401
|
Bikker R, Christmann M, Preuß K, Welz B, Friesenhagen J, Dittrich-Breiholz O, Huber R, Brand K. TNF phase III signalling in tolerant cells is tightly controlled by A20 and CYLD. Cell Signal 2017. [DOI: 10.1016/j.cellsig.2017.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
402
|
A high-throughput chemical screen identifies novel inhibitors and enhancers of anti-inflammatory functions of the glucocorticoid receptor. Sci Rep 2017; 7:7405. [PMID: 28785063 PMCID: PMC5547123 DOI: 10.1038/s41598-017-07565-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 06/28/2017] [Indexed: 02/05/2023] Open
Abstract
Glucocorticoids (GCs)—ligands of the glucocorticoid receptor (GR)—are widely used to treat inflammatory diseases, but suffer from significant side effects and poor responsiveness in certain patient populations. Identification of chemical GR modulators may provide insights into the regulatory mechanisms of anti-inflammatory functions of GR and help improve GC-based therapy. Here we report the development and application of a high-throughput screening to identify compounds that either enhance or suppress the anti-inflammatory effect of GR function. Using a cell-based GR activity assay that measures Dexamethasone (Dex)-mediated NF-κB repression, we have screened ~8,000 compounds and identified several compounds that suppressed GR activity, including multiple GSK3β inhibitors and anti-cancer agent camptothecin. Notably, we also identified two kinase IKK2 inhibitors, including TPCA-1, as GR enhancers that improve the anti-inflammatory effect of GR. In particular, TPCA-1 augmented the activity of Dex in NF-κB repression by attenuating GR down-regulation. Consistent with the observation, siRNA-mediated IKK2 knockdown decreased GR down-regulation and increased GR expression. Together, our results identified chemical compounds as novel modulators of GR and revealed an unexpected role for IKK2 in GR down-regulation. Furthermore, we have established a high-throughput screening platform for discovering GR-modulating compounds that may be repurposed to improve current GC-based therapies.
Collapse
|
403
|
Abstract
The transcription factor NF-κB regulates multiple aspects of innate and adaptive immune functions and serves as a pivotal mediator of inflammatory responses. NF-κB induces the expression of various pro-inflammatory genes, including those encoding cytokines and chemokines, and also participates in inflammasome regulation. In addition, NF-κB plays a critical role in regulating the survival, activation and differentiation of innate immune cells and inflammatory T cells. Consequently, deregulated NF-κB activation contributes to the pathogenic processes of various inflammatory diseases. In this review, we will discuss the activation and function of NF-κB in association with inflammatory diseases and highlight the development of therapeutic strategies based on NF-κB inhibition.
Collapse
|
404
|
Korovila I, Hugo M, Castro JP, Weber D, Höhn A, Grune T, Jung T. Proteostasis, oxidative stress and aging. Redox Biol 2017; 13:550-567. [PMID: 28763764 PMCID: PMC5536880 DOI: 10.1016/j.redox.2017.07.008] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/04/2017] [Accepted: 07/09/2017] [Indexed: 12/21/2022] Open
Abstract
The production of reactive species is an inevitable by-product of metabolism and thus, life itself. Since reactive species are able to damage cellular structures, especially proteins, as the most abundant macromolecule of mammalian cells, systems are necessary which regulate and preserve a functional cellular protein pool, in a process termed “proteostasis”. Not only the mammalian protein pool is subject of a constant turnover, organelles are also degraded and rebuild. The most important systems for these removal processes are the “ubiquitin-proteasomal system” (UPS), the central proteolytic machinery of mammalian cells, mainly responsible for proteostasis, as well as the “autophagy-lysosomal system”, which mediates the turnover of organelles and large aggregates. Many age-related pathologies and the aging process itself are accompanied by a dysregulation of UPS, autophagy and the cross-talk between both systems. This review will describe the sources and effects of oxidative stress, preservation of cellular protein- and organelle-homeostasis and the effects of aging on proteostasis in mammalian cells.
Collapse
Affiliation(s)
- Ioanna Korovila
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Martín Hugo
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany; Faculty of Medicine, Department of Biomedicine, University of Porto, 4200-319, Portugal; Institute for Innovation and Health Research (I3S), Aging and Stress Group, R. Alfredo Allen, 4200-135 Porto, Portugal
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany.
| |
Collapse
|
405
|
Li YR, Lin CC, Huang CY, Wong YH, Hsieh CH, Wu HW, Chen JJW, Wu YS. Study of the inhibitory effects on TNF-α-induced NF-κB activation of IMD0354 analogs. Chem Biol Drug Des 2017; 90:1307-1311. [PMID: 28557295 DOI: 10.1111/cbdd.13032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 01/31/2017] [Accepted: 05/15/2017] [Indexed: 12/23/2022]
Abstract
Nuclear factor-κB (NF-κB) is an important nuclear transcription factor which regulates pro-inflammatory cytokines such as TNF-α, IL-6. Its role as immunoregulatory mediator makes it an attractive target in the development of treatments for inflammatory and autoimmune diseases. In this study, we synthesized derivatives of IMD0354, a known inhibitor for NF-κB, in attempt to understand the effect of benzanilide substitutions on its activity. The inhibition of these analogs on NF-κB activation was analyzed by luciferase assay. The inhibition of IKKβ phosphorylation and pro-inflammatory cytokines was determined by Western blot and real-time PCR. The structure activity relationships showed that the hydroxyl group on IMD0354 is a critical moiety that resulting in the inhibition of NF-κB. Derivatives 1m, 2b, and 2c were shown to inhibit pro-inflammatory cytokine production at low concentration. These newly synthesized compounds may be useful for the treatment of chronic inflammatory disorders or for cancer prevention.
Collapse
Affiliation(s)
- Yi-Rong Li
- Department of Chemistry, Tunghai University, Taichung, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Chen Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Yuan Huang
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Yung-Hao Wong
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | | | - Han-Wei Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| |
Collapse
|
406
|
He Y, Feng D, Li M, Gao Y, Ramirez T, Cao H, Kim SJ, Yang Y, Cai Y, Ju C, Wang H, Li J, Gao B. Hepatic mitochondrial DNA/Toll-like receptor 9/MicroRNA-223 forms a negative feedback loop to limit neutrophil overactivation and acetaminophen hepatotoxicity in mice. Hepatology 2017; 66:220-234. [PMID: 28295449 PMCID: PMC5481471 DOI: 10.1002/hep.29153] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/08/2017] [Accepted: 03/07/2017] [Indexed: 12/24/2022]
Abstract
Acetaminophen (APAP) overdose is a leading cause of acute liver failure worldwide, in which mitochondrial DNA (mtDNA) released by damaged hepatocytes activates neutrophils through binding of Toll-like receptor 9 (TLR9), further aggravating liver injury. Here, we demonstrated that mtDNA/TLR9 also activates a negative feedback pathway through induction of microRNA-223 (miR-223) to limit neutrophil overactivation and liver injury. After injection of APAP in mice, levels of miR-223, the most abundant miRNAs in neutrophils, were highly elevated in neutrophils. Disruption of the miR-223 gene exacerbated APAP-induced hepatic neutrophil infiltration, oxidative stress, and injury and enhanced TLR9 ligand-mediated activation of proinflammatory mediators in neutrophils. An additional deletion of the intercellular adhesion molecule 1 (ICAM-1) gene ameliorated APAP-induced neutrophil infiltration and liver injury in miR-223 knockout mice. In vitro experiments revealed that miR-223-deficient neutrophils were more susceptible to TLR9 agonist-mediated induction of proinflammatory mediators and nuclear factor kappa B (NF-κB) signaling, whereas overexpression of miR-223 attenuated these effects in neutrophils. Moreover, inhibition of TLR9 signaling by either treatment with a TLR9 inhibitor or by disruption of TLR9 gene partially, but significantly, suppressed miR-223 expression in neutrophils post-APAP injection. In contrast, activation of TLR9 up-regulated miR-223 expression in neutrophils in vivo and in vitro. Mechanistically, activation of TLR9 up-regulated miR-223 by enhancing NF-κB binding on miR-223 promoter, whereas miR-223 attenuated TLR9/NF-κB-mediated inflammation by targeting IκB kinase α expression. Collectively, up-regulation of miR-223 plays a key role in terminating the acute neutrophilic response and is a therapeutic target for treatment of APAP-induced liver failure. (Hepatology 2017;66:220-234).
Collapse
Affiliation(s)
- Yong He
- School of pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China,Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,Institute for Liver Diseases, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Man Li
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanhang Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Teresa Ramirez
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haixia Cao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seung-Jin Kim
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yang Yang
- School of pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China,Institute for Liver Diseases, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yan Cai
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia Ju
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hua Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,Institute for Liver Diseases, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jun Li
- School of pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China,Institute for Liver Diseases, Anhui Medical University, Hefei, Anhui, 230032, China,Corresponding authors: Bin Gao, M.D., Ph.D., Laboratory of Liver Diseases, NIAAA/NIH, Bethesda, MD 20892; Tel: 301-443-3998. ; or Jun Li, M.D., Ph.D., School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui, China. Tel/fax: +86 551 65161001.
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,Corresponding authors: Bin Gao, M.D., Ph.D., Laboratory of Liver Diseases, NIAAA/NIH, Bethesda, MD 20892; Tel: 301-443-3998. ; or Jun Li, M.D., Ph.D., School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui, China. Tel/fax: +86 551 65161001.
| |
Collapse
|
407
|
Bekhbat M, Rowson SA, Neigh GN. Checks and balances: The glucocorticoid receptor and NFĸB in good times and bad. Front Neuroendocrinol 2017; 46:15-31. [PMID: 28502781 PMCID: PMC5523465 DOI: 10.1016/j.yfrne.2017.05.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/21/2017] [Accepted: 05/09/2017] [Indexed: 01/23/2023]
Abstract
Mutual regulation and balance between the endocrine and immune systems facilitate an organism's stress response and are impaired following chronic stress or prolonged immune activation. Concurrent alterations in stress physiology and immunity are increasingly recognized as contributing factors to several stress-linked neuropsychiatric disorders including depression, anxiety, and post-traumatic stress disorder. Accumulating evidence suggests that impaired balance and crosstalk between the glucocorticoid receptor (GR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) - effectors of the stress and immune axes, respectively - may play a key role in mediating the harmful effects of chronic stress on mood and behavior. Here, we first review the molecular mechanisms of GR and NFκB interactions in health, then describe potential shifts in the GR-NFκB dynamics in chronic stress conditions within the context of brain circuitry relevant to neuropsychiatric diseases. Furthermore, we discuss developmental influences and sex differences in the regulation of these two transcription factors.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Emory University, Graduate Division of Biological Sciences, Neuroscience Graduate Program, United States
| | - Sydney A Rowson
- Emory University, Graduate Division of Biological Sciences, Molecular and Systems Pharmacology Graduate Studies Program, United States
| | - Gretchen N Neigh
- Virginia Commonwealth University, Department of Anatomy & Neurobiology, United States.
| |
Collapse
|
408
|
He Z, Wang F, Zhang J, Sen S, Pang Q, Luo S, Gwack Y, Sun Z. Regulation of Th17 Differentiation by IKKα-Dependent and -Independent Phosphorylation of RORγt. THE JOURNAL OF IMMUNOLOGY 2017; 199:955-964. [PMID: 28667162 DOI: 10.4049/jimmunol.1700457] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/31/2017] [Indexed: 01/05/2023]
Abstract
Transcription factor retinoid acid-related orphan receptor (ROR)γt transcriptionally regulates the genes required for differentiation of Th17 cells that mediate both protective and pathogenic immunity. However, little is known about the function of posttranslational modifications in the regulation of RORγt activity. Mass spectrometric analysis of immunoprecipitated RORγt from Th17 cells identified multiple phosphorylation sites. Systematic mutation analysis of the identified phosphorylation sites found that phosphorylation of S376 enhances whereas phosphorylation of S484 inhibits Th17 differentiation. IκB kinase (IKK)α binds and phosphorylates RORγt at S376 but not S484. Knockdown of IKKα, dominant-negative IKKα, and RORγt mutants incapable of interacting with IKKα all decrease Th17 differentiation. Furthermore, nonphosophorylatable RORγt mutant (S376A) impairs whereas phosphomimetic mutant (S376E) stimulates Th17 differentiation independent of IKKα. Therefore, IKKα-dependent phosphorylation of S376 stimulated whereas IKKα-independent phosphorylation of S484 inhibited RORγt function in Th17 differentiation.
