department of Molecular Genetics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | | | | | | | | | | |
Collapse
|
411
|
Sabunciyan S, Yolken R, Ragan CM, Potash JB, Nimgaonkar VL, Dickerson F, Llenos IC, Weis S. Polymorphisms in the homeobox gene OTX2 may be a risk factor for bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:1083-6. [PMID: 17541950 DOI: 10.1002/ajmg.b.30523] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We investigated the possible involvement of OTX2, a homeobox gene crucial for forebrain development, in the pathogenesis of schizophrenia and bipolar disorder. The disruption of this gene results in cortical malformations and causes serotonergic and dopaminergic cells in the midbrain to be expressed in aberrant locations. Resequencing of DNA from OTX2 exons and surrounding introns from 60 individuals (15 schizophrenia, 15 bipolar disorder, 15 depression, and 15 control) revealed two intronic polymorphisms, rs2277499 (C/T) and rs28757218 (G/T), but no other variations. The minor allele of rs2277499 (T) did not associate with clinical diagnosis. However, using a Taqman genotyping assay, we found the rs28757218 minor allele (T) in 30 out of 720 (4.2%) individuals with bipolar disorder but only in 6 out of 526 (1.1%) control individuals (odds ratio 3.5, 95% confidence interval 1.4-10.4, P = 0.003). On the other hand, the rs28757218 minor allele was only found in 6 out of 458 (1.3%) individuals with schizophrenia. All individuals with the rs28757218 polymorphism were heterozygous for the allele. Based on this positive case-control association finding, we conclude that variations in OTX2 might confer risk for the development of bipolar disorder.
Collapse
Affiliation(s)
- Sarven Sabunciyan
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | | | | | |
Collapse
|
412
|
Wilkosz PA, Kodavali C, Weamer EA, Miyahara S, Lopez OL, Nimgaonkar VL, DeKosky ST, Sweet RA. Prediction of psychosis onset in Alzheimer disease: the role of depression symptom severity and the HTR2A T102C polymorphism. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:1054-62. [PMID: 17525976 PMCID: PMC2818007 DOI: 10.1002/ajmg.b.30549] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Psychotic symptoms in Alzheimer disease (AD + P) identify a heritable phenotype associated with a more severe course. We recently found an association of AD + P with depression symptom severity. Reports have shown an association of a serotonin-2A receptor (HTR2A) gene T102C polymorphism with AD + P and with depression during AD. We examined the interaction of this common genetic polymorphism with depression and increased psychosis risk. Subjects with possible or probable AD or mild cognitive impairment (MCI) without psychosis at study entry were genotyped for the HTR2A T102C polymorphism and reassessed every 6 months until psychosis onset. Psychotic and depressive symptoms were rated using the CERAD behavioral rating scale (CBRS). Cox proportional hazard models with time-dependent covariates were used to examine associations with psychosis onset. A total of 324 Caucasian subjects completed at least one follow-up exam. Depressive symptom severity was a strong predictor of psychosis onset. Neither psychosis onset nor depression severity was associated with the HTR2A genotype. Genotype interacted with depression severity to moderate the risk of AD + P onset. This did not result from an interaction of HTR2A genotype with antidepressant use. Psychosis onset in AD is strongly associated with severity of depressive symptoms, an association that may be modified by HTR2A genotype.
Collapse
Affiliation(s)
| | | | - Elise A. Weamer
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Sachiko Miyahara
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | - Oscar L. Lopez
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA
| | | | - Steven T. DeKosky
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
413
|
Abstract
Family and twin studies have consistently documented that bipolar disorder (BPD) is familial and heritable, but efforts to identify specific susceptibility genes have been complicated by the disorder's genetic and phenotypic complexity. Genetic linkage studies have implicated numerous chromosomal regions, but findings have been inconsistent. As with other complex disorders, it has become clear that linkage analysis lacks the power and precision to identify susceptibility loci for BPD. Candidate gene association studies have implicated several specific genes, but these studies have been limited by our incomplete understanding of the disorder's biology, and there have been few robustly replicated results. Within the past 2 years, a major advance in the genetics of complex disease has become feasible in the form of genome-wide association studies. Such studies, which require large sample sizes, have already proven successful in identifying susceptibility variants for a range of common medical disorders. Genome-wide association studies have begun to appear for BPD, and more are in progress. By providing an unbiased approach, this technology may reveal novel biological mechanisms underlying BPD.
Collapse
Affiliation(s)
- Jordan W Smoller
- Department of Psychiatry and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
414
|
Carter CJ. eIF2B and oligodendrocyte survival: where nature and nurture meet in bipolar disorder and schizophrenia? Schizophr Bull 2007; 33:1343-53. [PMID: 17329232 PMCID: PMC2779884 DOI: 10.1093/schbul/sbm007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bipolar disorder and schizophrenia share common chromosomal susceptibility loci and many risk-promoting genes. Oligodendrocyte cell loss and hypomyelination are common to both diseases. A number of environmental risk factors including famine, viral infection, and prenatal or childhood stress may also predispose to schizophrenia or bipolar disorder. In cells, related stressors (starvation, viruses, cytokines, oxidative, and endoplasmic reticulum stress) activate a series of eIF2-alpha kinases, which arrest protein synthesis via the eventual inhibition, by phosphorylated eIF2-alpha, of the translation initiation factor eIF2B. Growth factors increase protein synthesis via eIF2B activation and counterbalance this system. The control of protein synthesis by eIF2-alpha kinases is also engaged by long-term potentiation and repressed by long-term depression, mediated by N-methyl-D-aspartate (NMDA) and metabotropic glutamate receptors. Many genes reportedly associated with both schizophrenia and bipolar disorder code for proteins within or associated with this network. These include NMDA (GRIN1, GRIN2A, GRIN2B) and metabotropic (GRM3, GRM4) glutamate receptors, growth factors (BDNF, NRG1), and many of their downstream signaling components or accomplices (AKT1, DAO, DAOA, DISC1, DTNBP1, DPYSL2, IMPA2, NCAM1, NOS1, NOS1AP, PIK3C3, PIP5K2A, PDLIM5, RGS4, YWHAH). They also include multiple gene products related to the control of the stress-responsive eIF2-alpha kinases (IL1B, IL1RN, MTHFR, TNF, ND4, NDUFV2, XBP1). Oligodendrocytes are particularly sensitive to defects in the eIF2B complex, mutations in which are responsible for vanishing white matter disease. The convergence of natural and genetic risk factors on this area in bipolar disorder and schizophrenia may help to explain the apparent vulnerability of this cell type in these conditions. This convergence may also help to reconcile certain arguments related to the importance of nature and nurture in the etiology of these psychiatric disorders. Both may affect common stress-related signaling pathways that dictate oligodendrocyte viability and synaptic plasticity.
Collapse
|
415
|
Sanders J, Gill M. Unravelling the genome: a review of molecular genetic research in schizophrenia. Ir J Med Sci 2007; 176:5-9. [PMID: 17849516 DOI: 10.1007/s11845-007-0004-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Schizophrenia is a common and complex mental illness that affects approximately 1% of the population worldwide. Despite intensive research over the years, the aetiology and pathogenesis of schizophrenia is poorly understood. However, it has long been recognised that schizophrenia is highly familial suggesting a possible genetic aetiology. AIM To review recent molecular genetic research in schizophrenia. METHODS Medline and Embase search. RESULTS Over the past decade, with the completion of the Human Genome Project, molecular genetic research has now identified a number of genes that are very likely to predispose to schizophrenia. CONCLUSION This article discusses the methodologies that have been used to identify schizophrenia susceptibility genes and provides a review of recently identified genes thought to play a role in the pathogenesis of this illness.
