401
|
Lim HR, Kim HS, Qazi R, Kwon YT, Jeong JW, Yeo WH. Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901924. [PMID: 31282063 DOI: 10.1002/adma.201901924] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/18/2019] [Indexed: 05/19/2023]
Abstract
Recent advances in soft materials and system integration technologies have provided a unique opportunity to design various types of wearable flexible hybrid electronics (WFHE) for advanced human healthcare and human-machine interfaces. The hybrid integration of soft and biocompatible materials with miniaturized wireless wearable systems is undoubtedly an attractive prospect in the sense that the successful device performance requires high degrees of mechanical flexibility, sensing capability, and user-friendly simplicity. Here, the most up-to-date materials, sensors, and system-packaging technologies to develop advanced WFHE are provided. Details of mechanical, electrical, physicochemical, and biocompatible properties are discussed with integrated sensor applications in healthcare, energy, and environment. In addition, limitations of the current materials are discussed, as well as key challenges and the future direction of WFHE. Collectively, an all-inclusive review of the newly developed WFHE along with a summary of imperative requirements of material properties, sensor capabilities, electronics performance, and skin integrations is provided.
Collapse
Affiliation(s)
- Hyo-Ryoung Lim
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hee Seok Kim
- Department of Mechanical Engineering, University of South Alabama, Mobile, AL, 36608, USA
| | - Raza Qazi
- Department of Electrical, Computer & Energy Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Young-Tae Kwon
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, Institute for Electronics and Nanotechnology, Parker H. Petit Institute for Bioengineering and Biosciences, Center for Flexible and Wearable Electronics Advanced Research, Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
402
|
Pang Y, Yang Z, Yang Y, Ren TL. Wearable Electronics Based on 2D Materials for Human Physiological Information Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1901124. [PMID: 31364311 DOI: 10.1002/smll.201901124] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/07/2019] [Indexed: 05/12/2023]
Abstract
Recently, advancement in materials production, device fabrication, and flexible circuit has led to the huge prosperity of wearable electronics for human healthcare monitoring and medical diagnosis. Particularly, with the emergence of 2D materials many merits including light weight, high stretchability, excellent biocompatibility, and high performance are used for those potential applications. Thus, it is urgent to review the wearable electronics based on 2D materials for the detection of various human signals. In this work, the typical graphene-based materials, transition-metal dichalcogenides, and transition metal carbides or carbonitrides used for the wearable electronics are discussed. To well understand the human physiological information, it is divided into two dominated categories, namely, the human physical and the human chemical signals. The monitoring of body temperature, electrograms, subtle signals, and limb motions is described for the physical signals while the detection of body fluid including sweat, breathing gas, and saliva is reviewed for the chemical signals. Recent progress and development toward those specific utilizations are highlighted in the Review with the representative examples. The future outlook of wearable healthcare techniques is briefly discussed for their commercialization.
Collapse
Affiliation(s)
- Yu Pang
- Institute of Microelectronics, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Zhen Yang
- Institute of Microelectronics, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yi Yang
- Institute of Microelectronics, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Tian-Ling Ren
- Institute of Microelectronics, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
403
|
Keum DH, Kim SK, Koo J, Lee GH, Jeon C, Mok JW, Mun BH, Lee KJ, Kamrani E, Joo CK, Shin S, Sim JY, Myung D, Yun SH, Bao Z, Hahn SK. Wireless smart contact lens for diabetic diagnosis and therapy. SCIENCE ADVANCES 2020; 6:eaba3252. [PMID: 32426469 PMCID: PMC7182412 DOI: 10.1126/sciadv.aba3252] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/31/2020] [Indexed: 05/21/2023]
Abstract
A smart contact lens can be used as an excellent interface between the human body and an electronic device for wearable healthcare applications. Despite wide investigations of smart contact lenses for diagnostic applications, there has been no report on electrically controlled drug delivery in combination with real-time biometric analysis. Here, we developed smart contact lenses for both continuous glucose monitoring and treatment of diabetic retinopathy. The smart contact lens device, built on a biocompatible polymer, contains ultrathin, flexible electrical circuits and a microcontroller chip for real-time electrochemical biosensing, on-demand controlled drug delivery, wireless power management, and data communication. In diabetic rabbit models, we could measure tear glucose levels to be validated by the conventional invasive blood glucose tests and trigger drugs to be released from reservoirs for treating diabetic retinopathy. Together, we successfully demonstrated the feasibility of smart contact lenses for noninvasive and continuous diabetic diagnosis and diabetic retinopathy therapy.
Collapse
Affiliation(s)
- Do Hee Keum
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Su-Kyoung Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Jahyun Koo
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Geon-Hui Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Cheonhoo Jeon
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Jee Won Mok
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 505, Banpo-dong, Seocho-gu, Seoul 06591, Korea
| | - Beom Ho Mun
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Ehsan Kamrani
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 65 Landsdowne St., UP-5, Cambridge, MA 02139, USA
| | - Choun-Ki Joo
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 505, Banpo-dong, Seocho-gu, Seoul 06591, Korea
| | - Sangbaie Shin
- PHI BIOMED Co., #613, 12 Gangnam-daero 65-gil, Seocho-gu, Seoul 06612, Korea
| | - Jae-Yoon Sim
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - David Myung
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
- Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Seok Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 65 Landsdowne St., UP-5, Cambridge, MA 02139, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
- PHI BIOMED Co., #613, 12 Gangnam-daero 65-gil, Seocho-gu, Seoul 06612, Korea
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
- Corresponding author.
| |
Collapse
|
404
|
Ma Y, Zhang Y, Cai S, Han Z, Liu X, Wang F, Cao Y, Wang Z, Li H, Chen Y, Feng X. Flexible Hybrid Electronics for Digital Healthcare. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902062. [PMID: 31243834 DOI: 10.1002/adma.201902062] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/28/2019] [Indexed: 05/25/2023]
Abstract
Recent advances in material innovation and structural design provide routes to flexible hybrid electronics that can combine the high-performance electrical properties of conventional wafer-based electronics with the ability to be stretched, bent, and twisted to arbitrary shapes, revolutionizing the transformation of traditional healthcare to digital healthcare. Here, material innovation and structural design for the preparation of flexible hybrid electronics are reviewed, a brief chronology of these advances is given, and biomedical applications in bioelectrical monitoring and stimulation, optical monitoring and treatment, acoustic imitation and monitoring, bionic touch, and body-fluid testing are described. In conclusion, some remarks on the challenges for future research of flexible hybrid electronics are presented.
Collapse
Affiliation(s)
- Yinji Ma
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yingchao Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Shisheng Cai
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Zhiyuan Han
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xin Liu
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Fengle Wang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yu Cao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Zhouheng Wang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Hangfei Li
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yihao Chen
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xue Feng
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
405
|
Yokus MA, Songkakul T, Pozdin VA, Bozkurt A, Daniele MA. Wearable multiplexed biosensor system toward continuous monitoring of metabolites. Biosens Bioelectron 2020; 153:112038. [DOI: 10.1016/j.bios.2020.112038] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 01/13/2023]
|
406
|
Coetzee D, Venkataraman M, Militky J, Petru M. Influence of Nanoparticles on Thermal and Electrical Conductivity of Composites. Polymers (Basel) 2020; 12:E742. [PMID: 32230802 PMCID: PMC7240543 DOI: 10.3390/polym12040742] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
This review analyzes thermal and electrically conductive properties of composites and how they can be influenced by the addition of special nanoparticles. Composite functional characteristics-such as thermal and electrical conductivity, phase changes, dimensional stability, magnetization, and modulus increase-are tuned by selecting suitable nanoparticle filler material. The conductivity of composites can be related to the formation of conductive pathways as nanofiller materials form connections in the bulk of a composite matrix. With increasing use of nanomaterial containing composites and relatively little understanding of the toxicological effects thereof, adequate disposal and recyclability have become an increasing environmental concern.