Collapse
Affiliation(s)
- Zhiheng He
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010
| | - Fei Wang
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010
| | - Jing Zhang
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010
| | - Subha Sen
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010
| | - Qihua Pang
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010.,School of Life Sciences, South China Normal University, Guangzhou 510631, China; and
| | - Shengwei Luo
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010.,School of Life Sciences, South China Normal University, Guangzhou 510631, China; and
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Zuoming Sun
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010;
| |
Collapse
|
409
|
Wu S, Yano S, Chen J, Hisanaga A, Sakao K, He X, He J, Hou DX. Polyphenols from Lonicera caerulea L. Berry Inhibit LPS-Induced Inflammation through Dual Modulation of Inflammatory and Antioxidant Mediators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5133-5141. [PMID: 28573848 DOI: 10.1021/acs.jafc.7b01599] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lonicera caerulea L. berry polyphenols (LCBP) are considered as major components for bioactivity. This study aimed to clarify the molecular mechanisms by monitoring inflammatory and antioxidant mediator actions in lipopolysaccharide (LPS)-induced mouse paw edema and macrophage cell model. LCBP significantly attenuated LPS-induced paw edema (3.0 ± 0.1 to 2.8 ± 0.1 mm, P < 0.05) and reduced (P < 0.05) serum levels of monocyte chemotactic protein-1 (MCP-1, 100.9 ± 2.3 to 58.3 ± 14.5 ng/mL), interleukin (IL)-10 (1596.1 ± 424.3 to 709.7 ± 65.7 pg/mL), macrophage inflammatory protein (MIP)-1α (1761.9 ± 208.3 to 1369.1 ± 56.4 pg/mL), IL-6 (1262.8 ± 71.7 to 499.0 ± 67.1 pg/mL), IL-4 (93.3 ± 25.7 to 50.7 ± 12.5 pg/mL), IL-12(p-70) (580.4 ± 132.0 to 315.2 ± 35.1 pg/mL), and tumor necrosis factor-α (TNF-α, 2045.5 ± 264.9 to 1270.7 ± 158.6 pg/mL). Cell signaling analysis revealed that LCBP inhibited transforming growth factor β activated kinase-1 (TAK1)-mediated mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways, and enhanced the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and manganese-dependent superoxide dismutase (MnSOD) in earlier response. Moreover, cyanidin 3-glucoside (C3G) and (-)-epicatechin (EC), two major components of LCBP, directly bound to TAK1. These data demonstrated that LCBP might inhibit LPS-induced inflammation by modulating both inflammatory and antioxidant mediators.
Collapse
Affiliation(s)
- Shusong Wu
- Core Research Program 1515, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University , Changsha, Hunan 410128, China
| | - Satoshi Yano
- The United Graduate School of Agricultural Sciences, Kagoshima University , Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Jihua Chen
- Department of Nutrition Science and Food Hygiene, XiangYa School of Public Health, Central South University , Changsha, Hunan 410078, China
| | - Ayami Hisanaga
- The United Graduate School of Agricultural Sciences, Kagoshima University , Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Kozue Sakao
- The United Graduate School of Agricultural Sciences, Kagoshima University , Korimoto 1-21-24, Kagoshima 890-0065, Japan
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University , Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Xi He
- Core Research Program 1515, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University , Changsha, Hunan 410128, China
| | - Jianhua He
- Core Research Program 1515, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University , Changsha, Hunan 410128, China
| | - De-Xing Hou
- Core Research Program 1515, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University , Changsha, Hunan 410128, China
- The United Graduate School of Agricultural Sciences, Kagoshima University , Korimoto 1-21-24, Kagoshima 890-0065, Japan
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University , Korimoto 1-21-24, Kagoshima 890-0065, Japan
| |
Collapse
|
410
|
Sakowicz A, Pietrucha T, Rybak-Krzyszkowska M, Huras H, Gach A, Sakowicz B, Banaszczyk M, Grzesiak M, Biesiada L. Double hit of NEMO gene in preeclampsia. PLoS One 2017; 12:e0180065. [PMID: 28654673 PMCID: PMC5487068 DOI: 10.1371/journal.pone.0180065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 06/08/2017] [Indexed: 12/19/2022] Open
Abstract
The precise etiology of preeclampsia is unknown. Family studies indicate that both genetic and environmental factors influence its development. One of these factors is NFkB, whose activation depends on NEMO (NFkB essential modulator. This is the first study to investigate the association between the existence of single nucleotide variant of the NEMO gene and the appearance of preeclampsia. A total of 151 women (72 preeclamptic women and 79 controls) and their children were examined. Sanger sequencing was performed to identify variants in the NEMO gene in the preeclamptic mothers. The maternal identified variants were then sought in the studied groups of children, and in the maternal and child controls, using RFLP-PCR. Real-time RT-PCR was performed to assess NEMO gene expression in maternal blood, umbilical cord blood and placentas. The sequencing process indicated the existence of two different variants in the 3'UTR region of the NEMO gene of preeclamptic women (IKBKG:c.*368C>A and IKBKG:c.*402C>T). The simultaneous occurrence of the TT genotype in the mother and the TT genotype in the daughter or a T allele in the son increased the risk of preeclampsia development 2.59 fold. Additionally, we found that the configuration of maternal/fetal genotypes (maternal TT/ daughter TT or maternal TT/son T) of IKBKG:c.*402C/T variant is associated with the level of NEMO gene expression. Our results showed that, the simultaneous occurrence of the maternal TT genotype (IKBKG:c.*402C>T variants) and TT genotype in the daughter or T allele in the son correlates with the level of NEMO gene expression and increases the risk of preeclampsia development. Our observations may offer a new insight into the genetic etiology and pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Lodz, Poland
- * E-mail:
| | - Tadeusz Pietrucha
- Department of Medical Biotechnology, Medical University of Lodz, Lodz, Poland
| | | | - Hubert Huras
- Department of Obstetrics and Perinatology, University Hospital in Krakow, Krakow, Poland
| | - Agnieszka Gach
- Departments of Genetic, Polish Mother's Memorial Hospital-Research Institute in Lodz, Lodz, Poland
| | - Bartosz Sakowicz
- Department of Microelectronics and Computer Science, Lodz University of Technology, Lodz, Poland
| | | | - Mariusz Grzesiak
- Department of Obstetrics and Gynecology, Polish Mother's Memorial Hospital-Research Institute in Lodz, Lodz, Poland
| | - Lidia Biesiada
- Department of Obstetrics and Gynecology, Polish Mother's Memorial Hospital-Research Institute in Lodz, Lodz, Poland
| |
Collapse
|
411
|
Tascher G, Brioche T, Maes P, Chopard A, O'Gorman D, Gauquelin-Koch G, Blanc S, Bertile F. Proteome-wide Adaptations of Mouse Skeletal Muscles during a Full Month in Space. J Proteome Res 2017; 16:2623-2638. [PMID: 28590761 DOI: 10.1021/acs.jproteome.7b00201] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The safety of space flight is challenged by a severe loss of skeletal muscle mass, strength, and endurance that may compromise the health and performance of astronauts. The molecular mechanisms underpinning muscle atrophy and decreased performance have been studied mostly after short duration flights and are still not fully elucidated. By deciphering the muscle proteome changes elicited in mice after a full month aboard the BION-M1 biosatellite, we observed that the antigravity soleus incurred the greatest changes compared with locomotor muscles. Proteomics data notably suggested mitochondrial dysfunction, metabolic and fiber type switching toward glycolytic type II fibers, structural alterations, and calcium signaling-related defects to be the main causes for decreased muscle performance in flown mice. Alterations of the protein balance, mTOR pathway, myogenesis, and apoptosis were expected to contribute to muscle atrophy. Moreover, several signs reflecting alteration of telomere maintenance, oxidative stress, and insulin resistance were found as possible additional deleterious effects. Finally, 8 days of recovery post flight were not sufficient to restore completely flight-induced changes. Thus in-depth proteomics analysis unraveled the complex and multifactorial remodeling of skeletal muscle structure and function during long-term space flight, which should help define combined sets of countermeasures before, during, and after the flight.
Collapse
Affiliation(s)
- Georg Tascher
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France.,Centre National d'Etudes Spatiales, CNES , 75039 Paris, France
| | - Thomas Brioche
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Pauline Maes
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
| | - Angèle Chopard
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Donal O'Gorman
- National Institute for Cellular Biotechnology and the School of Health and Human Performance, Dublin City University , Dublin 9, Ireland
| | | | - Stéphane Blanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
| |
Collapse
|
412
|
Song L, Martinez L, Zigmond ZM, Hernandez DR, Lassance-Soares RM, Selman G, Vazquez-Padron RI. c-Kit modifies the inflammatory status of smooth muscle cells. PeerJ 2017. [PMID: 28626608 PMCID: PMC5472039 DOI: 10.7717/peerj.3418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND c-Kit is a receptor tyrosine kinase present in multiple cell types, including vascular smooth muscle cells (SMC). However, little is known about how c-Kit influences SMC biology and vascular pathogenesis. METHODS High-throughput microarray assays and in silico pathway analysis were used to identify differentially expressed genes between primary c-Kit deficient (KitW/W-v) and control (Kit+/+) SMC. Quantitative real-time RT-PCR and functional assays further confirmed the differences in gene expression and pro-inflammatory pathway regulation between both SMC populations. RESULTS The microarray analysis revealed elevated NF-κB gene expression secondary to the loss of c-Kit that affects both the canonical and alternative NF-κB pathways. Upon stimulation with an oxidized phospholipid as pro-inflammatory agent, c-Kit deficient SMC displayed enhanced NF-κB transcriptional activity, higher phosphorylated/total p65 ratio, and increased protein expression of NF-κB regulated pro-inflammatory mediators with respect to cells from control mice. The pro-inflammatory phenotype of mutant cells was ameliorated after restoring c-Kit activity using lentiviral transduction. Functional assays further demonstrated that c-Kit suppresses NF-κB activity in SMC in a TGFβ-activated kinase 1 (TAK1) and Nemo-like kinase (NLK) dependent manner. DISCUSSION Our study suggests a novel mechanism by which c-Kit suppresses NF-κB regulated pathways in SMC to prevent their pro-inflammatory transformation.
Collapse
Affiliation(s)
- Lei Song
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Zachary M Zigmond
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Diana R Hernandez
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Roberta M Lassance-Soares
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Guillermo Selman
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| |
Collapse
|
413
|
Cascioferro S, Parrino B, Spanò V, Carbone A, Montalbano A, Barraja P, Diana P, Cirrincione G. Synthesis and antitumor activities of 1,2,3-triazines and their benzo- and heterofused derivatives. Eur J Med Chem 2017; 142:74-86. [PMID: 28615111 DOI: 10.1016/j.ejmech.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022]
Abstract
1,2,3-Triazines are a class of biologically active compounds that exhibit a broad spectrum of activities, including antibacterial, antifungal, antiviral, antiproliferative, analgesic and anti-inflammatory properties. This review, which covers the literature from the end of last century to 2016, treats, through a comprehensive, systematic approach, the 1,2,3-triazine and related benzo- and hetero-fused derivatives possessing antitumor activity. Their efficacy, combined with a simple synthesis confers to these molecules a great potential as scaffold for the development of antitumor compounds.
