401
|
Doran RC, Morales JF, To B, Morin TJ, Theolis R, O'Rourke SM, Yu B, Mesa KA, Berman PW. Characterization of a monoclonal antibody to a novel glycan-dependent epitope in the V1/V2 domain of the HIV-1 envelope protein, gp120. Mol Immunol 2014; 62:219-226. [PMID: 25016576 PMCID: PMC4157072 DOI: 10.1016/j.molimm.2014.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/13/2014] [Accepted: 06/20/2014] [Indexed: 11/09/2022]
Abstract
Monoclonal antibody, 4B6, recognizes a glycan-dependent epitope in HIV gp120. 4B6 binding is dependent on a glycan at position N130 in the V1/V2 domain of gp120. Glycan-dependent antibodies to gp120 can arise from a short immunization schedule. Glycan-dependent antibodies to gp120 may be more common than previously expected. Structural studies may provide insight as to why 4B6 lacks neutralization activity.
Recent studies have described several broadly neutralizing monoclonal antibodies (bN-mAbs) that recognize glycan-dependent epitopes (GDEs) in the HIV-1 envelope protein, gp120. These were recovered from HIV-1 infected subjects, and several (e.g., PG9, PG16, CH01, CH03) target glycans in the first and second variable (V1/V2) domain of gp120. The V1/V2 domain is thought to play an important role in conformational masking, and antibodies to the V1/V2 domain were recently identified as the only immune response that correlated with protection in the RV144 HIV-1 vaccine trial. While the importance of antibodies to polymeric glycans is well established for vaccines targeting bacterial diseases, the importance of antibodies to glycans in vaccines targeting HIV has only recently been recognized. Antibodies to GDEs may be particularly significant in HIV vaccines based on gp120, where 50% of the molecular mass of the envelope protein is contributed by N-linked carbohydrate. However, few studies have reported antibodies to GDEs in humans or animals immunized with candidate HIV-1 vaccines. In this report, we describe the isolation of a mouse mAb, 4B6, after immunization with the extracellular domain of the HIV-1 envelope protein, gp140. Epitope mapping using glycopeptide fragments and in vitro mutagenesis showed that binding of this antibody depends on N-linked glycosylation at asparagine N130 (HXB2 numbering) in the gp120 V1/V2 domain. Our results demonstrate that, in addition to natural HIV-1 infection, immunization with recombinant proteins can elicit antibodies to the GDEs in the V1/V2 domain of gp120. Although little is known regarding conditions that favor antibody responses to GDEs, our studies demonstrate that these antibodies can arise from a short-term immunization regimen. Our results suggest that antibodies to GDEs are more common than previously suspected, and that further analysis of antibody responses to the HIV-1 envelope protein will lead to the discovery of additional antibodies to GDEs.
Collapse
Affiliation(s)
- Rachel C Doran
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Javier F Morales
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Briana To
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Trevor J Morin
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Richard Theolis
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Sara M O'Rourke
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Bin Yu
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Kathryn A Mesa
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Phillip W Berman
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
402
|
Guttman M, Garcia NK, Cupo A, Matsui T, Julien JP, Sanders RW, Wilson IA, Moore JP, Lee KK. CD4-induced activation in a soluble HIV-1 Env trimer. Structure 2014; 22:974-84. [PMID: 24931470 PMCID: PMC4231881 DOI: 10.1016/j.str.2014.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/28/2014] [Accepted: 05/01/2014] [Indexed: 01/05/2023]
Abstract
The HIV envelope glycoprotein (Env) trimer undergoes receptor-induced conformational changes that drive fusion of the viral and cellular membranes. Env conformational changes have been observed using low-resolution electron microscopy, but only large-scale rearrangements have been visible. Here, we use hydrogen-deuterium exchange and oxidative labeling to gain a more precise understanding of the unliganded and CD4-bound forms of soluble Env trimers (SOSIP.664), including their glycan composition. CD4 activation induces the reorganization of bridging sheet elements, V1/V2 and V3, much of the gp120 inner domain, and the gp41 fusion subunit. Two CD4 binding site-targeted inhibitors have substantially different effects: NBD-556 partially mimics CD4-induced destabilization of the V1/V2 and V3 crown, whereas BMS-806 only affects regions around the gp120/gp41 interface. The structural information presented here increases our knowledge of CD4- and small molecule-induced conformational changes in Env and the allosteric pathways that lead to membrane fusion.
Collapse
Affiliation(s)
- Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Natalie K Garcia
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Albert Cupo
- Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Jean-Philippe Julien
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier W Sanders
- Weill Medical College of Cornell University, New York, NY 10021, USA; Department of Medical Microbiology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John P Moore
- Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
403
|
Zhou T, Zhu J, Yang Y, Gorman J, Ofek G, Srivatsan S, Druz A, Lees CR, Lu G, Soto C, Stuckey J, Burton DR, Koff WC, Connors M, Kwon PD. Transplanting supersites of HIV-1 vulnerability. PLoS One 2014; 9:e99881. [PMID: 24992528 PMCID: PMC4084637 DOI: 10.1371/journal.pone.0099881] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/19/2014] [Indexed: 11/24/2022] Open
Abstract
One strategy for isolating or eliciting antibodies against a specific target region on the envelope glycoprotein trimer (Env) of the human immunodeficiency virus type 1 (HIV-1) involves the creation of site transplants, which present the target region on a heterologous protein scaffold with preserved antibody-binding properties. If the target region is a supersite of HIV-1 vulnerability, recognized by a collection of broadly neutralizing antibodies, this strategy affords the creation of “supersite transplants”, capable of binding (and potentially eliciting) antibodies similar to the template collection of effective antibodies. Here we transplant three supersites of HIV-1 vulnerability, each targeted by effective neutralizing antibodies from multiple donors. To implement our strategy, we chose a single representative antibody against each of the target supersites: antibody 10E8, which recognizes the membrane-proximal external region (MPER) on the HIV-1 gp41 glycoprotein; antibody PG9, which recognizes variable regions one and two (V1V2) on the HIV-1 gp120 glycoprotein; and antibody PGT128 which recognizes a glycopeptide supersite in variable region 3 (glycan V3) on gp120. We used a structural alignment algorithm to identify suitable acceptor proteins, and then designed, expressed, and tested antigenically over 100-supersite transplants in a 96-well microtiter-plate format. The majority of the supersite transplants failed to maintain the antigenic properties of their respective template supersite. However, seven of the glycan V3-supersite transplants exhibited nanomolar affinity to effective neutralizing antibodies from at least three donors and recapitulated the mannose9-N-linked glycan requirement of the template supersite. The binding of these transplants could be further enhanced by placement into self-assembling nanoparticles. Essential elements of the glycan V3 supersite, embodied by as few as 3 N-linked glycans and ∼25 Env residues, can be segregated into acceptor scaffolds away from the immune-evading capabilities of the rest of HIV-1 Env, thereby providing a means to focus the immune response on the scaffolded supersite.
Collapse
Affiliation(s)
- Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jiang Zhu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gilad Ofek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sanjay Srivatsan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christopher R. Lees
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gabriel Lu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cinque Soto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jonathan Stuckey
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, and Center for HIV/AIDS Vaccine Immunology and Immunogen Design, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Wayne C. Koff
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Mark Connors
- HIV-Specific Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
404
|
Haynes BF, Moody MA, Alam M, Bonsignori M, Verkoczy L, Ferrari G, Gao F, Tomaras GD, Liao HX, Kelsoe G. Progress in HIV-1 vaccine development. J Allergy Clin Immunol 2014; 134:3-10; quiz 11. [PMID: 25117798 DOI: 10.1016/j.jaci.2014.04.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/11/2014] [Accepted: 04/11/2014] [Indexed: 11/27/2022]
Abstract
The past 2 years have seen a number of basic and translational science advances in the quest for development of an effective HIV-1 vaccine. These advances include discovery of new envelope targets of potentially protective antibodies, demonstration that CD8(+) T cells can control HIV-1 infection, development of immunogens to overcome HIV-1 T-cell epitope diversity, identification of correlates of transmission risk in an HIV-1 efficacy trial, and mapping of the coevolution of HIV-1 founder envelope mutants in infected subjects with broad neutralizing antibodies, thereby defining broad neutralizing antibody developmental pathways. Despite these advances, a promising HIV-1 vaccine efficacy trial published in 2013 did not prevent infection, and the HIV-1 vaccine field is still years away from deployment of an effective vaccine. This review summarizes what some of the scientific advances have been, what roadblocks still remain, and what the most promising approaches are for progress in design of successful HIV-1 vaccine candidates.
Collapse
Affiliation(s)
- Barton F Haynes
- Duke Human Vaccine Institute, Durham, NC; Department of Medicine, Duke University School of Medicine, Durham, NC; Department of Immunology, Duke University School of Medicine, Durham, NC.
| | - M Anthony Moody
- Duke Human Vaccine Institute, Durham, NC; Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Munir Alam
- Duke Human Vaccine Institute, Durham, NC; Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Durham, NC; Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Laurent Verkoczy
- Duke Human Vaccine Institute, Durham, NC; Department of Pathology, Duke University School of Medicine, Durham, NC
| | - Guido Ferrari
- Duke Human Vaccine Institute, Durham, NC; Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Feng Gao
- Duke Human Vaccine Institute, Durham, NC; Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Durham, NC; Department of Immunology, Duke University School of Medicine, Durham, NC; Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Durham, NC; Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Durham, NC; Department of Immunology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
405
|
Structure of 2G12 Fab2 in complex with soluble and fully glycosylated HIV-1 Env by negative-stain single-particle electron microscopy. J Virol 2014; 88:10177-88. [PMID: 24965454 DOI: 10.1128/jvi.01229-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The neutralizing anti-HIV-1 antibody 2G12 is of particular interest due to the sterilizing protection it provides from viral challenge in animal models. 2G12 is a unique, domain-exchanged antibody that binds exclusively to conserved N-linked glycans that form the high-mannose patch on the gp120 outer domain centered on a glycan at position N332. Several glycans in and around the 2G12 epitope have been shown to interact with other potent, broadly neutralizing antibodies; therefore, this region constitutes a supersite of vulnerability on gp120. While crystal structures of 2G12 and 2G12 bound to high-mannose glycans have been solved, no structural information that describes the interaction of 2G12 with gp120 or the Env trimer is available. Here, we present a negative-stain single-particle electron microscopy reconstruction of 2G12 Fab2 in complex with a soluble, trimeric Env at ∼17-Å resolution that reveals the antibody's interaction with its native and fully glycosylated epitope. We also mapped relevant glycans in this epitope by fitting high-resolution crystal structures and by performing neutralization assays of glycan knockouts. In addition, a reconstruction at ∼26 Å of the ternary complex formed by 2G12 Fab2, soluble CD4, and Env indicates that 2G12 may block membrane fusion by induced steric hindrance upon primary receptor binding, thereby abrogating Env's interaction with coreceptor(s). These structures provide a basis for understanding 2G12 binding and neutralization, and our low-resolution model and glycan assignments provide a basis for higher-resolution studies to determine the molecular nature of the 2G12 epitope. IMPORTANCE HIV-1 is a human virus that results in the deaths of millions of people around the world each year. While there are several effective therapeutics available to prolong life, a vaccine is the best long-term solution for curbing this global epidemic. Here, we present structural data that reveal the viral binding site of one of the first HIV-1-neutralizing antibodies isolated, 2G12, and provide a rationale for its effectiveness. These structures provide a basis for higher-resolution studies to determine the molecular nature of the 2G12 epitope, which will aid in vaccine design and antibody-based therapies.