Collapse
Affiliation(s)
- J Sanders
- Department of Psychiatry, Trinity Centre for Health Sciences, St. James' Hospital, James' Street, Dublin 8, Ireland.
| | | |
Collapse
|
416
|
Cascella NG, Takaki M, Lin S, Sawa A. Neurodevelopmental involvement in schizophrenia: the olfactory epithelium as an alternative model for research. J Neurochem 2007; 102:587-94. [PMID: 17488280 DOI: 10.1111/j.1471-4159.2007.04628.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It has been suggested that disturbances during neurodevelopment may play a crucial role in the etiology of schizophrenia (SZ). This premise is supported by brain imaging, epidemiological, and pathological studies as well as the discovery of susceptibility genes for SZ that appear to be implicated in development of the central nervous system. Here, we discuss the limitations of the current methods and models for studying the neurodevelopmental implications in SZ. We agree with the proposal that the olfactory epithelium, in which neurodevelopment continues throughout life, might represent an alternative model for understanding the pathophysiology of the disorder.
Collapse
Affiliation(s)
- Nicola G Cascella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | | | | | |
Collapse
|
417
|
Millar JK, Mackie S, Clapcote SJ, Murdoch H, Pickard BS, Christie S, Muir WJ, Blackwood DH, Roder JC, Houslay MD, Porteous DJ. Disrupted in schizophrenia 1 and phosphodiesterase 4B: towards an understanding of psychiatric illness. J Physiol 2007; 584:401-5. [PMID: 17823207 PMCID: PMC2277141 DOI: 10.1113/jphysiol.2007.140210] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 08/31/2007] [Indexed: 01/29/2023] Open
Abstract
Disrupted in schizophrenia 1 (DISC1) is one of the most convincing genetic risk factors for major mental illness identified to date. DISC1 interacts directly with phosphodiesterase 4B (PDE4B), an independently identified risk factor for schizophrenia. DISC1-PDE4B complexes are therefore likely to be involved in molecular mechanisms underlying psychiatric illness. PDE4B hydrolyses cAMP and DISC1 may regulate cAMP signalling through modulating PDE4B activity. There is evidence that expression of both genes is altered in some psychiatric patients. Moreover, DISC1 missense mutations that give rise to phenotypes related to schizophrenia and depression in mice are located within binding sites for PDE4B. These mutations reduce the association between DISC1 and PDE4B, and one results in reduced brain PDE4B activity. Altered DISC1-PDE4B interaction may thus underlie the symptoms of some cases of schizophrenia and depression. Factors likely to influence this interaction include expression levels, binding site affinities and the DISC1 and PDE4 isoforms involved. DISC1 and PDE4 isoforms are targeted to specific subcellular locations which may contribute to the compartmentalization of cAMP signalling. Dysregulated cAMP signalling in specific cellular compartments may therefore be a predisposing factor for major mental illness.
Collapse
Affiliation(s)
- J Kirsty Millar
- University of Edinburgh, Medical Genetics Section, Molecular Medicine Centre, Crewe Road, Edinburgh EH4 2XU, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
418
|
Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu XB, Yang CH, Jordan JD, Ma DK, Liu CY, Ganesan S, Cheng HJ, Ming GL, Lu B, Song H. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 2007; 130:1146-58. [PMID: 17825401 PMCID: PMC2002573 DOI: 10.1016/j.cell.2007.07.010] [Citation(s) in RCA: 490] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 05/03/2007] [Accepted: 07/06/2007] [Indexed: 01/08/2023]
Abstract
Adult neurogenesis occurs throughout life in discrete regions of the adult mammalian brain. Little is known about the mechanism governing the sequential developmental process that leads to integration of new neurons from adult neural stem cells into the existing circuitry. Here, we investigated roles of Disrupted-In-Schizophrenia 1 (DISC1), a schizophrenia susceptibility gene, in adult hippocampal neurogenesis. Unexpectedly, downregulation of DISC1 leads to accelerated neuronal integration, resulting in aberrant morphological development and mispositioning of new dentate granule cells in a cell-autonomous fashion. Functionally, newborn neurons with DISC1 knockdown exhibit enhanced excitability and accelerated dendritic development and synapse formation. Furthermore, DISC1 cooperates with its binding partner NDEL1 in regulating adult neurogenesis. Taken together, our study identifies DISC1 as a key regulator that orchestrates the tempo of functional neuronal integration in the adult brain and demonstrates essential roles of a susceptibility gene for major mental illness in neuronal development, including adult neurogenesis.
Collapse
Affiliation(s)
- Xin Duan
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
419
|
PDE inhibitors in psychiatry--future options for dementia, depression and schizophrenia? Drug Discov Today 2007; 12:870-8. [PMID: 17933689 DOI: 10.1016/j.drudis.2007.07.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 07/21/2007] [Accepted: 07/23/2007] [Indexed: 02/07/2023]
Abstract
Phosphodiesterases are key enzymes in cellular signalling pathways. They degrade cyclic nucleotides and their inhibition via specific inhibitors offers unique 'receptor-independent' opportunities to modify cellular function. An increasing number of in vitro and animal model studies point to innovative treatment options in neurology and psychiatry. This review critiques a selection of recent studies and developments with a focus on dementia/neuroprotection, depression and schizophrenia. Despite increased interest among the clinical neurosciences, there are still no approved PDE inhibitors for clinical use in neurology or psychiatry. Adverse effects are a major impediment for clinical approval. It is therefore necessary to search for more specific inhibitors at the level of different PDE sub-families and isoforms.
Collapse
|
420
|
Abstract
This article summarizes the rationale, methods, and results of gene discovery programs in schizophrenia research and describes functional methods of investigating potential candidate genes. It focuses next on the most prominent current candidate genes and describes (1) evidence for their association with schizophrenia and research into the function of each gene; (2) investigation of the clinical phenotypes and endophenotypes associated with each gene, at the levels of psychopathologic, neurocognitive, electrophysiologic, neuroimaging, and neuropathologic findings; and (3) research into the ethologic, cognitive, social, and psychopharmacologic phenotype of mutants with targeted deletion of each gene. It examines gene-gene and gene-environment interactions. Finally, it looks at future directions for research.
Collapse
|
421
|
Abstract
Genetic factors play a fundamental role in the genesis of many mental disorders. The identification of the underlying genetic variation will therefore transform parts of psychiatry toward a neuroscience-based discipline. With the sequence of the human genome now available, the majority of common variations identified, and new high-throughput technologies arriving in academic research laboratories, the identification of genes is expected to explain a large proportion of the risk of developing mental disorders. So far, a number of risk genes have been identified, but no major gene has emerged. The majority of these genes participate in the regulation of biogenic amines that play critical roles in affect modulation and reward systems. The identification of genetic variations associated with mental disorders should provide an approach to evaluate risk for mental disorders, adjust pharmacotherapy on the individual level, and even allow for preventive interactions. New targets for the development of treatment are anticipated to derive from results of genetic studies. In this review, we summarize the current state of psychiatric genetics, underscore current discussions, and predict where the field is expected to move in the near future.
Collapse
Affiliation(s)
- Stephan Züchner
- Veterans Administration Mid-Atlantic Region Mental Illness Research, Education and Clinical Center (MIRECC), Durham, North Carolina, USA.
| | | | | | | |
Collapse
|
422
|
Smit DJA, Posthuma D, Boomsma DI, de Geus EJC. Genetic contribution to the P3 in young and middle-aged adults. Twin Res Hum Genet 2007; 10:335-47. [PMID: 17564523 DOI: 10.1375/twin.10.2.335] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous studies in young and adolescent twins suggested substantial genetic contributions to the amplitude and latency of the P3 evoked by targets in an oddball paradigm. Here we examined whether these findings can be generalized to adult samples. A total of 651 twins and siblings from 292 families participated in a visual oddball task. In half of the subjects the age centered around 26 (young adult cohort), in the other half the age centered around 49 (middle-aged adult cohort). P3 peak amplitude and latency were scored for 3 midline leads Pz, Cz, and Fz. No cohort differences in heritability were found. P3 amplitude (approximately 50%) and latency (approximately 45%) were moderately heritable for the 3 leads. A single genetic factor influenced latency at all electrodes, suggesting a single P3 timing mechanism. Specific genetic factors influenced amplitude at each lead, suggesting local modulation of the P3 once triggered. Genetic analysis of the full event-related potential waveform showed that P3 heritability barely changes from about 100 ms before to 100 ms after the peak. Age differences are restricted to differences in means and variances, but the proportion of genetic variance as part of the total variance of midline P3 amplitude and latency does not change from young to middle-aged adulthood.
