401
|
Bryan NS, Torregrossa AC, Mian AI, Berkson DL, Westby CM, Moncrief JW. Acute effects of hemodialysis on nitrite and nitrate: potential cardiovascular implications in dialysis patients. Free Radic Biol Med 2013; 58:46-51. [PMID: 23376235 DOI: 10.1016/j.freeradbiomed.2013.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/03/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
Cardiovascular mortality in dialysis patients remains a serious problem. It is 10 to 20 times higher than in the general population. No molecular mechanism has been proven to explain this increased mortality, although nitric oxide (NO) has been implicated. The objective of our study was to determine the extent of the removal of the NO congeners nitrite and nitrate from plasma and saliva by hemodialysis, as this might disrupt physiological NO bioactivity and help explain the health disparity in dialysis patients. Blood and saliva were collected at baseline from patients on dialysis and blood was collected as it exited the dialysis unit. Blood and saliva were again collected after 4-5h of dialysis. In the 27 patients on dialysis, baseline plasma nitrite and nitrate by HPLC were 0.21±0.03 and 67.25±14.68 μM, respectively. Blood immediately upon exit from the dialysis unit had 57% less nitrite (0.09±0.03 μM; P=0.0008) and 84% less nitrate (11.04 μM; P=0.0003). After 4-5h of dialysis, new steady-state plasma levels of nitrite and nitrate were significantly lower than baseline, 0.09±0.01 μM (P=0.0002) and 16.72±2.27 μM (P=0.001), respectively. Dialysis also resulted in a significant reduction in salivary nitrite (232.58±75.65 to 25.77±10.88 μM; P=0.01) and nitrate (500.36±154.89 to 95.08±24.64 μM; P=0.01). Chronic and persistent depletion of plasma and salivary nitrite and nitrate probably reduces NO bioavailability and may explain in part the increased cardiovascular mortality in the dialysis patient.
Collapse
Affiliation(s)
- Nathan S Bryan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
402
|
Low-dose sodium nitrite attenuates myocardial ischemia and vascular ischemia-reperfusion injury in human models. J Am Coll Cardiol 2013; 61:2534-41. [PMID: 23623914 DOI: 10.1016/j.jacc.2013.03.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/09/2013] [Accepted: 03/13/2013] [Indexed: 01/24/2023]
Abstract
OBJECTIVES The aim of this study was to assess the potential benefits of inorganic nitrite in 2 clinical models: stress-induced myocardial ischemia and whole-arm ischemia-reperfusion. BACKGROUND Inorganic nitrite, traditionally considered a relatively inert metabolite of nitric oxide, may exert vasomodulatory and vasoprotective effects. Despite promising results from animal models, few have shown effectiveness in human model systems, and none have fully translated to the clinical setting. METHODS In 10 patients with inducible myocardial ischemia, saline and low-dose sodium nitrite (NaNO₂) (1.5 μmol/min for 20 min) were administered in a double-blind fashion during dobutamine stress echocardiography, at separate visits and in a random order; long-axis myocardial function was quantified by peak systolic velocity (Vs) and strain rate (SR) responses. In 19 healthy subjects, flow-mediated dilation was assessed before and after whole-arm ischemia-reperfusion; nitrite was given before ischemia or during reperfusion. RESULTS Comparing saline and nitrite infusions, Vs and SR at peak dobutamine increased in regions exhibiting ischemia (Vs from 9.5 ± 0.5 cm/s to 12.4 ± 0.6 cm/s, SR from -2.0 ± 0.2 s(-1) to -2.8 ± 0.3 s(-1)), whereas they did not change in normally functioning regions (Vs from 12.6 ± 0.4 cm/s to 12.6 ± 0.6 cm/s, SR from -2.6 ± 0.3 s(-1) to -2.3 ± 0.1 s(-1)) (p < 0.001, analysis of variance). With NaNO2, the increment of Vs (normalized for increase in heart rate) increased only in poorly functioning myocardial regions (+122%, p < 0.001). Peak flow-mediated dilation decreased by 43% after ischemia-reperfusion when subjects received only saline (6.8 ± 0.7% vs. 3.9 ± 0.7%, p < 0.01); administration of NaNO2 before ischemia prevented this decrease in flow-mediated dilation (5.9 ± 0.7% vs. 5.2 ± 0.5%, p = NS), whereas administration during reperfusion did not. CONCLUSIONS Low-dose NaNO₂ improves functional responses in ischemic myocardium but has no effect on normal regions. Low-dose NaNO₂ protects against vascular ischemia-reperfusion injury only when it is given before the onset of ischemia.
Collapse
|
403
|
Peacock O, Tjønna AE, James P, Wisløff U, Welde B, Böhlke N, Smith A, Stokes K, Cook C, Sandbakk O. Dietary nitrate does not enhance running performance in elite cross-country skiers. Med Sci Sports Exerc 2013; 44:2213-9. [PMID: 22874535 DOI: 10.1249/mss.0b013e3182640f48] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The objective of this study is to examine the effects of acute ingestion of dietary nitrate on endurance running performance in highly trained cross-country skiers. Dietary nitrate has been shown to reduce the oxygen cost of submaximal exercise and improve tolerance of high-intensity exercise, but it is not known if this holds true for highly trained endurance athletes. METHODS Ten male junior cross-country skiers (V˙O(2max)) ≈ 70 mL·kg·min) each completed two trials in a randomized, double-blind design. Participants ingested potassium nitrate (614-mg nitrate) or a nitrate-free placebo 2.5 h before two 5-min submaximal tests on a treadmill at 10 km·h (≈55% of V˙O(2max)) and 14 km·h (≈75% of V˙O(2max)), followed by a 5-km running time trial on an indoor track. RESULTS Plasma nitrite concentrations were higher after nitrate supplementation (325 ± 95 nmol·L) compared with placebo (143 ± 59 nmol·L, P < 0.001). There was no significant difference in 5-km time-trial performance between nitrate (1005 ± 53 s) and placebo treatments (996 ± 49 s, P = 0.12). The oxygen cost of submaximal running was not significantly different between placebo and nitrate trials at 10 km·h (both 2.84 ± 0.34 L·min) and 14 km·h (3.89 ± 0.39 vs. 3.77 ± 0.62 L·min). CONCLUSIONS Acute ingestion of dietary nitrate may not represent an effective strategy for reducing the oxygen cost of submaximal exercise or for enhancing endurance exercise performance in highly trained cross-country skiers.
Collapse
Affiliation(s)
- Oliver Peacock
- Sport, Health and Exercise Science Research Group, Department for Health, University of Bath, Bath, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
404
|
Vanhatalo A, Bailey SJ, DiMenna FJ, Blackwell JR, Wallis GA, Jones AM. No effect of acute L-arginine supplementation on O₂ cost or exercise tolerance. Eur J Appl Physiol 2013; 113:1805-19. [PMID: 23423302 DOI: 10.1007/s00421-013-2593-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/16/2013] [Indexed: 12/17/2022]
Abstract
The extent to which dietary supplementation with the nitric oxide synthase (NOS) substrate, L-arginine (ARG), impacts on NO production and NO-mediated physiological responses is controversial. This randomised, double blinded, cross-over study investigated the effects of acute ARG supplementation on NO biomarkers, O₂ cost of exercise and exercise tolerance in humans. In one experiment, 15 subjects completed moderate- and severe-intensity running bouts after acute supplementation with 6 g ARG or placebo (PLA). In another experiment, eight subjects completed moderate- and severe-intensity cycling bouts after acute supplementation with 6 g ARG plus 25 g of carbohydrate (ARG + CHO) or an energy-matched dose of carbohydrate alone (CHO). The plasma nitrite concentration was not different after ARG (Pre: 204 ± 79; Post: 241 ± 114 nM; P > 0.05) or ARG + CHO consumption (Pre: 304 ± 57; Post: 335 ± 116 nM; P > 0.05). During moderate-intensity exercise, the steady-state pulmonary VO₂ was not different, relative to the respective placebo conditions, after ARG (PLA: 2,407 ± 318, ARG: 2,422 ± 333 mL min(-1)) or ARG + CHO (CHO: 1,695 ± 304, ARG + CHO: 1,712 ± 312 mL min(-1)) ingestion (P > 0.05). The tolerable duration of severe exercise was also not significantly different (P > 0.05) after ingesting ARG (PLA: 551 ± 140, ARG: 552 ± 150 s) or ARG + CHO (CHO: 457 ± 182, ARG + CHO: 441 ± 221 s). In conclusion, acute dietary supplementation with ARG or ARG + CHO did not alter biomarkers of NO synthesis, O₂ cost of exercise or exercise tolerance in healthy subjects.