Collapse
Affiliation(s)
- Divan Coetzee
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic; (D.C.); (J.M.)
| | - Mohanapriya Venkataraman
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic; (D.C.); (J.M.)
| | - Jiri Militky
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic; (D.C.); (J.M.)
| | - Michal Petru
- Institute for Nanomaterials, Advanced Technologies and Innovation, Department of Machinery Construction, Technical University of Liberec, 461 17 Liberec, Czech Republic;
| |
Collapse
|
407
|
Jiang C, Wang G, Hein R, Liu N, Luo X, Davis JJ. Antifouling Strategies for Selective In Vitro and In Vivo Sensing. Chem Rev 2020; 120:3852-3889. [DOI: 10.1021/acs.chemrev.9b00739] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Cheng Jiang
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Guixiang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, China
| | - Robert Hein
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Nianzu Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
408
|
|
409
|
Xie L, Zeng H, Sun J, Qian W. Engineering Microneedles for Therapy and Diagnosis: A Survey. MICROMACHINES 2020; 11:E271. [PMID: 32150866 PMCID: PMC7143426 DOI: 10.3390/mi11030271] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Microneedle (MN) technology is a rising star in the point-of-care (POC) field, which has gained increasing attention from scientists and clinics. MN-based POC devices show great potential for detecting various analytes of clinical interests and transdermal drug delivery in a minimally invasive manner owing to MNs' micro-size sharp tips and ease of use. This review aims to go through the recent achievements in MN-based devices by investigating the selection of materials, fabrication techniques, classification, and application, respectively. We further highlight critical aspects of MN platforms for transdermal biofluids extraction, diagnosis, and drug delivery assisted disease therapy. Moreover, multifunctional MNs for stimulus-responsive drug delivery systems were discussed, which show incredible potential for accurate and efficient disease treatment in dynamic environments for a long period of time. In addition, we also discuss the remaining challenges and emerging trend of MN-based POC devices from the bench to the bedside.
Collapse
Affiliation(s)
- Liping Xie
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China;
| | - Hedele Zeng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China;
| | - Jianjun Sun
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Wei Qian
- Department of Electrical and Computer Engineering, University of Texas, EI Paso, TX 79968, USA;
| |
Collapse
|
410
|
Microdroplet-captured tapes for rapid sampling and SERS detection of food contaminants. Biosens Bioelectron 2020; 152:112013. [DOI: 10.1016/j.bios.2020.112013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022]
|
411
|
Zhao Y, Wang B, Hojaiji H, Wang Z, Lin S, Yeung C, Lin H, Nguyen P, Chiu K, Salahi K, Cheng X, Tan J, Cerrillos BA, Emaminejad S. A wearable freestanding electrochemical sensing system. SCIENCE ADVANCES 2020; 6:eaaz0007. [PMID: 32219164 PMCID: PMC7083607 DOI: 10.1126/sciadv.aaz0007] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/23/2019] [Indexed: 05/24/2023]
Abstract
To render high-fidelity wearable biomarker data, understanding and engineering the information delivery pathway from epidermally retrieved biofluid to a readout unit are critical. By examining the biomarker information delivery pathway and recognizing near-zero strained regions within a microfluidic device, a strain-isolated pathway to preserve biomarker data fidelity is engineered. Accordingly, a generalizable and disposable freestanding electrochemical sensing system (FESS) is devised, which simultaneously facilitates sensing and out-of-plane signal interconnection with the aid of double-sided adhesion. The FESS serves as a foundation to realize a system-level design strategy, addressing the challenges of wearable biosensing, in the presence of motion, and integration with consumer electronics. To this end, a FESS-enabled smartwatch was developed, featuring sweat sampling, electrochemical sensing, and data display/transmission, all within a self-contained wearable platform. The FESS-enabled smartwatch was used to monitor the sweat metabolite profiles of individuals in sedentary and high-intensity exercise settings.
Collapse
Affiliation(s)
- Yichao Zhao
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bo Wang
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hannaneh Hojaiji
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhaoqing Wang
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shuyu Lin
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher Yeung
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Haisong Lin
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peterson Nguyen
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kaili Chiu
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kamyar Salahi
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xuanbing Cheng
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiawei Tan
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Betto Alcitlali Cerrillos
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sam Emaminejad
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
412
|
Manjakkal L, Dervin S, Dahiya R. Flexible potentiometric pH sensors for wearable systems. RSC Adv 2020; 10:8594-8617. [PMID: 35496561 PMCID: PMC9050124 DOI: 10.1039/d0ra00016g] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/30/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022] Open
Abstract
There is a growing demand for developing wearable sensors that can non-invasively detect the signs of chronic diseases early on to possibly enable self-health management. Among these the flexible and stretchable electrochemical pH sensors are particularly important as the pH levels influence most chemical and biological reactions in materials, life and environmental sciences. In this review, we discuss the most recent developments in wearable electrochemical potentiometric pH sensors, covering the key topics such as (i) suitability of potentiometric pH sensors in wearable systems; (ii) designs of flexible potentiometric pH sensors, which may vary with target applications; (iii) materials for various components of the sensor such as substrates, reference and sensitive electrode; (iv) applications of flexible potentiometric pH sensors, and (v) the challenges relating to flexible potentiometric pH sensors.
Collapse
Affiliation(s)
- Libu Manjakkal
- Bendable Electronics and Sensing Technologies (BEST) Group, School of Engineering, University of Glasgow G12 8QQ UK
| | - Saoirse Dervin
- Bendable Electronics and Sensing Technologies (BEST) Group, School of Engineering, University of Glasgow G12 8QQ UK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, School of Engineering, University of Glasgow G12 8QQ UK
| |
Collapse
|
413
|
Yang X, Cheng H. Recent Developments of Flexible and Stretchable Electrochemical Biosensors. MICROMACHINES 2020; 11:E243. [PMID: 32111023 PMCID: PMC7143805 DOI: 10.3390/mi11030243] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
The skyrocketing popularity of health monitoring has spurred increasing interest in wearable electrochemical biosensors. Compared with the traditionally rigid and bulky electrochemical biosensors, flexible and stretchable devices render a unique capability to conform to the complex, hierarchically textured surfaces of the human body. With a recognition element (e.g., enzymes, antibodies, nucleic acids, ions) to selectively react with the target analyte, wearable electrochemical biosensors can convert the types and concentrations of chemical changes in the body into electrical signals for easy readout. Initial exploration of wearable electrochemical biosensors integrates electrodes on textile and flexible thin-film substrate materials. A stretchable property is needed for the thin-film device to form an intimate contact with the textured skin surface and to deform with various natural skin motions. Thus, stretchable materials and structures have been exploited to ensure the effective function of a wearable electrochemical biosensor. In this mini-review, we summarize the recent development of flexible and stretchable electrochemical biosensors, including their principles, representative application scenarios (e.g., saliva, tear, sweat, and interstitial fluid), and materials and structures. While great strides have been made in the wearable electrochemical biosensors, challenges still exist, which represents a small fraction of opportunities for the future development of this burgeoning field.