Collapse
Affiliation(s)
- Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| |
Collapse
|
414
|
Boisson B, Puel A, Picard C, Casanova JL. Human IκBα Gain of Function: a Severe and Syndromic Immunodeficiency. J Clin Immunol 2017; 37:397-412. [PMID: 28597146 DOI: 10.1007/s10875-017-0400-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/01/2017] [Indexed: 02/05/2023]
Abstract
Germline heterozygous gain-of-function (GOF) mutations of NFKBIA, encoding IκBα, cause an autosomal dominant (AD) form of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID). Fourteen unrelated patients have been reported since the identification of the first case in 2003. All mutations enhanced the inhibitory activity of IκBα, by preventing its phosphorylation on serine 32 or 36 and its subsequent degradation. The mutation certainly or probably occurred de novo in 13 patients, whereas it was inherited from a parent with somatic mosaicism in one patient. Eleven mutations, belonging to two groups, were identified: (i) missense mutations affecting S32, S36, or neighboring residues (8 mutations, 11 patients) and (ii) nonsense mutations upstream from S32 associated with the reinitiation of translation downstream from S36 (3 mutations, 3 patients). Thirteen patients had developmental features of EDA, the severity and nature of which differed between cases. All patient cells tested displayed impaired NF-κB-mediated responses to the stimulation of various surface receptors involved in cell-intrinsic (fibroblasts), innate (monocytes), and adaptive (B and T cells) immunity, including TLRs, IL-1Rs, TNFRs, TCR, and BCR. All patients had profound B-cell deficiency. Specific immunological features, found in some, but not all patients, included a lack of peripheral lymph nodes, lymphocytosis, dysfunctional α/β T cells, and a lack of circulating γ/δ T cells. The patients had various pyogenic, mycobacterial, fungal, and viral severe infections. Patients with a missense mutation tended to display more severe phenotypes, probably due to higher levels of GOF proteins. In the absence of hematopoietic stem cell transplantation (HSCT), this condition cause death before the age of 1 year (one child). Two survivors have been on prophylaxis (at 9 and 22 years). Six children died after HSCT. Five survived, four of whom have been on prophylaxis (3 to 21 years post HSCT), whereas one has been well with no prophylaxis. Heterozygous GOF mutations in IκBα underlie a severe and syndromic immunodeficiency, the interindividual variability of which might partly be ascribed to the dichotomy of missense and nonsense mutations, and the hematopoietic component of which can be rescued by HSCT.
Collapse
Affiliation(s)
- Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA. .,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France. .,Imagine Institute, Paris Descartes University, Paris, France.
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France.,Study Center for Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
415
|
You BH, Chae HS, Song J, Ko HW, Chin YW, Choi YH. α-Mangostin ameliorates dextran sulfate sodium-induced colitis through inhibition of NF-κB and MAPK pathways. Int Immunopharmacol 2017; 49:212-221. [PMID: 28601023 DOI: 10.1016/j.intimp.2017.05.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/18/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) of the colon as a target site. Previous reports regarding the efficacy of α-mangostin (αMG) to inhibit nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) as well as relatively high distribution to the colon suggested the therapeutic potential of this compound in UC model. In dextran sodium sulfate (DSS)-induced colitis mice (DSS mice), the disease activity index scores involving diarrhea, bloody stool, body weight reduction, and myeloperoxidase (MPO) activities of the esophagus and colon increased with the reduced colon length. Also histologic disturbances and changes of NF-κB and MAPK pathways including phosphorylation of IκB kinase, ERK1/2, SAPK/JNK and p38 were observed in the colon of the DSS mice. However, all of these impaired conditions in the DSS mice were restored by αMG treatment, and the intestinal metabolism of αMG decreased, increasing its distribution to the colons in the DSS mice compared with the control mice. All of these results suggest that high distribution of αMG in the colon might attenuate DSS-induced colitis by inhibiting NF-κB and MAPK pathways in the colon.
Collapse
Affiliation(s)
- Byoung Hoon You
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Hee-Sung Chae
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Jieun Song
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Hyuk Wan Ko
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| | - Young Hee Choi
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
416
|
Abstract
The nuclear factor-κB (NF-κB) family of transcription factors is activated by canonical and non-canonical signalling pathways, which differ in both signalling components and biological functions. Recent studies have revealed important roles for the non-canonical NF-κB pathway in regulating different aspects of immune functions. Defects in non-canonical NF-κB signalling are associated with severe immune deficiencies, whereas dysregulated activation of this pathway contributes to the pathogenesis of various autoimmune and inflammatory diseases. Here we review the signalling mechanisms and the biological function of the non-canonical NF-κB pathway. We also discuss recent progress in elucidating the molecular mechanisms regulating non-canonical NF-κB pathway activation, which may provide new opportunities for therapeutic strategies.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, MD Anderson Cancer Center UT Heath Graduate School of Biomedical Sciences, 7455 Fannin Street, Box 902, Houston, Texas 77030, USA
| |
Collapse
|
417
|
D'Ignazio L, Batie M, Rocha S. Hypoxia and Inflammation in Cancer, Focus on HIF and NF-κB. Biomedicines 2017; 5:E21. [PMID: 28536364 PMCID: PMC5489807 DOI: 10.3390/biomedicines5020021] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer is often characterised by the presence of hypoxia and inflammation. Paramount to the mechanisms controlling cellular responses under such stress stimuli, are the transcription factor families of Hypoxia Inducible Factor (HIF) and Nuclear Factor of κ-light-chain-enhancer of activated B cells (NF-κB). Although, a detailed understating of how these transcription factors respond to their cognate stimulus is well established, it is now appreciated that HIF and NF-κB undergo extensive crosstalk, in particular in pathological situations such as cancer. Here, we focus on the current knowledge on how HIF is activated by inflammation and how NF-κB is modulated by hypoxia. We summarise the evidence for the possible mechanism behind this activation and how HIF and NF-κB function impacts cancer, focusing on colorectal, breast and lung cancer. We discuss possible new points of therapeutic intervention aiming to harness the current understanding of the HIF-NF-κB crosstalk.
Collapse
Affiliation(s)
- Laura D'Ignazio
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK.
| | - Michael Batie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK.
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK.
| |
Collapse
|
418
|
Wang X, Liu S, Yang Y, Fu Q, Abebe A, Liu Z. Identification of NF-κB related genes in channel catfish and their expression profiles in mucosal tissues after columnaris bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 70:27-38. [PMID: 28063885 DOI: 10.1016/j.dci.2017.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
Interactions of NF-κB family, IκB family and IKK complex are the key components of NF-κB pathway that is essential for many biological processes including innate and adaptive immunity, inflammation and stress responses. In spite of their importance, systematic analysis of these genes in fish has been lacking. Here we report a systematic study of the NF-κB related genes in channel catfish. Five NF-κB family genes, five IκB family genes and three IKK complex genes were identified in the channel catfish genome. Annotation of these 13 NF-κB related genes was further confirmed by phylogenetic and syntenic analysis. Negative selection was found to play a crucial role in the adaptive evolution of these genes. Expression profiles of NF-κB related genes after Flavobacterium columnare (columnaris) infection were determined by analysis of the existing RNA-Seq dataset. The majority of NF-κB related genes were significantly regulated in mucosal tissues of gill, skin and intestine after columnaris infection, indicating their potential involvement in host defense responses. Distinct expression patterns of NF-κB related genes were observed in susceptible and resistant catfish in response to columnaris infection, suggesting that expression of these genes may contribute to the variations in disease resistance/susceptibility of catfish.
Collapse
Affiliation(s)
- Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Qiang Fu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ash Abebe
- Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
419
|
Wu F, Zhu J, Li H, Zhu L. Structural analysis of recombinant human ubiquitin-conjugating enzyme UbcH5c. Acta Pharm Sin B 2017; 7:390-394. [PMID: 28540177 PMCID: PMC5430876 DOI: 10.1016/j.apsb.2016.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/04/2016] [Accepted: 12/19/2016] [Indexed: 11/30/2022] Open
Abstract
UbcH5c belongs to the ubiquitin-conjugating enzyme family and plays an important role in catalyzing ubiquitination during TNF-α--triggered NF-κB activation. Therefore, UbcH5c is a potent therapeutic target for the treatment of inflammatory and autoimmune diseases induced by aberrant activation of NF-κB. In this study, we established a stable expression system for recombinant UbcH5c and solved the crystal structure of UbcH5c belonging to space group P22121 with one molecule in the asymmetric unit. This study provides the basis for further study of UbcH5c including the design of UbcH5c inhibitors.
Collapse
Affiliation(s)
| | | | - Honglin Li
- Corresponding authors. Tel.: +86 21 64253379.
| | - Lili Zhu
- Corresponding authors. Tel.: +86 21 64253379.
| |
Collapse
|
420
|
Tepaamorndech S, Oort P, Kirschke CP, Cai Y, Huang L. ZNT7 binds to CD40 and influences CD154-triggered p38 MAPK activity in B lymphocytes-a possible regulatory mechanism for zinc in immune function. FEBS Open Bio 2017; 7:675-690. [PMID: 28469980 PMCID: PMC5407898 DOI: 10.1002/2211-5463.12211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/09/2017] [Accepted: 02/14/2017] [Indexed: 01/04/2023] Open
Abstract
Zinc deficiency impairs the immune system leading to frequent infections. Although zinc is known to play critical roles in maintaining healthy immune function, the underlying molecular targets are largely unknown. In this study, we demonstrate that zinc is important for the CD154–CD40‐mediated activation of downstream signaling pathways in human B lymphocytes. CD40 is a receptor localized on the cell surface of many immune cells, including B lymphocytes. It binds to CD154, a membrane protein expressed on antigen‐activated T helper (Th) lymphocytes. This CD154‐CD40 interaction leads to B‐cell activation. We showed that cellular zinc deficiency impaired the CD154‐CD40‐mediated p38 mitogen‐activated protein kinase (p38 MAPK) phosphorylation. We also showed that zinc supplemental treatment of B lymphocytes had limited effect on this CD40‐mediated p38 MAPK signaling. Most importantly, we demonstrated that the zinc transporter protein zinc transporter 7 (ZNT7) interacted with CD40 using immunoprecipitation analyses. ZNT7 knockdown in B lymphocytes had a negative effect on the cell surface expression of CD40. Consequently, the CD40‐mediated p38 MAPK signaling transduction was down‐regulated in ZNT7KD B lymphocytes. Conversely, this p38 MAPK signaling activity was up‐regulated by overexpression (OE) of ZNT7 in B lymphocytes. Moreover, we found that ZNT7 knockdown in B lymphocytes constitutively up‐ and down‐regulated the inhibitor of i kappa B kinase and AKT serine/threonine kinase phosphorylation, respectively, which implies the activation of survival signaling in ZNT7KD B cells. We conclude that CD40 is the target molecule for ZNT7 in regulation of immune function of B lymphocytes.