Collapse
Affiliation(s)
- Dirk J A Smit
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
423
|
Bellon A. New genes associated with schizophrenia in neurite formation: a review of cell culture experiments. Mol Psychiatry 2007; 12:620-9. [PMID: 17440437 DOI: 10.1038/sj.mp.4001985] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New genes consistently associated with schizophrenia include NRG1, Akt, DISC-1 and dysbindin-1. Since these genes participate in neurotransmission, neuroplasticity and neurodevelopment it has not been easy to elucidate which of these roles are abnormal in patients with schizophrenia. Neurite formation is identified as a crucial stage in development, and it is proposed that a defect in neurite formation originating from abnormally encoded proteins by these new genes could be at least an in vitro marker that reflects the most consistent molecular and neuroanatomical findings in schizophrenia. A systematic review of the literature linking the process of neurite formation to genes with replicated evidence that supported their association with schizophrenia was conducted. In addition, an outline of the process of neurite formation was included. Neurite formation was shown to be induced by neuregulins, the product of the gene NRG1. The activation of Akt, a serine/threonine kinase, promoted neurite formation in six independent studies. Conversely, two studies found that Akt inhibits neurite outgrowth. Stronger evidence supporting an association with the new genes related to schizophrenia and neurite formation comes from DISC-1. Defects in DISC-1 protein were shown to directly alter the process of neurite formation. Dysbindin-1 has not yet been directly implicated in neurite outgrowth. These findings suggest that the proteins encoded by NRG1, Akt and DISC-1 are implicated in the process of neurite formation in cellular models as well as, at least in part, animal models during development. Abnormalities in this process could have potential etiologic implications for schizophrenia. Direct evidence, however, of abnormal neurite formation in patients with schizophrenia is still missing. Limitations to this model are identified.
Collapse
Affiliation(s)
- A Bellon
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
424
|
Abstract
Psychiatric research, including the search for predisposing genes, has tended to proceed under the assumptions that schizophrenia and bipolar disorder, as defined in Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, and International Statistical Classification of Diseases, 10th Revision, are discrete disease entities with distinct etiology and pathogenesis and that these disease entities can be identified by current "operational" diagnostic conventions. However, recent findings emerging from genetic studies show increasing evidence for an overlap in genetic susceptibility across the traditional binary classification of psychosis. Moreover, the emerging evidence suggests the possibility of relatively specific relationships between genotype and psychopathology. For example, variation in Disrupted in Schizophrenia 1 (DISC1) and Neuregulin 1 (NRG1) may confer susceptibility to a form of illness with mixed features of schizophrenia and mania. The elucidation of genotype-phenotype relationships is at an early stage, but current findings highlight the need to consider alternative approaches to classification and conceptualization for psychiatric research rather than continuing to rely heavily on the traditional categorical approach. We can expect that, over the coming years, molecular genetics will catalyze a reappraisal of psychiatric nosology as well as contribute in a major way to our understanding of pathophysiology and to the development of improved treatments. However, our understanding of the brain mechanisms that link specific gene actions and products to the subjective experience of psychopathological symptoms is likely to be bridged by employing intermediate (or endo-) phenotypes in the domains such as cognition, neurophysiology, or neuroanatomy rather than relying upon clinical measures alone.
Collapse
Affiliation(s)
- Michael J Owen
- Department of Psychological Medicine, The School of Medicine, Cardiff University, Cardiff, UK.
| | | | | |
Collapse
|
425
|
Abstract
The electroencephalogram (EEG) recorded from the human scalp is widely used to study cognitive and brain functions in schizophrenia. Current research efforts are primarily devoted to the assessment of event-related potentials (ERPs) and event-related oscillations (EROs), extracted from the ongoing EEG, in patients with schizophrenia and in clinically unaffected individuals who, due to their family history and current mental status, are at high risk for developing schizophrenia. In this article, we discuss the potential usefulness of ERPs and EROs as genetic vulnerability markers, as pathophysiological markers, and as markers of possible ongoing progressive cognitive and cortical deterioration in schizophrenia. Our main purpose is to illustrate that these neurophysiological measures can offer valuable quantitative biological markers of basic pathophysiological mechanisms and cognitive dysfunctions in schizophrenia, yet they may not be specific to current psychiatry's diagnosis and classification. These biological markers can provide unique information on the nature and extent of cognitive and brain dysfunction in schizophrenia. Moreover, they can be utilized to gain deeper theoretical insights into illness etiology and pathophysiology and may lead to improvements in early detection and more effective and targeted treatment of schizophrenia. We conclude by addressing several key methodological, conceptual, and interpretative issues involved in this research field and by suggesting future research directions.
Collapse
Affiliation(s)
- Odin van der Stelt
- Department of Neurology II, Otto-von-Guericke University, Leipziger Strasse 44, D-39120 Magdeburg, Germany.
| | | |
Collapse
|
426
|
Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447:661-78. [PMID: 17554300 PMCID: PMC2719288 DOI: 10.1038/nature05911] [Citation(s) in RCA: 7146] [Impact Index Per Article: 397.0] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 05/11/2007] [Indexed: 02/06/2023]
Abstract
There is increasing evidence that genome-wide association (GWA) studies represent a powerful approach to the identification of genes involved in common human diseases. We describe a joint GWA study (using the Affymetrix GeneChip 500K Mapping Array Set) undertaken in the British population, which has examined approximately 2,000 individuals for each of 7 major diseases and a shared set of approximately 3,000 controls. Case-control comparisons identified 24 independent association signals at P < 5 x 10(-7): 1 in bipolar disorder, 1 in coronary artery disease, 9 in Crohn's disease, 3 in rheumatoid arthritis, 7 in type 1 diabetes and 3 in type 2 diabetes. On the basis of prior findings and replication studies thus-far completed, almost all of these signals reflect genuine susceptibility effects. We observed association at many previously identified loci, and found compelling evidence that some loci confer risk for more than one of the diseases studied. Across all diseases, we identified a large number of further signals (including 58 loci with single-point P values between 10(-5) and 5 x 10(-7)) likely to yield additional susceptibility loci. The importance of appropriately large samples was confirmed by the modest effect sizes observed at most loci identified. This study thus represents a thorough validation of the GWA approach. It has also demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; has generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in the British population is generally modest. Our findings offer new avenues for exploring the pathophysiology of these important disorders. We anticipate that our data, results and software, which will be widely available to other investigators, will provide a powerful resource for human genetics research.