Collapse
|
406
|
Abstract
Uukuniemi virus (UUKV) is a model system for investigating the genus Phlebovirus of the Bunyaviridae. We report the UUKV glycome, revealing differential processing of the Gn and Gc virion glycoproteins. Both glycoproteins display poly-N-acetyllactosamines, consistent with virion assembly in the medial Golgi apparatus, whereas oligomannose-type glycans required for DC-SIGN-dependent cellular attachment are predominant on Gc. Local virion structure and the route of viral egress from the cell leave a functional imprint on the phleboviral glycome.
Collapse
|
407
|
Stabilizing the native trimer of HIV-1 Env by destabilizing the heterodimeric interface of the gp41 postfusion six-helix bundle. J Virol 2014; 88:9590-604. [PMID: 24920800 DOI: 10.1128/jvi.00494-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The HIV-1 envelope glycoprotein (Env) is a trimer of gp120-gp41 heterodimers and is essential for viral entry. The gp41 subunit in native, prefusion trimeric Env exists in a metastable conformation and attains a stable six-helix bundle (6-HB) conformation comprised of a trimer of N-heptad repeat (NHR) and C-heptad repeat (CHR) heterodimers, that drives the fusion of viral and cellular membranes. We attempted to stabilize native Env trimers by incorporation of mutations at the NHR-CHR interface that disrupt the postfusion 6-HB of gp41. The mutations V570D and I573D stabilize native Env of the HIV-1 JRFL strain and occlude nonneutralizing epitopes to a greater extent than the previously identified I559P mutation that is at the interface of the NHR trimers in the 6-HB. The mutations prevent soluble-CD4 (sCD4)-induced gp120 shedding and 6-HB formation. In the context of cell surface-expressed JRFL Env, introduction of a previously reported additional disulfide between residues A501 and T605 perturbs the native conformation, though this effect is partially alleviated by furin coexpression. The data suggest that positions 570 and 573 are surface proximal in native Env and that the NHR homotrimeric coiled coil in native Env terminates before or close to residue 573. Aspartic acid substitutions at these positions stabilize native trimers through destabilization of the postfusion 6-HB conformation. These mutations can be used to stabilize Env in a DNA vaccine format. IMPORTANCE The major protein on the surface of HIV-1 is the envelope (Env) glycoprotein. Env is a trimer of gp120-gp41 heterodimers. gp120 is involved in receptor/coreceptor binding and gp41 in the fusion of viral and cellular membranes. Like many other viral fusion proteins, the gp41 subunit in native trimeric Env exists in a metastable conformation. gp41 readily forms a stable six-helix bundle (6-HB) conformation comprised of a trimer of N-heptad repeat (NHR) and C-heptad repeat (CHR) heterodimers that drives fusion of viral and cellular membranes. While it is expected that native Env is a good immunogen, its metastability results in exposure of immunodominant nonneutralizing epitopes. In the present study, we stabilize native Env trimers by incorporation of a number of different mutations at the NHR-CHR interface that disrupt the postfusion 6-HB of gp41. The stabilized constructs described here can be incorporated into DNA vaccine candidates.
Collapse
|
408
|
Immunogen design for HIV-1 and influenza. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1891-1906. [PMID: 24892211 DOI: 10.1016/j.bbapap.2014.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 12/12/2022]
Abstract
Vaccines provide the most cost effective defense against pathogens. Although vaccines have been designed for a number of viral diseases, a vaccine against HIV-1 still remains elusive. In contrast, while there are excellent influenza vaccines, these need to be changed every few years because of antigenic drift and shift. The recent discovery of a large number of broadly neutralizing antibodies (bNAbs) and structural characterization of the conserved epitopes targeted by them presents an opportunity for structure based HIV-1 and influenza A vaccine design. We discuss strategies to design immunogens either targeting a particular antigenic region or focusing on native structure stabilization. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
|
409
|
Yu L, Guan Y. Immunologic Basis for Long HCDR3s in Broadly Neutralizing Antibodies Against HIV-1. Front Immunol 2014; 5:250. [PMID: 24917864 PMCID: PMC4040451 DOI: 10.3389/fimmu.2014.00250] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/12/2014] [Indexed: 01/18/2023] Open
Abstract
A large number of potent broadly neutralizing antibodies (bnAbs) against HIV-1 have been reported in recent years, raising hope for the possibility of an effective vaccine based on epitopes recognized by these protective antibodies. However, many of these bnAbs contain the long heavy chain complementarity-determining region 3 (HCDR3), which is viewed as an obstacle to the development of an HIV-1 vaccine targeting the bnAb responses. This mini-review summarizes the current literature and discusses the different potential immunologic mechanisms for generating long HCDR3, including D–D fusion, VH replacement, long N region addition, and skewed D–J gene usage, among which potential VH replacement products appear to be significant contributors. VH replacement occurs through recombinase activated gene-mediated secondary recombination and contributes to the diversified naïve B cell repertoire. During VH replacement, a short stretch of nucleotides from previously rearranged VH genes remains within the newly formed HCDR3, thus elongating its length. Accumulating evidence suggests that long HCDR3s are present in significant numbers in the human mature naïve B cell repertoire and are primarily generated by recombination during B cell development. These new observations indicate that long HCDR3s, though low in frequency, are a normal feature of the human antibody naïve repertoire and they appear to be selected to target conserved epitopes located in deep, partially obscured regions of the HIV-1 envelope trimer. Therefore, the presence of long HCDR3 sequences should not necessarily be viewed as an obstacle to the development of an HIV-1 vaccine based upon bnAb responses.
Collapse
Affiliation(s)
- Lei Yu
- Division of Basic Science and Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Yongjun Guan
- Division of Basic Science and Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine , Baltimore, MD , USA ; Department of Microbiology and Immunology, University of Maryland School of Medicine , Baltimore, MD , USA
| |
Collapse
|
410
|
Bhatia S, Dimde M, Haag R. Multivalent glycoconjugates as vaccines and potential drug candidates. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00143e] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
411
|
Tharakaraman K, Subramanian V, Cain D, Sasisekharan V, Sasisekharan R. Broadly neutralizing influenza hemagglutinin stem-specific antibody CR8020 targets residues that are prone to escape due to host selection pressure. Cell Host Microbe 2014; 15:644-51. [PMID: 24832457 PMCID: PMC4258880 DOI: 10.1016/j.chom.2014.04.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/02/2014] [Accepted: 04/11/2014] [Indexed: 11/20/2022]
Abstract
Broadly neutralizing antibodies (bNAb) that target a conserved region of a viral antigen hold significant therapeutic promise. CR8020 is a bNAb that targets the stem region of influenza A virus (IAV) hemagglutinin (HA). CR8020 is currently being evaluated for prophylactic use against group 2 IAVs in phase II studies. Structural and computational analyses reported here indicate that CR8020 targets HA residues that are prone to antigenic drift and host selection pressure. Critically, CR8020 escape mutation is seen in certain H7N9 viruses from recent outbreaks. Furthermore, the ability of the bNAb Fc region to effectively engage activating Fcγ receptors (FCγR) is essential for antibody efficacy. In this regard, our data indicate that the membrane could sterically hinder the formation of HA-CR8020-FcγRIIa/HA-IgG-FcγRIIIa ternary complexes. Altogether, our analyses suggest that epitope mutability and accessibility to immune complex assembly are important attributes to consider when evaluating bNAb candidates for clinical development.