Collapse
Affiliation(s)
- Surapun Tepaamorndech
- Integrative Genetics and Genomics Graduate Group University of California Davis CA USA.,Food Biotechnology Research Unit National Center for Genetic Engineering and Biotechnology Pathum Thani Thailand
| | - Pieter Oort
- Obesity and Metabolism Research Unit USDA/ARS/Western Human Nutrition Research Center Davis CA USA.,Present address: Astrona Biotechnologies HM Clause Innovation Center 28605 County Road 104 Davis CA 95618 USA
| | - Catherine P Kirschke
- Obesity and Metabolism Research Unit USDA/ARS/Western Human Nutrition Research Center Davis CA USA
| | - Yimeng Cai
- Graduate Group of Nutritional Biology University of California Davis CA USA
| | - Liping Huang
- Integrative Genetics and Genomics Graduate Group University of California Davis CA USA.,Obesity and Metabolism Research Unit USDA/ARS/Western Human Nutrition Research Center Davis CA USA.,Graduate Group of Nutritional Biology University of California Davis CA USA
| |
Collapse
|
421
|
Laviv Y, Kasper B, Kasper EM. Vascular hyperpermeability as a hallmark of phacomatoses: is the etiology angiogenesis related to or comparable with mechanisms seen in inflammatory pathways? Part II: angiogenesis- and inflammation-related molecular pathways, tumor-associated macrophages, and possible therapeutic implications: a comprehensive review. Neurosurg Rev 2017; 41:931-944. [PMID: 28283837 DOI: 10.1007/s10143-017-0837-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 11/28/2022]
Abstract
Phacomatoses are a special group of familial hamartomatous syndromes with unique neurocutaneous manifestations as well as characteristic tumors. Neurofibromatosis type 2 (NF2) and tuberous sclerosis complex (TSC) are representatives of this family. A vestibular schwannoma (VS) and subependymal giant cell tumor (SGCT) are two of the most common intracranial tumors associated with these syndromes, related to NF2 and TSC, respectively. These tumors can present with an obstructive hydrocephalus due to their location adjacent to or in the ventricles. Remarkably, both tumors are also known to have a unique association with elevated protein concentrations in the cerebrospinal fluid (CSF), sometimes in association with a non-obstructive (communicating) hydrocephalus. Of the two, SGCT has been shown to be associated with a predisposition to CSF clotting, causing a debilitating recurrent shunt obstruction. However, the exact relationship between high protein levels and clotting of CSF remains unclear, nor do we understand the precise mechanism of CSF clotting observed in SGCT. Elevated protein levels in the CSF are thought to be caused by increased vascular permeability and dysregulation of the blood-brain barrier. The two presumed underlying pathophysiological processes for that in the context of tumorigenesis are angiogenesis and inflammation. Both these processes are correlated to the phosphatidylinositol-3-kinase/Akt/mammalian target of rapamycin pathway which is tumorigenesis related in many neoplasms and nearly all phacomatoses. In this review, we discuss the influence of angiogenesis and inflammation pathways on vascular permeability in VSs and SGCTs at the phenotypic level as well as their possible genetic and molecular determinants. Part I described the historical perspectives and clinical aspects of the relationship between vascular permeability, abnormal CSF protein levels, clotting of the CSF, and communicating hydrocephalus. Part II hereafter describes the different cellular and molecular pathways involved in angiogenesis and inflammation observed in both tumors and explores the existing metabolic overlap between inflammation and coagulation. Interestingly, while increased angiogenesis can be observed in both tumors, inflammatory processes seem significantly more prominent in SGCT. Both SGCT and VS are characterized by different subgroups of tumor-associated macrophages (TAMs): the pro-inflammatory M1 type is predominating in SGCTs, while the pro-angiogenetic M2 type is predominating in VSs. We suggest that a lack of NF2 protein in VS and a lack of TSC1/TSC2 proteins in SGCT significantly influence this fundamental difference between the two tumor types by changing the dominant TAM type. Since inflammatory reactions and coagulation processes are tightly connected, the pro-inflammatory state of SGCT may also explain the associated tendency for CSF clotting. The underlying cellular and molecular differences observed can potentially serve as an access point for direct therapeutic interventions for tumors that are specific to certain phacomatoses or others that also carry such genetic changes.
Collapse
Affiliation(s)
- Yosef Laviv
- Department of Surgery, Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, West Campus, Lowry Medical Office Building, Suite 3B, 110 Francis St, Boston, MA, 02215, USA.
| | - Burkhard Kasper
- Department of Neurology/Epilepsy Centre, University of Erlangen, Erlangen, Germany
| | - Ekkehard M Kasper
- Department of Surgery, Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, West Campus, Lowry Medical Office Building, Suite 3B, 110 Francis St, Boston, MA, 02215, USA
| |
Collapse
|
422
|
Human Cytomegalovirus MicroRNAs miR-US5-1 and miR-UL112-3p Block Proinflammatory Cytokine Production in Response to NF-κB-Activating Factors through Direct Downregulation of IKKα and IKKβ. mBio 2017; 8:mBio.00109-17. [PMID: 28270578 PMCID: PMC5340867 DOI: 10.1128/mbio.00109-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence indicates that human cytomegalovirus (HCMV) manipulates host cell signaling pathways using both proteins and noncoding RNAs. Several studies have shown that HCMV induces NF-κB signaling early in infection, resulting in the induction of antiviral proinflammatory cytokines with a subsequent reduction of these cytokines late in infection. The mechanism for late cytokine reduction is unknown. In this study, we show that HCMV microRNAs (miRNAs) miR-US5-1 and miR-UL112-3p target the IκB kinase (IKK) complex components IKKα and IKKβ to limit production of proinflammatory cytokines in response to interleukin 1β (IL-1β) and tumor necrosis factor alpha (TNF-α). Transfection of miR-UL112-3p and miR-US5-1 mimics reduced endogenous IKKα and IKKβ protein levels, and site-directed mutagenesis of the 3' untranslated regions (UTRs) identified the binding sites for each miRNA. Infection with mutant viruses lacking these miRNAs resulted in increased levels of IKKα and IKKβ proteins, an impaired ability to control NF-κB signaling at late times of lytic infection, and increased production of proinflammatory cytokines compared to wild-type virus in cell types relevant to HCMV infection in vivo These phenotypes were rescued by preexpression of miR-US5-1 and miR-UL112-3p in infected cells or by a miR-US5-1/miR-UL112-3p double mutant virus that expresses short hairpin RNAs (shRNAs) targeting IKKα and IKKβ, demonstrating the gene specificity of the miRNAs. These observations describe a mechanism through which HCMV miRNAs expressed late in the infectious cycle downregulate proinflammatory cytokine production to create a cellular proviral environment.IMPORTANCE Human cytomegalovirus (HCMV) is a significant cause of morbidity and mortality in transplant recipients and causes hearing loss and mental retardation when acquired congenitally. Initial events during HCMV infection result in the activation of NF-κB signaling, which culminates in the production of IL-6, CCL5, and TNF-α. Several viruses have developed mechanisms to block the antiviral effects of these cytokines. We show here that two HCMV miRNAs, miR-US5-1 and miR-UL112-3p, specifically downregulate IKKα and IKKβ signaling factors necessary to propagate NF-κB signaling and subsequent IL-6, CCL5, and TNF-α production. Regulation of these proinflammatory cytokines during lytic infection and during latency is critical to viral survival in the host.
Collapse
|
423
|
Liu F, Chang X, Tian M, Zhu A, Zou L, Han A, Su L, Li S, Sun Y. Nano NiO induced liver toxicity via activating the NF-κB signaling pathway in rats. Toxicol Res (Camb) 2017; 6:242-250. [PMID: 30090495 PMCID: PMC6060624 DOI: 10.1039/c6tx00444j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
Studies have demonstrated that nano NiO could induce liver toxicity in rats, but its mechanism remains unclear. This study aimed to explore the role of the NF-κB signaling pathway in rat liver toxicity after nano NiO exposure. Male Wistar rats were exposed to nano NiO (0.015, 0.06 and 0.24 mg per kg b.w.) and micro NiO (0.24 mg per kg b.w.) by intratracheal instillation twice a week for 6 weeks. To investigate the liver toxicity induced by nano NiO, the indicators of liver function and inflammatory response were detected, and the histopathological changes were observed. The levels of NF-κB signaling pathway related gene and protein expression were examined using RT-qPCR and western blot techniques in the liver tissue. The results showed that the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and gamma-glutamyltranspeptidase (GGT) increased after nano NiO exposure. Cellular edema, hepatic sinus disappearance, and neutrophil and lymphocyte infiltration were observed. Nano NiO increased the concentrations of pro-inflammatory cytokines (IL-1β and IL-6), but decreased the levels of anti-inflammatory cytokines (IL-4 and IL-10). It also induced the upregulation of TNF-α, NF-κB-inducible kinase (NIK), IκB kinase alpha (IKK-α) and NF-κB mRNA, while inducing the downregulation of the inhibitor kappa B (IκB) alpha. In addition, we found that the protein content of NIK, IKK-α, p-IKK-α, p-IκB-α and NF-κB was elevated, whereas that of IκB-α was reduced. The results indicated that the NF-κB signaling pathway played an important role in rat liver toxicity induced by nano NiO.
Collapse
Affiliation(s)
- Fangfang Liu
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou 730000 , China . ; Tel: +86-931-8915008
| | - Xuhong Chang
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou 730000 , China . ; Tel: +86-931-8915008
| | - Minmin Tian
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou 730000 , China . ; Tel: +86-931-8915008
| | - An Zhu
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou 730000 , China . ; Tel: +86-931-8915008
| | - Lingyue Zou
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou 730000 , China . ; Tel: +86-931-8915008
| | - Aijie Han
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou 730000 , China . ; Tel: +86-931-8915008
| | - Li Su
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou 730000 , China . ; Tel: +86-931-8915008
| | - Sheng Li
- Lanzhou Municipal Center for Disease Control , Lanzhou , China
| | - Yingbiao Sun
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou 730000 , China . ; Tel: +86-931-8915008
| |
Collapse
|
424
|
Santana AL, Oldenburg DG, Kirillov V, Malik L, Dong Q, Sinayev R, Marcu KB, White DW, Krug LT. RTA Occupancy of the Origin of Lytic Replication during Murine Gammaherpesvirus 68 Reactivation from B Cell Latency. Pathogens 2017; 6:pathogens6010009. [PMID: 28212352 PMCID: PMC5371897 DOI: 10.3390/pathogens6010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/10/2017] [Indexed: 02/06/2023] Open
Abstract
RTA, the viral Replication and Transcription Activator, is essential for rhadinovirus lytic gene expression upon de novo infection and reactivation from latency. Lipopolysaccharide (LPS)/toll-like receptor (TLR)4 engagement enhances rhadinovirus reactivation. We developed two new systems to examine the interaction of RTA with host NF-kappaB (NF-κB) signaling during murine gammaherpesvirus 68 (MHV68) infection: a latent B cell line (HE-RIT) inducible for RTA-Flag expression and virus reactivation; and a recombinant virus (MHV68-RTA-Bio) that enabled in vivo biotinylation of RTA in BirA transgenic mice. LPS acted as a second stimulus to drive virus reactivation from latency in the context of induced expression of RTA-Flag. ORF6, the gene encoding the single-stranded DNA binding protein, was one of many viral genes that were directly responsive to RTA induction; expression was further increased upon treatment with LPS. However, NF-κB sites in the promoter of ORF6 did not influence RTA transactivation in response to LPS in HE-RIT cells. We found no evidence for RTA occupancy of the minimal RTA-responsive region of the ORF6 promoter, yet RTA was found to complex with a portion of the right origin of lytic replication (oriLyt-R) that contains predicted RTA recognition elements. RTA occupancy of select regions of the MHV-68 genome was also evaluated in our novel in vivo RTA biotinylation system. Streptavidin isolation of RTA-Bio confirmed complex formation with oriLyt-R in LPS-treated primary splenocytes from BirA mice infected with MHV68 RTA-Bio. We demonstrate the utility of reactivation-inducible B cells coupled with in vivo RTA biotinylation for mechanistic investigations of the interplay of host signaling with RTA.
Collapse
Affiliation(s)
- Alexis L Santana
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA.
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | - Varvara Kirillov
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Laraib Malik
- Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Qiwen Dong
- Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Roman Sinayev
- Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Kenneth B Marcu
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.
- Biomedical Research Foundation Academy of Athens (BRFAA), Athens 115 27, Greece.
- Biochemistry and Cell Biology Dept., Stony Brook University, Stony Brook, NY 11794, USA.
- Department of Pathology, Health Sciences Center, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
425
|
Pharmacological Inhibition of c-Jun N-terminal Kinase Reduces Food Intake and Sensitizes Leptin's Anorectic Signaling Actions. Sci Rep 2017; 7:41795. [PMID: 28165482 PMCID: PMC5292945 DOI: 10.1038/srep41795] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/28/2016] [Indexed: 01/09/2023] Open
Abstract
The role for c-Jun N-terminal Kinase (JNK) in the control of feeding and energy balance is not well understood. Here, by use of novel and highly selective JNK inhibitors, we investigated the actions of JNK in the control of feeding and body weight homeostasis. In lean mice, intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) administration of SR-3306, a brain-penetrant and selective pan-JNK (JNK1/2/3) inhibitor, reduced food intake and body weight. Moreover, i.p. and i.c.v. administrations of SR11935, a brain-penetrant and JNK2/3 isoform-selective inhibitor, exerted similar anorectic effects as SR3306, which suggests JNK2 or JNK3 mediates aspect of the anorectic effect by pan-JNK inhibition. Furthermore, daily i.p. injection of SR3306 (7 days) prevented the increases in food intake and weight gain in lean mice upon high-fat diet feeding, and this injection paradigm reduced high-fat intake and obesity in diet-induced obese (DIO) mice. In the DIO mice, JNK inhibition sensitized leptin’s anorectic effect, and enhanced leptin-induced STAT3 activation in the hypothalamus. The underlying mechanisms likely involve the downregulation of SOCS3 by JNK inhibition. Collectively, our data suggest that JNK activity promotes positive energy balance, and the therapeutic intervention inhibiting JNK activities represents a promising approach to ameliorate diet-induced obesity and leptin resistance.