Collapse
Collaborators
Paul R Burton, David G Clayton, Lon R Cardon, Nick Craddock, Panos Deloukas, Audrey Duncanson, Dominic P Kwiatkowski, Mark I McCarthy, Willem H Ouwehand, Nilesh J Samani, John A Todd, Peter Donnelly, Jeffrey C Barrett, Paul R Burton, Dan Davison, Peter Donnelly, Doug Easton, David Evans, Hin-Tak Leung, Jonathan L Marchini, Andrew P Morris, Chris C A Spencer, Martin D Tobin, Lon R Cardon, David G Clayton, Antony P Attwood, James P Boorman, Barbara Cant, Ursula Everson, Judith M Hussey, Jennifer D Jolley, Alexandra S Knight, Kerstin Koch, Elizabeth Meech, Sarah Nutland, Christopher V Prowse, Helen E Stevens, Niall C Taylor, Graham R Walters, Neil M Walker, Nicholas A Watkins, Thilo Winzer, John A Todd, Willem H Ouwehand, Richard W Jones, Wendy L McArdle, Susan M Ring, David P Strachan, Marcus Pembrey, Gerome Breen, David St Clair, Sian Caesar, Katherine Gordon-Smith, Lisa Jones, Christine Fraser, Elaine K Green, Detelina Grozeva, Marian L Hamshere, Peter A Holmans, Ian R Jones, George Kirov, Valentina Moskvina, Ivan Nikolov, Michael C O'Donovan, Michael J Owen, Nick Craddock, David A Collier, Amanda Elkin, Anne Farmer, Richard Williamson, Peter McGuffin, Allan H Young, I Nicol Ferrier, Stephen G Ball, Anthony J Balmforth, Jennifer H Barrett, D Timothy Bishop, Mark M Iles, Azhar Maqbool, Nadira Yuldasheva, Alistair S Hall, Peter S Braund, Paul R Burton, Richard J Dixon, Massimo Mangino, Stevens Suzanne, Martin D Tobin, John R Thompson, Nilesh J Samani, Francesca Bredin, Mark Tremelling, Miles Parkes, Hazel Drummond, Charles W Lees, Elaine R Nimmo, Jack Satsangi, Sheila A Fisher, Alastair Forbes, Cathryn M Lewis, Clive M Onnie, Natalie J Prescott, Jeremy Sanderson, Christopher G Mathew, Jamie Barbour, M Khalid Mohiuddin, Catherine E Todhunter, John C Mansfield, Tariq Ahmad, Fraser R Cummings, Derek P Jewell, John Webster, Morris J Brown, David G Clayton, G Mark Lathrop, John Connell, Anna Dominczak, Nilesh J Samani, Carolina A Braga Marcano, Beverley Burke, Richard Dobson, Johannie Gungadoo, Kate L Lee, Patricia B Munroe, Stephen J Newhouse, Abiodun Onipinla, Chris Wallace, Mingzhan Xue, Mark Caulfield, Martin Farrall, Anne Barton, Ian N Bruce, Hannah Donovan, Steve Eyre, Paul D Gilbert, Samantha L Hider, Anne M Hinks, Sally L John, Catherine Potter, Alan J Silman, Deborah P M Symmmons, Wendy Thomson, Jane Worthington, David G Clayton, David B Dunger, Sarah Nutland, Helen E Stevens, Neil M Walker, Barry Widmer, John A Todd, Timothy A Frayling, Rachel M Freathy, Hana Lango, John R B Perry, Beverly M Shields, Michael N Weedon, Andrew T Hattersley, Graham A Hitman, Mark Walker, Kate S Elliott, Christopher J Groves, Cecilia M Lindgren, Nigel W Rayner, Nicholas J Timpson, Eleftheria Zeggini, Mark I McCarthy, Melanie Newport, Giorgio Sirugo, Emily Lyons, Fredrik Vannberg, Adrian V S Hill, Linda A Bradbury, Claire Farrar, Jennifer J Pointon, Paul Wordsworth, Matthew A Brown, Jayne A Franklyn, Joanne M Heward, Matthew J Simmonds, Stephen C L Gough, Sheila Seal, Michael R Stratton, Nazneen Rahman, Maria Ban, An Goris, Stephen J Sawcer, Alastair Compston, David Conway, Muminatou Jallow, Melanie Newport, Giorgio Sirugo, Kirk A Rockett, Dominic P Kwiatowski, Suzannah J Bumpstead, Amy Chaney, Kate Downes, Mohammed J R Ghori, Rhian Gwilliam, Sarah E Hunt, Michael Inouye, Andrew Keniry, Emma King, Ralph McGinnis, Simon Potter, Rathi Ravindrarajah, Pamela Whittaker, Claire Widden, David Withers, Panos Deloukas, Hin-Tak Leung, Sarah Nutland, Helen E Stevens, Neil M Walker, John A Todd, Doug Easton, David G Clayton, Paul R Burton, Martin D Tobin, Jeffrey C Barrett, David Evans, Andrew P Morris, Lon R Cardon, Niall J Cardin, Dan Davison, Teresa Ferreira, Joanne Pereira-Gale, Ingileif B Hallgrimsdottir, Bryan N Howie, Jonathan L Marchini, Chris C A Spencer, Zhan Su, Yik Ying Teo, Damjan Vukcevic, Peter Donnelly, David Bentley, Matthew A Brown, Lon R Gordon, Mark Caulfield, David G Clayton, Alistair Compston, Nick Craddock, Panos Deloukas, Peter Donnelly, Martin Farrall, Stephen C L Gough, Alistair S Hall, Andrew T Hattersley, Adrian V S Hill, Dominic P Kwiatkowski, Christopher Mathew, Mark I McCarthy, Willem H Ouwehand, Miles Parkes, Marcus Pembrey, Nazneen Rahman, Nilesh J Samani, Michael R Stratton, John A Todd, Jane Worthington,
Collapse
|
427
|
Craddock N, Owen MJ. Rethinking psychosis: the disadvantages of a dichotomous classification now outweigh the advantages. World Psychiatry 2007; 6:84-91. [PMID: 18235858 PMCID: PMC2219899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Emil Kraepelin would clearly recognize his 19th century dichotomy within current operational classifications of psychosis. However, he might be surprised at its survival, given the extent to which it has been undermined by the weight of currently available empirical evidence. The failure of this evidence to influence diagnostic practice reflects not only the comfortable simplicity of the dichotomous approach, but also the fact that this approach has for many years continued to receive support from some areas of research, particularly genetic epidemiology. This, however, is changing and findings from genetic epidemiology are being reappraised. More importantly, the potential of molecular genetics to indicate biological systems involved in psychopathology has been recognized, and with it the potential to develop diagnostic classifications that have greater biological validity. Crucially, this will facilitate diagnostic schemes with much greater clinical utility, allowing clinicians to select treatments based on underlying pathogenesis. Recent molecular genetic findings have demonstrated very clearly the inadequacies of the dichotomous view, and highlighted the importance of better classifying cases with both psychotic and affective symptoms. In this article we discuss these issues and suggest ways forward, both immediately and for DSM-V and ICD-11. If psychiatry is to translate the opportunities offered by new research methodologies, we must move to a classificatory approach that is worthy of the 21st century.
Collapse
Affiliation(s)
- Nick Craddock
- Department of Psychological Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | | |
Collapse
|
428
|
Bender S, Weisbrod M, Resch F. Which perspectives can endophenotypes and biological markers offer in the early recognition of schizophrenia? J Neural Transm (Vienna) 2007; 114:1199-215. [PMID: 17514428 DOI: 10.1007/s00702-007-0742-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 04/12/2007] [Indexed: 02/07/2023]
Abstract
The early recognition of schizophrenia seems crucial; various studies relate a longer duration-of-untreated-psychosis to a worse prognosis. We give an overview over common psychopathological early recognition instruments (BSABS, CAARMS, SIPS, IRAOS, ERIraos). However, many clinical symptoms of prodromal schizophrenia stages are not sufficiently specific. Thus we review recent contributions of neuroimaging and electrophysiological as well as genetic studies: which new diagnostic perspectives offer endophenotypes (such as P300, P50 sensory gating, MMN, smooth pursuit eye movements; indicating a specific genetic vulnerability) together with a better understanding of schizophrenic pathophysiology (state-dependent biological markers, e.g. aggravated motor neurological soft signs during psychosis) in prodromal schizophrenia when still ambiguous clinical symptoms are present. Several examples (e.g. from COMT polymorphisms to working memory deficits) illustrate more specific underlying neuronal mechanisms behind behavioural symptoms. This way, a characteristic pattern of disturbed cerebral maturation might be distinguished in order to complement clinical instruments of early schizophrenia detection.
Collapse
Affiliation(s)
- S Bender
- Centre for Psychosocial Medicine, Department for Child and Adolescent Psychiatry, University of Heidelberg, Heidelberg, Germany.
| | | | | |
Collapse
|
429
|
Cascella NG, Takaki M, Lin S, Sawa A. Neurodevelopmental involvement in schizophrenia: the olfactory epithelium as an alternative model for research. J Neurochem 2007. [DOI: 10.1111/j.1471-4159.2007.4628.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
430
|
Abstract
In this issue of Neuron, Clapcote et al. examine mice containing missense mutations of the DISC1 gene, a locus associated with major mental illness in at least one large Scottish family. Genetic manipulation of mouse homologs of genes implicated in the etiology of psychiatric disorders is a promising avenue of research, but also one that is fraught with interpretative difficulties.