Collapse
Affiliation(s)
- Anni Vanhatalo
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, Devon EX1 2LU, UK
| | | | | | | | | | | |
Collapse
|
405
|
Kapil V, Haydar SM, Pearl V, Lundberg JO, Weitzberg E, Ahluwalia A. Physiological role for nitrate-reducing oral bacteria in blood pressure control. Free Radic Biol Med 2013; 55. [PMID: 23183324 PMCID: PMC3605573 DOI: 10.1016/j.freeradbiomed.2012.11.013] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Circulating nitrate (NO(3)(-)), derived from dietary sources or endogenous nitric oxide production, is extracted from blood by the salivary glands, accumulates in saliva, and is then reduced to nitrite (NO(2)(-)) by the oral microflora. This process has historically been viewed as harmful, because nitrite can promote formation of potentially carcinogenic N-nitrosamines. More recent research, however, suggests that nitrite can also serve as a precursor for systemic generation of vasodilatory nitric oxide, and exogenous administration of nitrate reduces blood pressure in humans. However, whether oral nitrate-reducing bacteria participate in "setting" blood pressure is unknown. We investigated whether suppression of the oral microflora affects systemic nitrite levels and hence blood pressure in healthy individuals. We measured blood pressure (clinic, home, and 24-h ambulatory) in 19 healthy volunteers during an initial 7-day control period followed by a 7-day treatment period with a chlorhexidine-based antiseptic mouthwash. Oral nitrate-reducing capacity and nitrite levels were measured after each study period. Antiseptic mouthwash treatment reduced oral nitrite production by 90% (p < 0.001) and plasma nitrite levels by 25% (p = 0.001) compared to the control period. Systolic and diastolic blood pressure increased by 2-3 .5mmHg, increases correlated to a decrease in circulating nitrite concentrations (r(2) = 0.56, p = 0.002). The blood pressure effect appeared within 1 day of disruption of the oral microflora and was sustained during the 7-day mouthwash intervention. These results suggest that the recycling of endogenous nitrate by oral bacteria plays an important role in determination of plasma nitrite levels and thereby in the physiological control of blood pressure.
Collapse
Affiliation(s)
- Vikas Kapil
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Syed M.A. Haydar
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Vanessa Pearl
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jon O. Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Amrita Ahluwalia
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Corresponding author. Fax: +44 207 882 3408.
| |
Collapse
|
406
|
Dietary nitrate supplementation improves team sport-specific intense intermittent exercise performance. Eur J Appl Physiol 2013; 113:1673-84. [PMID: 23370859 DOI: 10.1007/s00421-013-2589-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
Abstract
Recent studies have suggested that dietary inorganic nitrate (NO₃(-)) supplementation may improve muscle efficiency and endurance exercise tolerance but possible effects during team sport-specific intense intermittent exercise have not been examined. We hypothesized that NO₃(-) supplementation would enhance high-intensity intermittent exercise performance. Fourteen male recreational team-sport players were assigned in a double-blind, randomized, crossover design to consume 490 mL of concentrated, nitrate-rich beetroot juice (BR) and nitrate-depleted placebo juice (PL) over ~30 h preceding the completion of a Yo-Yo intermittent recovery level 1 test (Yo-Yo IR1). Resting plasma nitrite concentration ([NO₂(-)]) was ~400% greater in BR compared to PL. Plasma [NO₂(-)] declined by 20% in PL (P < 0.05) and by 54 % in BR (P < 0.05) from pre-exercise to end-exercise. Performance in the Yo-Yo IR1 was 4.2% greater (P < 0.05) with BR (1,704 ± 304 m) compared to PL (1,636 ± 288 m). Blood [lactate] was not different between BR and PL, but the mean blood [glucose] was lower (3.8 ± 0.8 vs. 4.2 ± 1.1 mM, P < 0.05) and the rise in plasma [K(+)] tended to be reduced in BR compared to PL (P = 0.08). These findings suggest that NO₃(-) supplementation may promote NO production via the nitrate-nitrite-NO pathway and enhance Yo-Yo IR1 test performance, perhaps by facilitating greater muscle glucose uptake or by better maintaining muscle excitability. Dietary NO₃(-) supplementation improves performance during intense intermittent exercise and may be a useful ergogenic aid for team sports players.
Collapse
|
407
|
Bubb KJ, Khambata RS, Ahluwalia A. Sexual dimorphism in rodent models of hypertension and atherosclerosis. Br J Pharmacol 2013; 167:298-312. [PMID: 22582712 DOI: 10.1111/j.1476-5381.2012.02036.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Approximately one third of all deaths are attributed to cardiovascular disease (CVD), making it the biggest killer worldwide. Despite a number of therapeutic options available, the burden of CVD morbidity continues to grow indicating the need for continued research to address this unmet need. In this respect, investigation of the mechanisms underlying the protection that premenopausal females enjoy from cardiovascular-related disease and mortality is of interest. In this review, we discuss the essential role that rodent animal models play in enabling this field of research. In particular, we focus our discussion on models of hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Kristen J Bubb
- William Harvey Research Institute, Clinical Pharmacology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | | | | |
Collapse
|
408
|
Hobbs DA, Kaffa N, George TW, Methven L, Lovegrove JA. Blood pressure-lowering effects of beetroot juice and novel beetroot-enriched bread products in normotensive male subjects. Br J Nutr 2012; 108:2066-74. [PMID: 22414688 DOI: 10.1017/s0007114512000190] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A number of vegetables have a high nitrate content which after ingestion can be reduced to nitrite by oral bacteria, and further to vasoprotective NO endogenously. In the present study, two separate randomly controlled, single-blind, cross-over, postprandial studies were performed in normotensive volunteers. Ambulatory blood pressure (BP) was measured over a 24 h period following consumption of either four doses of beetroot juice (BJ), 0, 100, 250 and 500 g (n 18), or three bread products, control bread (0 g beetroot), red beetroot- and white beetroot-enriched breads (n 14). Total urinary nitrate/nitrite (NO(x)) was measured at baseline, and at 2, 4 and 24 h post-ingestion. BJ consumption significantly, and in a near dose-dependent manner, lowered systolic BP (SBP, P < 0·01) and diastolic BP (DBP, P < 0·001) over a period of 24 h, compared with water control. Furthermore, bread products enriched with 100 g red or white beetroot lowered SBP and DBP over a period of 24 h (red beetroot-enriched bread, P <0·05), with no statistical differences between the varieties. Total urinary NO(x) significantly increased following the consumption of 100 g (P < 0·01), 250 g (P <0·001) and 500 g BJ (P <0·001) and after red beetroot-enriched bread ingestion (P <0·05), but did not reach significance for white beetroot-enriched bread compared with the no-beetroot condition. These studies demonstrated significant hypotensive effects of a low dose (100 g) of beetroot which was unaffected by processing or the presence of betacyanins. These data strengthen the evidence for cardioprotective BP-lowering effects of dietary nitrate-rich vegetables.
Collapse
Affiliation(s)
- Ditte A Hobbs
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, The University of Reading, Whiteknights, PO Box 226, Reading, Berks RG6 6AP, UK
| | | | | | | | | |
Collapse
|
409
|
Coles LT, Clifton PM. Effect of beetroot juice on lowering blood pressure in free-living, disease-free adults: a randomized, placebo-controlled trial. Nutr J 2012; 11:106. [PMID: 23231777 PMCID: PMC3545899 DOI: 10.1186/1475-2891-11-106] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 12/07/2012] [Indexed: 12/22/2022] Open
Abstract
Background The consumption of beetroot juice on a low nitrate diet may lower blood pressure (BP) and therefore reduce the risk of cardiovascular events. However, it is unknown if its inclusion as part of a normal diet has a similar effect on BP. The aim of the study was to conduct a randomized controlled trial with free-living adults to investigate if consuming beetroot juice in addition to a normal diet produces a measureable reduction in BP. Method Fifteen women and fifteen men participated in a double-blind, randomized, placebo-controlled, crossover study. Volunteers were randomized to receive 500 g of beetroot and apple juice (BJ) or a placebo juice (PL). Volunteers had BP measured at baseline and at least hourly for 24-h following juice consumption using an ambulatory blood pressure monitor (ABPM). Volunteers remained at the clinic for 1-h before resuming normal non-strenuous daily activities. The identical procedure was repeated 2-wk later with the drink (BJ or PL) not consumed on the first visit. Results Overall, there was a trend (P=0.064) to lower systolic blood pressure (SBP) at 6-h after drinking BJ relative to PL. Analysis in men only (n=13) after adjustment for baseline differences demonstrated a significant (P<0.05) reduction in SBP of 4 – 5 mmHg at 6-h after drinking BJ. Conclusions Beetroot juice will lower BP in men when consumed as part of a normal diet in free-living healthy adults. Trial registration anzctr.org.au ACTRN12612000445875
Collapse
Affiliation(s)
- Leah T Coles
- Nutritional Interventions Laboratory (LC, PC), Baker IDI Heart & Diabetes Institute, Melbourne, Australia.
| | | |
Collapse
|
410
|
Bryan NS. Pharmacological therapies, lifestyle choices and nitric oxide deficiency: A perfect storm. Pharmacol Res 2012; 66:448-56. [DOI: 10.1016/j.phrs.2012.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/28/2012] [Accepted: 09/15/2012] [Indexed: 01/05/2023]
|
411
|
Abstract
The human mouth harbours one of the most diverse microbiomes in the human body, including viruses, fungi, protozoa, archaea and bacteria. The bacteria are responsible for the two commonest bacterial diseases of man: dental caries (tooth decay) and the periodontal (gum) diseases. Archaea are restricted to a small number of species of methanogens while around 1000 bacterial species have been found, with representatives from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, Spirochaetes, Synergistetes and Tenericutes and the uncultured divisions GN02, SR1 and TM7. Around half of oral bacteria are as yet uncultured and culture-independent methods have been successfully used to comprehensively describe the oral bacterial community. The human oral microbiome database (HOMD, www.homd.org) provides a comprehensive resource consisting of descriptions of oral bacterial taxa, a 16S rRNA identification tool and a repository of oral bacterial genome sequences. Individuals' oral microbiomes are highly specific at the species level, although overall the human oral microbiome shows few geographical differences. Although caries and periodontitis are clearly bacterial diseases, they are not infectious diseases in the classical sense because they result from a complex interaction between the commensal microbiota, host susceptibility and environmental factors such as diet and smoking. Periodontitis, in particular, appears to result from an inappropriate inflammatory reaction to the normal microbiota, exacerbated by the presence of some disease-associated bacterial species. In functional terms, there appears to considerable redundancy among the oral microbiota and a focus on functional rather than phylogenetic diversity may be required in order to fully understand host-microbiome interactions.