Collapse
MESH Headings
- Amino Acid Motifs
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Epitope Mapping
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Host-Pathogen Interactions
- Humans
- Immune Evasion
- Influenza A Virus, H3N2 Subtype/chemistry
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/chemistry
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza, Human/immunology
- Influenza, Human/virology
- Models, Molecular
- Neutralization Tests
Collapse
Affiliation(s)
- Kannan Tharakaraman
- Department of Biological Engineering, Skolkovo-MIT Center for Biomedical Engineering, Koch Institute of Integrative Cancer Research, Infectious Diseases Interdisciplinary Research Group, and Singapore-MIT Alliance for Research and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Vidya Subramanian
- Department of Biological Engineering, Skolkovo-MIT Center for Biomedical Engineering, Koch Institute of Integrative Cancer Research, Infectious Diseases Interdisciplinary Research Group, and Singapore-MIT Alliance for Research and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - David Cain
- Department of Biological Engineering, Skolkovo-MIT Center for Biomedical Engineering, Koch Institute of Integrative Cancer Research, Infectious Diseases Interdisciplinary Research Group, and Singapore-MIT Alliance for Research and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Viswanathan Sasisekharan
- Department of Biological Engineering, Skolkovo-MIT Center for Biomedical Engineering, Koch Institute of Integrative Cancer Research, Infectious Diseases Interdisciplinary Research Group, and Singapore-MIT Alliance for Research and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ram Sasisekharan
- Department of Biological Engineering, Skolkovo-MIT Center for Biomedical Engineering, Koch Institute of Integrative Cancer Research, Infectious Diseases Interdisciplinary Research Group, and Singapore-MIT Alliance for Research and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
412
|
Sharon J, Rynkiewicz MJ, Lu Z, Yang CY. Discovery of protective B-cell epitopes for development of antimicrobial vaccines and antibody therapeutics. Immunology 2014; 142:1-23. [PMID: 24219801 PMCID: PMC3992043 DOI: 10.1111/imm.12213] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 01/07/2023] Open
Abstract
Protective antibodies play an essential role in immunity to infection by neutralizing microbes or their toxins and recruiting microbicidal effector functions. Identification of the protective B-cell epitopes, those parts of microbial antigens that contact the variable regions of the protective antibodies, can lead to development of antibody therapeutics, guide vaccine design, enable assessment of protective antibody responses in infected or vaccinated individuals, and uncover or localize pathogenic microbial functions that could be targeted by novel antimicrobials. Monoclonal antibodies are required to link in vivo or in vitro protective effects to specific epitopes and may be obtained from experimental animals or from humans, and their binding can be localized to specific regions of antigens by immunochemical assays. The epitopes are then identified with mapping methods such as X-ray crystallography of antigen-antibody complexes, antibody inhibition of hydrogen-deuterium exchange in the antigen, antibody-induced alteration of the nuclear magnetic resonance spectrum of the antigen, and experimentally validated computational docking of antigen-antibody complexes. The diversity in shape, size and structure of protective B-cell epitopes, and the increasing importance of protective B-cell epitope discovery to development of vaccines and antibody therapeutics are illustrated through examples from different microbe categories, with emphasis on epitopes targeted by broadly neutralizing antibodies to pathogens of high antigenic variation. Examples include the V-shaped Ab52 glycan epitope in the O-antigen of Francisella tularensis, the concave CR6261 peptidic epitope in the haemagglutinin stem of influenza virus H1N1, and the convex/concave PG16 glycopeptidic epitope in the gp120 V1/V2 loop of HIV type 1.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/immunology
- Antigen-Antibody Reactions
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/immunology
- Antigens, Viral/chemistry
- Antigens, Viral/immunology
- Bacterial Vaccines/immunology
- Bacterial Vaccines/therapeutic use
- Epitope Mapping
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/immunology
- Humans
- Models, Molecular
- Protein Conformation
- Viral Vaccines/immunology
- Viral Vaccines/therapeutic use
Collapse
Affiliation(s)
- Jacqueline Sharon
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBoston, MA, USA
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of MedicineBoston, MA, USA
| | - Zhaohua Lu
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBoston, MA, USA
| | - Chiou-Ying Yang
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBoston, MA, USA
| |
Collapse
|
413
|
Blattner C, Lee JH, Sliepen K, Derking R, Falkowska E, de la Peña AT, Cupo A, Julien JP, van Gils M, Lee PS, Peng W, Paulson JC, Poignard P, Burton DR, Moore JP, Sanders RW, Wilson IA, Ward AB. Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers. Immunity 2014; 40:669-80. [PMID: 24768348 DOI: 10.1016/j.immuni.2014.04.008] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
All previously characterized broadly neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) target one of four major sites of vulnerability. Here, we define and structurally characterize a unique epitope on Env that is recognized by a recently discovered family of human monoclonal antibodies (PGT151-PGT158). The PGT151 epitope is comprised of residues and glycans at the interface of gp41 and gp120 within a single protomer and glycans from both subunits of a second protomer and represents a neutralizing epitope that is dependent on both gp120 and gp41. Because PGT151 binds only to properly formed, cleaved trimers, this distinctive property, and its ability to stabilize Env trimers, has enabled the successful purification of mature, cleaved Env trimers from the cell surface as a complex with PGT151. Here we compare the structural and functional properties of membrane-extracted Env trimers from several clades with those of the soluble, cleaved SOSIP gp140 trimer.
Collapse
Affiliation(s)
- Claudia Blattner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeong Hyun Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kwinten Sliepen
- Department of Medical Microbiology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Ronald Derking
- Department of Medical Microbiology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Emilia Falkowska
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Albert Cupo
- Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Jean-Philippe Julien
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marit van Gils
- Department of Medical Microbiology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Peter S Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenjie Peng
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James C Paulson
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pascal Poignard
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA
| | - John P Moore
- Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands; Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
414
|
Scharf L, Scheid JF, Lee JH, West AP, Chen C, Gao H, Gnanapragasam PNP, Mares R, Seaman MS, Ward AB, Nussenzweig MC, Bjorkman PJ. Antibody 8ANC195 reveals a site of broad vulnerability on the HIV-1 envelope spike. Cell Rep 2014; 7:785-95. [PMID: 24767986 DOI: 10.1016/j.celrep.2014.04.001] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 12/12/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) to HIV-1 envelope glycoprotein (Env) can prevent infection in animal models. Characterized bNAb targets, although key to vaccine and therapeutic strategies, are currently limited. We defined a new site of vulnerability by solving structures of bNAb 8ANC195 complexed with monomeric gp120 by X-ray crystallography and trimeric Env by electron microscopy. The site includes portions of gp41 and N-linked glycans adjacent to the CD4-binding site on gp120, making 8ANC195 the first donor-derived anti-HIV-1 bNAb with an epitope spanning both Env subunits. Rather than penetrating the glycan shield by using a single variable-region CDR loop, 8ANC195 inserted its entire heavy-chain variable domain into a gap to form a large interface with gp120 glycans and regions of the gp120 inner domain not contacted by other bNAbs. By isolating additional 8ANC195 clonal variants, we identified a more potent variant, which may be valuable for therapeutic approaches using bNAb combinations with nonoverlapping epitopes.
Collapse
Affiliation(s)
- Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Johannes F Scheid
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jeong Hyun Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Courtney Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - René Mares
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
415
|
Falkowska E, Le KM, Ramos A, Doores KJ, Lee JH, Blattner C, Ramirez A, Derking R, van Gils MJ, Liang CH, Mcbride R, von Bredow B, Shivatare SS, Wu CY, Chan-Hui PY, Liu Y, Feizi T, Zwick MB, Koff WC, Seaman MS, Swiderek K, Moore JP, Evans D, Paulson JC, Wong CH, Ward AB, Wilson IA, Sanders RW, Poignard P, Burton DR. Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers. Immunity 2014; 40:657-68. [PMID: 24768347 DOI: 10.1016/j.immuni.2014.04.009] [Citation(s) in RCA: 307] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/06/2014] [Indexed: 01/25/2023]
Abstract
Broadly neutralizing HIV antibodies are much sought after (a) to guide vaccine design, both as templates and as indicators of the authenticity of vaccine candidates, (b) to assist in structural studies, and (c) to serve as potential therapeutics. However, the number of targets on the viral envelope spike for such antibodies has been limited. Here, we describe a set of human monoclonal antibodies that define what is, to the best of our knowledge, a previously undefined target on HIV Env. The antibodies recognize a glycan-dependent epitope on the prefusion conformation of gp41 and unambiguously distinguish cleaved from uncleaved Env trimers, an important property given increasing evidence that cleavage is required for vaccine candidates that seek to mimic the functional HIV envelope spike. The availability of this set of antibodies expands the number of vaccine targets on HIV and provides reagents to characterize the native envelope spike.
Collapse
Affiliation(s)
- Emilia Falkowska
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Boston, MA 02114, USA
| | - Khoa M Le
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alejandra Ramos
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katie J Doores
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Jeong Hyun Lee
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Claudia Blattner
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alejandro Ramirez
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ronald Derking
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Chi-Hui Liang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Mcbride
- Departments of Cell and Molecular Biology and Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin von Bredow
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53711, USA
| | | | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | - Yan Liu
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London W12 ONN, UK
| | - Ten Feizi
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London W12 ONN, UK
| | - Michael B Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wayne C Koff
- International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Center for Virology and Vaccine Research, Boston, MA, 02215, USA
| | | | - John P Moore
- Weill Medical College of Cornell University, New York, NY 10004, USA
| | - David Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53711, USA
| | - James C Paulson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Andrew B Ward
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; Weill Medical College of Cornell University, New York, NY 10004, USA
| | - Pascal Poignard
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Boston, MA 02114, USA.
| |
Collapse
|
416
|
Ringe R, Bhattacharya J. Preventive and therapeutic applications of neutralizing antibodies to Human Immunodeficiency Virus Type 1 (HIV-1). THERAPEUTIC ADVANCES IN VACCINES 2014; 1:67-80. [PMID: 24757516 DOI: 10.1177/2051013613494534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The development of a preventive vaccine to neutralize the highly variable and antigenically diverse human immunodeficiency virus type 1 (HIV-1) has been an indomitable goal. The recent discovery of a number of cross-neutralizing and potent monoclonal antibodies from elite neutralizers has provided important insights in this field. Neutralizing antibodies (NAbs) are useful in identifying neutralizing epitopes of vaccine utility and for understanding the mechanism of potent and broad cross-neutralization thus providing a modality of preventive and therapeutic value. In this article we review the current understanding on the potential use of broadly neutralizing antibodies (bNAbs) in their full-length IgG structure, engineered domain antibody or bispecific versions towards preventive and therapeutic applications. The potential implications of NAbs are discussed in the light of the recent developments as key components in vaccination against HIV-1. The development of a vaccine immunogen which elicits bNAbs and confers protective immunity remains a real challenge.
Collapse
Affiliation(s)
- Rajesh Ringe
- Weill Medical College of Cornell University, New York, NY, USA
| | - Jayanta Bhattacharya
- International AIDS Vaccine Initiative (IAVI), THSTI-IAVI HVTR Laboratory, Translational Health Science and Technology Institute (THSTI), Gurgaon-122016, Haryana, India
| |
Collapse
|
417
|
West AP, Scharf L, Scheid JF, Klein F, Bjorkman PJ, Nussenzweig MC. Structural insights on the role of antibodies in HIV-1 vaccine and therapy. Cell 2014; 156:633-48. [PMID: 24529371 DOI: 10.1016/j.cell.2014.01.052] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Indexed: 11/30/2022]
Abstract
Despite 30 years of effort, there is no effective vaccine for HIV-1. However, antibodies can prevent HIV-1 infection in humanized mice and macaques when passively transferred. New single-cell-based methods have uncovered many broad and potent donor-derived antibodies, and structural studies have revealed the molecular bases for their activities. The new data suggest why such antibodies are difficult to elicit and inform HIV-1 vaccine development efforts. In addition to protecting against infection, the newly identified antibodies can suppress active infections in mice and macaques, suggesting they could be valuable additions to anti-HIV-1 therapies and to strategies to eradicate HIV-1 infection.