Collapse
Affiliation(s)
- Xudong Yang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China;
- Department of Automotive Engineering, Beihang University, Beijing 100191, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Huanyu Cheng
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China;
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
414
|
Shrivastava S, Trung TQ, Lee NE. Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chem Soc Rev 2020; 49:1812-1866. [PMID: 32100760 DOI: 10.1039/c9cs00319c] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rapid growth of research in the areas of chemical and biochemical sensors, lab-on-a-chip, mobile technology, and wearable electronics offers an unprecedented opportunity in the development of mobile and wearable point-of-care testing (POCT) systems for self-testing. Successful implementation of such POCT technologies leads to minimal user intervention during operation to reduce user errors; user-friendly, easy-to-use and simple detection platforms; high diagnostic sensitivity and specificity; immediate clinical assessment; and low manufacturing and consumables costs. In this review, we discuss recent developments in the field of highly integrated mobile and wearable POCT systems. In particular, aspects of sample handling platforms, recognition elements and sensing methods, and new materials for signal transducers and powering devices for integration into mobile or wearable POCT systems will be highlighted. We also summarize current challenges and future prospects for providing personal healthcare with sample-in result-out mobile and wearable POCT.
Collapse
Affiliation(s)
- Sajal Shrivastava
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | | | | |
Collapse
|
415
|
A novel 3D paper-based microfluidic electrochemical glucose biosensor based on rGO-TEPA/PB sensitive film. Anal Chim Acta 2020; 1096:34-43. [DOI: 10.1016/j.aca.2019.10.049] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 11/18/2022]
|
416
|
Wang T, Wang M, Yang L, Li Z, Loh XJ, Chen X. Cyber-Physiochemical Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905522. [PMID: 31944425 DOI: 10.1002/adma.201905522] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Living things rely on various physical, chemical, and biological interfaces, e.g., somatosensation, olfactory/gustatory perception, and nervous system response. They help organisms to perceive the world, adapt to their surroundings, and maintain internal and external balance. Interfacial information exchanges are complicated but efficient, delicate but precise, and multimodal but unisonous, which has driven researchers to study the science of such interfaces and develop techniques with potential applications in health monitoring, smart robotics, future wearable devices, and cyber physical/human systems. To understand better the issues in these interfaces, a cyber-physiochemical interface (CPI) that is capable of extracting biophysical and biochemical signals, and closely relating them to electronic, communication, and computing technology, to provide the core for aforementioned applications, is proposed. The scientific and technical progress in CPI is summarized, and the challenges to and strategies for building stable interfaces, including materials, sensor development, system integration, and data processing techniques are discussed. It is hoped that this will result in an unprecedented multi-disciplinary network of scientific collaboration in CPI to explore much uncharted territory for progress, providing technical inspiration-to the development of the next-generation personal healthcare technology, smart sports-technology, adaptive prosthetics and augmentation of human capability, etc.
Collapse
Affiliation(s)
- Ting Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ming Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Le Yang
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Zhuyun Li
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
417
|
The role of sampling in wearable sweat sensors. Talanta 2020; 212:120801. [PMID: 32113563 DOI: 10.1016/j.talanta.2020.120801] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/13/2020] [Accepted: 01/31/2020] [Indexed: 01/29/2023]
Abstract
Wearable sweat sensors demonstrate outstanding performance in non-invasive, real-time monitoring of vital biomarkers in sweat, which offer an opportunity for individuals to achieve dynamic monitoring their own physiology in molecular-level. As a key step in sweat analysis that impact the accuracy of results, frequently-used sweat sampling methods are introduced in this review, and the emphasis is sweat sampling in wearable sensors including absorbent materials, superhydrophobic/superhydrophilic surface, sweat guidance and epidermal microfluidic systems. In the end, we also propose the remaining challenges in the practical, large-scale application of wearable sweat sensors and provide personal prospects on the future development.
Collapse
|
418
|
Senel M, Dervisevic M, Esser L, Dervisevic E, Dyson J, Easton CD, Cadarso VJ, Voelcker NH. Enhanced electrochemical sensing performance by in situ electrocopolymerization of pyrrole and thiophene-grafted chitosan. Int J Biol Macromol 2020; 143:582-593. [DOI: 10.1016/j.ijbiomac.2019.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022]
|
419
|
Lopez-Ramirez MA, Soto F, Wang C, Rueda R, Shukla S, Silva-Lopez C, Kupor D, McBride DA, Pokorski JK, Nourhani A, Steinmetz NF, Shah NJ, Wang J. Built-In Active Microneedle Patch with Enhanced Autonomous Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905740. [PMID: 31682039 PMCID: PMC7014935 DOI: 10.1002/adma.201905740] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/09/2019] [Indexed: 05/08/2023]
Abstract
The use of microneedles has facilitated the painless localized delivery of drugs across the skin. However, their efficacy has been limited by slow diffusion of molecules and often requires external triggers. Herein, an autonomous and degradable, active microneedle delivery platform is introduced, employing magnesium microparticles loaded within the microneedle patch, as the built-in engine for deeper and faster intradermal payload delivery. The magnesium particles react with the interstitial fluid, leading to an explosive-like rapid production of H2 bubbles, providing the necessary force to breach dermal barriers and enhance payload delivery. The release kinetics of active microneedles is evaluated in vitro by measuring the amount of IgG antibody (as a model drug) that passed through phantom tissue and a pigskin barrier. In vivo experiments using a B16F10 mouse melanoma model demonstrate that the active delivery of anti-CTLA-4 (a checkpoint inhibitor drug) results in greatly enhanced immune response and significantly longer survival. Moreover, spatially resolved zones of active and passive microneedles allow a combinatorial rapid burst response along with slow, sustained release, respectively. Such versatile and effective autonomous dynamic microneedle delivery technology offers considerable promise for a wide range of therapeutic applications, toward a greatly enhanced outcome, convenience, and cost.
Collapse
Affiliation(s)
| | - Fernando Soto
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chao Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ricardo Rueda
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sourabh Shukla
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Cristian Silva-Lopez
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Daniel Kupor
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - David A McBride
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Jonathan K Pokorski
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Center for Nano-Immunoengineering, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Amir Nourhani
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nicole F Steinmetz
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Center for Nano-Immunoengineering, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Nisarg J Shah
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
- Center for Nano-Immunoengineering, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
- Program in Immunology, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Center for Nano-Immunoengineering, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| |
Collapse
|
420
|
Zhang D, Ren B, Zhang Y, Xu L, Huang Q, He Y, Li X, Wu J, Yang J, Chen Q, Chang Y, Zheng J. From design to applications of stimuli-responsive hydrogel strain sensors. J Mater Chem B 2020; 8:3171-3191. [DOI: 10.1039/c9tb02692d] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stimuli-responsive hydrogel strain sensors that synergize the advantages of both hydrogel and smart functional materials have attracted increasing interest from material design to emerging applications in health monitors and human–machine interfaces.