Collapse
Affiliation(s)
- William G Wade
- King's College London Dental Institute, Microbiology Unit, Floor 17, Tower Wing, Guy's Campus, London SE1 9RT, UK.
| |
Collapse
|
412
|
Ataya B, Tzeng E, Zuckerbraun BS. Nitrite-generated nitric oxide to protect against intimal hyperplasia formation. Trends Cardiovasc Med 2012; 21:157-62. [PMID: 22814422 DOI: 10.1016/j.tcm.2012.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Vascular disease is a leading cause of morbidity and mortality worldwide. Current vascular therapeutic interventions directed at diseased vessels are restricted in long-term efficacy by the development of intimal hyperplasia and the reformation of flow-limiting disease. The vascular injury and inflammation that ensues from the intervention, especially in the setting of an existing atherosclerotic vascular disease, results in further endothelial dysfunction and subsequent smooth muscle cell proliferation and migration. Although the etiology of intimal hyperplasia is multifactorial, impaired nitric oxide (NO) signaling has been implicated. The vasoprotective properties of NO have been intensely studied, and many investigations have focused on harnessing this biological system for therapeutic benefit. Continued studies investigate the role of impaired NO signaling via the classical arginine/NO synthase (NOS)/NO pathway in the setting of intimal hyperplasia. Furthermore, the possible protective effects of nitrate and nitrite-generated NO via non-NOS-mediated pathways to limit vascular injury have been recently appreciated and will likely prove to be an important vasoregulatory and vasoprotective signaling pathway.
Collapse
Affiliation(s)
- Bilal Ataya
- University of Pittsburgh, Pittsburgh, PA 15240, USA
| | | | | |
Collapse
|
413
|
The effects of beetroot containing bread on arterial stiffness and other risk factors for cardiovascular disease. Proc Nutr Soc 2012. [DOI: 10.1017/s0029665112000894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
414
|
Hendgen-Cotta UB, Luedike P, Totzeck M, Kropp M, Schicho A, Stock P, Rammos C, Niessen M, Heiss C, Lundberg JO, Weitzberg E, Kelm M, Rassaf T. Dietary nitrate supplementation improves revascularization in chronic ischemia. Circulation 2012; 126:1983-92. [PMID: 22992322 DOI: 10.1161/circulationaha.112.112912] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Revascularization is an adaptive repair mechanism that restores blood flow to undersupplied ischemic tissue. Nitric oxide plays an important role in this process. Whether dietary nitrate, serially reduced to nitrite by commensal bacteria in the oral cavity and subsequently to nitric oxide and other nitrogen oxides, enhances ischemia-induced remodeling of the vascular network is not known. METHODS AND RESULTS Mice were treated with either nitrate (1 g/L sodium nitrate in drinking water) or sodium chloride (control) for 14 days. At day 7, unilateral hind-limb surgery with excision of the left femoral artery was conducted. Blood flow was determined by laser Doppler. Capillary density, myoblast apoptosis, mobilization of CD34(+)/Flk-1(+), migration of bone marrow-derived CD31(+)/CD45(-), plasma S-nitrosothiols, nitrite, and skeletal tissue cGMP levels were assessed. Enhanced green fluorescence protein transgenic mice were used for bone marrow transplantation. Dietary nitrate increased plasma S-nitrosothiols and nitrite, enhanced revascularization, increased mobilization of CD34(+)/Flk-1(+) and migration of bone marrow-derived CD31(+)/CD45(-) cells to the site of ischemia, and attenuated apoptosis of potentially regenerative myoblasts in chronically ischemic tissue. The regenerative effects of nitrate treatment were abolished by eradication of the nitrate-reducing bacteria in the oral cavity through the use of an antiseptic mouthwash. CONCLUSIONS Long-term dietary nitrate supplementation may represent a novel nutrition-based strategy to enhance ischemia-induced revascularization.
Collapse
Affiliation(s)
- Ulrike B Hendgen-Cotta
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
415
|
Biodenitrification of concentrated red beet juice. Eur Food Res Technol 2012. [DOI: 10.1007/s00217-012-1792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
416
|
Nitric oxide and geriatrics: Implications in diagnostics and treatment of the elderly. J Geriatr Cardiol 2012; 8:230-42. [PMID: 22783310 PMCID: PMC3390088 DOI: 10.3724/sp.j.1263.2011.00230] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/21/2011] [Accepted: 09/28/2011] [Indexed: 01/01/2023] Open
Abstract
The nation's aging population is growing rapidly. By 2030, the number of adults age 65 and older will nearly double to 70 million. Americans are living longer and older adults can now live for many years with multiple chronic illnesses but with a substantial cost to health care. Twenty percent of the Medicare population has at least five chronic conditions i.e., hypertension, diabetes, arthritis, etc. Studies in experimental models and even humans reveal that constitutive production of nitric oxide (NO) is reduced with aging and this circumstance may be relevant to a number of diseases that plague the aging population. NO is a multifunctional signaling molecule, intricately involved with maintaining a host of physiological processes including, but not limited to, host defense, neuronal communication and the regulation of vascular tone. NO is one of the most important signaling molecules in our body, and loss of NO function is one of the earliest indicators or markers of disease. Clinical studies provide evidence that insufficient NO production is associated with all major cardiovascular risk factors, such as hyperlipidemia, diabetes, hypertension, smoking and severity of atherosclerosis, and also has a profound predictive value for disease progression including cardiovascular and Alzheimers disease. Thirty plus years after its discovery and over 13 years since a Nobel Prize was awarded for its discovery, there have been no hallmark therapeutic breakthroughs or even NO based diagnostics. We will review the current state of the science surrounding NO in the etiology of a number of different diseases in the geriatric patient. From these observations, it can be concluded that enzymatic production of NO declines steadily with increasing age in healthy human subjects. Implementing strategies to diagnose and treat NO insufficiency may provide enormous benefit to the geriatric patient.
Collapse
|
417
|
Pinheiro LC, Montenegro MF, Amaral JH, Ferreira GC, Oliveira AM, Tanus-Santos JE. Increase in gastric pH reduces hypotensive effect of oral sodium nitrite in rats. Free Radic Biol Med 2012; 53:701-9. [PMID: 22721923 DOI: 10.1016/j.freeradbiomed.2012.06.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/23/2012] [Accepted: 06/02/2012] [Indexed: 01/07/2023]
Abstract
The new pathway nitrate-nitrite-nitric oxide (NO) has emerged as a physiological alternative to the classical enzymatic pathway for NO formation from l-arginine. Nitrate is converted to nitrite by commensal bacteria in the oral cavity and the nitrite formed is then swallowed and reduced to NO under the acidic conditions of the stomach. In this study, we tested the hypothesis that increases in gastric pH caused by omeprazole could decrease the hypotensive effect of oral sodium nitrite. We assessed the effects of omeprazole treatment on the acute hypotensive effects produced by sodium nitrite in normotensive and L-NAME-hypertensive free-moving rats. In addition, we assessed the changes in gastric pH and plasma levels of nitrite, NO(x) (nitrate+nitrite), and S-nitrosothiols caused by treatments. We found that the increases in gastric pH induced by omeprazole significantly reduced the hypotensive effects of sodium nitrite in both normotensive and L-NAME-hypertensive rats. This effect of omeprazole was associated with no significant differences in plasma nitrite, NO(x), or S-nitrosothiol levels. Our results suggest that part of the hypotensive effects of oral sodium nitrite may be due to its conversion to NO in the acidified environment of the stomach. The increase in gastric pH induced by treatment with omeprazole blunts part of the beneficial cardiovascular effects of dietary nitrate and nitrite.
Collapse
Affiliation(s)
- Lucas C Pinheiro
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 13081-970 Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
418
|
Botden IPG, Batenburg WW, de Vries R, Langendonk JG, Sijbrands EJG, Danser AHJ. Nitrite- and nitroxyl-induced relaxation in porcine coronary (micro-) arteries: underlying mechanisms and role as endothelium-derived hyperpolarizing factor(s). Pharmacol Res 2012; 66:409-18. [PMID: 22902525 DOI: 10.1016/j.phrs.2012.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/30/2012] [Accepted: 07/30/2012] [Indexed: 11/15/2022]
Abstract
To investigate the vasorelaxant efficacy of nitrite and nitroxyl (HNO) in porcine coronary (micro)arteries (PC(M)As), evaluating their role as endothelium-derived hyperpolarizing factors (EDHFs), preconstricted PCAs and PCMAs were exposed to UV light (a well-known inductor of nitrite; wave-length: 350-370nm), nitrite, the HNO donor Angeli's salt, or bradykinin. UV light-induced relaxation of PCAs increased identically after endothelium removal and endothelial nitric oxide (NO) synthase (eNOS) blockade. UV light-induced relaxation diminished during Na(+)-K(+)-ATPase inhibition and S-nitrosothiol-depletion, and disappeared during NO scavenging with hydroxocobalamin or soluble guanylyl cyclase (sGC) inhibition with ODQ. Nitrite-induced relaxation of PCAs required millimolar levels, i.e., >1000 times endogenous vascular nitrite. Angeli's salt relaxed PCMAs more potently than PCAs, and this was due to the fact that HNO directly activated sGC in PCMAs, whereas in PCAs this occurred following its conversion to NO only. sGC activation by NO/HNO resulted in Na(+)-K(+)-ATPase stimulation and K(v) channel activation. The HNO scavenger l-cysteine blocked bradykinin-induced relaxation in PCAs, and potentiated it in PCMAs. The latter did not occur in the presence of hydroxocobalamin, suggesting that it depended on l-cysteine-induced generation of vasorelaxant S-nitrosothiols. In all experimental setups, incubation with red wine extract mimicked the effects of ODQ. In conclusion, nitrite, via its conversion to NO and S-nitrosothiols, and HNO, either directly, or via its conversion to NO, mediate relaxant effects involving the sGC-cGMP pathway, Na(+)-K(+)-ATPase and/or K(v) channels. Red wine extract counteracts these beneficial effects. NO blocks nitrite activation, and HNO, but not nitrite, may act as EDHF in the coronary vascular bed.