Collapse
Affiliation(s)
- Nancy C Low
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, Quebec, H3A 1A1, Canada
| | | |
Collapse
|
431
|
Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F, Lerch JP, Trimble K, Uchiyama M, Sakuraba Y, Kaneda H, Shiroishi T, Houslay MD, Henkelman RM, Sled JG, Gondo Y, Porteous DJ, Roder JC. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 2007; 54:387-402. [PMID: 17481393 DOI: 10.1016/j.neuron.2007.04.015] [Citation(s) in RCA: 406] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 03/01/2007] [Accepted: 04/18/2007] [Indexed: 01/25/2023]
Abstract
To support the role of DISC1 in human psychiatric disorders, we identified and analyzed two independently derived ENU-induced mutations in Exon 2 of mouse Disc1. Mice with mutation Q31L showed depressive-like behavior with deficits in the forced swim test and other measures that were reversed by the antidepressant bupropion, but not by rolipram, a phosphodiesterase-4 (PDE4) inhibitor. In contrast, L100P mutant mice exhibited schizophrenic-like behavior, with profound deficits in prepulse inhibition and latent inhibition that were reversed by antipsychotic treatment. Both mutant DISC1 proteins exhibited reduced binding to the known DISC1 binding partner PDE4B. Q31L mutants had lower PDE4B activity, consistent with their resistance to rolipram, suggesting decreased PDE4 activity as a contributory factor in depression. This study demonstrates that Disc1 missense mutations in mice give rise to phenotypes related to depression and schizophrenia, thus supporting the role of DISC1 in major mental illness.
Collapse
Affiliation(s)
- Steven J Clapcote
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
432
|
Savitz J, Cupido CL, Ramesar RK. Preliminary evidence for linkage to chromosome 1q31-32, 10q23.3, and 16p13.3 in a South African cohort with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:383-7. [PMID: 17171663 DOI: 10.1002/ajmg.b.30461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although the genetic variants predisposing to the development of bipolar disorder (BPD) have yet to be conclusively identified, replicated reports of linkage to particular chromosomal regions have been encouraging. Here we carried out a non-parametric linkage analysis of nine of these candidate loci in a unique South African sample of 47 BPD pedigrees (N = 350). Three polymorphic markers per region of interest (3 x 9) were typed in a Caucasian cohort of Afrikaner and British origin. Statistically significant evidence for linkage was obtained at 1q31-32, 10q23.3, and 16p13.3 with maximum NPL scores of 2.52, 2.01, and 1.84, respectively. Our results add to the growing evidence that these chromosomal regions harbor genetic variants that play a role in the development of bipolar spectrum illness. Negative results were obtained for the remaining six candidate loci, possibly due to limited statistical power.
Collapse
Affiliation(s)
- Jonathan Savitz
- Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | | | | |
Collapse
|
433
|
Qu M, Tang F, Yue W, Ruan Y, Lu T, Liu Z, Zhang H, Han Y, Zhang D, Wang F, Zhang D. Positive association of the Disrupted-in-Schizophrenia-1 gene (DISC1) with schizophrenia in the Chinese Han population. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:266-70. [PMID: 17286247 DOI: 10.1002/ajmg.b.30322] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Disrupted-in-Schizophrenia-1 (DISC1) is located on 1q42.1, one of the most promising susceptibility loci in schizophrenia linkage studies. A non-synonymous genetic variation rs821616 (Ser704Cys) in DISC1, has recently been shown to be associated with schizophrenia in family-based study [Callicott et al. (2005); Proc Natl Acad Sci USA 102: 8627-8632]. In order to further confirm this issue, we examined four single nucleotide polymorphisms (SNPs) in a chromosomal region spanning 42 kb of this gene, namely rs821616, rs821597, rs4658971, and rs843979, in Chinese sample of 313 schizophrenia patients and 317 healthy controls. Our results showed that two SNPs had strong associations with schizophrenia (rs821616: Allele A > T, chi(2) = 7.8006, df = 1, P = 0.0052; Genotype, chi(2) = 7.7935, df = 2, P = 0.0203; rs821597: Allele A > G, chi(2) = 9.5404, df = 1, P = 0.0020; Genotype, chi(2) = 12.2780, df = 2, P = 0.0022). When haplotypes were constructed with two, three, and four markers, a number of haplotype combinations, especially those including rs821616 and rs821597, were significantly associated with schizophrenia. Furthermore, there was a strong evidence for association in a four-marker haplotype analysis (chi(2) = 7.686, df = 4, P = 0.005581, corrected P = 0.006199). Although the case-control and family-based association studies both suggest that DISC1 gene may play a role in genetic susceptibility to schizophrenia, the risk haplotypic combinations have subtle differences in the two studies. Our findings provide further evidence for DISC1 as a predisposing gene involved in schizophrenia in the Chinese Han Population.
Collapse
Affiliation(s)
- Mei Qu
- Institute of Mental Health, Peking University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
434
|
Jang YL, Kim JW, Lee YS, Park DY, Cho EY, Jeun HO, Lee D, Hong KS. Linkage of schizophrenia with chromosome 1q32 in Korean multiplex families. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:279-84. [PMID: 17171664 DOI: 10.1002/ajmg.b.30389] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromosome 1q contains a few loci for which modest evidence of linkage with schizophrenia has been reported in several independent studies. However, markers showing the peak linkage signal are dispersed over a large chromosomal region. In addition, inconsistent findings have been generated from different populations or different subgroups of the same populations. The purpose of the current study is to determine whether those loci are linked to schizophrenia in the Korean population. We investigated 46 Korean multiplex schizophrenia families, initially using 11 microsatellite markers spanning around 91 cM region of 1p22 approximately 42. In a non-parametric linkage analysis, D1S249 located on 1q32.1 showed statistical evidence suggestive of linkage. At the second stage analysis for narrowing down the region, four additional nearby markers were genotyped. In the single point analysis, we found another suggestive linkage signal at D1S2891. The highest NPL score of 2.67 (P = 0.0039) was obtained in the multi-point analysis. This study provides supportive evidence for linkage of chromosome 1q32 with schizophrenia.
Collapse
Affiliation(s)
- Yong Lee Jang
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Kagnam-Gu, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
435
|
Le-Niculescu H, Balaraman Y, Patel S, Tan J, Sidhu K, Jerome RE, Edenberg HJ, Kuczenski R, Geyer MA, Nurnberger JI, Faraone SV, Tsuang MT, Niculescu AB. Towards understanding the schizophrenia code: an expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:129-58. [PMID: 17266109 DOI: 10.1002/ajmg.b.30481] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identifying genes for schizophrenia through classical genetic approaches has proven arduous. Here, we present a comprehensive convergent analysis that translationally integrates brain gene expression data from a relevant pharmacogenomic mouse model (involving treatments with a psychomimetic agent - phencyclidine (PCP), and an anti-psychotic - clozapine), with human genetic linkage data and human postmortem brain data, as a Bayesian strategy of cross validating findings. Topping the list of candidate genes, we have three genes involved in GABA neurotransmission (GABRA1, GABBR1, and GAD2), one gene involved in glutamate neurotransmission (GRIA2), one gene involved in neuropeptide signaling (TAC1), two genes involved in synaptic function (SYN2 and KCNJ4), six genes involved in myelin/glial function (CNP, MAL, MBP, PLP1, MOBP and GFAP), and one gene involved in lipid metabolism (LPL). These data suggest that schizophrenia is primarily a disorder of brain functional and structural connectivity, with GABA neurotransmission playing a prominent role. These findings may explain the EEG gamma band abnormalities detected in schizophrenia. The analysis also revealed other high probability candidates genes (neurotransmitter signaling, other structural proteins, ion channels, signal transduction, regulatory enzymes, neuronal migration/neurite outgrowth, clock genes, transcription factors, RNA regulatory genes), pathways and mechanisms of likely importance in pathophysiology. Some of the pathways identified suggest possible avenues for augmentation pharmacotherapy of schizophrenia with other existing agents, such as benzodiazepines, anticonvulsants and lipid modulating agents. Other pathways are new potential targets for drug development. Lastly, a comparison with our earlier work on bipolar disorder illuminates the significant molecular overlap between schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- H Le-Niculescu
- Laboratory of Neurophenomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
436
|
Palomo T, Kostrzewa RM, Beninger RJ, Archer T. Genetic variation and shared biological susceptibility underlying comorbidity in neuropsychiatry. Neurotox Res 2007; 12:29-42. [PMID: 17513198 DOI: 10.1007/bf03033899] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Genetic factors underlying alcoholism, substance abuse, antisocial and violent behaviour, psychosis, schizophrenia and psychopathy are emerging to implicate dopaminergic and cannabinoid, but also monoaminergic and glutamatergic systems through the maze of promoter genes and polymorphisms. Candidate gene association studies suggest the involvement of a range of genes in different disorders of CNS structure and function. Indices of comorbidity both complicate the array of gene-involvement and provide a substrate of hazardous interactivity. The putative role of the serotonin transporter gene in affective-dissociative spectrum disorders presents both plausible genetic variation and complication of comorbidity The position of genetic variation is further complicated through ethnic, contextual and social factors that provide geometric progressions in the comordity already underlying diagnostic obstacles. The concept of shared biological susceptibility to two or more disorder conditions of comorbidity seems a recurring observation, e.g., bipolar disorder with alcoholism or schizophrenia with alcohol/substance abuse or diabetes with schizopsychotic disorder. Several lines of evidence seem to suggest that the factors influencing variation in one set of symptoms and those affecting one or more disorders are observed to a marked extent which ought to facilitate the search for susceptibility genes in comorbid brain disorders. Identification of regional genetic factors is awaited for a more compelling outline that ought eventually to lead to greater efficacy of symptom-disorder arrangements and an augmentation of current pharmacological treatment therapies.