Collapse
|
421
|
Habibzadeh H, Dinesh K, Shishvan OR, Boggio-Dandry A, Sharma G, Soyata T. A Survey of Healthcare Internet-of-Things (HIoT): A Clinical Perspective. IEEE INTERNET OF THINGS JOURNAL 2020; 7:53-71. [PMID: 33748312 PMCID: PMC7970885 DOI: 10.1109/jiot.2019.2946359] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In combination with current sociological trends, the maturing development of IoT devices is projected to revolutionize healthcare. A network of body-worn sensors, each with a unique ID, can collect health data that is orders-of-magnitude richer than what is available today from sporadic observations in clinical/hospital environments. When databased, analyzed, and compared against information from other individuals using data analytics, HIoT data enables the personalization and modernization of care with radical improvements in outcomes and reductions in cost. In this paper, we survey existing and emerging technologies that can enable this vision for the future of healthcare, particularly in the clinical practice of healthcare. Three main technology areas underlie the development of this field: (a) sensing, where there is an increased drive for miniaturization and power efficiency; (b) communications, where the enabling factors are ubiquitous connectivity, standardized protocols, and the wide availability of cloud infrastructure, and (c) data analytics and inference, where the availability of large amounts of data and computational resources is revolutionizing algorithms for individualizing inference and actions in health management. Throughout the paper, we use a case study to concretely illustrate the impact of these trends. We conclude our paper with a discussion of the emerging directions, open issues, and challenges.
Collapse
Affiliation(s)
- Hadi Habibzadeh
- Department of Electrical and Computer Engineering, SUNY Albany, Albany NY, 12203
| | - Karthik Dinesh
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627
| | - Omid Rajabi Shishvan
- Department of Electrical and Computer Engineering, SUNY Albany, Albany NY, 12203
| | - Andrew Boggio-Dandry
- Department of Electrical and Computer Engineering, SUNY Albany, Albany NY, 12203
| | - Gaurav Sharma
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627
| | - Tolga Soyata
- Department of Electrical and Computer Engineering, SUNY Albany, Albany NY, 12203
| |
Collapse
|
422
|
Yamaguchi T, Yamamoto D, Arie T, Akita S, Takei K. Wrist flexible heart pulse sensor integrated with a soft pump and a pneumatic balloon membrane. RSC Adv 2020; 10:17353-17358. [PMID: 35521472 PMCID: PMC9057701 DOI: 10.1039/d0ra02316g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/24/2020] [Indexed: 11/21/2022] Open
Abstract
To monitor health and diagnose disease in the early stage, future healthcare standards will likely include the continuous monitoring of various vital data. One approach to collect such information is a wearable and flexible device, which detects information from the skin surface. An important dataset is heart pulse information. Herein a method to monitor the detailed pulse signal from a wrist stably and reliably is proposed. Specifically, a soft pneumatic balloon operated by a soft pump applies the appropriate pressure over a tactile sensor onto the radial artery of the wrist to detect detailed heart pulse waves. The soft pump, pneumatic balloon, and flexible tactile pressure sensor are characterized as a fundamental study. Additionally, a proof-of-concept of this integrated device platform is demonstrated by monitoring the heart pulse from a wrist with and without the soft pump functions. Wearable and flexible heart pulse sensor is proposed to monitor the detailed pulse signal from a wrist stably and reliably by integrating a tactile pressure sensor and a soft pneumatic balloon operated by a soft pump.![]()
Collapse
Affiliation(s)
- Takafumi Yamaguchi
- Department of Physics and Electronics
- Osaka Prefecture University
- Sakai
- Japan
| | - Daisuke Yamamoto
- Department of Physics and Electronics
- Osaka Prefecture University
- Sakai
- Japan
| | - Takayuki Arie
- Department of Physics and Electronics
- Osaka Prefecture University
- Sakai
- Japan
| | - Seiji Akita
- Department of Physics and Electronics
- Osaka Prefecture University
- Sakai
- Japan
| | - Kuniharu Takei
- Department of Physics and Electronics
- Osaka Prefecture University
- Sakai
- Japan
- Japan Science and Technology
| |
Collapse
|
423
|
Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020; 49:4405-4465. [DOI: 10.1039/c9cs00587k] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article presents a comprehensive overview of recent progress in the design and applications of solid-contact ion-selective electrodes (SC-ISEs).
Collapse
Affiliation(s)
- Yuzhou Shao
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
424
|
Ng LC, Gupta M. Transdermal drug delivery systems in diabetes management: A review. Asian J Pharm Sci 2020; 15:13-25. [PMID: 32175015 PMCID: PMC7066029 DOI: 10.1016/j.ajps.2019.04.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/25/2019] [Accepted: 04/15/2019] [Indexed: 01/08/2023] Open
Abstract
Diabetes mellitus is a chronic disease in which there is an insufficient production of insulin by the pancreas, or the insulin produced is unable to be utilized effectively by the body. Diabetes affects more than 415 million people globally and is estimated to strike about 642 million people in 2040. The WHO reported that diabetes will become the seventh biggest cause of mortality in 2030. Insulin injection and oral hypoglycemic agents remain the primary treatments in diabetes management. These often present with poor patient compliance. However, over the last decade, transdermal systems in diabetes management have gained increasing attention and emerged as a potential hope in diabetes management owing to the advantages that they offer as compared to invasive injection and oral dosage forms. This review presents the recent advances and developments in transdermal research to achieve better diabetes management. Different technologies and approaches have been explored and applied to the transdermal systems to optimize diabetes management. Studies have shown that these transdermal systems demonstrate higher bioavailability compared to oral administration due to the avoidance of first-pass hepatic metabolism and a sustained drug release pattern. Besides that, transdermal systems have the advantage of reducing dosing frequency as drugs are released at a predetermined rate and control blood glucose level over a prolonged time, contributing to better patient compliance. In summary, the transdermal system is a field worth exploring due to its significant advantages over oral route in administration of antidiabetic drugs and biosensing of blood glucose level to ensure better clinical outcomes in diabetes management.
Collapse
Affiliation(s)
- Li Ching Ng
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Manish Gupta
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Faculty of Pharmacy, DIT University, Dehradun 248009, India
| |
Collapse
|
425
|
Odabashyan L, Babajanyan A, Baghdasaryan Z, Kim S, Kim J, Friedman B, Lee JH, Lee K. Real-Time Noninvasive Measurement of Glucose Concentration Using a Modified Hilbert Shaped Microwave Sensor. SENSORS 2019; 19:s19245525. [PMID: 31847275 PMCID: PMC6960736 DOI: 10.3390/s19245525] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/08/2019] [Accepted: 12/12/2019] [Indexed: 01/09/2023]
Abstract
We developed a microwave glucose sensor based on the modified first-order Hilbert curve design and measured glucose concentration in aqueous solutions by using a real-time microwave near-field electromagnetic interaction technique. We observed S21 transmission parameters of the sensor at resonant frequencies depend on the glucose concentration. We could determine the glucose concentration in the 0-250 mg/dL concentration range at an operating frequency of near 6 GHz. The measured minimum detectable signal was 0.0156 dB/(mg/dL) and the measured minimum detectable concentration was 1.92 mg/dL. The simulation result for the minimum detectable signal and the minimum detectable concentration was 0.0182 dB/(mg/dL) and 1.65 mg/dL, respectively. The temperature instability of the sensor for human glycemia in situ measurement range (27-34 °C for fingers and 36-40 °C for body temperature ranges) can be improved by the integration of the temperature sensor in the microwave stripline platform and the obtained data can be corrected during signal processing. The microwave signal-temperature dependence is almost linear with the same slope for a glucose concentration range of 50-150 mg/dL. The temperature correlation coefficient is 0.05 dB/°C and 0.15 dB/°C in 27-34 °C and 36-40 °C temperature range, respectively. The presented system has a cheap, easy fabrication process and has great potential for non-invasive glucose monitoring.