Collapse
Affiliation(s)
- Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| | - Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Johannes F Scheid
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Florian Klein
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
418
|
Isik G, van Montfort T, Chung NPY, Moore JP, Sanders RW. Autoantibodies induced by chimeric cytokine-HIV envelope glycoprotein immunogens. THE JOURNAL OF IMMUNOLOGY 2014; 192:4628-35. [PMID: 24729614 DOI: 10.4049/jimmunol.1303401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cytokines are often used as adjuvants to increase the immunogenicity of vaccines because they can improve the immune response and/or direct it into a desired direction. As an alternative to codelivering Ags and cytokines separately, they can be fused into a composite protein, with the advantage that both moieties act on the same immune cells. The HIV-1 envelope glycoprotein (Env) spike, located on the outside of virus particles and the only relevant protein for the induction of neutralizing Abs, is poorly immunogenic. The induction of anti-Env Abs can be improved by coupling Env proteins to costimulatory molecules such as a proliferation inducing ligand (APRIL). In this study, we evaluated the immunogenicity of chimeric molecules containing uncleaved Env gp140 fused to the species-matched cytokines IL-21 or GM-CSF in rabbits and mice. Each cytokine was either fused to the C terminus of Env or embedded within Env at the position of the variable loops 1 and 2. The cytokine components of the chimeric Env-GM-CSF and Env-IL-21 molecules were functional in vitro, but none of the Env-cytokine fusion proteins resulted in improved Ab responses in vivo. Both the Env-GM-CSF and the Env-IL-21 molecules induced strong anticytokine Ab responses in both test species. These autoimmune responses were independent of the location of the cytokine in the chimeric Env molecules in that they were induced by cytokines inserted within the variable loops 1 and 2 of Env or fused to its C terminus. The induction of undesired autoimmune responses should be considered when using cytokines as costimulatory molecules in fusion proteins.
Collapse
Affiliation(s)
- Gözde Isik
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
419
|
Receptor mimicry by antibody F045-092 facilitates universal binding to the H3 subtype of influenza virus. Nat Commun 2014; 5:3614. [PMID: 24717798 DOI: 10.1038/ncomms4614] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/11/2014] [Indexed: 02/07/2023] Open
Abstract
Influenza viruses present a significant health challenge each year, as in the H3N2 epidemic of 2012-2013. Here we describe an antibody, F045-092, that possesses broadly neutralizing activity against the entire H3 subtype and accommodates the natural variation and additional glycosylation in all strains tested from 1963 to 2011. Crystal structures of F045-092 in complex with HAs from 1975 and 2011 H3N2 viruses reveal the structural basis for its neutralization breadth through insertion of its 23-residue HCDR3 into the receptor-binding site that involves striking receptor mimicry. F045-092 extends its recognition to divergent subtypes, including H1, H2 and H13, using the enhanced avidity of its IgG to overcome lower-affinity Fab binding, as observed with other antibodies that target the receptor-binding site. This unprecedented level of antibody cross-reactivity against the H3 subtype can potentially inform on development of a pan-H3 vaccine or small-molecule therapeutics.
Collapse
|
420
|
CD4-mimetic small molecules sensitize human immunodeficiency virus to vaccine-elicited antibodies. J Virol 2014; 88:6542-55. [PMID: 24696475 DOI: 10.1128/jvi.00540-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Approaches to prevent human immunodeficiency virus (HIV-1) transmission are urgently needed. Difficulties in eliciting antibodies that bind conserved epitopes exposed on the unliganded conformation of the HIV-1 envelope glycoprotein (Env) trimer represent barriers to vaccine development. During HIV-1 entry, binding of the gp120 Env to the initial receptor, CD4, triggers conformational changes in Env that result in the formation and exposure of the highly conserved gp120 site for interaction with the coreceptors, CCR5 and CXCR4. The DMJ compounds (+)-DMJ-I-228 and (+)-DMJ-II-121 bind gp120 within the conserved Phe 43 cavity near the CD4-binding site, block CD4 binding, and inhibit HIV-1 infection. Here we show that the DMJ compounds sensitize primary HIV-1, including transmitted/founder viruses, to neutralization by monoclonal antibodies directed against CD4-induced (CD4i) epitopes and the V3 region, two gp120 elements involved in coreceptor binding. Importantly, the DMJ compounds rendered primary HIV-1 sensitive to neutralization by antisera elicited by immunization of rabbits with HIV-1 gp120 cores engineered to assume the CD4-bound state. Thus, small molecules like the DMJ compounds may be useful as microbicides to inhibit HIV-1 infection directly and to sensitize primary HIV-1 to neutralization by readily elicited antibodies. IMPORTANCE Preventing HIV-1 transmission is a priority for global health. Eliciting antibodies that can neutralize many different strains of HIV-1 is difficult, creating problems for the development of a vaccine. We found that certain small-molecule compounds can sensitize HIV-1 to particular antibodies. These antibodies can be elicited in rabbits. These results suggest an approach to prevent HIV-1 sexual transmission in which a virus-sensitizing microbicide is combined with a vaccine.
Collapse
|
421
|
Almagro JC, Gilliland GL, Breden F, Scott JK, Sok D, Pauthner M, Reichert JM, Helguera G, Andrabi R, Mabry R, Bléry M, Voss JE, Laurén J, Abuqayyas L, Barghorn S, Ben-Jacob E, Crowe JE, Huston JS, Johnston SA, Krauland E, Lund-Johansen F, Marasco WA, Parren PWHI, Xu KY. Antibody engineering and therapeutics, The Annual Meeting of the Antibody Society: December 8-12, 2013, Huntington Beach, CA. MAbs 2014; 6:577-618. [PMID: 24589717 PMCID: PMC4011904 DOI: 10.4161/mabs.28421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The 24th Antibody Engineering & Therapeutics meeting brought together a broad range of participants who were updated on the latest advances in antibody research and development. Organized by IBC Life Sciences, the gathering is the annual meeting of The Antibody Society, which serves as the scientific sponsor. Preconference workshops on 3D modeling and delineation of clonal lineages were featured, and the conference included sessions on a wide variety of topics relevant to researchers, including systems biology; antibody deep sequencing and repertoires; the effects of antibody gene variation and usage on antibody response; directed evolution; knowledge-based design; antibodies in a complex environment; polyreactive antibodies and polyspecificity; the interface between antibody therapy and cellular immunity in cancer; antibodies in cardiometabolic medicine; antibody pharmacokinetics, distribution and off-target toxicity; optimizing antibody formats for immunotherapy; polyclonals, oligoclonals and bispecifics; antibody discovery platforms; and antibody-drug conjugates.
Collapse
Affiliation(s)
| | | | | | | | - Devin Sok
- The Scripps Research Institute; La Jolla, CA USA
| | | | | | - Gustavo Helguera
- CONICET; Laboratorio Biotecnología Farmacéutica; Instituto de Biología y Medicina Experimental, IBYME; Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | - James E Voss
- The Scripps Research Institute; La Jolla, CA USA
| | - Juha Laurén
- Regeneron Pharmaceuticals, Inc.; Tarrytown, NY USA
| | | | | | | | - James E Crowe
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | | | - Kai Y Xu
- University of Maryland; Baltimore, MD USA
| |
Collapse
|
422
|
Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature 2014; 509:55-62. [PMID: 24590074 DOI: 10.1038/nature13036] [Citation(s) in RCA: 598] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/16/2014] [Indexed: 02/08/2023]
Abstract
Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.
Collapse
|
423
|
Nakamura G, Chai N, Park S, Chiang N, Lin Z, Chiu H, Fong R, Yan D, Kim J, Zhang J, Lee WP, Estevez A, Coons M, Xu M, Lupardus P, Balazs M, Swem LR. An in vivo human-plasmablast enrichment technique allows rapid identification of therapeutic influenza A antibodies. Cell Host Microbe 2014; 14:93-103. [PMID: 23870317 DOI: 10.1016/j.chom.2013.06.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/21/2013] [Accepted: 06/03/2013] [Indexed: 12/01/2022]
Abstract
Recent advances enabling the cloning of human immunoglobulin G genes have proven effective for discovering monoclonal antibodies with therapeutic potential. However, these antibody-discovery methods are often arduous and identify only a few candidates from numerous antibody-secreting plasma cells or plasmablasts. We describe an in vivo enrichment technique that identifies broadly neutralizing human antibodies with high frequency. For this technique, human peripheral blood mononuclear cells from vaccinated donors are activated and enriched in an antigen-specific manner for the production of numerous antigen-specific plasmablasts. Using this technology, we identified four broadly neutralizing influenza A antibodies by screening only 840 human antibodies. Two of these antibodies neutralize every influenza A human isolate tested and perform better than the current anti-influenza A therapeutic, oseltamivir, in treating severe influenza infection in mice and ferrets. Furthermore, these antibodies elicit robust in vivo synergism when combined with oseltamivir, thus highlighting treatment strategies that could benefit influenza-infected patients.
Collapse
Affiliation(s)
- Gerald Nakamura
- Antibody Engineering Department, Genentech, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
424
|
Loss of a conserved N-linked glycosylation site in the simian immunodeficiency virus envelope glycoprotein V2 region enhances macrophage tropism by increasing CD4-independent cell-to-cell transmission. J Virol 2014; 88:5014-28. [PMID: 24554659 DOI: 10.1128/jvi.02785-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) strains differ in their capacity to replicate in macrophages, but mechanisms underlying these differences are not fully understood. Here, we identify a highly conserved N-linked glycosylation site (N173 in SIV, corresponding to N160 in HIV) in the V2 region of the SIV envelope glycoprotein (Env) as a novel determinant of macrophage tropism and characterize mechanisms underlying this phenotype. Loss of the N173 glycosylation site in the non-macrophage-tropic SIVmac239 by introducing an N173Q mutation enhanced viral replication and multinucleated giant cell formation upon infection of rhesus macrophages, while the addition of N173 to SIVmac251 had the opposite effect. The removal of N173 in SIVmac239 enhanced CD4-independent cell-to-cell transmission to CCR5-expressing cells. SIVmac239 with N173Q mediated CD4-independent cell-cell fusion but could not infect CD4-negative cells in single-round infections. Thus, CD4-independent phenotypes were detected only in the context of cell-to-cell contact. Similar results were obtained in SIVmac251 with and without N173. N173 decreased the neutralization sensitivity of SIVmac251 but had no effect on the neutralization sensitivity of SIVmac239. The N173Q mutation had no effect on SIVmac239 binding to CD4 in Biacore assays, coimmunoprecipitation assays, and enzyme-linked immunosorbent assays (ELISAs). These findings suggest that the loss of the N173 N-linked glycosylation site increases SIVmac239 replication in macrophages by enhancing CD4-independent cell-to-cell virus transmission through CCR5-mediated fusion. This mechanism may facilitate the escape of macrophage-tropic viruses from neutralizing antibodies while promoting spreading infection by these viruses in vivo. IMPORTANCE In this study, we identify a genetic determinant in the viral envelope (N173) that increases replication and spreading infection of SIV strains in macrophages by enhancing cell-to-cell virus transmission. This effect is explained by a novel mechanism involving increased cell-to-cell fusion in the absence of CD4, the primary receptor that normally mediates virus entry. The same genetic determinant also affects the sensitivity of these viruses to inhibition by neutralizing antibodies. Most macrophage-tropic HIV/SIV strains are known to be neutralization sensitive. Together, these findings suggest that this efficient mode of virus transmission may facilitate the escape of macrophage-tropic viruses from neutralizing antibodies while promoting spreading infection by these viruses to cells expressing little or no CD4 in vivo.