Collapse
Affiliation(s)
- Tomas Palomo
- Psychiatry Service, 12 de Octubre, University Hospital, Madrid 28041, Spain
| | | | | | | |
Collapse
|
437
|
Craddock N, O'Donovan MC, Owen MJ. Phenotypic and genetic complexity of psychosis. Invited commentary on ... Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry 2007; 190:200-3. [PMID: 17329738 DOI: 10.1192/bjp.bp.106.033761] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Psychosis, like other major psychiatric disorders, is both genetically and clinically complex. Increasingly powerful molecular genetic studies have the potential to identify DNA variation that influences susceptibility to genetically complex disorders. There is a need to use a range of genetic approaches appropriate to identifying a spectrum of risk variants from the common through to the rare. Some variants might have large effects at the level of the individual but most are likely to have modest or small effects at both population and individual level. Extensive clinical heterogeneity is likely to have a significant impact on the power of even the largest studies and, more importantly, will lead to extensive variability between studies and hamper attempts at replication. If we are to realise the potential of molecular genetics, we need to overcome the major limitations imposed by current psychiatric diagnostic classifications and identify clinical phenotypes that reflect the presence of underlying entities with biological validity.
Collapse
Affiliation(s)
- Nick Craddock
- Department of Psychological Medicine, Henry Wellcome Building, Wales School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | | | |
Collapse
|
438
|
Kakiuchi C, Ishiwata M, Nanko S, Kunugi H, Minabe Y, Nakamura K, Mori N, Fujii K, Yamada K, Yoshikawa T, Kato T. Association analysis of ATF4 and ATF5, genes for interacting-proteins of DISC1, in bipolar disorder. Neurosci Lett 2007; 417:316-21. [PMID: 17346882 DOI: 10.1016/j.neulet.2007.02.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/16/2007] [Accepted: 02/21/2007] [Indexed: 01/12/2023]
Abstract
Disrupted in schizophrenia 1 (DISC1) and its molecular cascade are implicated in the pathophysiology of schizophrenia and bipolar disorder. As interacting-proteins with DISC1, Nudel, ATF4, ATF5, LIS1, alpha-tubulin, PDE4B, eIF3, FEZ1, Kendrin, MAP1A and MIPT3 were identified. We previously showed the down-regulation of ATF5 in the lymphoblastoid cells derived from affected co-twin of monozygotic twins discordant for bipolar disorder. We also suggested the contribution of endoplasmic reticulum stress response pathway to the illness, and ATF4 is one of major components in the pathway. Truncated mutant DISC1 reportedly cannot interact with ATF4 and ATF5. These findings suggest the role of these genes in the pathophysiology of bipolar disorder. In this study, we tested genetic association of ATF4 and ATF5 genes with bipolar disorder by a case-control study in Japanese population (438 patients and 532 controls) and transmission disequilibrium test in 237 trio samples from NIMH Genetics Initiative Pedigrees. We also performed gene expression analysis in lymphoblastoid cells. We did not find any significant association in both genetic study and expression analysis. By the exploratory haplotype analysis, nominal association of ATF4 with bipolar II patients was observed, but it was not significant after correction of multiple testing. Contribution of common variations of ATF4 and ATF5 to the pathophysiology of bipolar disorder may be minimal if any.
Collapse
Affiliation(s)
- Chihiro Kakiuchi
- Laboratory for Molecular Dynamics of Mental Disorders, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
439
|
Abstract
OBJECTIVE In order to compare their validity, this review applies scientific standards for sustaining the neuroses, the schizophrenias and bipolar disorders as separate "bona-fide" psychiatric diseases. The standards for disease validation demand specific and unique symptoms. METHOD We review a wide variety of clinical and basic science comparisons between schizophrenia and psychotic bipolar in a select English-language literature. RESULTS Like covered wagons, the neuroses once served us well but became obsolete and were discarded or reorganized based on what was known about commonalities of symptoms, causation and pharmacological responsivity. Bipolar patients meet unique and specific diagnostic criteria and demonstrate consistent results across a variety of scientific disciplines. Neither the neuroses nor the schizophrenias have such unique or disease specific diagnostic criteria. Psychotic mood disorders account for the DSM diagnostic criteria for schizophrenia. A recent, selected but diverse basic science literature demonstrates surprising similarities between schizophrenia and psychotic bipolar which should not exist if these disorders are distinct. CONCLUSIONS Like the neuroses, there is stigma, confusion and misunderstanding about the condition called schizophrenia, resulting in substantial negative impact on bipolar patients misdiagnosed as having schizophrenia. The psychoses, including the schizophrenias, likely are explained by a single disease, psychotic bipolar disorder, that has demonstrated a wide spectrum of severity of symptoms and chronicity of course, not traditionally recognized.
Collapse
Affiliation(s)
- C Raymond Lake
- Department of Psychiatry, University of Kansas Medical Center, Kansas City, KS, USA.
| | | |
Collapse
|
440
|
Mackie S, Millar JK, Porteous DJ. Role of DISC1 in neural development and schizophrenia. Curr Opin Neurobiol 2007; 17:95-102. [PMID: 17258902 DOI: 10.1016/j.conb.2007.01.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 01/17/2007] [Indexed: 01/15/2023]
Abstract
How can we hope to explain mechanistically the schizophrenic phenotype? Perhaps through the reductionist approach of genetics, which is beginning to yield biological clues. Growing evidence supports the view that the well-established genetic risk factor DISC1 plays an important role in schizophrenia biology by interacting with FEZ1 and NDEL1 during neurodevelopment and with the phosphodiesterase PDE4B in neuronal cell signalling. Thus, DISC1 and its pathways support the neurodevelopmental hypothesis of schizophrenia and provide a mechanistic explanation for the characteristic cognitive deficits. Genetic variants of DISC1 also predispose to related affective (mood) disorders. As a consequence, we can speculate on the mechanisms of DISC1 action and possible routes to treatment for these common, debilitating brain disorders.
Collapse
Affiliation(s)
- Shaun Mackie
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | | | | |
Collapse
|
441
|
Prasanth KV, Spector DL. Eukaryotic regulatory RNAs: an answer to the 'genome complexity' conundrum. Genes Dev 2007; 21:11-42. [PMID: 17210785 DOI: 10.1101/gad.1484207] [Citation(s) in RCA: 303] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A large portion of the eukaryotic genome is transcribed as noncoding RNAs (ncRNAs). While once thought of primarily as "junk," recent studies indicate that a large number of these RNAs play central roles in regulating gene expression at multiple levels. The increasing diversity of ncRNAs identified in the eukaryotic genome suggests a critical nexus between the regulatory potential of ncRNAs and the complexity of genome organization. We provide an overview of recent advances in the identification and function of eukaryotic ncRNAs and the roles played by these RNAs in chromatin organization, gene expression, and disease etiology.