Collapse
Affiliation(s)
- Levon Odabashyan
- Department of Radiophysics, Yerevan State University, Yerevan 0025, Armenia; (L.O.); (A.B.); (Z.B.)
| | - Arsen Babajanyan
- Department of Radiophysics, Yerevan State University, Yerevan 0025, Armenia; (L.O.); (A.B.); (Z.B.)
| | - Zhirayr Baghdasaryan
- Department of Radiophysics, Yerevan State University, Yerevan 0025, Armenia; (L.O.); (A.B.); (Z.B.)
- Department of Physics, Sogang University, Seoul 121-742, Korea; (S.K.); (J.K.)
| | - Seungwan Kim
- Department of Physics, Sogang University, Seoul 121-742, Korea; (S.K.); (J.K.)
| | - Jongchel Kim
- Department of Physics, Sogang University, Seoul 121-742, Korea; (S.K.); (J.K.)
| | - Barry Friedman
- Department of Physics, Sam Houston State University, Huntsville, TX 77341, USA;
| | - Jung-Ha Lee
- Department of Life Science, Sogang University, Seoul 121-742, Korea;
| | - Kiejin Lee
- Department of Physics, Sogang University, Seoul 121-742, Korea; (S.K.); (J.K.)
- Correspondence: ; Tel.: +82-270-584-29
| |
Collapse
|
426
|
Keene ST, Fogarty D, Cooke R, Casadevall CD, Salleo A, Parlak O. Wearable Organic Electrochemical Transistor Patch for Multiplexed Sensing of Calcium and Ammonium Ions from Human Perspiration. Adv Healthc Mater 2019; 8:e1901321. [PMID: 31714014 DOI: 10.1002/adhm.201901321] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Indexed: 12/21/2022]
Abstract
Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the ability to provide rapid, off-site diagnosis and patient-monitoring. In particular, sweat-based wearable biosensors offer a noninvasive route to continuously monitor a variety of biomarkers for a range of physiological conditions. Both the accessibility and wealth of information of sweat make it an ideal target for noninvasive devices that can aid in early diagnosis of disease or to monitor athletic performance. Here, the integration of ammonium (NH4 + ) and calcium (Ca2+ ) ion-selective membranes with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based (PEDOT:PSS) organic electrochemical transistor (OECT) for multiplexed sensing of NH4 + and Ca2+ in sweat with high sensitivity and selectivity is reported for the first time. The presented wearable sweat sensor is designed by combining a flexible and stretchable styrene-ethylene-butene-styrene substrate with a laser-patterned microcapillary channel array for direct sweat acquisition and delivery to the ion-selective OECT. The resulting dermal sensor exhibits a wide working range between 0.01 × 10-3 and 100 × 10-3 m, well within the physiological levels of NH4 + and Ca2+ in sweat. The integrated devices are successfully implemented with both ex situ measurements and on human subjects with real-time analysis using a wearable sensor assembly.
Collapse
Affiliation(s)
- Scott T. Keene
- Department of Materials Science and Engineering Stanford University 450 Serra Mall Stanford CA 94305 USA
| | - Daragh Fogarty
- Department of Materials Science and Engineering Stanford University 450 Serra Mall Stanford CA 94305 USA
| | - Ross Cooke
- Department of Materials Science and Engineering Stanford University 450 Serra Mall Stanford CA 94305 USA
| | - Carlos D. Casadevall
- Department of Materials Science and Engineering Stanford University 450 Serra Mall Stanford CA 94305 USA
| | - Alberto Salleo
- Department of Materials Science and Engineering Stanford University 450 Serra Mall Stanford CA 94305 USA
| | - Onur Parlak
- Department of Materials Science and Engineering Stanford University 450 Serra Mall Stanford CA 94305 USA
| |
Collapse
|
427
|
Song Y, Min J, Gao W. Wearable and Implantable Electronics: Moving toward Precision Therapy. ACS NANO 2019; 13:12280-12286. [PMID: 31725255 DOI: 10.1021/acsnano.9b08323] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Soft wearable and implantable electronic systems have attracted tremendous attention due to their flexibility, conformability, and biocompatibility. Such favorable features are critical for reliably monitoring key biomedical and physiological information (including both biophysical and biochemical signals) and effective treatment and management of specific chronic diseases. Miniaturized, fully integrated self-powered bioelectronic devices that can harvest energy from the human body represent promising and emerging solutions for long-term, intimate, and personalized therapies. In this Perspective, we offer a brief overview of recent advances in wearable/implantable soft electronic devices and their therapeutic applications ranging from drug delivery to tissue regeneration. We also discuss the key opportunities, challenges, and future directions in this important area needed to fulfill the vision of personalized medicine.
Collapse
Affiliation(s)
- Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
428
|
A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat Biotechnol 2019; 38:217-224. [DOI: 10.1038/s41587-019-0321-x] [Citation(s) in RCA: 537] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022]
|
429
|
Benson HAE, Grice JE, Mohammed Y, Namjoshi S, Roberts MS. Topical and Transdermal Drug Delivery: From Simple Potions to Smart Technologies. Curr Drug Deliv 2019; 16:444-460. [PMID: 30714524 PMCID: PMC6637104 DOI: 10.2174/1567201816666190201143457] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 01/02/2023]
Abstract
This overview on skin delivery considers the evolution of the principles of percutaneous ab-sorption and skin products from ancient times to today. Over the ages, it has been recognised that products may be applied to the skin for either local or systemic effects. As our understanding of the anatomy and physiology of the skin has improved, this has facilitated the development of technologies to effectively and quantitatively deliver solutes across this barrier to specific target sites in the skin and beyond. We focus on these technologies and their role in skin delivery today and in the future.
Collapse
Affiliation(s)
- Heather A E Benson
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University of Technology, Perth, Australia
| | - Jeffrey E Grice
- Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| | - Yousuf Mohammed
- Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| | - Sarika Namjoshi
- Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| | - Michael S Roberts
- Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, 4102, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
430
|
Broza YY, Zhou X, Yuan M, Qu D, Zheng Y, Vishinkin R, Khatib M, Wu W, Haick H. Disease Detection with Molecular Biomarkers: From Chemistry of Body Fluids to Nature-Inspired Chemical Sensors. Chem Rev 2019; 119:11761-11817. [DOI: 10.1021/acs.chemrev.9b00437] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yoav Y. Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Xi Zhou
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an 710072, P.R. China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, P.R. China
| | - Danyao Qu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Shaanxi 710126, P.R. China
| | - Youbing Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Rotem Vishinkin
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Muhammad Khatib
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Shaanxi 710126, P.R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Shaanxi 710126, P.R. China
| |
Collapse
|
431
|
Pires LR, Vinayakumar KB, Turos M, Miguel V, Gaspar J. A Perspective on Microneedle-Based Drug Delivery and Diagnostics in Paediatrics. J Pers Med 2019; 9:jpm9040049. [PMID: 31731656 PMCID: PMC6963643 DOI: 10.3390/jpm9040049] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
Microneedles (MNs) have been extensively explored in the literature as a means to deliver drugs in the skin, surpassing the stratum corneum permeability barrier. MNs are potentially easy to produce and may allow the self-administration of drugs without causing pain or bleeding. More recently, MNs have been investigated to collect/assess the interstitial fluid in order to monitor or detect specific biomarkers. The integration of these two concepts in closed-loop devices holds the promise of automated and minimally invasive disease detection/monitoring and therapy. These assure low invasiveness and, importantly, open a window of opportunity for the application of population-specific and personalised therapies.