Collapse
|
426
|
Hu J, Zhai C, Hu J, Li Z, Fei H, Wang Z, Fan W. MiR-23a inhibited IL-17-mediated proinflammatory mediators expression via targeting IKKα in articular chondrocytes. Int Immunopharmacol 2017; 43:1-6. [DOI: 10.1016/j.intimp.2016.11.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/25/2016] [Indexed: 10/20/2022]
|
427
|
Lisse TS, Rieger S. IKKα regulates human keratinocyte migration through surveillance of the redox environment. J Cell Sci 2017; 130:975-988. [PMID: 28122935 PMCID: PMC5358334 DOI: 10.1242/jcs.197343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/16/2017] [Indexed: 02/06/2023] Open
Abstract
Although the functions of H2O2 in epidermal wound repair are conserved throughout evolution, the underlying signaling mechanisms are largely unknown. In this study we used human keratinocytes (HEK001) to investigate H2O2-dependent wound repair mechanisms. Scratch wounding led to H2O2 production in two or three cell layers at the wound margin within ∼30 min and subsequent cysteine modification of proteins via sulfenylation. Intriguingly, exogenous H2O2 treatment resulted in preferential sulfenylation of keratinocytes that adopted a migratory phenotype and detached from neighboring cells, suggesting that one of the primary functions of H2O2 is to stimulate signaling factors involved in cell migration. Based on previous findings that revealed epidermal growth factor receptor (EGFR) involvement in H2O2-dependent cell migration, we analyzed oxidation of a candidate upstream target, the inhibitor of κB kinase α (IKKα; encoded by CHUK), as a mechanism of action. We show that IKKα is sulfenylated at a conserved cysteine residue in the kinase domain, which correlates with de-repression of EGF promoter activity and increased EGF expression. Thus, this indicates that IKKα promotes migration through dynamic interactions with the EGF promoter depending on the redox state within cells. Summary: This study provides a newly identified mechanism by which H2O2-dependent oxidation of the inhibitor of κB kinase α and de-repression of epidermal growth factor promoter activity stimulates keratinocyte migration.
Collapse
Affiliation(s)
- Thomas S Lisse
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, 159 Old Bar Harbor Road, Salisbury Cove, ME 04672, USA .,The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sandra Rieger
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, 159 Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| |
Collapse
|
428
|
Le NT, Martin JF, Fujiwara K, Abe JI. Sub-cellular localization specific SUMOylation in the heart. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2041-2055. [PMID: 28130202 DOI: 10.1016/j.bbadis.2017.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/21/2016] [Accepted: 01/09/2017] [Indexed: 12/27/2022]
Abstract
Although the majority of SUMO substrates are localized in the nucleus, SUMOylation is not limited to nuclear proteins and can be also detected in extra-nuclear proteins. In this review, we will highlight and discuss how SUMOylation in different cellular compartments regulate biological processes. First, we will discuss the key role of SUMOylation of proteins in the extra-nuclear compartment in cardiomyocytes, which is overwhelmingly cardio-protective. On the other hand, SUMOylation of nuclear proteins is generally detrimental to the cardiac function mainly because of the trans-repressive nature of SUMOylation on many transcription factors. We will also discuss the potential role of SUMOylation in epigenetic regulation. In this review, we will propose a new concept that shuttling of SUMO proteases between the nuclear and extra-nuclear compartments without changing their enzymatic activity regulates the extent of SUMOylation in these compartments and determines the response and fate of cardiomyocytes after cardiac insults. Approaches focused specifically to inhibit this shuttling in cardiomyocytes will be necessary to understand the whole picture of SUMOylation and its pathophysiological consequences in the heart, especially after cardiac insults. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
Collapse
Affiliation(s)
- Nhat-Tu Le
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Keigi Fujiwara
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun-Ichi Abe
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
429
|
Erikson JM, Valente AJ, Mummidi S, Kandikattu HK, DeMarco VG, Bender SB, Fay WP, Siebenlist U, Chandrasekar B. Targeting TRAF3IP2 by Genetic and Interventional Approaches Inhibits Ischemia/Reperfusion-induced Myocardial Injury and Adverse Remodeling. J Biol Chem 2017; 292:2345-2358. [PMID: 28053087 DOI: 10.1074/jbc.m116.764522] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/07/2016] [Indexed: 11/06/2022] Open
Abstract
Re-establishing blood supply is the primary goal for reducing myocardial injury in subjects with ischemic heart disease. Paradoxically, reperfusion results in nitroxidative stress and a marked inflammatory response in the heart. TRAF3IP2 (TRAF3 Interacting Protein 2; previously known as CIKS or Act1) is an oxidative stress-responsive cytoplasmic adapter molecule that is an upstream regulator of both IκB kinase (IKK) and c-Jun N-terminal kinase (JNK), and an important mediator of autoimmune and inflammatory responses. Here we investigated the role of TRAF3IP2 in ischemia/reperfusion (I/R)-induced nitroxidative stress, inflammation, myocardial dysfunction, injury, and adverse remodeling. Our data show that I/R up-regulates TRAF3IP2 expression in the heart, and its gene deletion, in a conditional cardiomyocyte-specific manner, significantly attenuates I/R-induced nitroxidative stress, IKK/NF-κB and JNK/AP-1 activation, inflammatory cytokine, chemokine, and adhesion molecule expression, immune cell infiltration, myocardial injury, and contractile dysfunction. Furthermore, Traf3ip2 gene deletion blunts adverse remodeling 12 weeks post-I/R, as evidenced by reduced hypertrophy, fibrosis, and contractile dysfunction. Supporting the genetic approach, an interventional approach using ultrasound-targeted microbubble destruction-mediated delivery of phosphorothioated TRAF3IP2 antisense oligonucleotides into the LV in a clinically relevant time frame significantly inhibits TRAF3IP2 expression and myocardial injury in wild type mice post-I/R. Furthermore, ameliorating myocardial damage by targeting TRAF3IP2 appears to be more effective to inhibiting its downstream signaling intermediates NF-κB and JNK. Therefore, TRAF3IP2 could be a potential therapeutic target in ischemic heart disease.
Collapse
Affiliation(s)
- John M Erikson
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Anthony J Valente
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Srinivas Mummidi
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Hemanth Kumar Kandikattu
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
| | - Vincent G DeMarco
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and
| | - Shawn B Bender
- the Departments of Medical Pharmacology and Physiology and.,the Dalton Cardiovascular Research Center, Columbia, Missouri 65201, and.,Biomedical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - William P Fay
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and
| | - Ulrich Siebenlist
- Biomedical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Laboratory of Immunoregulation, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Bysani Chandrasekar
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211, .,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and.,the Dalton Cardiovascular Research Center, Columbia, Missouri 65201, and
| |
Collapse
|
430
|
Li S, Bai L, Dong J, Sun R, Lan K. Kaposi's Sarcoma-Associated Herpesvirus: Epidemiology and Molecular Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:91-127. [PMID: 29052134 DOI: 10.1007/978-981-10-5765-6_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), also known as Human herpesvirus 8 (HHV-8), is a member of the lymphotropic gammaherpesvirus subfamily and a human oncogenic virus. Since its discovery in AIDS-associated KS tissues by Drs. Yuan Chang and Patrick Moore, much progress has been made in the past two decades. There are four types of KS including classic KS, endemic KS, immunosuppressive therapy-related KS, and AIDS-associated KS. In addition to KS, KSHV is also involved in the development of primary effusion lymphoma (PEL) and certain types of multicentric Castleman's disease. KSHV manipulates numerous viral proteins to promote the progression of angiogenesis and tumorigenesis. In this chapter, we review the epidemiology and molecular biology of KSHV and the mechanisms underlying KSHV-induced diseases.
Collapse
Affiliation(s)
- Shasha Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Lei Bai
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Jiazhen Dong
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Rui Sun
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
431
|
Da Costa LS, Arnoult D. Organelle Separation and Cell Signaling. Methods Mol Biol 2017; 1557:111-115. [PMID: 28078587 DOI: 10.1007/978-1-4939-6780-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Recent findings indicate that some signaling hubs coalesce at the surfaces of organelles through the accumulation of ubiquitylated components required for the signal transduction. For instance, ubiquitylated components of the NF-κB pathway accumulated at the endoplasmic reticulum while ubiquitylated components of the IRF3 pathway are found at the Golgi apparatus. Here we describe simple methods to observe and assess these ubiquitylated components by immunoblotting using differential centrifugation and in vitro assays.
Collapse
Affiliation(s)
- Leandro Silva Da Costa
- INSERM, UMR_S 1197, Hôpital Paul Brousse, 14 Avenue Paul Vaillant Couturier, 94807, Villejuif Cedex, France
- Université Paris-Saclay, Paris-Saclay, France
| | - Damien Arnoult
- INSERM, UMR_S 1197, Hôpital Paul Brousse, 14 Avenue Paul Vaillant Couturier, 94807, Villejuif Cedex, France.
- Université Paris-Saclay, Paris-Saclay, France.
| |
Collapse
|
432
|
Flow signaling and atherosclerosis. Cell Mol Life Sci 2016; 74:1835-1858. [PMID: 28039525 PMCID: PMC5391278 DOI: 10.1007/s00018-016-2442-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022]
Abstract
Atherosclerosis rarely develops in the region of arteries exposed to undisturbed flow (u-flow, unidirectional flow). Instead, atherogenesis occurs in the area exposed to disturbed flow (d-flow, multidirectional flow). Based on these general pathohistological observations, u-flow is considered to be athero-protective, while d-flow is atherogenic. The fact that u-flow and d-flow induce such clearly different biological responses in the wall of large arteries indicates that these two types of flow activate each distinct intracellular signaling cascade in vascular endothelial cells (ECs), which are directly exposed to blood flow. The ability of ECs to differentially respond to the two types of flow provides an opportunity to identify molecular events that lead to endothelial dysfunction and atherosclerosis. In this review, we will focus on various molecular events, which are differentially regulated by these two flow types. We will discuss how various kinases, ER stress, inflammasome, SUMOylation, and DNA methylation play roles in the differential flow response, endothelial dysfunction, and atherosclerosis. We will also discuss the interplay among the molecular events and how they coordinately regulate flow-dependent signaling and cellular responses. It is hoped that clear understanding of the way how the two flow types beget each unique phenotype in ECs will lead us to possible points of intervention against endothelial dysfunction and cardiovascular diseases.