Collapse
|
442
|
Taya S, Shinoda T, Tsuboi D, Asaki J, Nagai K, Hikita T, Kuroda S, Kuroda K, Shimizu M, Hirotsune S, Iwamatsu A, Kaibuchi K. DISC1 regulates the transport of the NUDEL/LIS1/14-3-3epsilon complex through kinesin-1. J Neurosci 2007; 27:15-26. [PMID: 17202468 PMCID: PMC6672274 DOI: 10.1523/jneurosci.3826-06.2006] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Disrupted-In-Schizophrenia 1 (DISC1) is a candidate gene for susceptibility to schizophrenia. DISC1 is reported to interact with NudE-like (NUDEL), which forms a complex with lissencephaly-1 (LIS1) and 14-3-3epsilon. 14-3-3epsilon is involved in the proper localization of NUDEL and LIS1 in axons. Although the functional significance of this complex in neuronal development has been reported, the transport mechanism of the complex into axons and their functions in axon formation remain essentially unknown. Here we report that Kinesin-1, a motor protein of anterograde axonal transport, was identified as a novel DISC1-interacting molecule. DISC1 directly interacted with kinesin heavy chain of Kinesin-1. Kinesin-1 interacted with the NUDEL/LIS1/14-3-3epsilon complex through DISC1, and these molecules localized mainly at cell bodies and partially in the distal part of the axons. DISC1 partially colocalized with Kinesin family member 5A, NUDEL, LIS1, and 14-3-3epsilon in the growth cones. The knockdown of DISC1 by RNA interference or the dominant-negative form of DISC1 inhibited the accumulation of NUDEL, LIS1, and 14-3-3epsilon at the axons and axon elongation. The knockdown or the dominant-negative form of Kinesin-1 inhibited the accumulation of DISC1 at the axons and axon elongation. Furthermore, the knockdown of NUDEL or LIS1 inhibited axon elongation. Together, these results indicate that DISC1 regulates the localization of NUDEL/LIS1/14-3-3epsilon complex into the axons as a cargo receptor for axon elongation.
Collapse
Affiliation(s)
- Shinichiro Taya
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Tomoyasu Shinoda
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Daisuke Tsuboi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Junko Asaki
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Kumiko Nagai
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Takao Hikita
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Setsuko Kuroda
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Keisuke Kuroda
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Mariko Shimizu
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Graduate School of Medicine, Osaka City University, Abeno, Osaka 545-8585, Japan, and
| | | | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| |
Collapse
|
443
|
Shinoda T, Taya S, Tsuboi D, Hikita T, Matsuzawa R, Kuroda S, Iwamatsu A, Kaibuchi K. DISC1 regulates neurotrophin-induced axon elongation via interaction with Grb2. J Neurosci 2007; 27:4-14. [PMID: 17202467 PMCID: PMC6672285 DOI: 10.1523/jneurosci.3825-06.2007] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Revised: 10/31/2006] [Accepted: 11/01/2006] [Indexed: 12/31/2022] Open
Abstract
Disrupted-in-Schizophrenia-1 (DISC1) is a candidate gene for susceptibility of schizophrenia. In the accompanying paper (Taya et al., 2006), we report that DISC1 acts as a linker between Kinesin-1 and DISC1-interacting molecules, such as NudE-like, lissencephaly-1, and 14-3-3epsilon. Here we identified growth factor receptor bound protein 2 (Grb2) as a novel DISC1-interacting molecule. Grb2 acts as an adaptor molecule that links receptor tyrosine kinases and the Ras-extracellular signal-regulated kinase (ERK) pathway. DISC1 formed a ternary complex with Grb2 and kinesin heavy chain KIF5A of Kinesin-1. In cultured rat hippocampal neurons, both DISC1 and Grb2 partially colocalized at the distal part of axons. Knockdown of DISC1 or kinesin light chains of Kinesin-1 by RNA interference inhibited the accumulation of Grb2 from the distal part of axons. Knockdown of DISC1 also inhibited the neurotrophin-3 (NT-3)-induced phosphorylation of ERK-1/2 at the distal part of axons and inhibited NT-3-induced axon elongation. These results suggest that DISC1 is required for NT-3-induced axon elongation and ERK activation at the distal part of axons by recruiting Grb2 to axonal tips.
Collapse
Affiliation(s)
- Tomoyasu Shinoda
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa, Nagoya 466-8550, Japan, and
| | - Shinichiro Taya
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa, Nagoya 466-8550, Japan, and
| | - Daisuke Tsuboi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa, Nagoya 466-8550, Japan, and
| | - Takao Hikita
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa, Nagoya 466-8550, Japan, and
| | - Reiko Matsuzawa
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa, Nagoya 466-8550, Japan, and
| | - Setsuko Kuroda
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa, Nagoya 466-8550, Japan, and
| | | | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa, Nagoya 466-8550, Japan, and
| |
Collapse
|
444
|
Camargo LM, Collura V, Rain JC, Mizuguchi K, Hermjakob H, Kerrien S, Bonnert TP, Whiting PJ, Brandon NJ. Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol Psychiatry 2007; 12:74-86. [PMID: 17043677 DOI: 10.1038/sj.mp.4001880] [Citation(s) in RCA: 341] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Disrupted in Schizophrenia 1 (DISC1) is a schizophrenia risk gene associated with cognitive deficits in both schizophrenics and the normal ageing population. In this study, we have generated a network of protein-protein interactions (PPIs) around DISC1. This has been achieved by utilising iterative yeast-two hybrid (Y2H) screens, combined with detailed pathway and functional analysis. This so-called 'DISC1 interactome' contains many novel PPIs and provides a molecular framework to explore the function of DISC1. The network implicates DISC1 in processes of cytoskeletal stability and organisation, intracellular transport and cell-cycle/division. In particular, DISC1 looks to have a PPI profile consistent with that of an essential synaptic protein, which fits well with the underlying molecular pathology observed at the synaptic level and the cognitive deficits seen behaviourally in schizophrenics. Utilising a similar approach with dysbindin (DTNBP1), a second schizophrenia risk gene, we show that dysbindin and DISC1 share common PPIs suggesting they may affect common biological processes and that the function of schizophrenia risk genes may converge.
Collapse
Affiliation(s)
- L M Camargo
- Merck Research Labs, Merck & Co., Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
445
|
Turetsky BI, Calkins ME, Light GA, Olincy A, Radant AD, Swerdlow NR. Neurophysiological endophenotypes of schizophrenia: the viability of selected candidate measures. Schizophr Bull 2007; 33:69-94. [PMID: 17135482 PMCID: PMC2632291 DOI: 10.1093/schbul/sbl060] [Citation(s) in RCA: 420] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In an effort to reveal susceptibility genes, schizophrenia research has turned to the endophenotype strategy. Endophenotypes are characteristics that reflect the actions of genes predisposing an individual to a disorder, even in the absence of diagnosable pathology. Individual endophenotypes are presumably determined by fewer genes than the more complex phenotype of schizophrenia and would, therefore, reduce the complexity of genetic analyses. Unfortunately, despite there being rational criteria to define a viable endophenotype, the term is sometimes applied indiscriminately to characteristics that are deviant in affected individuals. Schizophrenia patients exhibit deficits in several neurophysiological measures of information processing that have been proposed as candidate endophenotypes. Successful processing of sensory inputs requires the ability to inhibit intrinsic responses to redundant stimuli and, reciprocally, to facilitate responses to less frequent salient stimuli. There is evidence to suggest that both these processes are "impaired" in schizophrenia. Measures of inhibitory failure include prepulse inhibition of the startle reflex, P50 auditory evoked potential suppression, and antisaccade eye movements. Measures of impaired deviance detection include mismatch negativity and the P300 event-related potential. The purpose of this review is to systematically evaluate the endophenotype candidacy of these key neurophysiological abilities. For each candidate, we describe typical experimental procedures, the current understanding of the underlying neurobiology, the nature of the abnormality in schizophrenia, the reliability, stability and heritability of the measure, and any reported gene associations. We conclude with a discussion of the few studies thus far that have employed a multivariate approach with these candidates.