Collapse
Affiliation(s)
- Ilse P G Botden
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
419
|
|
420
|
Miller GD, Marsh AP, Dove RW, Beavers D, Presley T, Helms C, Bechtold E, King SB, Kim-Shapiro D. Plasma nitrate and nitrite are increased by a high-nitrate supplement but not by high-nitrate foods in older adults. Nutr Res 2012; 32:160-8. [PMID: 22464802 DOI: 10.1016/j.nutres.2012.02.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 12/15/2022]
Abstract
Little is known about the effect of dietary nitrate on the nitrate/nitrite/nitric oxide cycle in older adults. We examined the effect of a 3-day control diet vs high-nitrate diet, with and without a high-nitrate supplement (beetroot juice), on plasma nitrate and nitrite kinetics and blood pressure using a randomized 4-period crossover controlled design. We hypothesized that the high-nitrate diet would show higher levels of plasma nitrate/nitrite and lower blood pressure compared with the control diet, which would be potentiated by the supplement. Participants were 8 normotensive older men and women (5 female, 3 male, 72.5 ± 4.7 years old) with no overt disease or medications that affect nitric oxide metabolism. Plasma nitrate and nitrite levels and blood pressure were measured before and hourly for 3 hours after each meal. The mean daily changes in plasma nitrate and nitrite were significantly different from baseline for both control diet + supplement (P < .001 and P = .017 for nitrate and nitrite, respectively) and high-nitrate diet + supplement (P = .001 and P = .002), but not for control diet (P = .713 and P = .741) or high-nitrate diet (P = .852 and P = .500). Blood pressure decreased from the morning baseline measure to the three 2-hour postmeal follow-up time points for all treatments, but there was no main effect for treatment. In healthy older adults, a high-nitrate supplement consumed at breakfast elevated plasma nitrate and nitrite levels throughout the day. This observation may have practical utility for the timing of intake of a nitrate supplement with physical activity for older adults with vascular dysfunction.
Collapse
Affiliation(s)
- Gary D Miller
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina 27109-7868, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
421
|
Bailey SJ, Vanhatalo A, Winyard PG, Jones AM. The nitrate-nitrite-nitric oxide pathway: Its role in human exercise physiology. Eur J Sport Sci 2012. [DOI: 10.1080/17461391.2011.635705] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
422
|
Plasma and exhaled breath condensate nitrite-nitrate level in relation to environmental exposures in adults in the EGEA study. Nitric Oxide 2012; 27:169-75. [PMID: 22750238 DOI: 10.1016/j.niox.2012.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 06/01/2012] [Accepted: 06/19/2012] [Indexed: 01/07/2023]
Abstract
This study evaluated the associations between biological markers in the nitrate-nitrite-NO pathway and four environmental exposures among subjects examined in the second survey (2003-2007) of the French Epidemiological study on Genetics and Environment of Asthma (EGEA). Total nitrite and nitrate (NO(2)(-) /NO(3)(-)) levels were measured both in plasma and in exhaled breath condensate (EBC) in 949 adults. Smoking, diet and exposure to chlorine products were assessed using standardized questionnaires. Exposure to air pollutants was estimated by using geostatistical models. All estimates were obtained with generalized estimating equations for linear regression models. Median levels of NO(2)(-)/NO(3)(-) were 36.3 μM (1st-3rd quartile: 25.7, 51.1) in plasma and 2.0 μmol/mg proteins (1st-3rd quartile 0.9, 3.9) in EBC. After adjustment for asthma, age, sex and menopausal status, plasma NO(2)(-)/NO(3)(-) level increased with leafy vegetable consumption (above versus below median=0.04 (95%CI: 0.001, 0.07)) and decreased in smokers (versus non/ex-smokers=-0.08 (95%CI: -0.11, -0.04). EBC NO(2)(-)/NO(3)(-) level decreased in smokers (-0.08 (95%CI: -0.16, -0.001)) and with exposure to ambient O(3) concentration (above versus below median=-0.10 (95%CI: -0.17, -0.03)). Cured meat, chlorine products, PM(10) and NO(2) concentrations were not associated with NO(2)(-)/NO(3)(-) levels. Results suggest that potential modifiable environmental and behavioral risk factors may modify NO(2)(-)/NO(3)(-) levels in plasma and EBC according to the route of exposure.
Collapse
|
423
|
Cau SBA, Carneiro FS, Tostes RC. Differential modulation of nitric oxide synthases in aging: therapeutic opportunities. Front Physiol 2012; 3:218. [PMID: 22737132 PMCID: PMC3382417 DOI: 10.3389/fphys.2012.00218] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 05/31/2012] [Indexed: 12/24/2022] Open
Abstract
Vascular aging is the term that describes the structural and functional disturbances of the vasculature with advancing aging. The molecular mechanisms of aging-associated endothelial dysfunction are complex, but reduced nitric oxide (NO) bioavailability and altered vascular expression and activity of NO synthase (NOS) enzymes have been implicated as major players. Impaired vascular relaxation in aging has been attributed to reduced endothelial NOS (eNOS)-derived NO, while increased inducible NOS (iNOS) expression seems to account for nitrosative stress and disrupted vascular homeostasis. Although eNOS is considered the main source of NO in the vascular endothelium, neuronal NOS (nNOS) also contributes to endothelial cells-derived NO, a mechanism that is reduced in aging. Pharmacological modulation of NO generation and expression/activity of NOS isoforms may represent a therapeutic alternative to prevent the progression of cardiovascular diseases. Accordingly, this review will focus on drugs that modulate NO bioavailability, such as nitrite anions and NO-releasing non-steroidal anti-inflammatory drugs, hormones (dehydroepiandrosterone and estrogen), statins, resveratrol, and folic acid, since they may be useful to treat/to prevent aging-associated vascular dysfunction. The impact of these therapies on life quality in elderly and longevity will be discussed.
Collapse
Affiliation(s)
- Stefany B A Cau
- Department of Pharmacology, Medical School of Ribeirao Preto Ribeirao Preto, Brazil
| | | | | |
Collapse
|
424
|
Owusu BY, Stapley R, Patel RP. Nitric oxide formation versus scavenging: the red blood cell balancing act. J Physiol 2012; 590:4993-5000. [PMID: 22687616 DOI: 10.1113/jphysiol.2012.234906] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO) is a key modulator of vascular homeostasis controlling critical functions related to blood flow, respiration, cell death and proliferation, and protecting the vasculature from pro-inflammatory and coagulative stresses. Inhibition of NO formation, and/or diversion of NO away from its physiological signalling targets lead to dysregulated NO bioavailability, a hallmark of numerous vascular and pulmonary diseases. Current concepts suggest that the balance between NO formation and NO scavenging is critical in disease development, with the corollary being that redressing the balance offers a target for therapeutic intervention. Evidence presented over the last two decades has seen red blood cells (RBCs) and haemoglobin specifically emerge as prominent effectors in this paradigm. In this symposium review article, we discuss recent insights into the mechanisms by which RBCs may modulate the balance between NO-formation and inhibition. We discuss how these mechanisms may become dysfunctional to cause disease, highlight key questions that remain, and discuss the potential impact of these insights on therapeutic opportunities.
Collapse
Affiliation(s)
- Benjamin Y Owusu
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street South, BMRII 532, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
425
|
Abstract
Epidemiological evidence suggests a higher consumption of vegetables confers a protective effect against the risk of cardiovascular disease. Impaired bioavailability of nitric oxide (NO), which is a critical regulator of vascular homeostasis, in the vasculature is thought to be a major problem in cardiovascular disease. Classically, vascular endothelium is suggested to be the sole source of bioactive NO in the vasculature. Emerging literature, however, associates the nitrate-nitrite-NO pathway, in which endogenous nitrate undergoes reduction to nitrite and then to NO in various tissues, including blood, with the production of bioactive NO. Indeed, NO generated from the nitrate-nitrite-NO pathway has recently been associated with the maintenance of NO homeostasis in the body. Endogenous nitrate originates mostly from NO oxidation in the biological milieu and from exposure to dietary nitrate. Consumption of vegetables accounts for approximately 80-85% of daily nitrate exposure in humans, thereby establishing inorganic nitrate as a promising factor in the cardiovascular health benefits of vegetables. At this point in time, however, the benefit : hazard ratio of inorganic nitrate and its active metabolite nitrite remains less clear and must be studied in prospective controlled studies. This brief review discusses the potential role of inorganic dietary nitrate in the cardiovascular health benefits of vegetables.