Collapse
|
433
|
Li J, Sapper TN, Mah E, Moller MV, Kim JB, Chitchumroonchokchai C, McDonald JD, Bruno RS. Green tea extract treatment reduces NFκB activation in mice with diet-induced nonalcoholic steatohepatitis by lowering TNFR1 and TLR4 expression and ligand availability. J Nutr Biochem 2016; 41:34-41. [PMID: 28038359 DOI: 10.1016/j.jnutbio.2016.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/10/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022]
Abstract
NFκB-mediated inflammation contributes to liver injury during nonalcoholic steatohepatitis (NASH). We hypothesized that antiinflammatory activities of green tea extract (GTE) during NASH would lower tumor necrosis factor receptor-1 (TNFR1)- and Toll-like receptor-4 (TLR4)-mediated NFκB activation. Male C57BL6/J mice (6 weeks old) were fed a low-fat (LF) or high-fat (HF) diet for 12 weeks to induce NASH. They were then randomized to continue on these diets supplemented with 0 or 2% GTE (n=10/group) for an additional 8 weeks prior to evaluating NASH, NFκB inflammation and TNFR1 and TLR4 receptor complexes and their respective ligands, TNFα and endotoxin. HF feeding increased (P<.05) serum alanine aminotransferase (ALT) activity and histological evidence of NASH compared with LF controls. HF-mediated increases in NFκB p65 phosphorylation were also accompanied by increased serum TNFα and endotoxin concentrations, mRNA expression of hepatic TNFR1 and TLR4 and MyD88 protein levels. GTE in LF mice had no effect (P>.05) on liver histology or inflammatory responses. However, GTE in HF mice decreased biochemical and histological parameters of NASH and lowered hepatic p65 phosphorylation in association with decreased serum TNFα, mRNA expression of TNFR1 and TLR4 and MyD88 protein. GTE in HF-fed mice also lowered serum endotoxin and up-regulated mRNA expression of duodenal occludin and zonula occluden-1 and ileal occludin and claudin-1 that were otherwise lowered in expression by HF feeding. These data suggest that dietary GTE treatment reduces hepatic inflammation in NASH by decreasing proinflammatory signaling through TNFR1 and TLR4 that otherwise increases NFκB activation and liver injury.
Collapse
Affiliation(s)
- Jinhui Li
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Teryn N Sapper
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Eunice Mah
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA; Biofortis, Inc., Addison, IL 60101, USA
| | - Meredith V Moller
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua B Kim
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | | | - Joshua D McDonald
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
434
|
Medunjanin S, Schleithoff L, Fiegehenn C, Weinert S, Zuschratter W, Braun-Dullaeus RC. GSK-3β controls NF-kappaB activity via IKKγ/NEMO. Sci Rep 2016; 6:38553. [PMID: 27929056 PMCID: PMC5144080 DOI: 10.1038/srep38553] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/09/2016] [Indexed: 12/24/2022] Open
Abstract
The NF-κB signaling pathway is central for the innate immune response and its deregulation is found in multiple disorders such as autoimmune, chronic inflammatory and metabolic diseases. IKKγ/NEMO is essential for NF-κB activation and NEMO dysfunction in humans has been linked to so-called progeria syndromes, which are characterized by advanced ageing due to age-dependent inflammatory diseases. It has been suggested that glycogen synthase kinase-3β (GSK-3β) participates in NF-κB regulation but the exact mechanism remained incompletely understood. In this study, we identified NEMO as a GSK-3β substrate that is phosphorylated at serine 8, 17, 31 and 43 located within its N-terminal domain. The kinase forms a complex with wild-type NEMO while point mutations of NEMO at the specific serines abrogated GSK-3β binding and subsequent phosphorylation of NEMO resulting in its destabilization. However, K63-linked polyubiquitination was augmented in mutated NEMO explaining an increased binding to IKKα and IKKβ. Even IκBα was found degraded. Still, TNFα-stimulated NF-κB activation was impaired pointing towards an un-controlled signalling process. Our data suggest that GSK-3β is critically important for ordered NF-κB signalling through modulation of NEMO phosphorylation.
Collapse
Affiliation(s)
- Senad Medunjanin
- Internal Medicine/Cardiology and Angiology, Magdeburg University, Magdeburg, Germany
| | - Lisa Schleithoff
- Internal Medicine/Cardiology and Angiology, Magdeburg University, Magdeburg, Germany
| | - Christian Fiegehenn
- Internal Medicine/Cardiology and Angiology, Magdeburg University, Magdeburg, Germany
| | - Soenke Weinert
- Internal Medicine/Cardiology and Angiology, Magdeburg University, Magdeburg, Germany
| | | | | |
Collapse
|
435
|
Human Intervention Study to Assess the Effects of Supplementation with Olive Leaf Extract on Peripheral Blood Mononuclear Cell Gene Expression. Int J Mol Sci 2016; 17:ijms17122019. [PMID: 27918443 PMCID: PMC5187819 DOI: 10.3390/ijms17122019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022] Open
Abstract
Olive leaf extract (OLE) has been used for many years for its putative health benefits, but, to date, scientific evidence for the basis of these effects has been weak. Although recent literature has described a link between ailments such as cardiovascular disease, diabetes and cancer and a protective effect of polyphenols in the OLE, the mode of action is still unclear. Here, we describe a double-blinded placebo (PBO)-controlled trial, in which gene expression profiles of peripheral blood mononuclear cells from healthy male volunteers (n = 29) were analysed to identify genes that responded to OLE, following an eight-week intervention with 20 mL daily consumption of either OLE or PBO. Differences between groups were determined using an adjusted linear model. Subsequent analyses indicated downregulation of genes important in inflammatory pathways, lipid metabolism and cancer as a result of OLE consumption. Gene expression was verified by real-time PCR for three genes (EGR1, COX-2 and ID3). The results presented here suggest that OLE consumption may result in health benefits through influencing the expression of genes in inflammatory and metabolic pathways. Future studies with a larger study group, including male and female participants, looking into direct effects of OLE on lipid metabolism and inflammation are warranted.
Collapse
|
436
|
Pal R, Tiwari PC, Nath R, Pant KK. Role of neuroinflammation and latent transcription factors in pathogenesis of Parkinson’s disease. Neurol Res 2016; 38:1111-1122. [DOI: 10.1080/01616412.2016.1249997] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rishi Pal
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| | | | - Rajendra Nath
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| | - Kamlesh Kumar Pant
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| |
Collapse
|
437
|
Chen JY, Chen YJ, Yen CJ, Chen WS, Huang WC. HBx sensitizes hepatocellular carcinoma cells to lapatinib by up-regulating ErbB3. Oncotarget 2016; 7:473-89. [PMID: 26595522 PMCID: PMC4808012 DOI: 10.18632/oncotarget.6337] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/06/2015] [Indexed: 12/26/2022] Open
Abstract
Poor prognosis of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) involves HBV X protein (HBx)-induced tumor progression. HBx also contributes to chemo-resistance via inducing the expressions of anti-apoptosis and multiple drug resistance genes. However, the impact of HBx expression on the therapeutic efficacy of various receptor tyrosine kinase inhibitors remains unknown. In this study, our data showed that HBx overexpression did not alter the cellular sensitivity of HCC cell lines to sorafenib but unexpectedly enhanced the cell death induced by EGFR family inhibitors, including gefitinib, erlotinib, and lapatinib due to ErbB3 up-regulation. Mechanistically, HBx transcriptionally up-regulates ErbB3 expression in a NF-κB dependent manner. In addition, HBx also physically interacts with ErbB2 and ErbB3 proteins and enhances the formation of ErbB2/ErbB3 heterodimeric complex. The cell viability of HBx-overexpressing cells was decreased by silencing ErbB3 expression, further revealing the pivotal role of ErbB3 in HBx-mediated cell survival. Our data suggest that HBx shifts the oncogenic addiction of HCC cells to ErbB2/ErbB3 signaling pathway via inducing ErbB3 expression and thereby enhances their sensitivity to EGFR/ErbB2 inhibitors.
Collapse
Affiliation(s)
- Jhen-Yu Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.,Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yun-Ju Chen
- Department of Biological Science & Technology, I-Shou University, Kaohsiung, Taiwan.,School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan.,Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Chia-Jui Yen
- Internal Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Wen-Shu Chen
- Center for Molecular Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Wei-Chien Huang
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.,Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.,Center for Molecular Medicine, China Medical University and Hospital, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
438
|
Wang R, Pi J, Su X, Liu J, Zeng X, Wong I, Huang L, Zhou H, Cai J, Li T, Liu L. Dihydromyricetin suppresses inflammatory responses in vitro and in vivo through inhibition of IKKβ activity in macrophages. SCANNING 2016; 38:901-912. [PMID: 27487564 DOI: 10.1002/sca.21339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Dihydromyricetin (DMY) a flavonoid derived from medicinal plant Ampelopsis grossedentata, possesses anti-oxidative and anti-inflammatory effects in vitro, however, the in vivo anti-inflammatory action of DMY remains unknown. In the current study, carrageenan-induced paw edema in rat, an acute inflammation model, and RAW264.7 macrophages activated by LPS were employed to evaluate the anti-inflammatory potency of DMY in vivo and in vitro. Results showed that DMY significantly attenuated rat paw edema induced by carrageenan. Also, DMY markedly inhibited NO secretion, iNOS, and COX-2 protein expression, as well as p65 phosphorylation via suppression of IKKβ activity and IKKα/β phosphorylation in RAW264.7 cells. And using high resolution Atomic Force Microscope (AFM), we also proved that DMY prevented morphological change and membrane alterations of RAW 264.7 macrophages caused by LPS stimulation. As activation of macrophages is one of major factors in carrageenan-induced paw edema of rats, the anti-inflammatory action of DMY is suggested to be closely associated with suppression of macrophage activation. These findings indicate that DMY is valuable of being further investigated as a candidate new agent for treating inflammatory conditions, and suggest that AFM could be a powerful nanotool for anti-inflammatory investigations. SCANNING 38:901-912, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Jiang Pi
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Xiaohui Su
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Xing Zeng
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Ivan Wong
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation, Hong Kong Baptist University, Hong Kong, China
| | - Lufen Huang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Jiye Cai
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| |
Collapse
|
439
|
Ismail IH, Dronyk A, Hu X, Hendzel MJ, Shaw AR. BCL10 is recruited to sites of DNA damage to facilitate DNA double-strand break repair. Cell Cycle 2016; 15:84-94. [PMID: 26771713 DOI: 10.1080/15384101.2015.1121322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Recent studies have found BCL10 can localize to the nucleus and that this is linked to tumor aggression and poorer prognosis. These studies suggest that BCL10 localization plays a novel role in the nucleus that may contribute to cellular transformation and carcinogenesis. In this study, we show that BCL10 functions as part of the DNA damage response (DDR). We found that BCL10 facilitates the rapid recruitment of RPA, BRCA1 and RAD51 to sites of DNA damage. Furthermore, we also found that ATM phosphorylates BCL10 in response to DNA damage. Functionally, BCL10 promoted DNA double-strand breaks repair, enhancing cell survival after DNA damage. Taken together our results suggest a novel role for BCL10 in the repair of DNA lesions.