Collapse
|
425
|
Tsuchiya K, Ode H, Hayashida T, Kakizawa J, Sato H, Oka S, Gatanaga H. Arginine insertion and loss of N-linked glycosylation site in HIV-1 envelope V3 region confer CXCR4-tropism. Sci Rep 2014; 3:2389. [PMID: 23925152 PMCID: PMC3737504 DOI: 10.1038/srep02389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/24/2013] [Indexed: 12/02/2022] Open
Abstract
The third variable region (V3) of HIV-1 envelope glycoprotein gp120 plays a key role in determination of viral coreceptor usage (tropism). However, which combinations of mutations in V3 confer a tropism shift is still unclear. A unique pattern of mutations in antiretroviral therapy-naive HIV-1 patient was observed associated with the HIV-1 tropism shift CCR5 to CXCR4. The insertion of arginine at position 11 and the loss of the N-linked glycosylation site were indispensable for acquiring pure CXCR4-tropism, which were confirmed by cell-cell fusion assay and phenotype analysis of recombinant HIV-1 variants. The same pattern of mutations in V3 and the associated tropism shift were identified in two of 53 other patients (3.8%) with CD4+ cell count <200/mm3. The combination of arginine insertion and loss of N-linked glycosylation site usually confers CXCR4-tropism. Awareness of this rule will help to confirm the tropism prediction from V3 sequences by conventional rules.
Collapse
Affiliation(s)
- Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | | | | | | | | | | | | |
Collapse
|
426
|
Crispin M, Harvey DJ, Bitto D, Bonomelli C, Edgeworth M, Scrivens JH, Huiskonen JT, Bowden TA. Structural plasticity of the Semliki Forest virus glycome upon interspecies transmission. J Proteome Res 2014; 13:1702-12. [PMID: 24467287 PMCID: PMC4428802 DOI: 10.1021/pr401162k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Cross-species
viral transmission subjects parent and progeny alphaviruses
to differential post-translational processing of viral envelope glycoproteins.
Alphavirus biogenesis has been extensively studied, and the Semliki
Forest virus E1 and E2 glycoproteins have been shown to exhibit differing
degrees of processing of N-linked glycans. However the composition
of these glycans, including that arising from different host cells,
has not been determined. Here we determined the chemical composition
of the glycans from the prototypic alphavirus, Semliki Forest virus,
propagated in both arthropod and rodent cell lines, by using ion-mobility
mass spectrometry and collision-induced dissociation analysis. We
observe that both the membrane-proximal E1 fusion glycoprotein and
the protruding E2 attachment glycoprotein display heterogeneous glycosylation
that contains N-linked glycans exhibiting both limited and extensive
processing. However, E1 contained predominantly highly processed glycans
dependent on the host cell, with rodent and mosquito-derived E1 exhibiting
complex-type and paucimannose-type glycosylation, respectively. In
contrast, the protruding E2 attachment glycoprotein primarily contained
conserved under-processed oligomannose-type structures when produced
in both rodent and mosquito cell lines. It is likely that glycan processing
of E2 is structurally restricted by steric-hindrance imposed by local
viral protein structure. This contrasts E1, which presents glycans
characteristic of the host cell and is accessible to enzymes. We integrated
our findings with previous cryo-electron microscopy and crystallographic
analyses to produce a detailed model of the glycosylated mature virion
surface. Taken together, these data reveal the degree to which virally
encoded protein structure and cellular processing enzymes shape the
virion glycome during interspecies transmission of Semliki Forest
virus.
Collapse
Affiliation(s)
- Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
427
|
Palma AS, Feizi T, Childs RA, Chai W, Liu Y. The neoglycolipid (NGL)-based oligosaccharide microarray system poised to decipher the meta-glycome. Curr Opin Chem Biol 2014; 18:87-94. [PMID: 24508828 DOI: 10.1016/j.cbpa.2014.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 01/01/2023]
Abstract
The neoglycolipid (NGL) technology is the basis of a state-of-the-art oligosaccharide microarray system. The NGL-based microarray system in the Glycosciences Laboratory Imperial College London (http://www3.imperial.ac.uk/glycosciences) is one of the two leading platforms for glycan microarrays, being offered for screening analyses to the broad biomedical community. Highlighted in this review are the sensitivity of the analysis system and, coupled with mass spectrometry, the provision for generating 'designer' microarrays from glycomes to identify novel ligands of biological relevance. Among recent applications are assignments of ligands for apicomplexan parasites, pandemic 2009 influenza virus, polyoma and reoviruses, an innate immune receptor against fungal pathogens, Dectin-1, and a novel protein of the endoplasmic reticulum, malectin; also the characterization of an elusive cancer-associated antigen. Some other contemporary advances in glycolipid-containing arrays and microarrays are also discussed.
Collapse
Affiliation(s)
- Angelina S Palma
- The Glycosciences Laboratory, Department of Medicine, Imperial College London, United Kingdom; REQUIMTE/CQFB, Faculty of Science and Technology, New University of Lisbon, Caparica, Portugal.
| | - Ten Feizi
- The Glycosciences Laboratory, Department of Medicine, Imperial College London, United Kingdom.
| | - Robert A Childs
- The Glycosciences Laboratory, Department of Medicine, Imperial College London, United Kingdom
| | - Wengang Chai
- The Glycosciences Laboratory, Department of Medicine, Imperial College London, United Kingdom
| | - Yan Liu
- The Glycosciences Laboratory, Department of Medicine, Imperial College London, United Kingdom.
| |
Collapse
|
428
|
Yang L, Wang P. Passive immunization against HIV/AIDS by antibody gene transfer. Viruses 2014; 6:428-47. [PMID: 24473340 PMCID: PMC3939464 DOI: 10.3390/v6020428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/06/2014] [Accepted: 01/10/2014] [Indexed: 12/12/2022] Open
Abstract
Despite tremendous efforts over the course of many years, the quest for an effective HIV vaccine by the classical method of active immunization remains largely elusive. However, two recent studies in mice and macaques have now demonstrated a new strategy designated as Vectored ImmunoProphylaxis (VIP), which involves passive immunization by viral vector-mediated delivery of genes encoding broadly neutralizing antibodies (bnAbs) for in vivo expression. Robust protection against virus infection was observed in preclinical settings when animals were given VIP to express monoclonal neutralizing antibodies. This unorthodox approach raises new promise for combating the ongoing global HIV pandemic. In this article, we survey the status of antibody gene transfer, review the revolutionary progress on isolation of extremely bnAbs, detail VIP experiments against HIV and its related virus conduced in humanized mice and macaque monkeys, and discuss the pros and cons of VIP and its opportunities and challenges towards clinical applications to control HIV/AIDS endemics.
Collapse
Affiliation(s)
- Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
429
|
Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface. Nat Biotechnol 2014; 32:191-8. [PMID: 24463572 DOI: 10.1038/nbt.2797] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/10/2013] [Indexed: 01/22/2023]
Abstract
Robust generation of IgG bispecific antibodies has been a long-standing challenge. Existing methods require extensive engineering of each individual antibody, discovery of common light chains, or complex and laborious biochemical processing. Here we combine computational and rational design approaches with experimental structural validation to generate antibody heavy and light chains with orthogonal Fab interfaces. Parental monoclonal antibodies incorporating these interfaces, when simultaneously co-expressed, assemble into bispecific IgG with improved heavy chain-light chain pairing. Bispecific IgGs generated with this approach exhibit pharmacokinetic and other desirable properties of native IgG, but bind target antigens monovalently. As such, these bispecific reagents may be useful in many biotechnological applications.
Collapse
|
430
|
Carbonetti S, Oliver BG, Glenn J, Stamatatos L, Sather DN. Soluble HIV-1 envelope immunogens derived from an elite neutralizer elicit cross-reactive V1V2 antibodies and low potency neutralizing antibodies. PLoS One 2014; 9:e86905. [PMID: 24466285 PMCID: PMC3900663 DOI: 10.1371/journal.pone.0086905] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/15/2013] [Indexed: 11/17/2022] Open
Abstract
We evaluated four gp140 Envelope protein vaccine immunogens that were derived from an elite neutralizer, subject VC10042, whose plasma was able to potently neutralize a wide array of genetically distinct HIV-1 isolates. We sought to determine whether soluble Envelope proteins derived from the viruses circulating in VC10042 could be used as immunogens to elicit similar neutralizing antibody responses by vaccination. Each gp140 was tested in its trimeric and monomeric forms, and we evaluated two gp140 trimer vaccine regimens in which adjuvant was supplied at all four immunizations or at only the first two immunizations. Interestingly, all four Envelope immunogens elicited high titers of cross-reactive antibodies that recognize the variable regions V1V2 and are potentially similar to antibodies linked with a reduced risk of HIV-1 acquisition in the RV144 vaccine trial. Two of the four immunogens elicited neutralizing antibody responses that neutralized a wide array of HIV-1 isolates from across genetic clades, but those responses were of very low potency. There were no significant differences in the responses elicited by trimers or monomers, nor was there a significant difference between the two adjuvant regimens. Our study identified two promising Envelope immunogens that elicited anti-V1V2 antibodies and broad, but low potency, neutralizing antibody responses.
Collapse
Affiliation(s)
- Sara Carbonetti
- Seattle BioMed, Seattle, Washington, United States of America
| | - Brian G Oliver
- Seattle BioMed, Seattle, Washington, United States of America
| | - Jolene Glenn
- Seattle BioMed, Seattle, Washington, United States of America
| | - Leonidas Stamatatos
- Seattle BioMed, Seattle, Washington, United States of America ; Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - D Noah Sather
- Seattle BioMed, Seattle, Washington, United States of America
| |
Collapse
|
431
|
Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA. Emerging principles for the therapeutic exploitation of glycosylation. Science 2014; 343:1235681. [PMID: 24385630 DOI: 10.1126/science.1235681] [Citation(s) in RCA: 342] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycosylation plays a key role in a wide range of biological processes. Specific modification to a glycan's structure can directly modulate its biological function. Glycans are not only essential to glycoprotein folding, cellular homeostasis, and immune regulation but are involved in multiple disease conditions. An increased molecular and structural understanding of the mechanistic role that glycans play in these pathological processes has driven the development of therapeutics and illuminated novel targets for drug design. This knowledge has enabled the treatment of metabolic disorders and the development of antivirals and shaped cancer and viral vaccine strategies. Furthermore, an understanding of glycosylation has led to the development of specific drug glycoforms, for example, monoclonal antibodies, with enhanced potency.