Collapse
Affiliation(s)
- Liliana R Pires
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (L.R.P.); (J.G.)
| | - KB Vinayakumar
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (L.R.P.); (J.G.)
- Correspondence: or
| | - Maria Turos
- University of Oviedo, 33006 Asturias, Spain;
| | - Verónica Miguel
- Department of Cell Biology and Immunology, Centro de Biología Molecular “Severo Ochoa”, 28049 Madrid, Spain;
| | - João Gaspar
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (L.R.P.); (J.G.)
| |
Collapse
|
432
|
Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y, Yu H, Gan Y, Wang Y, Mei L, Chen H, Hu H, Zhang Z, Jin Y. Recent progress in drug delivery. Acta Pharm Sin B 2019; 9:1145-1162. [PMID: 31867161 PMCID: PMC6900554 DOI: 10.1016/j.apsb.2019.08.003] [Citation(s) in RCA: 470] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 01/05/2023] Open
Abstract
Drug delivery systems (DDS) are defined as methods by which drugs are delivered to desired tissues, organs, cells and subcellular organs for drug release and absorption through a variety of drug carriers. Its usual purpose to improve the pharmacological activities of therapeutic drugs and to overcome problems such as limited solubility, drug aggregation, low bioavailability, poor biodistribution, lack of selectivity, or to reduce the side effects of therapeutic drugs. During 2015-2018, significant progress in the research on drug delivery systems has been achieved along with advances in related fields, such as pharmaceutical sciences, material sciences and biomedical sciences. This review provides a concise overview of current progress in this research area through its focus on the delivery strategies, construction techniques and specific examples. It is a valuable reference for pharmaceutical scientists who want to learn more about the design of drug delivery systems.
Collapse
Affiliation(s)
- Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jiancheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiguang Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haijun Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yong Gan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongjun Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Huabing Chen
- School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiping Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
433
|
Chang L, Wang YC, Ershad F, Yang R, Yu C, Fan Y. Wearable Devices for Single-Cell Sensing and Transfection. Trends Biotechnol 2019; 37:1175-1188. [DOI: 10.1016/j.tibtech.2019.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 02/01/2023]
|
434
|
Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904765. [PMID: 31538370 DOI: 10.1002/adma.201904765] [Citation(s) in RCA: 566] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/26/2019] [Indexed: 05/17/2023]
Abstract
Recent progress in electronic skin or e-skin research is broadly reviewed, focusing on technologies needed in three main applications: skin-attachable electronics, robotics, and prosthetics. First, since e-skin will be exposed to prolonged stresses of various kinds and needs to be conformally adhered to irregularly shaped surfaces, materials with intrinsic stretchability and self-healing properties are of great importance. Second, tactile sensing capability such as the detection of pressure, strain, slip, force vector, and temperature are important for health monitoring in skin attachable devices, and to enable object manipulation and detection of surrounding environment for robotics and prosthetics. For skin attachable devices, chemical and electrophysiological sensing and wireless signal communication are of high significance to fully gauge the state of health of users and to ensure user comfort. For robotics and prosthetics, large-area integration on 3D surfaces in a facile and scalable manner is critical. Furthermore, new signal processing strategies using neuromorphic devices are needed to efficiently process tactile information in a parallel and low power manner. For prosthetics, neural interfacing electrodes are of high importance. These topics are discussed, focusing on progress, current challenges, and future prospects.
Collapse
Affiliation(s)
- Jun Chang Yang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jaewan Mun
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305-5025, USA
| | - Se Young Kwon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seongjun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305-5025, USA
| | - Steve Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
435
|
Chung M, Fortunato G, Radacsi N. Wearable flexible sweat sensors for healthcare monitoring: a review. J R Soc Interface 2019; 16:20190217. [PMID: 31594525 PMCID: PMC6833321 DOI: 10.1098/rsif.2019.0217] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/13/2019] [Indexed: 01/03/2023] Open
Abstract
The state-of-the-art in wearable flexible sensors (WFSs) for sweat analyte detection was investigated. Recent advances show the development of integrated, mechanically flexible and multiplexed sensor systems with on-site circuitry for signal processing and wireless data transmission. When compared with single-analyte sensors, such devices provide an opportunity to more accurately analyse analytes that are dependent on other parameters (such as sweat rate and pH) by improving calibration from in situ real-time analysis, while maintaining a lightweight and wearable design. Important health conditions can be monitored and on-demand regulating drugs can be delivered using integrated wearable systems but require correlation verification between sweat and blood measurements using in vivo validation tests before any clinical application can be considered. Improvements are necessary for device sensitivity, accuracy and repeatability to provide more reliable and personalized continuous measurements. With rapid recent development, it can be concluded that non-invasive WFSs for sweat analysis have only skimmed the surface of their health monitoring potential and further significant advancement is sure to be made in the medical field.
Collapse
Affiliation(s)
- Michael Chung
- The School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK
- Empa, Swiss Federal Laboratories for Material Science and Technology, Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Material Science and Technology, Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Norbert Radacsi
- The School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK
| |
Collapse
|
436
|
Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat Biomed Eng 2019; 4:159-171. [DOI: 10.1038/s41551-019-0462-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 09/12/2019] [Indexed: 12/21/2022]
|
437
|
Possanzini L, Tessarolo M, Mazzocchetti L, Campari EG, Fraboni B. Impact of Fabric Properties on Textile Pressure Sensors Performance. SENSORS 2019; 19:s19214686. [PMID: 31661929 PMCID: PMC6864692 DOI: 10.3390/s19214686] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 12/26/2022]
Abstract
In recent years, wearable technologies have attracted great attention in physical and chemical sensing applications. Wearable pressure sensors with high sensitivity in low pressure range (<10 kPa) allow touch detection for human-computer interaction and the development of artificial hands for handling objects. Conversely, pressure sensors that perform in a high pressure range (up to 100 kPa), can be used to monitor the foot pressure distribution, the hand stress during movements of heavy weights or to evaluate the cyclist’s pressure pattern on a bicycle saddle. Recently, we developed a fully textile pressure sensor based on a conductive polymer, with simple fabrication and scalable features. In this paper, we intend to provide an extensive description on how the mechanical properties of several fabrics and different piezoresistive ink formulation may have an impact in the sensor’s response during a dynamic operation mode. These results highlight the complexity of the system due to the presence of various parameters such as the fabric used, the conductive polymer solution, the operation mode and the desired pressure range. Furthermore, this work can lead to a protocol for new improvements and optimizations useful for adapting textile pressure sensors to a large variety of applications.