Collapse
Affiliation(s)
- Ismail Hassan Ismail
- a Department of Oncology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada.,b Biophysics Department , Faculty of Science, Cairo University , Giza , Egypt
| | - Ashley Dronyk
- a Department of Oncology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada
| | - Xiuying Hu
- a Department of Oncology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada
| | - Michael J Hendzel
- a Department of Oncology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada.,c Department of Cell Biology , Faculty of Medicine and Dentistry, University of Alberta , Edmonton , Alberta , Canada
| | - Andrew R Shaw
- a Department of Oncology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada
| |
Collapse
|
440
|
Zhang R, Witkowska K, Afonso Guerra-Assunção J, Ren M, Ng FL, Mauro C, Tucker AT, Caulfield MJ, Ye S. A blood pressure-associated variant of the SLC39A8 gene influences cellular cadmium accumulation and toxicity. Hum Mol Genet 2016; 25:4117-4126. [PMID: 27466201 PMCID: PMC5291231 DOI: 10.1093/hmg/ddw236] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/13/2016] [Accepted: 07/11/2016] [Indexed: 02/05/2023] Open
Abstract
Genome-wide association studies have revealed a relationship between inter-individual variation in blood pressure and the single nucleotide polymorphism rs13107325 in the SLC39A8 gene. This gene encodes the ZIP8 protein which co-transports divalent metal cations, including heavy metal cadmium, the accumulation of which has been associated with increased blood pressure. The polymorphism results in two variants of ZIP8 with either an alanine (Ala) or a threonine (Thr) at residue 391. We investigated the functional impact of this variant on protein conformation, cadmium transport, activation of signalling pathways and cell viability in relation to blood pressure regulation. Following incubation with cadmium, higher intracellular cadmium was detected in cultured human embryonic kidney cells (HEK293) expressing heterologous ZIP8-Ala391, compared with HEK293 cells expressing heterologous ZIP8-Thr391. This Ala391-associated cadmium accumulation also increased the phosphorylation of the signal transduction molecule ERK2, activation of the transcription factor NFκB, and reduced cell viability. Similarly, vascular endothelial cells with the Ala/Ala genotype had higher intracellular cadmium concentration and lower cell viability than their Ala/Thr counterpart following cadmium exposure. These results indicate that the ZIP8 Ala391-to-Thr391 substitution has an effect on intracellular cadmium accumulation and cell toxicity, providing a potential mechanistic explanation for the association of this genetic variant with blood pressure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shu Ye
- William Harvey Research Institute
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE3 9QP, UK
- NIHR Biomedical Research Centre in Cardiovascular Disease, Leicester LE3 9QP, UK
- Shantou University Medical College, Shantou 515041, People's Republic of China
| |
Collapse
|
441
|
Cai Y, Sukhova GK, Wong HK, Xu A, Tergaonkar V, Vanhoutte PM, Tang EHC. Rap1 induces cytokine production in pro-inflammatory macrophages through NFκB signaling and is highly expressed in human atherosclerotic lesions. Cell Cycle 2016; 14:3580-92. [PMID: 26505215 DOI: 10.1080/15384101.2015.1100771] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Repressor activator protein 1 (Rap1) is essential for maintaining telomere length and structural integrity, but it also exerts other non-telomeric functions. The present study tested the hypothesis that Rap1 is released into the cytoplasm and induces production of pro-inflammatory cytokines via nuclear factor kappa B (NFκB) signaling in macrophages, a cell type involved in the development and progression of atherosclerotic lesions. Western blotting analysis confirmed that Rap1 was present in the cytoplasm of differentiated human monocytic leukemia cells (THP-1, a macrophage-like cell line). Co-immunoprecipitation assay revealed a direct interaction between Rap1 and I kappa B kinase (IKK). Knockdown of Rap1 suppressed lipopolysaccharide-mediated activation of NFκB, and phosphorylation of inhibitor of kappa B α (IκBα) and p65 in THP-1 macrophages. The reduction of NFκB activity was paralleled by a decreased production of NFκB-dependent pro-inflammatory cytokines and an increased expression of IκBα (native NFκB inhibitor) in various macrophage models with pro-inflammatory phenotype, including THP-1, mouse peritoneal macrophages and bone marrow-derived M1 macrophages. These changes were observed selectively in pro-inflammatory macrophages but not in bone marrow-derived M2 macrophages (with an anti-inflammatory phenotype), mouse lung endothelial cells, human umbilical vein endothelial cells or human aortic smooth muscle cells. Immunostaining revealed that Rap1 was localized mainly in macrophage-rich areas in human atherosclerotic plaques and that the presence of Rap1 was positively correlated with the advancement of the disease process. In pro-inflammatory macrophages, Rap1 promotes cytokine production via NFκB activation favoring a pro-inflammatory environment which may contribute to the development and progression of atherosclerosis.
Collapse
Affiliation(s)
- Yin Cai
- a Department of Pharmacology and Pharmacy and State Key Laboratory of Pharmaceutical Biotechnology ; Li Ka Shing Faculty of Medicine; The University of Hong Kong ; Hong Kong , China
| | - Galina K Sukhova
- b Division of Cardiovascular Medicine; Brigham and Women's Hospital; Harvard Medical School ; Boston , MA USA
| | - Hoi Kin Wong
- a Department of Pharmacology and Pharmacy and State Key Laboratory of Pharmaceutical Biotechnology ; Li Ka Shing Faculty of Medicine; The University of Hong Kong ; Hong Kong , China
| | - Aimin Xu
- a Department of Pharmacology and Pharmacy and State Key Laboratory of Pharmaceutical Biotechnology ; Li Ka Shing Faculty of Medicine; The University of Hong Kong ; Hong Kong , China.,c Department of Medicine ; Li Ka Shing Faculty of Medicine; The University of Hong Kong ; Hong Kong , China
| | - Vinay Tergaonkar
- d Institute of Molecular and Cell Biology ; Biopolis A*STAR, Singapore
| | - Paul M Vanhoutte
- a Department of Pharmacology and Pharmacy and State Key Laboratory of Pharmaceutical Biotechnology ; Li Ka Shing Faculty of Medicine; The University of Hong Kong ; Hong Kong , China
| | - Eva Hoi Ching Tang
- a Department of Pharmacology and Pharmacy and State Key Laboratory of Pharmaceutical Biotechnology ; Li Ka Shing Faculty of Medicine; The University of Hong Kong ; Hong Kong , China.,e School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong ; Hong Kong , China
| |
Collapse
|
442
|
Yang Z, Wang XL, Bai R, Liu WY, Li X, Liu M, Tang H. miR-23a promotes IKKα expression but suppresses ST7L expression to contribute to the malignancy of epithelial ovarian cancer cells. Br J Cancer 2016; 115:731-40. [PMID: 27537390 PMCID: PMC5023779 DOI: 10.1038/bjc.2016.244] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Dysregulation of microRNAs (miRNAs) has been found in human epithelial ovarian cancer (EOC). However, the role and mechanism of action of miR-23a in EOC remain unclear. METHODS The roles of miR-23a, IKKα, and ST7L in EOC were determined by MTT, colony formation, wounding healing, transwell, flow cytometry, immunofluorescence, RT-qPCR, and western blotting experiments. miR-23a target genes were validated by EGFP reporter assays, RT-qPCR, and western blotting analysis. RESULTS miR-23a is upregulated and promotes tumorigenic activity by facilitating the progress of cell cycle and EMT and repressing apoptosis in EOC cells. miR-23a enhances the expression of IKKα but suppresses the expression of ST7L by binding the 3'UTR of each transcript in EOC cells. The proliferation, migration, and invasion of EOC cells are increased by IKKα and inhibited by ST7L. Furthermore, miR-23a activates NF-κB by upregulating IKKα and WNT/MAPK pathway by downregulating ST7L. CONCLUSIONS miR-23a functions as an oncogene by targeting IKKα and ST7L, thus contributing to the malignancy of EOC cells.
Collapse
Affiliation(s)
- Zhen Yang
- Tianjin Life Science Research Center and Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin, China
| | - Xiang-ling Wang
- Tianjin Life Science Research Center and Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin, China
| | - Ru Bai
- Tianjin Life Science Research Center and Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin, China
- Department of Pathogenic Biology and Immunology, Ningxia Medical University, Yinchuan, China
| | - Wei-ying Liu
- Tianjin Life Science Research Center and Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin, China
| | - Xin Li
- Tianjin Life Science Research Center and Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin, China
| | - Min Liu
- Tianjin Life Science Research Center and Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin, China
| | - Hua Tang
- Tianjin Life Science Research Center and Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin, China
| |
Collapse
|
443
|
Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci U S A 2016. [PMID: 27559085 DOI: 10.1073/pnas.1612594113)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Systemic autoinflammatory diseases are caused by mutations in genes that function in innate immunity. Here, we report an autoinflammatory disease caused by loss-of-function mutations in OTULIN (FAM105B), encoding a deubiquitinase with linear linkage specificity. We identified two missense and one frameshift mutations in one Pakistani and two Turkish families with four affected patients. Patients presented with neonatal-onset fever, neutrophilic dermatitis/panniculitis, and failure to thrive, but without obvious primary immunodeficiency. HEK293 cells transfected with mutated OTULIN had decreased enzyme activity relative to cells transfected with WT OTULIN, and showed a substantial defect in the linear deubiquitination of target molecules. Stimulated patients' fibroblasts and peripheral blood mononuclear cells showed evidence for increased signaling in the canonical NF-κB pathway and accumulated linear ubiquitin aggregates. Levels of proinflammatory cytokines were significantly increased in the supernatants of stimulated primary cells and serum samples. This discovery adds to the emerging spectrum of human diseases caused by defects in the ubiquitin pathway and suggests a role for targeted cytokine therapies.
Collapse
|
444
|
Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci U S A 2016; 113:10127-32. [PMID: 27559085 DOI: 10.1073/pnas.1612594113] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Systemic autoinflammatory diseases are caused by mutations in genes that function in innate immunity. Here, we report an autoinflammatory disease caused by loss-of-function mutations in OTULIN (FAM105B), encoding a deubiquitinase with linear linkage specificity. We identified two missense and one frameshift mutations in one Pakistani and two Turkish families with four affected patients. Patients presented with neonatal-onset fever, neutrophilic dermatitis/panniculitis, and failure to thrive, but without obvious primary immunodeficiency. HEK293 cells transfected with mutated OTULIN had decreased enzyme activity relative to cells transfected with WT OTULIN, and showed a substantial defect in the linear deubiquitination of target molecules. Stimulated patients' fibroblasts and peripheral blood mononuclear cells showed evidence for increased signaling in the canonical NF-κB pathway and accumulated linear ubiquitin aggregates. Levels of proinflammatory cytokines were significantly increased in the supernatants of stimulated primary cells and serum samples. This discovery adds to the emerging spectrum of human diseases caused by defects in the ubiquitin pathway and suggests a role for targeted cytokine therapies.
Collapse
|
445
|
Pamunuwa G, Karunaratne DN, Waisundara VY. Antidiabetic Properties, Bioactive Constituents, and Other Therapeutic Effects of Scoparia dulcis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:8243215. [PMID: 27594892 PMCID: PMC4995349 DOI: 10.1155/2016/8243215] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 01/06/2023]
Abstract
This review discusses the antidiabetic activities of Scoparia dulcis as well as its antioxidant and anti-inflammatory properties in relation to the diabetes and its complications. Ethnomedical applications of the herb have been identified as treatment for jaundice, stomach problems, skin disease, fever, and kidney stones, reproductory issues, and piles. Evidence has been demonstrated through scientific studies as to the antidiabetic effects of crude extracts of S. dulcis as well as its bioactive constituents. The primary mechanisms of action of antidiabetic activity of the plant and its bioactive constituents are through α-glucosidase inhibition, curbing of PPAR-γ and increased secretion of insulin. Scoparic acid A, scoparic acid D, scutellarein, apigenin, luteolin, coixol, and glutinol are some of the compounds which have been identified as responsible for these mechanisms of action. S. dulcis has also been shown to exhibit analgesic, antimalarial, hepatoprotective, sedative, hypnotic, antiulcer, antisickling, and antimicrobial activities. Given this evidence, it may be concluded that S. dulcis could be promoted among the masses as an alternative and complementary therapy for diabetes, provided further scientific studies on the toxicological and pharmacological aspects are carried out through either in vivo or clinical means.
Collapse
Affiliation(s)
- Geethi Pamunuwa
- Department of Horticulture and Landscape Gardening, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila, Sri Lanka
| | - D. Nedra Karunaratne
- Department of Chemistry, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Viduranga Y. Waisundara
- Functional Food Product Development Project, National Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka
| |
Collapse
|
446
|
Park HS, Vick EJ, Gao Y, He C, Almosnid NM, Farone M, Farone AL. Cis- and Trans-gnetin H from Paeonia suffruticosa suppress inhibitor kappa B kinase phosphorylation in LPS-stimulated human THP-1 cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 189:202-209. [PMID: 27196294 DOI: 10.1016/j.jep.2016.05.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The inflammatory response is an important mechanism in host defense; however, overstimulation and chronic inflammation are involved in many important human diseases. Currently, tumor necrosis factor-alpha blockers such as infliximab and adalimumab along with methotrexate are used in cases of severe and chronic disease. However, there are severe side effects and limitations associated with these treatments. Cis- and trans-gnetin H are compounds isolated from the seeds of Paeonia suffruticosa, a medicinal plant used in traditional Chinese medicine for the treatment of many conditions, including inflammatory diseases. In this study, we investigated possible anti-inflammatory mechanisms of cis- and trans-gnetin H against LPS-stimulated human THP-1 cells. MATERIAL AND METHODS PMA-differentiated THP-1 cells were pretreated with increasing concentrations of cis- and trans-gnetin H with or without LPS. Following treatment, cytotoxicity and the TNF-α, IL-1β, and IL-8 response were measured. We also characterized the nuclear translocation of NF-κB subunit p65 (RelA) by immunofluorescence and then investigated NF-κB activation by measuring the phosphorylation of NF-κB mediators, IKK-β, IκB α, and p65 by western blotting. RESULTS We found that cis- and trans-gnetin H significantly inhibited the cytokine response in a concentration-dependent manner without affecting cell viability. Cis- and trans-gnetin H effectively inhibited nuclear translocation of p65 and phosphorylation of IKK-β, IκB α, and p65. While both compounds showed promising anti-inflammatory effects, trans-gnetin H was determined to be more effective in suppressing cytokine responses. CONCLUSION We demonstrated that cis- and trans-gnetin H suppress cytokine response in LPS-stimulated THP-1 cells by preventing activation of key signaling molecules, IKK-β, IκB α, and p65, involved in the NF-κB pathway and suggest the use of cis- and trans-gnetin H in potential therapies for conditions and diseases associated with chronic inflammation.