Collapse
Affiliation(s)
- Martin Dalziel
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | |
Collapse
|
432
|
Hudak JE, Bertozzi CR. Glycotherapy: new advances inspire a reemergence of glycans in medicine. CHEMISTRY & BIOLOGY 2014; 21:16-37. [PMID: 24269151 PMCID: PMC4111574 DOI: 10.1016/j.chembiol.2013.09.010] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022]
Abstract
The beginning of the 20(th) century marked the dawn of modern medicine with glycan-based therapies at the forefront. However, glycans quickly became overshadowed as DNA- and protein-focused treatments became readily accessible. The recent development of new tools and techniques to study and produce structurally defined carbohydrates has spurred renewed interest in the therapeutic applications of glycans. This review focuses on advances within the past decade that are bringing glycan-based treatments back to the forefront of medicine and the technologies that are driving these efforts. These include the use of glycans themselves as therapeutic molecules as well as engineering protein and cell surface glycans to suit clinical applications. Glycan therapeutics offer a rich and promising frontier for developments in the academic, biopharmaceutical, and medical fields.
Collapse
Affiliation(s)
- Jason E Hudak
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
433
|
Gach JS, Achenbach CJ, Chromikova V, Berzins B, Lambert N, Landucci G, Forthal DN, Katlama C, Jung BH, Murphy RL. HIV-1 specific antibody titers and neutralization among chronically infected patients on long-term suppressive antiretroviral therapy (ART): a cross-sectional study. PLoS One 2014; 9:e85371. [PMID: 24454852 PMCID: PMC3893210 DOI: 10.1371/journal.pone.0085371] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/26/2013] [Indexed: 12/29/2022] Open
Abstract
The majority of potent and broadly neutralizing antibodies against HIV-1 have been isolated from untreated patients with acute or chronic infection. To assess the extent of HIV-1 specific antibody response and neutralization after many years of virologic suppression from potent combination ART, we examined antibody binding titers and neutralization of 51 patients with chronic HIV-1 infection on suppressive ART for at least three years. In this cross-sectional analysis, we found high antibody titers against gp120, gp41, and the membrane proximal external region (MPER) in 59%, 43%, and 27% of patients, respectively. We observed significantly higher endpoint binding titers for gp120 and gp41 for patients with >10 compared to ≤10 years of detectable HIV RNA. Additionally, we observed higher median gp120 and gp41 antibody titers in patients with HIV RNA <50 copies/mL for ≤5 years. 22% of patients neutralized a HIV-1 primary isolate (HIV-1JR-FL) and 8% neutralized a HIV-2/HIV-1 MPER chimera. Significantly greater HIV-1JR-FL neutralization was found among patients with >10 years of detectable HIV RNA (8/20 [40.0%] versus 3/31 [9.7%] for ≤10 years, p = 0.02) and a trend toward greater neutralization in patients with ≤5 years of HIV RNA <50 copies/mL (7/20 [35.0%] versus 4/31 [12.9%] for >5 years, p = 0.08). All patients with neutralizing activity mediated successful phagocytosis of VLPs by THP-1 cells after antibody opsonization. Our findings of highly specific antibodies to several structural epitopes of HIV-1 with antibody effector functions and neutralizing activity after long-term suppressive ART, suggest continuous antigenic stimulation and evolution of HIV-specific antibody response occurs before and after suppression with ART. These patients, particularly those with slower HIV progression and more time with detectable viremia prior to initiation of suppressive ART, are a promising population to identify and further study functional antibodies against HIV-1.
Collapse
Affiliation(s)
- Johannes S. Gach
- Division of Gastroenterology, Northwestern University, Chicago, Illinois, United States of America
- Division of Infectious Diseases, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| | - Chad J. Achenbach
- Division of Infectious Diseases and Center for Global Health, Northwestern University, Chicago, Illinois, United States of America
| | - Veronika Chromikova
- Division of Infectious Diseases, University of California Irvine, Irvine, California, United States of America
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences Vienna, Vienna, Austria
| | - Baiba Berzins
- Division of Infectious Diseases and Center for Global Health, Northwestern University, Chicago, Illinois, United States of America
| | - Nina Lambert
- Division of Infectious Diseases and Center for Global Health, Northwestern University, Chicago, Illinois, United States of America
| | - Gary Landucci
- Division of Infectious Diseases, University of California Irvine, Irvine, California, United States of America
| | - Donald N. Forthal
- Division of Infectious Diseases, University of California Irvine, Irvine, California, United States of America
| | - Christine Katlama
- Université Pierre et Marie Curie-Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Barbara H. Jung
- Division of Gastroenterology, Northwestern University, Chicago, Illinois, United States of America
| | - Robert L. Murphy
- Division of Infectious Diseases and Center for Global Health, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
434
|
Thomas S, Luxon BA. Vaccines based on structure-based design provide protection against infectious diseases. Expert Rev Vaccines 2014; 12:1301-11. [DOI: 10.1586/14760584.2013.840092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
435
|
Abstract
Vaccines to prevent HIV remain desperately needed, but a number of challenges, including retroviral integration, establishment of anatomic reservoir sites, high sequence diversity, and heavy envelope glycosylation. have precluded development of a highly effective vaccine. DNA vaccines have been utilized as candidate HIV vaccines because of their ability to generate cellular and humoral immune responses, the lack of anti-vector response allowing for repeat administration, and their ability to prime the response to viral-vectored vaccines. Because the HIV epidemic has disproportionately affected the developing world, the favorable thermostability profile and relative ease and low cost of manufacture of DNA vaccines offer additional advantages. In vivo electroporation (EP) has been utilized to improve immune responses to DNA vaccines as candidate HIV-1 vaccines in standalone or prime-boost regimens with both proteins and viral-vectored vaccines in several animal models and, more recently, in human clinical trials. This chapter describes the preclinical and clinical development of candidate DNA vaccines for HIV-1 delivered by EP, including challenges to bringing this technology to the developing world.
Collapse
Affiliation(s)
- Sandhya Vasan
- Department of Retrovirology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| |
Collapse
|
436
|
|
437
|
Hefferon KL. Broadly neutralizing antibodies and the promise of universal vaccines: where are we now? Immunotherapy 2014; 6:51-7. [DOI: 10.2217/imt.13.150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent research has provided strong support for the utility of broadly neutralizing antibodies generated against viruses, which inherently possess a high degree of antigenic variability (such as influenza virus or HIV) as a feasible means to prevent infection. Many of these antibodies share the ability to bind to highly conserved regions within the stem of the virus ‘spike’ or surface glycoprotein, in such a way that they interfere with virus entry, including membrane fusion. As a result, broadly neutralizing antibodies could be supplied to patients as a form of passive immunotherapy, as well as play a role in the design of new ‘universal’ vaccines and antiviral agents. The following article describes the most recent innovations in this exciting field.
Collapse
Affiliation(s)
- Kathleen L Hefferon
- University of Toronto, Toronto, Ontario, Canada and Cornell University, Ithaca, NY, USA
| |
Collapse
|
438
|
Cohen M, Varki A. Modulation of glycan recognition by clustered saccharide patches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:75-125. [PMID: 24411170 DOI: 10.1016/b978-0-12-800097-7.00003-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
All cells in nature are covered with a dense and complex array of glycan chains. Specific recognition and binding of glycans is a critical aspect of cellular interactions, both within and between species. Glycan-protein interactions tend to be of low affinity but high specificity, typically utilizing multivalency to generate the affinity required for biologically relevant binding. This review focuses on a higher level of glycan organization, the formation of clustered saccharide patches (CSPs), which can constitute unique ligands for highly specific interactions. Due to technical challenges, this aspect of glycan recognition remains poorly understood. We present a wealth of evidence for CSPs-mediated interactions, and discuss recent advances in experimental tools that are beginning to provide new insights into the composition and organization of CSPs. The examples presented here are likely the tip of the iceberg, and much further work is needed to elucidate fully this higher level of glycan organization.
Collapse
Affiliation(s)
- Miriam Cohen
- Department Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, USA.
| | - Ajit Varki
- Department of Medicine, University of California, San Diego, California, USA; Department Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, USA.
| |
Collapse
|
439
|
Geissner A, Anish C, Seeberger PH. Glycan arrays as tools for infectious disease research. Curr Opin Chem Biol 2013; 18:38-45. [PMID: 24534751 DOI: 10.1016/j.cbpa.2013.11.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/15/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
Infectious diseases cause millions of deaths worldwide each year and are a major burden for economies, especially in underdeveloped countries. Glycans and their interactions with other biomolecules are involved in all major steps of infection. Glycan arrays enable the rapid and sensitive detection of those interactions and are among the most powerful techniques to study the molecular biology of infectious diseases. This review will focus on recent developments and discuss the applications of glycan arrays to the elucidation of host-pathogen and pathogen-pathogen interactions, the development of tools for infection diagnosis and the use of glycan arrays in modern vaccine design.
Collapse
Affiliation(s)
- Andreas Geissner
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany; Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Chakkumkal Anish
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany; Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
| |
Collapse
|
440
|
Lyumkis D, Julien JP, de Val N, Cupo A, Potter CS, Klasse PJ, Burton DR, Sanders RW, Moore JP, Carragher B, Wilson IA, Ward AB. Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. Science 2013; 342:1484-90. [PMID: 24179160 PMCID: PMC3954647 DOI: 10.1126/science.1245627] [Citation(s) in RCA: 589] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The HIV-1 envelope glycoprotein (Env) trimer contains the receptor binding sites and membrane fusion machinery that introduce the viral genome into the host cell. As the only target for broadly neutralizing antibodies (bnAbs), Env is a focus for rational vaccine design. We present a cryo-electron microscopy reconstruction and structural model of a cleaved, soluble Env trimer (termed BG505 SOSIP.664 gp140) in complex with a CD4 binding site (CD4bs) bnAb, PGV04, at 5.8 angstrom resolution. The structure reveals the spatial arrangement of Env components, including the V1/V2, V3, HR1, and HR2 domains, as well as shielding glycans. The structure also provides insights into trimer assembly, gp120-gp41 interactions, and the CD4bs epitope cluster for bnAbs, which covers a more extensive area and defines a more complex site of vulnerability than previously described.