Collapse
Affiliation(s)
- Ajay Machha
- Department of Pharmaceutics, California Northstate University College of Pharmacy, 10811 International Drive, Rancho Cordova, California, USA
| | | |
Collapse
|
426
|
Totzeck M, Hendgen-Cotta UB, Rammos C, Frommke LM, Knackstedt C, Predel HG, Kelm M, Rassaf T. Higher endogenous nitrite levels are associated with superior exercise capacity in highly trained athletes. Nitric Oxide 2012; 27:75-81. [PMID: 22609879 DOI: 10.1016/j.niox.2012.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/06/2012] [Accepted: 05/09/2012] [Indexed: 12/28/2022]
Abstract
Factors improving exercise capacity in highly trained individuals are of major interest. Recent studies suggest that the dietary intake of inorganic nitrate may enhance athletic performance. This has been related to the stepwise in vivo bioactivation of nitrate to nitrite and nitric oxide (NO) with the modulation of mitochondrial function. Here we show that higher baseline levels of nitrite are associated with a superior exercise capacity in highly trained athletes independent of endothelial function. Eleven male athletes were enrolled in this investigation and each participant reported twice to the testing facility (total of n=22 observations). Venous blood was obtained to determine the levels of circulating plasma nitrite and nitrate. Endothelial function was assessed by measuring flow-mediated vasodilation (FMD). Hereafter, participants completed a stepwise bicycle exercise test until exhaustion. Blood was drawn from the ear lope to determine the levels of lactate. Lactate anaerobic thresholds (LAT) in relation to heart rate were calculated using non-linear regression models. Baseline plasma nitrite levels correlated with LATs (r=0.65; p=0.001, n=22) and with endothelial function as assessed by FMD (r=0.71; p=0.0002). Correlation coefficients from both testing days did not differ. Multiple linear regressions showed that baseline plasma nitrite level but not endothelial function was an independent predictor of exercise capacity. No such correlations were determined for plasma nitrate levels.
Collapse
Affiliation(s)
- Matthias Totzeck
- Department of Medicine, Division of Cardiology, Pulmonary Diseases and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
427
|
Allen JD, Giordano T, Kevil CG. Nitrite and nitric oxide metabolism in peripheral artery disease. Nitric Oxide 2012; 26:217-22. [PMID: 22426034 PMCID: PMC3360821 DOI: 10.1016/j.niox.2012.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 02/10/2012] [Accepted: 03/06/2012] [Indexed: 11/20/2022]
Abstract
Peripheral artery disease (PAD) represents a burgeoning form of cardiovascular disease associated with significant clinical morbidity and increased 5 year cardiovascular disease mortality. It is characterized by impaired blood flow to the lower extremities, claudication pain and severe exercise intolerance. Pathophysiological factors contributing to PAD include atherosclerosis, endothelial cell dysfunction, and defective nitric oxide metabolite physiology and biochemistry that collectively lead to intermittent or chronic tissue ischemia. Recent work from our laboratories is revealing that nitrite/nitrate anion and nitric oxide metabolism plays an important role in modulating functional and pathophysiological responses during this disease. In this review, we discuss experimental and clinical findings demonstrating that nitrite anion acts to ameliorate numerous pathophysiological events associated with PAD and chronic tissue ischemia. We also highlight future directions for this promising line of therapy.
Collapse
Affiliation(s)
- Jason D. Allen
- Department of Medicine, Duke University Medical Center, Durham, NC
| | | | | |
Collapse
|
428
|
Baliga RS, Milsom AB, Ghosh SM, Trinder SL, Macallister RJ, Ahluwalia A, Hobbs AJ. Dietary nitrate ameliorates pulmonary hypertension: cytoprotective role for endothelial nitric oxide synthase and xanthine oxidoreductase. Circulation 2012; 125:2922-32. [PMID: 22572914 DOI: 10.1161/circulationaha.112.100586] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a multifactorial disease characterized by increased pulmonary vascular resistance and right ventricular failure; morbidity and mortality remain unacceptably high. Loss of nitric oxide (NO) bioactivity is thought to contribute to the pathogenesis of PH, and agents that augment pulmonary NO signaling are clinically effective in the disease. Inorganic nitrate (NO(3)(-)) and nitrite (NO(2)(-)) elicit a reduction in systemic blood pressure in healthy individuals; this effect is underpinned by endogenous and sequential reduction to NO. Herein, we determined whether dietary nitrate and nitrite might be preferentially reduced to NO by the hypoxia associated with PH, and thereby offer a convenient, inexpensive method of supplementing NO functionality to reduce disease severity. METHODS AND RESULTS Dietary nitrate reduced the right ventricular pressure and hypertrophy, and pulmonary vascular remodeling in wild-type mice exposed to 3 weeks of hypoxia; this beneficial activity was mirrored largely by dietary nitrite. The cytoprotective effects of dietary nitrate were associated with increased plasma and lung concentrations of nitrite and cGMP. The beneficial effects of dietary nitrate and nitrite were reduced in mice lacking endothelial NO synthase or treated with the xanthine oxidoreductase inhibitor allopurinol. CONCLUSIONS These data demonstrate that dietary nitrate, and to a lesser extent dietary nitrite, elicit pulmonary dilatation, prevent pulmonary vascular remodeling, and reduce the right ventricular hypertrophy characteristic of PH. This favorable pharmacodynamic profile depends on endothelial NO synthase and xanthine oxidoreductase -catalyzed reduction of nitrite to NO. Exploitation of this mechanism (ie, dietary nitrate/nitrite supplementation) represents a viable, orally active therapy for PH.
Collapse
Affiliation(s)
- Reshma S Baliga
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
429
|
Concentration- and stage-specific effects of nitrite on colon cancer cell lines. Nitric Oxide 2012; 26:267-73. [DOI: 10.1016/j.niox.2012.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 03/10/2012] [Accepted: 03/24/2012] [Indexed: 01/22/2023]
|
430
|
Bondonno CP, Croft KD, Puddey IB, Considine MJ, Yang X, Ward NC, Hodgson JM. Nitrate causes a dose-dependent augmentation of nitric oxide status in healthy women. Food Funct 2012; 3:522-7. [PMID: 22336776 DOI: 10.1039/c2fo10206d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Green leafy vegetables, high in dietary nitrate, may contribute to cardiovascular health by augmenting nitric oxide status. The exogenous enterosalivary pathway of nitrate reduction to nitrite appears to be a critical determinant of the effects of nitrate. Our primary objective was to investigate the dose-response of nitrate intake on nitric oxide status and nitrate reduction in the mouth. We also assessed whether antibacterial toothpaste can inhibit nitrate reduction and blunt subsequent increases in circulating nitric oxide. A randomised, controlled, crossover trial with healthy women (n = 16) was conducted. The acute effects of four doses of nitrate (0 mg, 100 mg, 200 mg, 400 mg, as well as 400 mg plus antibacterial toothpaste), administered in random order, were compared. Measurements included biomarkers of plasma nitric oxide status, assessed by measuring S-nitrosothiols + other nitroso species (RXNO) and nitrite, and a biomarker of nitrate reduction in the mouth, assessed by measuring salivary nitrite. Compared to 0 mg, all doses of nitrate resulted in higher plasma RXNO and nitrite, and salivary nitrite (P < 0.05). A linear dose-response to nitrate intake was observed with plasma RXNO and nitrite, and salivary nitrite (P < 0.001). Antibacterial toothpaste did not alter nitrate reduction in the mouth (P > 0.9) or blunt the increase in nitric oxide status (P > 0.9). Thus, our study has demonstrated that increasing nitrate intake results in a dose-related increase in nitrate reduction in the mouth and nitric oxide status, and that use of antibacterial toothpaste does not inhibit nitrate reduction or blunt increases in circulating nitric oxide.
Collapse
Affiliation(s)
- Catherine P Bondonno
- School of Medicine and Pharmacology, University of Western Australia, Medical Research Foundation, GPO Box X2213, Perth, Western Australia, WA 6000, Australia.
| | | | | | | | | | | | | |
Collapse
|
431
|
Heiss C, Meyer C, Totzeck M, Hendgen-Cotta UB, Heinen Y, Luedike P, Keymel S, Ayoub N, Lundberg JO, Weitzberg E, Kelm M, Rassaf T. Dietary inorganic nitrate mobilizes circulating angiogenic cells. Free Radic Biol Med 2012; 52:1767-72. [PMID: 22406434 DOI: 10.1016/j.freeradbiomed.2012.02.051] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/24/2012] [Accepted: 02/29/2012] [Indexed: 12/21/2022]
Abstract
Nitric oxide (NO) was implicated in the regulation of mobilization and function of circulating angiogenic cells (CACs). The supposedly inert anion nitrate, abundant in vegetables, can be stepwise reduced in vivo to form nitrite, and consecutively NO, representing an alternative to endogenous NO formation by NO synthases. This study investigated whether inorganic dietary nitrate influences mobilization of CACs. In a randomized double-blind fashion, healthy volunteers ingested 150 ml water with 0.15 mmol/kg (12.7 mg/kg) of sodium nitrate, an amount corresponding to 100-300 g of a nitrate-rich vegetable, or water alone as control. Mobilization of CACs was determined by the number of CD34(+)/KDR(+) and CD133(+)/KDR(+) cells using flow cytometry and the mobilization markers stem cell factor (SCF) and stromal cell-derived factor-1a (SDF-1α) were determined in plasma via ELISA. Nitrite and nitrate were measured using high-performance liquid chromatography and reductive gas-phase chemiluminescence, respectively. NOS-dependent vasodilation was measured as flow-mediated vasodilation. Further mechanistic studies were performed in mice after intravenous application of nitrite together with an NO scavenger to identify the role of nitrite and NO in CAC mobilization. Nitrate ingestion led to a rise in plasma nitrite together with an acute increase in CD34(+)/KDR(+) and CD133(+)/KDR(+)-CACs along with increased NOS-dependent vasodilation. This was paralleled by an increase in SCF and SDF-1α and the maximal increase in plasma nitrite correlated with CD133(+)/KDR(+)-CACs (r=0.73, P=0.016). In mice, nitrate given per gavage and direct intravenous injection of nitrite led to CAC mobilization, which was abolished by the NO scavenger cPTIO, suggesting that nitrite mediated its effect via formation of NO. Dietary inorganic nitrate acutely mobilizes CACs via serial reduction to nitrite and NO. The nitrate-nitrite-NO pathway could offer a novel nutritional approach for regulation of vascular regenerative processes.