Collapse
Affiliation(s)
- Luca Possanzini
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy.
| | - Marta Tessarolo
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy.
| | - Laura Mazzocchetti
- Department of Industrial Chemistry, University of Bologna, Via Risorgimento 4, 40136 Bologna, Italy.
| | - Enrico Gianfranco Campari
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy.
| | - Beatrice Fraboni
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy.
| |
Collapse
|
438
|
Suntornsuk W, Suntornsuk L. Recent applications of paper‐based point‐of‐care devices for biomarker detection. Electrophoresis 2019; 41:287-305. [DOI: 10.1002/elps.201900258] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Worapot Suntornsuk
- Department of Microbiology, Faculty of ScienceKing Mongkut's University of Technology Thonburi Bangkok Thailand
| | - Leena Suntornsuk
- Department of Pharmaceutical ChemistryFaculty of PharmacyMahidol University Bangkok Thailand
| |
Collapse
|
439
|
Yang B, Fang X, Kong J. In Situ Sampling and Monitoring Cell-Free DNA of the Epstein-Barr Virus from Dermal Interstitial Fluid Using Wearable Microneedle Patches. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38448-38458. [PMID: 31554395 DOI: 10.1021/acsami.9b12244] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using polymerase chain reaction and genotyping, Epstein-Barr virus cell-free DNA (EBV Cf DNA) was detectable in interstitial fluid (ISF). Microneedles offer a minimally invasive approach to capture such Cf DNA. However, a key challenge of microneedles lies in the ability to specifically isolate biomarkers within a short time. We introduced a hydrogel microneedle patch for rapid and easy capture of EBV Cf DNA from ISF in situ around 15 min, with a maximum capture efficiency of 93.6%. Then, quantification of EBV Cf DNA was achieved by electrochemical recombinase polymerase amplification wearable flexible microfluidics, with a detection limit of 3.7 × 102 copies/μL. Animal tests supported the performance of microneedles for EBV Cf DNA capture. Collectively, these data showed that the microneedle patch may have broad implications for patients with Cf DNA-related disease and cancer metastasis in minimally invasive manners.
Collapse
Affiliation(s)
- Bin Yang
- Department of Chemistry and Institutes of Biomedical Sciences , Fudan University , Shanghai 200433 , P. R. China
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences , Fudan University , Shanghai 200433 , P. R. China
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences , Fudan University , Shanghai 200433 , P. R. China
| |
Collapse
|
440
|
Feng R, Tang F, Zhang N, Wang X. Flexible, High-Power Density, Wearable Thermoelectric Nanogenerator and Self-Powered Temperature Sensor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38616-38624. [PMID: 31556992 DOI: 10.1021/acsami.9b11435] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We propose a flexible and wearable thermoelectric nanogenerator (FTEG) made from Bi2Te3, which allows high voltage and output power density. The proposed FTEG works as a thermopile with the end-to-end connection of 126 thermoelectric legs, and which is fabricated through magnetron sputtering Cu conductor on polyethylene terephthalate film. Bi, Te, Sb, and Se alloys are used to prepare thermoelectric materials by doping in a fixed proportion and zone melting, and nickel plating on the surface mitigates the deterioration of thermoelectric properties caused by the diffusion of Cu atoms or Cu+ ions. The thermoelectric figure of merit is stable and maintained above 0.7, up to 1.02. More flexibility is allowed by employing double sinusoidal serpentine connecting wires, and no significant property changes are observed even after being folded 200 times. When the temperature difference reaches 50 K, the output voltage of the FTEG will be no less than 520 mV, and the power density will reach 11.14 mW·cm-2. By integration of a low-power, low-threshold voltage boost circuit on the back end of the FTEG, the electronic watch with a liquid crystal display screen can be easily powered to work properly. Furthermore, the FTEG is temperature-sensitive and, thus, can be used for temperature measurement with a resolution of 0.5 K. This work may have important prospects in flexible wearable physical sensors and individualized medical care.
Collapse
Affiliation(s)
| | | | - Ning Zhang
- Quantum Sensing Center , Zhejiang Lab , Hangzhou 310000 , China
| | | |
Collapse
|
441
|
Sempionatto JR, Jeerapan I, Krishnan S, Wang J. Wearable Chemical Sensors: Emerging Systems for On-Body Analytical Chemistry. Anal Chem 2019; 92:378-396. [DOI: 10.1021/acs.analchem.9b04668] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juliane R. Sempionatto
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Itthipon Jeerapan
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sadagopan Krishnan
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
442
|
Piro B, Mattana G, Noël V. Recent Advances in Skin Chemical Sensors. SENSORS 2019; 19:s19204376. [PMID: 31658706 PMCID: PMC6832670 DOI: 10.3390/s19204376] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/26/2019] [Accepted: 10/08/2019] [Indexed: 01/06/2023]
Abstract
This review summarizes the latest developments in the field of skin chemical sensors, in particular wearable ones. Five major applications are covered in the present work: (i) sweat analysis, (ii) skin hydration, (iii) skin wounds, (iv) perspiration of volatile organic compounds, and (v) general skin conditions. For each application, the detection of the most relevant analytes is described in terms of transduction principles and sensor performances. Special attention is paid to the biological fluid collection and storage and devices are also analyzed in terms of reusability and lifetime. This review highlights the existing gaps between current performances and those needed to promote effective commercialization of sensors; future developments are also proposed.
Collapse
Affiliation(s)
- Benoît Piro
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France.
| | - Giorgio Mattana
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France.
| | - Vincent Noël
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France.
| |
Collapse
|
443
|
Zhang Z, Azizi M, Lee M, Davidowsky P, Lawrence P, Abbaspourrad A. A versatile, cost-effective, and flexible wearable biosensor for in situ and ex situ sweat analysis, and personalized nutrition assessment. LAB ON A CHIP 2019; 19:3448-3460. [PMID: 31498355 DOI: 10.1039/c9lc00734b] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Point-of-care (POC) diagnostics have shown excellent potential in rapid biological analysis and health/disease monitoring. Here, we introduce a versatile, cost-effective, flexible, and wearable POC biomarker patch for effective sweat collection and health monitoring. We design and fabricate channels/patterns on filter paper using wax printing technology, which can direct sweat to collection and biomarker detection zones on the proposed platform. The detection zones are designed to measure the amount of collected sweat, in addition to measuring the sweat pH, and glucose (a potential diabetic biomarker), and lactate concentrations. It is significantly challenging to measure glucose in human sweat by colorimetric methods due to the extremely low glucose levels found in this medium. However, we overcame this issue by effectively engineering our wearable biosensor for optimal intake, storage, and evaporation of sweat. Our design concentrates the colorant (indicator) into a small detection zone and significantly increases the sensitivity for the sweat glucose sensing reactions. The device can thus detect glucose in physiological glucose concentration range of 50-300 μM. This cost-effective and wearable biosensor can provide instant in situ quantitative results for targets of interest, such as glucose, pH, and lactate, when coupled with the imaging and computing functionalities of smartphones. Meanwhile, it is also feasible to extract the air-dried sweat from the storage zone for further ex situ measurements of a broader portfolio of biomarkers, leading to applications of our wearable biosensor in personalized nutrition and medicine.