Collapse
Affiliation(s)
- Dmitry Lyumkis
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, California, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jean-Philippe Julien
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Albert Cupo
- Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Clinton S. Potter
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, California, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Per Johan Klasse
- Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Dennis R. Burton
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA
| | - Rogier W. Sanders
- Weill Medical College of Cornell University, New York, New York 10021, USA
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, Netherlands
| | - John P. Moore
- Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, California, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
441
|
Diverse recombinant HIV-1 Envs fail to activate B cells expressing the germline B cell receptors of the broadly neutralizing anti-HIV-1 antibodies PG9 and 447-52D. J Virol 2013; 88:2645-57. [PMID: 24352455 DOI: 10.1128/jvi.03228-13] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Broadly neutralizing antibodies (bNAbs) against HIV-1 are generated during HIV-1-infection but have not yet been elicited by immunization with recombinant forms of the viral envelope glycoprotein (Env; the target of anti-HIV-1 neutralizing antibodies). A particular type of bNAb targets the CD4-binding site (CD4-BS) region of Env. These antibodies are derived from a limited number of VH/VL genes and can bind to and neutralize diverse HIV-1 strains. Recent reports have demonstrated the limited potential of Env to activate B cells expressing the germline B cell receptor (BCR) forms of anti-CD4-BS bNAbs. A potential reason for the lack of elicitation of anti-CD4-BS bNAbs by Env immunogens is the absence of stimulation of naive B cells expressing the germline BCRs of such antibodies. Several bNAbs have been isolated from HIV-1-infected subjects that target other structurally conserved regions of Env. How frequently Env immunogens stimulate the germline BCRs that give rise to bNAbs that target Env regions other than the CD4-BS is not well understood. Here, we investigated the interactions between diverse Envs and the BCRs of known bNAbs targeting not only the CD4-BS but also conserved elements of the second and third variable Env regions. Our results indicate that Env is generally ineffective in engaging germline BCRs of bNAbs irrespective of their epitope target. Potentially, this is the result of viral evolutionary mechanisms adopted to escape broadly neutralizing antibody responses. Our results also suggest that a single Env capable of activating germline BCRs that target distinct Env epitopes will be very difficult to identify or to design. IMPORTANCE Broadly neutralizing antibodies against HIV-1 are thought to be an important component of the immune responses that a successful vaccine should elicit. Broadly neutralizing antibodies are generated by a subset of those infected by HIV-1, but so far, they have not been generated by immunization with recombinant Envelope (Env, the target of anti-HIV-1 neutralizing antibodies). Here, we provide evidence that the inability of Env to elicit the production of broadly neutralizing antibodies is due to the inability of diverse Envs to engage the germline B cell receptor forms of known broadly neutralizing antibodies.
Collapse
|
442
|
Kwong PD, Mascola JR, Nabel GJ. Broadly neutralizing antibodies and the search for an HIV-1 vaccine: the end of the beginning. Nat Rev Immunol 2013; 13:693-701. [PMID: 23969737 DOI: 10.1038/nri3516] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The field of HIV-1 vaccine research has seen a renaissance with the identification of antibodies that neutralize most circulating HIV-1 strains. An understanding of the structural mode of target recognition that these antibodies use and the immune pathways that lead to their development is emerging. This knowledge has provided fundamental insights into the pathways that elicit broadly neutralizing antibodies and provides a foundation for active and passive immunization strategies to prevent HIV-1 infection.
Collapse
Affiliation(s)
- Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
443
|
Computational prediction of broadly neutralizing HIV-1 antibody epitopes from neutralization activity data. PLoS One 2013; 8:e80562. [PMID: 24312481 PMCID: PMC3846483 DOI: 10.1371/journal.pone.0080562] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/03/2013] [Indexed: 11/19/2022] Open
Abstract
Broadly neutralizing monoclonal antibodies effective against the majority of circulating isolates of HIV-1 have been isolated from a small number of infected individuals. Definition of the conformational epitopes on the HIV spike to which these antibodies bind is of great value in defining targets for vaccine and drug design. Drawing on techniques from compressed sensing and information theory, we developed a computational methodology to predict key residues constituting the conformational epitopes on the viral spike from cross-clade neutralization activity data. Our approach does not require the availability of structural information for either the antibody or antigen. Predictions of the conformational epitopes of ten broadly neutralizing HIV-1 antibodies are shown to be in good agreement with new and existing experimental data. Our findings suggest that our approach offers a means to accelerate epitope identification for diverse pathogenic antigens.
Collapse
|
444
|
Glycans from avian influenza virus are recognized by chicken dendritic cells and are targets for the humoral immune response in chicken. Mol Immunol 2013; 56:452-62. [DOI: 10.1016/j.molimm.2013.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 06/13/2013] [Accepted: 06/15/2013] [Indexed: 11/22/2022]
|
445
|
Chenine AL, Wieczorek L, Sanders-Buell E, Wesberry M, Towle T, Pillis DM, Molnar S, McLinden R, Edmonds T, Hirsch I, O’Connell R, McCutchan FE, Montefiori DC, Ochsenbauer C, Kappes JC, Kim JH, Polonis VR, Tovanabutra S. Impact of HIV-1 backbone on neutralization sensitivity: neutralization profiles of heterologous envelope glycoproteins expressed in native subtype C and CRF01_AE backbone. PLoS One 2013; 8:e76104. [PMID: 24312165 PMCID: PMC3843658 DOI: 10.1371/journal.pone.0076104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/20/2013] [Indexed: 01/24/2023] Open
Abstract
Standardized assays to assess vaccine and antiviral drug efficacy are critical for the development of protective HIV-1 vaccines and drugs. These immune assays will be advanced by the development of standardized viral stocks, such as HIV-1 infectious molecular clones (IMC), that i) express a reporter gene, ii) are representative of globally diverse subtypes and iii) are engineered to easily exchange envelope (env) genes for expression of sequences of interest. Thus far, a subtype B IMC backbone expressing Renilla luciferase (LucR), and into which the ectodomain of heterologous env coding sequences can be expressed has been successfully developed but as execution of HIV-1 vaccine efficacy trials shifts increasingly to non-subtype B epidemics (Southern African and Southeast Asia), non-subtype B HIV-1 reagents are needed to support vaccine development. Here we describe two IMCs derived from subtypes C and CRF01_AE HIV-1 primary isolates expressing LucR (IMC.LucR) that were engineered to express heterologous gp160 Envs. 18 constructs expressing various subtypes C and CRF01_AE Envs, mostly acute, in subtype-matched and -unmatched HIV backbones were tested for functionality and neutralization sensitivity. Our results suggest a possible effect of non-env HIV-1 genes on the interaction of Env and neutralizing antibodies and highlight the need to generate a library of IMCs representative of the HIV-1 subtype spectrum to be used as standardized neutralization assay reagents for assessing HIV-1 vaccine efficacy.
Collapse
Affiliation(s)
- Agnès-Laurence Chenine
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Lindsay Wieczorek
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Silver Spring, Maryland, United States of America
| | - Eric Sanders-Buell
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Silver Spring, Maryland, United States of America
| | - Maggie Wesberry
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Silver Spring, Maryland, United States of America
| | - Teresa Towle
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Silver Spring, Maryland, United States of America
| | - Devin M. Pillis
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Silver Spring, Maryland, United States of America
| | - Sebastian Molnar
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Silver Spring, Maryland, United States of America
| | - Robert McLinden
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Silver Spring, Maryland, United States of America
| | - Tara Edmonds
- University of Alabama, Birmingham, Birmingham, Alabama, United States of America
| | - Ivan Hirsch
- Inserm UMR891, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Robert O’Connell
- Military HIV Research Program, Silver Spring, Maryland, United States of America
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | | | | | | | - John C. Kappes
- University of Alabama, Birmingham, Birmingham, Alabama, United States of America
| | - Jerome H. Kim
- Military HIV Research Program, Silver Spring, Maryland, United States of America
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Victoria R. Polonis
- Military HIV Research Program, Silver Spring, Maryland, United States of America
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sodsai Tovanabutra
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Silver Spring, Maryland, United States of America
| |
Collapse
|
446
|
Wood NT, Fadda E, Davis R, Grant OC, Martin JC, Woods RJ, Travers SA. The influence of N-linked glycans on the molecular dynamics of the HIV-1 gp120 V3 loop. PLoS One 2013; 8:e80301. [PMID: 24303005 PMCID: PMC3841175 DOI: 10.1371/journal.pone.0080301] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/11/2013] [Indexed: 02/07/2023] Open
Abstract
N-linked glycans attached to specific amino acids of the gp120 envelope trimer of a HIV virion can modulate the binding affinity of gp120 to CD4, influence coreceptor tropism, and play an important role in neutralising antibody responses. Because of the challenges associated with crystallising fully glycosylated proteins, most structural investigations have focused on describing the features of a non-glycosylated HIV-1 gp120 protein. Here, we use a computational approach to determine the influence of N-linked glycans on the dynamics of the HIV-1 gp120 protein and, in particular, the V3 loop. We compare the conformational dynamics of a non-glycosylated gp120 structure to that of two glycosylated gp120 structures, one with a single, and a second with five, covalently linked high-mannose glycans. Our findings provide a clear illustration of the significant effect that N-linked glycosylation has on the temporal and spatial properties of the underlying protein structure. We find that glycans surrounding the V3 loop modulate its dynamics, conferring to the loop a marked propensity towards a more narrow conformation relative to its non-glycosylated counterpart. The conformational effect on the V3 loop provides further support for the suggestion that N-linked glycosylation plays a role in determining HIV-1 coreceptor tropism.