Collapse
Affiliation(s)
- Christian Heiss
- University Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology, and Vascular Medicine, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
432
|
Dietary inorganic nitrate alleviates doxorubicin cardiotoxicity: mechanisms and implications. Nitric Oxide 2012; 26:274-84. [PMID: 22484629 DOI: 10.1016/j.niox.2012.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 02/11/2012] [Accepted: 03/22/2012] [Indexed: 11/21/2022]
Abstract
Doxorubicin (DOX) is one of the most powerful and widely prescribed chemotherapeutic agents to treat divergent human cancers. However, the clinical use of DOX is restricted due to its severe cardiotoxic side-effects. There has been ongoing search for cardioprotectants against DOX toxicity. Inorganic nitrate has emerged as a bioactive compound that can be reduced into nitrite and nitric oxide in vivo and in turn plays a therapeutic role in diseases associated with nitric oxide insufficiency or dysregulation. In this review, we describe a novel concept of using dietary supplementation of inorganic nitrate to reduce DOX-induced cardiac cellular damage and dysfunction, based on our recent promising studies in a mouse model of DOX cardiotoxicity. Our data show that chronic oral ingestion of sodium nitrate, at a dose equivalent to ~400% of the Acceptable Daily Intake of the World Health Organization, alleviated DOX-induced left ventricular dysfunction and mitochondrial respiratory chain damage. Such cardioprotective effects were associated with reduction of cardiomyocyte necrosis/apoptosis, tissue lipid peroxidation, and mitochondrial H(2)O(2) generation following DOX treatment. Furthermore, proteomic studies revealed enhanced cardiac expression of mitochondrial antioxidant enzyme - peroxiredoxin 5 in the nitrate-treated animals. These studies suggest that inorganic nitrate could be an inexpensive therapeutic agent for long-term oral administration in preventing DOX-induced cardiac toxicity and myopathy during the prolonged pathological process. Future clinical trials in the cancer patients undergoing DOX chemotherapy are warranted to translate these experimental findings into an effective new therapy in preventing the DOX-induced cardiomyopathy.
Collapse
|
433
|
Omar SA, Artime E, Webb AJ. A comparison of organic and inorganic nitrates/nitrites. Nitric Oxide 2012; 26:229-40. [PMID: 22491087 DOI: 10.1016/j.niox.2012.03.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 02/15/2012] [Accepted: 03/22/2012] [Indexed: 11/19/2022]
Abstract
Although both organic and inorganic nitrates/nitrites mediate their principal effects via nitric oxide, there are many important differences. Inorganic nitrate and nitrite have simple ionic structures and are produced endogenously and are present in the diet, whereas their organic counterparts are far more complex, and, with the exception of ethyl nitrite, are all medicinally synthesised products. These chemical differences underlie the differences in pharmacokinetic properties allowing for different modalities of administration, particularly of organic nitrates, due to the differences in their bioavailability and metabolic profiles. Whilst the enterosalivary circulation is a key pathway for orally ingested inorganic nitrate, preventing an abrupt effect or toxic levels of nitrite and prolonging the effects, this is not used by organic nitrates. The pharmacodynamic differences are even greater; while organic nitrates have potent acute effects causing vasodilation, inorganic nitrite's effects are more subtle and dependent on certain conditions. However, in chronic use, organic nitrates are considerably limited by the development of tolerance and endothelial dysfunction, whereas inorganic nitrate/nitrite may compensate for diminished endothelial function, and tolerance has not been reported. Also, while inorganic nitrate/nitrite has important cytoprotective effects against ischaemia-reperfusion injury, continuous use of organic nitrates may increase injury. While there are concerns that inorganic nitrate/nitrite may induce carcinogenesis, direct evidence of this in humans is lacking. While organic nitrates may continue to dominate the therapeutic arena, this may well change with the increasing recognition of their limitations, and ongoing discovery of beneficial effects and specific advantages of inorganic nitrate/nitrite.
Collapse
Affiliation(s)
- Sami A Omar
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, London, UK
| | | | | |
Collapse
|
434
|
Jädert C, Petersson J, Massena S, Ahl D, Grapensparr L, Holm L, Lundberg JO, Phillipson M. Decreased leukocyte recruitment by inorganic nitrate and nitrite in microvascular inflammation and NSAID-induced intestinal injury. Free Radic Biol Med 2012; 52:683-692. [PMID: 22178413 DOI: 10.1016/j.freeradbiomed.2011.11.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/09/2011] [Accepted: 11/12/2011] [Indexed: 01/13/2023]
Abstract
Nitric oxide (NO) generated by vascular NO synthases can exert anti-inflammatory effects, partly through its ability to decrease leukocyte recruitment. Inorganic nitrate and nitrite, from endogenous or dietary sources, have emerged as alternative substrates for NO formation in mammals. Bioactivation of nitrate is believed to require initial reduction to nitrite by oral commensal bacteria. Here we investigated the effects of inorganic nitrate and nitrite on leukocyte recruitment in microvascular inflammation and in NSAID-induced small-intestinal injury. We show that leukocyte emigration in response to the proinflammatory chemokine MIP-2 is reduced by 70% after 7 days of dietary nitrate supplementation as well as by acute intravenous nitrite administration. Nitrite also reduced leukocyte adhesion to a similar extent and this effect was inhibited by the soluble guanylyl cyclase inhibitor ODQ, whereas the effect on emigrated leukocytes was not altered by this treatment. Further studies in TNF-α-stimulated endothelial cells revealed that nitrite dose-dependently reduced the expression of ICAM-1. In rats and mice subjected to a challenge with diclofenac, dietary nitrate prevented the increase in myeloperoxidase and P-selectin levels in small-intestinal tissue. Antiseptic mouthwash, which eliminates oral nitrate reduction, markedly blunted the protective effect of dietary nitrate on P-selectin levels. Despite attenuation of the acute immune response, the overall ability to clear an infection with Staphylococcus aureus was not suppressed by dietary nitrate as revealed by noninvasive IVIS imaging. We conclude that dietary nitrate markedly reduces leukocyte recruitment to inflammation in a process involving attenuation of P-selectin and ICAM-1 upregulation. Bioactivation of dietary nitrate requires intermediate formation of nitrite by oral nitrate-reducing bacteria and then probably further reduction to NO and other bioactive nitrogen oxides in the tissues.
Collapse
Affiliation(s)
- Cecilia Jädert
- Department of Physiology and Pharmacology, Karolinska Institute, S-171 77 Stockholm, Sweden
| | - Joel Petersson
- Department of Medical Cell Biology, Uppsala University, S-751 23 Uppsala, Sweden
| | - Sara Massena
- Department of Medical Cell Biology, Uppsala University, S-751 23 Uppsala, Sweden
| | - David Ahl
- Department of Medical Cell Biology, Uppsala University, S-751 23 Uppsala, Sweden
| | - Liza Grapensparr
- Department of Medical Cell Biology, Uppsala University, S-751 23 Uppsala, Sweden
| | - Lena Holm
- Department of Medical Cell Biology, Uppsala University, S-751 23 Uppsala, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institute, S-171 77 Stockholm, Sweden.
| | - Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, S-751 23 Uppsala, Sweden.
| |
Collapse
|
435
|
Inorganic nitrate ingestion improves vascular compliance but does not alter flow-mediated dilatation in healthy volunteers. Nitric Oxide 2012; 26:197-202. [PMID: 22285857 PMCID: PMC3405527 DOI: 10.1016/j.niox.2012.01.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/19/2011] [Accepted: 01/12/2012] [Indexed: 12/31/2022]
Abstract
Ingestion of inorganic nitrate elevates blood and tissue levels of nitrite via bioconversion in the entero-salivary circulation. Nitrite is converted to NO in the circulation, and it is this phenomenon that is thought to underlie the beneficial effects of inorganic nitrate in humans. Our previous studies have demonstrated that oral ingestion of inorganic nitrate decreases blood pressure and inhibits the transient endothelial dysfunction caused by ischaemia–reperfusion injury in healthy volunteers. However, whether inorganic nitrate might improve endothelial function per se in the absence of a pathogenic stimulus and whether this might contribute to the blood pressure lowering effects is yet unknown. We conducted a randomised, double-blind, crossover study in 14 healthy volunteers to determine the effects of oral inorganic nitrate (8 mmol KNO3) vs. placebo (8 mmol KCl) on endothelial function, measured by flow-mediated dilatation (FMD) of the brachial artery, prior to and 3 h following capsule ingestion. In addition, blood pressure (BP) was measured and aortic pulse wave velocity (aPWV) determined. Finally, blood, saliva and urine samples were collected for chemiluminescence analysis of [nitrite] and [nitrate] prior to and 3 h following interventions. Inorganic nitrate supplementation had no effect on endothelial function in healthy volunteers (6.9 ± 1.1% pre- to 7.1 ± 1.1% post-KNO3). Despite this, there was a significant elevation of plasma [nitrite] (0.4 ± 0.1 μM pre- to 0.7 ± 0.2 μM post-KNO3, p < 0.001). In addition these changes in [nitrite] were associated with a decrease in systolic BP (116.9 ± 3.8 mm Hg pre- vs. 112.1 ± 3.4 mm Hg post-KNO3, p < 0.05) and aPWV (6.5 ± 0.1 m/s pre- to 6.2 ± 0.1 post-KNO3, p < 0.01). In contrast KCl capsules had no effect on any of the parameters measured. These findings demonstrate that although inorganic nitrate ingestion does not alter endothelial function per se, it does appear to improve blood flow, in combination with a reduction in blood pressure. It is likely that these changes are due to the intra-vascular production of NO.