Collapse
Affiliation(s)
- Bruce I Turetsky
- Department of Psychiatry, 10th floor, Gates Building, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
446
|
Venken T, Del-Favero J. Chasing genes for mood disorders and schizophrenia in genetically isolated populations. Hum Mutat 2007; 28:1156-70. [PMID: 17659644 DOI: 10.1002/humu.20582] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Major affective disorders and schizophrenia are among the most common brain diseases worldwide and their predisposition is influenced by a complex interaction of genetic and environmental factors. So far, traditional linkage mapping studies for these complex disorders have not achieved the same success as the positional cloning of genes for Mendelian diseases. The struggle to identify susceptibility genes for complex disorders has stimulated the development of alternative approaches, including studies in genetically isolated populations. Since isolated populations are likely to have both a reduced number of genetic vulnerability factors and environmental background and are therefore considered to be more homogeneous compared to outbred populations, the use of isolated populations in genetic studies is expected to improve the chance of finding susceptibility loci and genes. Here we review the role of isolated populations, based on linkage and association studies, in the identification of susceptibility genes for bipolar disorder and schizophrenia.
Collapse
Affiliation(s)
- Tine Venken
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerpen, Belgium
| | | |
Collapse
|
447
|
Hodgkinson CA, Goldman D, Ducci F, DeRosse P, Caycedo DA, Newman ER, Kane JM, Roy A, Malhotra AK. The FEZ1 gene shows no association to schizophrenia in Caucasian or African American populations. Neuropsychopharmacology 2007; 32:190-6. [PMID: 16936715 DOI: 10.1038/sj.npp.1301177] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a complex psychiatric disorder with both genetic and environmental components and is thought to be in part neurodevelopmental in origin. The DISC1 gene has been linked to schizophrenia in two independent Caucasian populations. The DISC1 protein interacts with a variety of proteins including FEZ1, the mammalian homolog of the Caenorhabditis elegans unc-76 protein, which is involved in axonal outgrowth. Variation at the FEZ1 gene has been associated with schizophrenia in a large Japanese cohort. In this study, nine SNP markers at the FEZ1 locus were genotyped in two populations. A North American Caucasian cohort of 212 healthy controls, 178 schizophrenics, 79 bipolar disorder, and 58 with schizoaffective disorder, and an African American cohort of 133 healthy controls, 162 schizophrenics, and 28 with schizoaffective disorder. No association to schizophrenia, bipolar disorder or schizoaffective disorder was found for any of the nine markers typed in these populations at the allelic or the genotypic level. Additionally no association was found in either population between specific haplotypes and any of the psychiatric disorders. Variation at the FEZ1 locus does not play a significant role in the etiology of schizophrenia, bipolar disorder or schizoaffective disorder in North American Caucasian or African American populations.Neuropsychopharmacology (2007) 32, 190-196. doi:10.1038/sj.npp.1301177; published online 16 August 2006.
Collapse
Affiliation(s)
- Colin A Hodgkinson
- Section of Human Neurogenetics, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
448
|
Blackwood DHR, Pickard BJ, Thomson PA, Evans KL, Porteous DJ, Muir WJ. Are some genetic risk factors common to schizophrenia, bipolar disorder and depression? Evidence from DISC1, GRIK4 and NRG1. Neurotox Res 2007; 11:73-83. [PMID: 17449450 DOI: 10.1007/bf03033484] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Depression is common in patients with schizophrenia and it is well established from family studies that rates of depression are increased among relatives of probands with schizophrenia, making it likely that the phenotypes described under the categories of affective and non-affective psychoses share some genetic risk factors. Family linkage studies have identified several chromosomal regions likely to contain risk genes for schizophrenia and bipolar disorder, suggesting common susceptibility loci. Candidate gene association studies have provided further evidence to suggest that some genes including two of the most studied candidates, Disrupted in Schizophrenia 1 (DISC1) and Neuregulin 1 (NRG1) may be involved in both types of psychosis. We have recently identified another strong candidate for a role in both schizophrenia and affective disorders, GRIK4 a glutamate receptor mapped to chromosome 11q23 [Glutamate Receptor, Ionotropic, Kainate, type 4]. This gene is disrupted by a translocation breakpoint in a patient with schizophrenia, and case control studies show significant association of GRIK4 with both schizophrenia and bipolar disorder. Identifying genes implicated in the psychoses may eventually provide the basis for classification based on biology rather than symptoms, and suggest novel treatment strategies for these complex brain disorders.
Collapse
Affiliation(s)
- Douglas H R Blackwood
- Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK.
| | | | | | | | | | | |
Collapse
|
449
|
Roberts RC. Schizophrenia in translation: disrupted in schizophrenia (DISC1): integrating clinical and basic findings. Schizophr Bull 2007; 33:11-5. [PMID: 17138582 PMCID: PMC2632285 DOI: 10.1093/schbul/sbl063] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The disrupted in schizophrenia 1 (DISC1) gene has been linked to schizophrenia and other serious mental illnesses in multiple pedigrees. This article will review the neurobiology of DISC1 in normal developing and adult brain and the putative role of the mutant form in major mental illness, particularly schizophrenia. The initial genetic finding of an association between DISC1 and schizophrenia in a Scottish population has now been replicated in Finnish, American, Japanese, and Taiwanese populations. DISC1 is present throughout the brain of a variety of species during development and adulthood, including many of the brain regions known to be abnormal in schizophrenia, such as the prefrontal cortex, hippocampus, and thalamus. The functions of DISC1 in the developing brain include neuronal migration, neurite outgrowth, and neurite extension. In the adult, DISC1 has been identified in multiple populations of neurons and in structures associated with synaptic function, suggesting that one of its adult functions may be synaptic plasticity. DISC1 is associated with numerous cognitive functions that are abnormal in schizophrenia. Converging evidence from cell culture, mice mutants, postmortem brain, and genetics implicates mutant DISC1 in the pathophysiology of schizophrenia and other mental illnesses.
Collapse
Affiliation(s)
- Rosalinda C Roberts
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA.
| |
Collapse
|
450
|
O'Tuathaigh CMP, Babovic D, O'Meara G, Clifford JJ, Croke DT, Waddington JL. Susceptibility genes for schizophrenia: Characterisation of mutant mouse models at the level of phenotypic behaviour. Neurosci Biobehav Rev 2007; 31:60-78. [PMID: 16782199 DOI: 10.1016/j.neubiorev.2006.04.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 04/21/2006] [Accepted: 04/21/2006] [Indexed: 01/25/2023]
Abstract
A wealth of evidence indicates that schizophrenia is heritable. However, the genetic mechanisms involved are poorly understood. Furthermore, it may be that genes conferring susceptibility interact with one another and with non-genetic factors to modulate risk status and/or the expression of symptoms. Genome-wide scanning and the mapping of several regions linked with risk for schizophrenia have led to the identification of several putative susceptibility genes including neuregulin-1 (NRG1), dysbindin (DTNBP1), regulator of G-protein signalling 4 (RGS4), catechol-o-methyltransferase (COMT), proline dehydrogenase (PRODH) and disrupted-in-schizophrenia 1 (DISC1). Genetic animal models involving targeted mutation via gene knockout or transgenesis have the potential to inform on the role of a given susceptibility gene on the development and behaviour of the whole organism and on whether disruption of gene function is associated with schizophrenia-related structural and functional deficits. This review focuses on data regarding the behavioural phenotype of mice mutant for schizophrenia susceptibility genes identified by positional candidate analysis and the study of chromosomal abnormalities. We also consider methodological issues that are likely to influence phenotypic effects, as well as the limitations associated with existing molecular techniques.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- Molecular & Cellular Therapeutics and Research Institute, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|