Collapse
Affiliation(s)
- Natasha T. Wood
- South African National Bioinformatics Institute, South African Medical Research Council Bioinformatics Unit, University of the Western Cape, Cape Town, South Africa
| | - Elisa Fadda
- Department of Chemistry, National University of Ireland, Maynooth, Maynooth, Ireland
| | - Robert Davis
- Complex Carbohydrate Research Centre, University of Georgia, Athens, Georgia, United States of America
| | - Oliver C. Grant
- School of Chemistry, National University of Ireland, Galway, Galway, Ireland
| | - Joanne C. Martin
- School of Chemistry, National University of Ireland, Galway, Galway, Ireland
| | - Robert J. Woods
- Complex Carbohydrate Research Centre, University of Georgia, Athens, Georgia, United States of America
- School of Chemistry, National University of Ireland, Galway, Galway, Ireland
| | - Simon A. Travers
- South African National Bioinformatics Institute, South African Medical Research Council Bioinformatics Unit, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
447
|
Sok D, Laserson U, Laserson J, Liu Y, Vigneault F, Julien JP, Briney B, Ramos A, Saye KF, Le K, Mahan A, Wang S, Kardar M, Yaari G, Walker LM, Simen BB, St. John EP, Chan-Hui PY, Swiderek K, Kleinstein SH, Alter G, Seaman MS, Chakraborty AK, Koller D, Wilson IA, Church GM, Burton DR, Poignard P. The effects of somatic hypermutation on neutralization and binding in the PGT121 family of broadly neutralizing HIV antibodies. PLoS Pathog 2013; 9:e1003754. [PMID: 24278016 PMCID: PMC3836729 DOI: 10.1371/journal.ppat.1003754] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/14/2013] [Indexed: 12/11/2022] Open
Abstract
Broadly neutralizing HIV antibodies (bnAbs) are typically highly somatically mutated, raising doubts as to whether they can be elicited by vaccination. We used 454 sequencing and designed a novel phylogenetic method to model lineage evolution of the bnAbs PGT121–134 and found a positive correlation between the level of somatic hypermutation (SHM) and the development of neutralization breadth and potency. Strikingly, putative intermediates were characterized that show approximately half the mutation level of PGT121–134 but were still capable of neutralizing roughly 40–80% of PGT121–134 sensitive viruses in a 74-virus panel at median titers between 15- and 3-fold higher than PGT121–134. Such antibodies with lower levels of SHM may be more amenable to elicitation through vaccination while still providing noteworthy coverage. Binding characterization indicated a preference of inferred intermediates for native Env binding over monomeric gp120, suggesting that the PGT121–134 lineage may have been selected for binding to native Env at some point during maturation. Analysis of glycan-dependent neutralization for inferred intermediates identified additional adjacent glycans that comprise the epitope and suggests changes in glycan dependency or recognition over the course of affinity maturation for this lineage. Finally, patterns of neutralization of inferred bnAb intermediates suggest hypotheses as to how SHM may lead to potent and broad HIV neutralization and provide important clues for immunogen design. A majority of the over 30 million HIV-1 infected individuals worldwide live in poorly resourced areas where multiple boost strategies, which are likely needed to generate highly mutated antibodies, present formidable logistical challenges. Accordingly, developing new vaccination strategies that are capable of generating highly mutated antibodies should be an active area of research. Another approach, that is not mutually exclusive, is to identify new bnAbs that are both broad and potent in neutralization, but are much less mutated than the bnAbs that currently exist. Here, we have identified bnAbs that are approximately half the mutation frequency of known bnAbs, but maintain high potency and moderate breadth. These less mutated bnAbs offer an important advantage in that they would likely be easier to induce through vaccination than more mutated antibodies. By characterizing these putative intermediates, we can also better estimate how affinity maturation proceeded to result in an antibody with broad and potent neutralization activity and offer more focused strategies for designing immunogens capable of eliciting these less mutated bnAbs.
Collapse
Affiliation(s)
- Devin Sok
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Uri Laserson
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan Laserson
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Yi Liu
- Department of Computer Science, Stanford University, Stanford, California, United States of America
- Biomedical Informatics Training Program, Stanford University School of Medicine, Stanford, California, United States of America
| | - Francois Vigneault
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- AbVitro Inc., Boston, Massachusetts, United States of America
| | - Jean-Philippe Julien
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Bryan Briney
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Alejandra Ramos
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Karen F. Saye
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Khoa Le
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Alison Mahan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, Massachusetts, United States of America
| | - Shenshen Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Gur Yaari
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Laura M. Walker
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Birgitte B. Simen
- 454 Life Sciences – A Roche Company, Branford, Connecticut, United States of America
| | - Elizabeth P. St. John
- 454 Life Sciences – A Roche Company, Branford, Connecticut, United States of America
| | - Po-Ying Chan-Hui
- Theraclone Sciences, Inc., Seattle, Washington, United States of America
| | - Kristine Swiderek
- Theraclone Sciences, Inc., Seattle, Washington, United States of America
| | - Stephen H. Kleinstein
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, Massachusetts, United States of America
| | - Michael S. Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Arup K. Chakraborty
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, Massachusetts, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemistry, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Daphne Koller
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Ian A. Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - George M. Church
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, Massachusetts, United States of America
- * E-mail:
| | - Pascal Poignard
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative, New York, New York, United States of America
| |
Collapse
|
448
|
Ruwona TB, Mcbride R, Chappel R, Head SR, Ordoukhanian P, Burton DR, Law M. Optimization of peptide arrays for studying antibodies to hepatitis C virus continuous epitopes. J Immunol Methods 2013; 402:35-42. [PMID: 24269751 DOI: 10.1016/j.jim.2013.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/22/2013] [Accepted: 11/12/2013] [Indexed: 02/02/2023]
Abstract
Accurate and in-depth mapping of antibody responses is of great value in vaccine and antibody research. Using hepatitis C virus (HCV) as a model, we developed an affordable and high-throughput microarray-based assay for mapping antibody specificities to continuous antibody epitopes of HCV at high resolution. Important parameters in the chemistry for conjugating peptides/antigens to the array surface, the array layout, fluorophore choice and the methods for data analysis were investigated. Microscopic glass slide pre-coated with N-Hydroxysuccinimide (NHS)-ester (Slide H) was the preferred surface for conjugation of aminooxy-tagged peptides. This combination provides a simple chemical means to orient the peptides to the conjugation surface via an orthogonal covalent linkage at the N- or C-terminus of each peptide. The addition of polyvinyl alcohol to printing buffer gave uniform spot morphology and improved sensitivity and specificity of binding signals. Libraries of overlapping peptides covering the HCV E1 and E2 glycoprotein polypeptides (15-mer, 10 amino acids overlap) of 6 major HCV genotypes and the entire polypeptide sequence of the prototypic strain H77 were synthesized and printed in quadruplets in the assays. The utility of the peptide arrays was confirmed using HCV monoclonal antibodies (mAbs) specific to known continuous epitopes and immune sera of rabbits immunized with HCV antigens. The methods developed here can be easily adapted to studying antibody responses to antigens relevant in vaccine and autoimmune research.
Collapse
Affiliation(s)
- Tinashe B Ruwona
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Ryan Mcbride
- Microarray Core Facility, The Scripps Research Institute, La Jolla, CA, United States
| | - Rebecca Chappel
- Center for Protein and Nucleic Acids Research, The Scripps Research Institute, La Jolla, CA, United States
| | - Steven R Head
- Microarray Core Facility, The Scripps Research Institute, La Jolla, CA, United States
| | - Phillip Ordoukhanian
- Center for Protein and Nucleic Acids Research, The Scripps Research Institute, La Jolla, CA, United States
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Mansun Law
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
449
|
Goh BC, Rynkiewicz MJ, Cafarella TR, White MR, Hartshorn KL, Allen K, Crouch EC, Calin O, Seeberger PH, Schulten K, Seaton BA. Molecular mechanisms of inhibition of influenza by surfactant protein D revealed by large-scale molecular dynamics simulation. Biochemistry 2013; 52:8527-38. [PMID: 24224757 DOI: 10.1021/bi4010683] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Surfactant protein D (SP-D), a mammalian C-type lectin, is the primary innate inhibitor of influenza A virus (IAV) in the lung. Interactions of SP-D with highly branched viral N-linked glycans on hemagglutinin (HA), an abundant IAV envelope protein and critical virulence factor, promote viral aggregation and neutralization through as yet unknown molecular mechanisms. Two truncated human SP-D forms, wild-type (WT) and double mutant D325A+R343V, representing neck and carbohydrate recognition domains are compared in this study. Whereas both WT and D325A+R343V bind to isolated glycosylated HA, WT does not inhibit IAV in neutralization assays; in contrast, D325A+R343V neutralization compares well with that of full-length native SP-D. To elucidate the mechanism for these biochemical observations, we have determined crystal structures of D325A+R343V in the presence and absence of a viral nonamannoside (Man9). On the basis of the D325A+R343V-Man9 structure and other crystallographic data, models of complexes between HA and WT or D325A+R343V were produced and subjected to molecular dynamics. Simulations reveal that whereas WT and D325A+R343V both block the sialic acid receptor site of HA, the D325A+R343V complex is more stable, with stronger binding caused by additional hydrogen bonds and hydrophobic interactions with HA residues. Furthermore, the blocking mechanism of HA differs for WT and D325A+R343V because of alternate glycan binding modes. The combined results suggest a mechanism through which the mode of SP-D-HA interaction could significantly influence viral aggregation and neutralization. These studies provide the first atomic-level molecular view of an innate host defense lectin inhibiting its viral glycoprotein target.
Collapse
Affiliation(s)
- Boon Chong Goh
- Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
450
|
Malaspina A, Collins BS, Dell A, Alter G, Onami TM. Conference report: "Functional Glycomics in HIV Type 1 Vaccine Design" workshop report, Bethesda, Maryland, April 30-May 1, 2012. AIDS Res Hum Retroviruses 2013; 29:1407-17. [PMID: 23767872 DOI: 10.1089/aid.2013.0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A vital part of the renewed hope for a vaccine against the human immunodeficiency virus (HIV-1) is based on recent studies that have highlighted major sites of HIV-1 vulnerability that could be effectively targeted by a preventive vaccine. One of these potential vulnerabilities includes the dense cluster of carbohydrates surrounding HIV-1's envelope glycoproteins gp120 and gp41, typically referred to as the "glycan shield." Recent data from several laboratories have shown that glycans on the HIV-1 envelope form key epitopes for broadly neutralizing antibodies (bNAb). Moreover, HIV-1 envelope glycans play an important role in viral transmission, antigenicity, and immunogenicity. The recent availability of novel tools and technologies has now allowed investigators to leverage glycomic structure-function relationships in the design of candidate HIV-1 vaccines. Additionally, glycans modulate the immune response, playing an essential role in Fc receptor and complement activity. To promote cross-disciplinary collaboration and promote synergistic HIV-1- glycomics research, the National Institutes of Health (NIH) cosponsored and convened a 1.5-day workshop entitled "Functional Glycomics in HIV-1 Vaccine Design." The meeting focused on the role of glycan interactions with neutralizing antibodies, the influence of immunoglobulin G (IgG) Fc receptor glycosylation, newly available glycomics technologies, and how new information on the role of glycans could be applied in HIV-1 immunogen design strategies. This report summarizes the discussions of this workshop.
Collapse
Affiliation(s)
- Angela Malaspina
- Preclinical Research and Development Branch, Division of AIDS, U.S. National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Brenda S. Collins
- HJF-DAIDS, a Division of The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Contractor to NIAID, NIH, DHHS, Bethesda, Maryland
| | - Anne Dell
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Charlestown, Massachusetts
| | - Thandi M. Onami
- Vaccine Clinical Research Branch, Division of AIDS, U.S. National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| |
Collapse
|