Collapse
|
436
|
Measurement and meaning of markers of reactive species of oxygen, nitrogen and sulfur in healthy human subjects and patients with inflammatory joint disease. Biochem Soc Trans 2012; 39:1226-32. [PMID: 21936794 DOI: 10.1042/bst0391226] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive species of oxygen, nitrogen and sulfur play cell signalling roles in human health, e.g. recent studies have shown that increased dietary nitrate, which is a source of RNS (reactive nitrogen species), lowers resting blood pressure and the oxygen cost of exercise. In such studies, plasma nitrite and nitrate are readily determined by chemiluminescence. At sites of inflammation, such as the joints of RA (rheumatoid arthritis) patients, the generation of ROS (reactive oxygen species) and RNS overwhelms antioxidant defences and one consequence is oxidative/nitrative damage to proteins. For example, in the inflamed joint, increased RNS-mediated protein damage has been detected in the form of a biomarker, 3-nitrotyrosine, by immunohistochemistry, Western blotting, ELISAs and MS. In addition to NO•, another cell-signalling gas produced in the inflamed joint is H2S (hydrogen sulfide), an RSS (reactive sulfur species). This gas is generated by inflammatory induction of H2S-synthesizing enzymes. Using zinc-trap spectrophotometry, we detected high (micromolar) concentrations of H2S in RA synovial fluid and levels correlated with clinical scores of inflammation and disease activity. What might be the consequences of the inflammatory generation of reactive species? Effects on inflammatory cell-signalling pathways certainly appear to be crucial, but in the current review we highlight the concept that ROS/RNS-mediated protein damage creates neoepitopes, resulting in autoantibody formation against proteins, e.g. type-II collagen and the complement component, C1q. These autoantibodies have been detected in inflammatory autoimmune diseases.
Collapse
|
437
|
Effect of inorganic nitrate and beetroot juice supplementation on blood pressure: a systematic review. Proc Nutr Soc 2012. [DOI: 10.1017/s0029665112000900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
438
|
Bondonno CP, Yang X, Croft KD, Considine MJ, Ward NC, Rich L, Puddey IB, Swinny E, Mubarak A, Hodgson JM. Flavonoid-rich apples and nitrate-rich spinach augment nitric oxide status and improve endothelial function in healthy men and women: a randomized controlled trial. Free Radic Biol Med 2012; 52:95-102. [PMID: 22019438 DOI: 10.1016/j.freeradbiomed.2011.09.028] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/23/2011] [Accepted: 09/23/2011] [Indexed: 01/02/2023]
Abstract
Flavonoids and nitrates in fruits and vegetables may protect against cardiovascular disease. Dietary flavonoids and nitrates can augment nitric oxide status via distinct pathways, which may improve endothelial function and lower blood pressure. Recent studies suggest that the combination of flavonoids and nitrates can enhance nitric oxide production in the stomach. Their combined effect in the circulation is unclear. Here, our objective was to investigate the independent and additive effects of flavonoid-rich apples and nitrate-rich spinach on nitric oxide status, endothelial function, and blood pressure. A randomized, controlled, crossover trial with healthy men and women (n=30) was conducted. The acute effects of four energy-matched treatments (control, apple, spinach, and apple+spinach), administered in random order, were compared. Measurements included plasma nitric oxide status, assessed by measuring S-nitrosothiols+other nitrosylated species (RXNO) and nitrite, blood pressure, and endothelial function, measured as flow-mediated dilatation of the brachial artery. Results are means and 95% CI. Relative to control, all treatments resulted in higher RXNO (control, 33 nmol/L, 26, 42; apple, 51 nmol/L, 40, 65; spinach, 86 nmol/L, 68, 110; apple+spinach, 69 nmol/L, 54, 88; P<0.01) and higher nitrite (control, 35 nmol/L, 27, 46; apple, 69 nmol/L, 53, 90; spinach, 99 nmol/L, 76, 129; apple+spinach, 80 nmol/L, 61, 104; P<0.01). Compared to control, all treatments resulted in higher flow-mediated dilatation (P<0.05) and lower pulse pressure (P<0.05), and apple and spinach resulted in lower systolic blood pressure (P<0.05). No significant effect was observed on diastolic blood pressure. The combination of apple and spinach did not result in additive effects on nitric oxide status, endothelial function, or blood pressure. In conclusion, flavonoid-rich apples and nitrate-rich spinach can independently augment nitric oxide status, enhance endothelial function, and lower blood pressure acutely, outcomes that may benefit cardiovascular health.
Collapse
Affiliation(s)
- Catherine P Bondonno
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
439
|
Hord NG, Ghannam JS, Garg HK, Berens PD, Bryan NS. Nitrate and nitrite content of human, formula, bovine, and soy milks: implications for dietary nitrite and nitrate recommendations. Breastfeed Med 2011; 6:393-9. [PMID: 20958096 PMCID: PMC3228598 DOI: 10.1089/bfm.2010.0070] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Estimation of nitrate and nitrite concentrations of milk sources may provide insight into potential health risks and benefits of these food sources for infants, children, and adults. The World Health Organization and American Academy of Pediatrics recommends exclusive consumption of human milk for the first 6 months of life. Human milk is known to confer significant nutritional and immunological benefits for the infant. Consumption of formula, cow's, and soy milk may be used as alternatives to human milk for infants. METHODS We sought to estimate potential exposure to nitrate and nitrite in human, formula, bovine, and soy milk to inform total dietary exposure estimates and recommendations. Using sensitive quantitative methodologies, nitrite and nitrate were analyzed in different samples of milk. RESULTS Human milk concentrations of colostrum (expressed days 1-3 postpartum; n=12), transition milk (expressed days 3-7 postpartum; n=17), and mature milk (expressed >7 days postpartum; n=50) were 0.08 mg/100 mL nitrite and 0.19 mg/100 mL nitrate, 0.001 mg/100 mL nitrite and 0.52 mg/100 mL nitrate, and 0.001 mg/100 mL nitrite and 0.3 mg/100 mL nitrate, respectively, revealing that the absolute amounts of these anions change as the composition of milk changes. When expressed as a percentage of the World Health Organization's Acceptable Daily Intake limits, Silk® Soy Vanilla (WhiteWave Foods, Broomfield, CO) intake could result in high nitrate intakes (104% of this standard), while intake of Bright Beginnings Soy Pediatric® formula (PBM Nutritionals, Georgia, VT) could result in the highest nitrite intakes (383% of this standard). CONCLUSIONS The temporal relationship between the provision of nitrite in human milk and the development of commensal microbiota capable of reducing dietary nitrate to nitrite supports a hypothesis that humans are adapted to provide nitrite to the gastrointestinal tract from birth. These data support the hypothesis that the high concentrations of breastmilk nitrite and nitrate are evidence for a physiologic requirement to support gastrointestinal and immune homeostasis in the neonate.
Collapse
Affiliation(s)
- Norman G. Hord
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan
| | - Janine S. Ghannam
- College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Harsha K. Garg
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Pamela D. Berens
- Department of Obstetrics, Gynecology, and Reproductive Sciences, The University of Texas Medical School at Houston, Houston, Texas
| | - Nathan S. Bryan
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|
440
|
Xi L, Zhu SG, Hobbs DC, Kukreja RC. Identification of protein targets underlying dietary nitrate-induced protection against doxorubicin cardiotoxicity. J Cell Mol Med 2011; 15:2512-24. [PMID: 21251210 PMCID: PMC3110615 DOI: 10.1111/j.1582-4934.2011.01257.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 01/04/2011] [Indexed: 01/01/2023] Open
Abstract
We recently demonstrated protective effect of chronic oral nitrate supplementation against cardiomyopathy caused by doxorubicin (DOX), a highly effective anticancer drug. The present study was designed to identify novel protein targets related to nitrate-induced cardioprotection. Adult male CF-1 mice received cardioprotective regimen of nitrate (1 g NaNO(3) per litre of drinking water) for 7 days before DOX injection (15 mg/kg, i.p.) and continued for 5 days after DOX treatment. Subsequently the heart samples were collected for proteomic analysis with two-dimensional differential in-gel electrophoresis with 3 CyDye labelling. Using 1.5 cut-off ratio, we identified 36 proteins that were up-regulated by DOX in which 32 were completely reversed by nitrate supplementation (89%). Among 19 proteins down-regulated by DOX, 9 were fully normalized by nitrate (47%). The protein spots were further identified with Matrix Assisted Laser Desorption/Ionization-Time-of-Flight (MALDI-TOF)/TOF tandem mass spectrometry. Three mitochondrial antioxidant enzymes were altered by DOX, i.e. up-regulation of manganese superoxide dismutase and peroxiredoxin 3 (Prx3), and down-regulation of Prx5, which were reversed by nitrate. These results were further confirmed by Western blots. Nitrate supplementation also significantly improved animal survival rate from 80% in DOX alone group to 93% in Nitrate + DOX group 5 days after the DOX treatment. In conclusion, the proteomic analysis has identified novel protein targets underlying nitrate-induced cardioprotection. Up-regulation of Prx5 by nitrate may explain the observed enhancement of cardiac antioxidant defence by nitrate supplementation.