Collapse
Affiliation(s)
- Zhong Zhang
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca 14853, NY, USA.
| | | | | | | | | | | |
Collapse
|
444
|
Muniz-Pardos B, Sutehall S, Angeloudis K, Shurlock J, Pitsiladis YP. The Use of Technology to Protect the Health of Athletes During Sporting Competitions in the Heat. Front Sports Act Living 2019; 1:38. [PMID: 33344961 PMCID: PMC7739590 DOI: 10.3389/fspor.2019.00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/16/2019] [Indexed: 12/02/2022] Open
Abstract
During the 2019 IAAF World Championships in Athletics in Doha and the 2020 Olympic Games in Tokyo, minimum daily temperatures are expected to be in excess of 30°C. Due to the metabolic demands of the sporting events and the high environmental temperatures, the risk of exertional heat stroke (EHS) is high. Careful planning by event organizers are needed to ensure that athletes are protected from irreversible long-term health damage, or even death during sporting competitions in the heat. Efforts typically have included standard medical plans, equipment, protocols, and expert medical teams. In addition, the importance of responding quickly to a hyperthermic athlete cannot be understated, as minimizing treatment time will greatly improve the chances of full recovery. Treatment time can be minimized by notifying medical personnel about the health status of the athlete and the extent of any pre-competition heat acclimatization. Technology that allows the live transmission of physiological, biomechanical, and performance data to alert medical personnel of potential indicators of EHS should be considered. Real time monitoring ecosystems need to be developed that integrate information from numerous sensors such as core temperature-monitoring “pills” to relay information on how an athlete is coping with competing in intense heat. Medical/support staff would be alerted if an athlete's responses were indicating signs of heat stress or EHS signs and the athlete could be withdrawn under exceptional circumstances. This technology can also help provide more rapid, accurate and dignified temperature assessment at the road/track side in medical emergencies.
Collapse
Affiliation(s)
- Borja Muniz-Pardos
- Growth, Exercise, Nutrition and Development (GENUD) Research Group, University of Zaragoza, Zaragoza, Spain
| | - Shaun Sutehall
- Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | | | | | - Yannis P Pitsiladis
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, United Kingdom.,Sciences, University of Rome "Foro Italico", Rome, Italy.,International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
| |
Collapse
|
445
|
Ferreira PC, Ataíde VN, Silva Chagas CL, Angnes L, Tomazelli Coltro WK, Longo Cesar Paixão TR, Reis de Araujo W. Wearable electrochemical sensors for forensic and clinical applications. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115622] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
446
|
Lin H, Hojaiji H, Lin S, Yeung C, Zhao Y, Wang B, Malige M, Wang Y, King K, Yu W, Tan J, Wang Z, Cheng X, Emaminejad S. A wearable electrofluidic actuation system. LAB ON A CHIP 2019; 19:2966-2972. [PMID: 31397462 DOI: 10.1039/c9lc00454h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report a wearable electrofluidic actuation system, which exploits the alternating current electrothermal (ACET) effects to engineer biofluid flow profiles on the body. The wearable ACET flow is induced with the aid of corrosion-resistant electrode configurations (fabricated on a flexible substrate) and custom-developed, wirelessly programmable high frequency (MHz) excitation circuitry. Various tunable flow profiles are demonstrated with the aid of the devised flexible ACET electrode configurations, where the induced profiles are in agreement with the ACET theory and simulation. The demonstrated capabilities rendered by the presented system create new degrees of freedom for implementing advanced bioanalytical operations for future lab-on-the-body platforms.
Collapse
Affiliation(s)
- Haisong Lin
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA.
| | - Hannaneh Hojaiji
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA.
| | - Shuyu Lin
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA.
| | - Christopher Yeung
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA. and Department of Materials Science and Engineering, University of California, Los Angeles, CA, USA
| | - Yichao Zhao
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA. and Department of Materials Science and Engineering, University of California, Los Angeles, CA, USA
| | - Bo Wang
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA.
| | - Meghana Malige
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA.
| | - Yibo Wang
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA.
| | - Kimber King
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA.
| | - Wenzhuo Yu
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA.
| | - Jiawei Tan
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA. and Department of Materials Science and Engineering, University of California, Los Angeles, CA, USA
| | - Zhaoqing Wang
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA.
| | - Xuanbing Cheng
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA. and Department of Materials Science and Engineering, University of California, Los Angeles, CA, USA
| | - Sam Emaminejad
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA. and Department of Bioengineering, University of California, Los Angeles, CA, USA
| |
Collapse
|
447
|
Controllable synthesis of six corner star-like Cu2O/PEDOT-MWCNT composites and their performance toward electrochemical glucose sensing. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.124] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
448
|
Yi N, Cui H, Zhang LG, Cheng H. Integration of biological systems with electronic-mechanical assemblies. Acta Biomater 2019; 95:91-111. [PMID: 31004844 PMCID: PMC6710161 DOI: 10.1016/j.actbio.2019.04.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Biological systems continuously interact with the surrounding environment because they are dynamically evolving. The interaction is achieved through mechanical, electrical, chemical, biological, thermal, optical, or a synergistic combination of these cues. To provide a fundamental understanding of the interaction, recent efforts that integrate biological systems with the electronic-mechanical assemblies create unique opportunities for simultaneous monitoring and eliciting the responses to the biological system. Recent innovations in materials, fabrication processes, and device integration approaches have created the enablers to yield bio-integrated devices to interface with the biological system, ranging from cells and tissues to organs and living individual. In this short review, we will provide a brief overview of the recent development on the integration of the biological systems with electronic-mechanical assemblies across multiple scales, with applications ranging from healthcare monitoring to therapeutic options such as drug delivery and rehabilitation therapies. STATEMENT OF SIGNIFICANCE: An overview of the recent progress on the integration of the biological system with both electronic and mechanical assemblies is discussed. The integration creates the unique opportunity to simultaneously monitor and elicit the responses to the biological system, which provides a fundamental understanding of the interaction between the biological system and the electronic-mechanical assemblies. Recent innovations in materials, fabrication processes, and device integration approaches have created the enablers to yield bio-integrated devices to interface with the biological system, ranging from cells and tissues to organs and living individual.
Collapse
Affiliation(s)
- Ning Yi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Departments of Electrical and Computer Engineering, Biomedical Engineering, and Medicine, The George Washington University, Washington DC 20052, USA
| | - Huanyu Cheng
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
449
|
Legner C, Kalwa U, Patel V, Chesmore A, Pandey S. Sweat sensing in the smart wearables era: Towards integrative, multifunctional and body-compliant perspiration analysis. SENSORS AND ACTUATORS A: PHYSICAL 2019; 296:200-221. [DOI: 10.1016/j.sna.2019.07.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
450
|
Ruzgas T, Larpant N, Shafaat A, Sotres J. Wireless, Battery‐Less Biosensors Based on Direct Electron Transfer Reactions. ChemElectroChem 2019. [DOI: 10.1002/celc.201901015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tautgirdas Ruzgas
- Department of Biomedical Science Faculty of Health and SocietyMalmö University 205 06 Malmö Sweden
- Biofilms – Research Center for BiointerfacesMalmö University 205 06 Malmö Sweden
| | - Nutcha Larpant
- Graduate Program in Clinical Biochemistry and Molecular Medicine Faculty of Allied Health SciencesChulalongkorn University Patumwan Bangkok 10330 Thailand
| | - Atefeh Shafaat
- Department of Biomedical Science Faculty of Health and SocietyMalmö University 205 06 Malmö Sweden
- Biofilms – Research Center for BiointerfacesMalmö University 205 06 Malmö Sweden
| | - Javier Sotres
- Department of Biomedical Science Faculty of Health and SocietyMalmö University 205 06 Malmö Sweden
- Biofilms – Research Center for BiointerfacesMalmö University 205 06 Malmö Sweden
| |
Collapse
|