Collapse
Affiliation(s)
- Hyo S Park
- Middle Tennessee State University, 1301 East Main Street, Murfreesboro, Tennessee 37132, USA.
| | - Eric J Vick
- Middle Tennessee State University, 1301 East Main Street, Murfreesboro, Tennessee 37132, USA.
| | - Ying Gao
- Middle Tennessee State University, 1301 East Main Street, Murfreesboro, Tennessee 37132, USA.
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, No. 151 Malianwa, North Road, Haidian District, Beijing 100193, PR China.
| | - Nadin Marwan Almosnid
- Middle Tennessee State University, 1301 East Main Street, Murfreesboro, Tennessee 37132, USA.
| | - Mary Farone
- Middle Tennessee State University, 1301 East Main Street, Murfreesboro, Tennessee 37132, USA.
| | - Anthony L Farone
- Middle Tennessee State University, 1301 East Main Street, Murfreesboro, Tennessee 37132, USA.
| |
Collapse
|
447
|
Kawasaki M, Kawasaki K, Oommen S, Blackburn J, Watanabe M, Nagai T, Kitamura A, Maeda T, Liu B, Schmidt-Ullrich R, Akiyama T, Inoue JI, Hammond NL, Sharpe PT, Ohazama A. Regional regulation of Filiform tongue papillae development by Ikkα/Irf6. Dev Dyn 2016; 245:937-46. [DOI: 10.1002/dvdy.24427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023] Open
Affiliation(s)
- Maiko Kawasaki
- Division of Oral Anatomy; Department of Oral Biological Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
- Department of Craniofacial Development and Stem Cell Biology; Dental Institute, Kings College London; London United Kingdom
| | - Katsushige Kawasaki
- Division of Oral Anatomy; Department of Oral Biological Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
- Department of Craniofacial Development and Stem Cell Biology; Dental Institute, Kings College London; London United Kingdom
- Oral Life Science, Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Shelly Oommen
- Department of Craniofacial Development and Stem Cell Biology; Dental Institute, Kings College London; London United Kingdom
| | - James Blackburn
- Department of Craniofacial Development and Stem Cell Biology; Dental Institute, Kings College London; London United Kingdom
| | - Momoko Watanabe
- Division of Oral Anatomy; Department of Oral Biological Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
- Division of Oral and Maxillofacial Surgery; Department of Health Science, Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Takahiro Nagai
- Division of Oral Anatomy; Department of Oral Biological Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
- Division of Oral and Maxillofacial Surgery; Department of Health Science, Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Atsushi Kitamura
- Division of Oral Anatomy; Department of Oral Biological Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
- Division of Oral and Maxillofacial Surgery; Department of Health Science, Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Takeyasu Maeda
- Division of Oral Anatomy; Department of Oral Biological Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
- Oral Life Science, Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Bigang Liu
- Department of Molecular Carcinogenesis; UT MD Anderson Cancer Center; Smithville Texas
| | - Ruth Schmidt-Ullrich
- Department of Signal Transduction in Tumor Cells; Max-Delbrück-Center for Molecular Medicine; Berlin Germany
| | - Taishin Akiyama
- Division of Cellular and Molecular Biology; Institute of Medical Science, University of Tokyo; Minato-ku Tokyo Japan
| | - Jun-Ichiro Inoue
- Division of Cellular and Molecular Biology; Institute of Medical Science, University of Tokyo; Minato-ku Tokyo Japan
| | - Nigel L. Hammond
- Faculty of Life Sciences and School of Dentistry, Manchester Academic Health Sciences Centre, University of Manchester; Manchester United Kingdom
| | - Paul T. Sharpe
- Department of Craniofacial Development and Stem Cell Biology; Dental Institute, Kings College London; London United Kingdom
| | - Atsushi Ohazama
- Division of Oral Anatomy; Department of Oral Biological Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
- Department of Craniofacial Development and Stem Cell Biology; Dental Institute, Kings College London; London United Kingdom
| |
Collapse
|
448
|
Lin J, He S, Sun X, Franck G, Deng Y, Yang D, Haemmig S, Wara AKM, Icli B, Li D, Feinberg MW. MicroRNA-181b inhibits thrombin-mediated endothelial activation and arterial thrombosis by targeting caspase recruitment domain family member 10. FASEB J 2016; 30:3216-26. [PMID: 27297585 DOI: 10.1096/fj.201500163r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/31/2016] [Indexed: 12/12/2022]
Abstract
Thrombogenic and inflammatory mediators, such as thrombin, induce NF-κB-mediated endothelial cell (EC) activation and dysfunction, which contribute to pathogenesis of arterial thrombosis. The role of anti-inflammatory microRNA-181b (miR-181b) on thrombosis remains unknown. Our previous study demonstrated that miR-181b inhibits downstream NF-κB signaling in response to TNF-α. Here, we demonstrate that miR-181b uniquely inhibits upstream NF-κB signaling in response to thrombin. Overexpression of miR-181b inhibited thrombin-induced activation of NF-κB signaling, demonstrated by reduction of phospho-IKK-β, -IκB-α, and p65 nuclear translocation in ECs. MiR-181b also reduced expression of NF-κB target genes VCAM-1, intercellular adhesion molecule-1, E-selectin, and tissue factor. Mechanistically, miR-181b targets caspase recruitment domain family member 10 (Card10), an adaptor protein that participates in activation of the IKK complex in response to signals transduced from protease-activated receptor-1. miR-181b reduced expression of Card10 mRNA and protein, but not protease-activated receptor-1. 3'-Untranslated region reporter assays, argonaute-2 microribonucleoprotein immunoprecipitation studies, and Card10 rescue studies revealed that Card10 is a bona fide direct miR-181b target. Small interfering RNA-mediated knockdown of Card10 expression phenocopied effects of miR-181b on NF-κB signaling and targets. Card10 deficiency did not affect TNF-α-induced activation of NF-κB signaling, which suggested stimulus-specific regulation of NF-κB signaling and endothelial responses by miR-181b in ECs. Finally, in response to photochemical injury-induced arterial thrombosis, systemic delivery of miR-181b reduced thrombus formation by 73% in carotid arteries and prolonged time to occlusion by 1.6-fold, effects recapitulated by Card10 small interfering RNA. These data demonstrate that miR-181b and Card10 are important regulators of thrombin-induced EC activation and arterial thrombosis. These studies highlight the relevance of microRNA-dependent targets in response to ligand-specific signaling in ECs.-Lin, J., He, S., Sun, X., Franck, G., Deng, Y., Yang, D., Haemmig, S., Wara, A. K. M., Icli, B., Li, D., Feinberg, M. W. MicroRNA-181b inhibits thrombin-mediated endothelial activation and arterial thrombosis by targeting caspase recruitment domain family member 10.
Collapse
Affiliation(s)
- Jibin Lin
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Shaolin He
- Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Xinghui Sun
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory Franck
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yihuan Deng
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Dafeng Yang
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Stefan Haemmig
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - A K M Wara
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Basak Icli
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dazhu Li
- Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
449
|
Ertl NG, O’Connor WA, Papanicolaou A, Wiegand AN, Elizur A. Transcriptome Analysis of the Sydney Rock Oyster, Saccostrea glomerata: Insights into Molluscan Immunity. PLoS One 2016; 11:e0156649. [PMID: 27258386 PMCID: PMC4892480 DOI: 10.1371/journal.pone.0156649] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Oysters have important ecological functions in their natural environment, acting as global carbon sinks and improving water quality by removing excess nutrients from the water column. During their life-time oysters are exposed to a variety of pathogens that can cause severe mortality in a range of oyster species. Environmental stressors encountered in their habitat can increase the susceptibility of oysters to these pathogens and in general have been shown to impact on oyster immunity, making immune parameters expressed in these marine animals an important research topic. RESULTS Paired-end Illumina high throughput sequencing of six S. glomerata tissues exposed to different environmental stressors resulted in a total of 484,121,702 paired-end reads. When reads and assembled transcripts were compared to the C. gigas genome, an overall low level of similarity at the nucleotide level, but a relatively high similarity at the protein level was observed. Examination of the tissue expression pattern showed that some transcripts coding for cathepsins, heat shock proteins and antioxidant proteins were exclusively expressed in the haemolymph of S. glomerata, suggesting a role in innate immunity. Furthermore, analysis of the S. glomerata ORFs showed a wide range of genes potentially involved in innate immunity, from pattern recognition receptors, components of the Toll-like signalling and apoptosis pathways to a complex antioxidant defence mechanism. CONCLUSIONS This is the first large scale RNA-Seq study carried out in S. glomerata, showing the complex network of innate immune components that exist in this species. The results confirmed that many of the innate immune system components observed in mammals are also conserved in oysters; however, some, such as the TLR adaptors MAL, TRIF and TRAM are either missing or have been modified significantly. The components identified in this study could help explain the oysters' natural resilience against pathogenic microorganisms encountered in their natural environment.
Collapse
Affiliation(s)
- Nicole G. Ertl
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Australian Seafood Cooperative Research Centre, Bedford Park, South Australia, Australia
| | - Wayne A. O’Connor
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Primary Industries, Taylors Beach, New South Wales, Australia
| | - Alexie Papanicolaou
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Ecosystem Sciences, Black Mountain Laboratories, Canberra, Australian Capital Territory, Australia
| | - Aaron N. Wiegand
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Abigail Elizur
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- * E-mail:
| |
Collapse
|
450
|
Krętowski R, Borzym-Kluczyk M, Stypułkowska A, Brańska-Januszewska J, Ostrowska H, Cechowska-Pasko M. Low glucose dependent decrease of apoptosis and induction of autophagy in breast cancer MCF-7 cells. Mol Cell Biochem 2016; 417:35-47. [PMID: 27160935 PMCID: PMC4887537 DOI: 10.1007/s11010-016-2711-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/27/2016] [Indexed: 01/06/2023]
Abstract
Cancer cells have developed a number of adaptation mechanisms involving the signal activation of the transduction pathways, which promotes the progression and metastasis. Our results showed that the percentage of apoptotic MCF-7 cells incubated in the low glucose medium for 48 h was lower in comparison to those cultured in the high glucose medium, despite the high expression of the proapoptotic transcription factor-CHOP. Furthermore, the MCF-7 cells incubated in the low glucose medium for 48 h showed a higher expression of NF-κB p100/p52 subunits compared to cells incubated in the high glucose medium. Moreover, our findings demonstrated that the shortage of glucose strongly induces autophagy in MCF-7 cells. The activation of this process is not associated with the changes in the expression of mTOR kinase. We suggest, that the antiapoptotic chaperone ORP150 induction, transcription factor NF-κB2 activation, and increased autophagy constitute mechanisms protecting the MCF-7 cells against apoptosis.
Collapse
Affiliation(s)
- Rafał Krętowski
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza 2A, 15-222, Białystok, Poland
| | - Małgorzata Borzym-Kluczyk
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza 2A, 15-222, Białystok, Poland
| | - Anna Stypułkowska
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza 2A, 15-222, Białystok, Poland
| | | | - Halina Ostrowska
- Department of Biology, Medical University of Białystok, Białystok, Poland
| | - Marzanna Cechowska-Pasko
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza 2A, 15-222, Białystok, Poland.
| |
Collapse
|