Collapse
Affiliation(s)
- Lei Xi
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298–0204, USA.
| | | | | | | |
Collapse
|
441
|
Truss NJ, Warner TD. Gasotransmitters and platelets. Pharmacol Ther 2011; 132:196-203. [DOI: 10.1016/j.pharmthera.2011.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
|
442
|
|
443
|
Vanhatalo A, Fulford J, Bailey SJ, Blackwell JR, Winyard PG, Jones AM. Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia. J Physiol 2011; 589:5517-28. [PMID: 21911616 DOI: 10.1113/jphysiol.2011.216341] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double-blind, randomised crossover study, nine healthy subjects completed knee-extension exercise to the limit of tolerance (T(lim)), once in normoxia (20.9% O(2); CON) and twice in hypoxia (14.5% O(2)). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate-rich beetroot juice (9.3 mmol nitrate; H-BR) or 0.75 L of nitrate-depleted beetroot juice as a placebo (0.006 mmol nitrate; H-PL). Muscle metabolism was assessed using calibrated (31)P-MRS. Plasma [nitrite] was elevated (P < 0.01) following BR (194 ± 51 nm) compared to PL (129 ± 23 nm) and CON (142 ± 37 nM). T(lim) was reduced in H-PL compared to CON (393 ± 169 vs. 471 ± 200 s; P < 0.05) but was not different between CON and H-BR (477 ± 200 s). The muscle [PCr], [P(i)] and pH changed at a faster rate in H-PL compared to CON and H-BR. The [PCr] recovery time constant was greater (P < 0.01) in H-PL (29 ± 5 s) compared to CON (23 ± 5 s) and H-BR (24 ± 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate-nitrite-NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia.
Collapse
Affiliation(s)
- Anni Vanhatalo
- College of Life and Environmental Sciences, University of Exeter School of Sport and Health Sciences, Heavitree Road, St Luke's Campus, Exeter EX1 2LU, UK.
| | | | | | | | | | | |
Collapse
|
444
|
Vitturi DA, Patel RP. Current perspectives and challenges in understanding the role of nitrite as an integral player in nitric oxide biology and therapy. Free Radic Biol Med 2011; 51:805-12. [PMID: 21683783 PMCID: PMC3148353 DOI: 10.1016/j.freeradbiomed.2011.05.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/19/2011] [Accepted: 05/26/2011] [Indexed: 12/20/2022]
Abstract
Beyond an inert oxidation product of nitric oxide (NO) metabolism, current thinking posits a key role for nitrite as a mediator of NO signaling, especially during hypoxia. This concept has been discussed in the context of nitrite serving a role as an endogenous modulator of NO homeostasis, but also from a novel clinical perspective whereby nitrite therapy may replenish NO signaling and prevent ischemic tissue injury. Indeed, the relatively rapid translation of studies delineating mechanisms of action to ongoing and planned clinical trials has been critical in fuelling interest in nitrite biology, and several excellent reviews have been written on this topic. In this article we limit our discussions to current concepts and what we feel are questions that remain unanswered within the paradigm of nitrite being a mediator of NO biology.
Collapse
Affiliation(s)
- Dario A Vitturi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
445
|
Machha A, Schechter AN. Dietary nitrite and nitrate: a review of potential mechanisms of cardiovascular benefits. Eur J Nutr 2011; 50:293-303. [PMID: 21626413 PMCID: PMC3489477 DOI: 10.1007/s00394-011-0192-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/21/2011] [Indexed: 12/20/2022]
Abstract
PURPOSE In the last decade, a growing scientific and medical interest has emerged toward cardiovascular effects of dietary nitrite and nitrate; however, many questions concerning their mode of action(s) remain unanswered. In this review, we focus on multiple mechanisms that might account for potential cardiovascular beneficial effects of dietary nitrite and nitrate. RESULTS Beneficial changes to cardiovascular health from dietary nitrite and nitrate might result from several mechanism(s) including their reduction into nitric oxide, improvement in endothelial function, vascular relaxation, and/or inhibition of the platelet aggregation. From recently obtained evidence, it appears that the longstanding concerns about the toxicity of oral nitrite or nitrate are overstated. CONCLUSION Dietary nitrite and nitrate may have cardiovascular protective effects in both healthy individuals and also those with cardiovascular disease conditions. A role for nitrite and nitrate in nitric oxide biosynthesis and/or in improving nitric oxide bioavailability may eventually provide a rationale for using dietary nitrite and nitrate supplementation in the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Ajay Machha
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg 10, Room 9N314B, 10 Center Drive, Bethesda, MD 20892, USA
| | - Alan N. Schechter
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg 10, Room 9N314B, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
446
|
Montenegro MF, Amaral JH, Pinheiro LC, Sakamoto EK, Ferreira GC, Reis RI, Marçal DMO, Pereira RP, Tanus-Santos JE. Sodium nitrite downregulates vascular NADPH oxidase and exerts antihypertensive effects in hypertension. Free Radic Biol Med 2011; 51:144-52. [PMID: 21530643 DOI: 10.1016/j.freeradbiomed.2011.04.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/24/2011] [Accepted: 04/05/2011] [Indexed: 02/07/2023]
Abstract
Dietary nitrite and nitrate are important sources of nitric oxide (NO). However, the use of nitrite as an antihypertensive drug may be limited by increased oxidative stress associated with hypertension. We evaluated the antihypertensive effects of sodium nitrite given in drinking water for 4 weeks in two-kidney one-clip (2K1C) hypertensive rats and the effects induced by nitrite on NO bioavailability and oxidative stress. We found that, even under the increased oxidative stress conditions present in 2K1C hypertension, nitrite reduced systolic blood pressure in a dose-dependent manner. Whereas treatment with nitrite did not significantly change plasma nitrite concentrations in 2K1C rats, it increased plasma nitrate levels significantly. Surprisingly, nitrite treatment exerted antioxidant effects in both hypertensive and sham-normotensive control rats. A series of in vitro experiments was carried out to show that the antioxidant effects induced by nitrite do not involve direct antioxidant effects or xanthine oxidase activity inhibition. Conversely, nitrite decreased vascular NADPH oxidase activity. Taken together, our results show for the first time that nitrite has antihypertensive effects in 2K1C hypertensive rats, which may be due to its antioxidant properties resulting from vascular NADPH oxidase activity inhibition.
Collapse
Affiliation(s)
- Marcelo F Montenegro
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, 14049-900 Ribeirao Preto, SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
447
|
LANSLEY KATHERINEE, WINYARD PAULG, BAILEY STEPHENJ, VANHATALO ANNI, WILKERSON DARYLP, BLACKWELL JAMIER, GILCHRIST MARK, BENJAMIN NIGEL, JONES ANDREWM. Acute Dietary Nitrate Supplementation Improves Cycling Time Trial Performance. Med Sci Sports Exerc 2011; 43:1125-31. [DOI: 10.1249/mss.0b013e31821597b4] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
448
|
Kapil V, Syed M, Pearl V, Allaker R, Ahluwalia A. P51. Interruption of the entero-salivary metabolism of nitrate to nitrite increases blood pressure in healthy volunteers. Nitric Oxide 2011. [DOI: 10.1016/j.niox.2011.03.282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
449
|
Schulman IH, Hare JM. Regulation of cardiovascular cellular processes by S-nitrosylation. Biochim Biophys Acta Gen Subj 2011; 1820:752-62. [PMID: 21536106 DOI: 10.1016/j.bbagen.2011.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 04/07/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Nitric oxide (NO), a highly versatile signaling molecule, exerts a broad range of regulatory influences in the cardiovascular system that extends from vasodilation to myocardial contractility, angiogenesis, inflammation, and energy metabolism. Considerable attention has been paid to deciphering the mechanisms for such diversity in signaling. S-nitrosylation of cysteine thiols is a major signaling pathway through which NO exerts its actions. An emerging concept of NO pathophysiology is that the interplay between NO and reactive oxygen species (ROS), the nitroso/redox balance, is an important regulator of cardiovascular homeostasis. SCOPE OF REVIEW ROS react with NO, limit its bioavailability, and compete with NO for binding to the same thiol in effector molecules. The interplay between NO and ROS appears to be tightly regulated and spatially confined based on the co-localization of specific NO synthase (NOS) isoforms and oxidative enzymes in unique subcellular compartments. NOS isoforms are also in close contact with denitrosylases, leading to crucial regulation of S-nitrosylation. MAJOR CONCLUSIONS Nitroso/redox balance is an emerging regulatory pathway for multiple cells and tissues, including the cardiovascular system. Studies using relevant knockout models, isoform specific NOS inhibitors, and both in vitro and in vivo methods have provided novel insights into NO- and ROS-based signaling interactions responsible for numerous cardiovascular disorders. GENERAL SIGNIFICANCE An integrated view of the role of nitroso/redox balance in cardiovascular pathophysiology has significant therapeutic implications. This is highlighted by human studies where pharmacologic manipulation of oxidative and nitrosative pathways exerted salutary effects in patients with advanced heart failure. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation.
Collapse
Affiliation(s)
- Ivonne Hernandez Schulman
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
450
|
Zand J, Lanza F, Garg HK, Bryan NS. All-natural nitrite and nitrate containing dietary supplement promotes nitric oxide production and reduces triglycerides in humans. Nutr Res 2011; 31:262-9. [DOI: 10.1016/j.nutres.2011.03.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 12/31/2022]
|