401
|
Devaraj S, Dasu MR, Rockwood J, Winter W, Griffen SC, Jialal I. Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state. J Clin Endocrinol Metab 2008; 93:578-83. [PMID: 18029454 PMCID: PMC2243229 DOI: 10.1210/jc.2007-2185] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CONTEXT Type 1 diabetes (T1DM) is associated with increased cardiovascular mortality. It is a pro-inflammatory state as evidenced by increased circulating biomarkers and monocyte activity. The toll-like receptors (TLRs) are pattern recognition receptors, expressed abundantly on monocytes. TLR2 and TLR4 are important in atherosclerosis. However, there is a paucity of data examining TLR2 and TLR4 expression in T1DM and examining its contribution to the proinflammatory state. OBJECTIVE Thus, we examined TLR2 and TLR4 expression in monocytes from T1DM patients compared with controls (n = 31 per group). SETTING The study was performed at the University of California Davis Medical Center. PATIENTS Healthy controls (n = 31) and T1DM patients (n = 31) were included in the study. RESULTS TLR2 and TLR4 surface expression and mRNA were significantly increased in T1DM monocytes compared with controls. Downstream targets of TLR, nuclear factor kappaB, myeloid differentiation factor 88, Trif, and phosphorylated IL-1 receptor-associated kinase were significantly up-regulated in T1DM. Finally, the release of IL-1beta and TNF-alpha was significantly increased in monocytes from T1DM compared with controls and correlated with TLR2 and TLR4 expression (P < 0.005). In addition, TLR2 and TLR4 expression was significantly correlated to glycosylated hemoglobin, carboxymethyllysine, and nuclear factor kappaB (P < 0.02). CONCLUSION Thus, we make the novel observation that TLR2 and TLR4 expression and signaling are increased in T1DM and contribute to the proinflammatory state.
Collapse
Affiliation(s)
- Sridevi Devaraj
- Laboratory for Atherosclerosis and Metabolic Research, University of California Davis Medical Center, Sacramento, California 95817, USA
| | | | | | | | | | | |
Collapse
|
402
|
Shuang Chen, Wong MH, Schulte DJ, Arditi M, Michelsen KS. Differential expression of Toll-like receptor 2 (TLR2) and responses to TLR2 ligands between human and murine vascular endothelial cells. ACTA ACUST UNITED AC 2008; 13:281-96. [PMID: 17986487 DOI: 10.1177/0968051907085096] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Toll-like receptors (TLRs) initiate and maintain host defenses and inflammation, and directly contribute to diseases such as atherosclerosis. It is not completely understood in what cell types proatherogenic TLR-induced signaling arises and, particularly, there is uncertainty regarding the potential functional role of TLR2 in endothelial cells (ECs). We determined TLR2 and TLR4 gene expression in four different human and two different murine primary ECs using gene array analysis, RT-PCR, and flow cytometry and confirmed these data by functional studies by stimulating ECs with the corresponding TLR ligands. TLR4 was expressed in all human and murine ECs and these cells responded to stimulation with LPS. Faint expression of TLR2 was observed in human ECs, whereas murine ECs express considerable amounts of TLR2 mRNA. Human ECs failed to respond to TLR2 ligands while murine ECs responded to TLR2 ligands. Furthermore, in murine ECs, TLR2 was located on the cell surface while in human ECs, TLR2 was sequestered in intracellular compartments. After IFN-gamma or IL-1beta stimulation, TLR2 translocated to the cell surface of human ECs. In conclusion, TLR2 is expressed intracellularly in human ECs and, therefore, TLR2 ligands are inaccessible to the receptor. Murine ECs express membrane TLR2 and respond to TLR2 ligands, but human ECs normally will not respond unless they are first primed with inflammatory stimulation, which appears to trigger translocation of TLR2 to the cell surface.
Collapse
Affiliation(s)
- Shuang Chen
- Division of Pediatric Infectious Diseases, Burns and Allen Research Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California 94008, USA
| | | | | | | | | |
Collapse
|
403
|
Meng X, Ao L, Song Y, Babu A, Yang X, Wang M, Weyant MJ, Dinarello CA, Cleveland JC, Fullerton DA. Expression of functional Toll-like receptors 2 and 4 in human aortic valve interstitial cells: potential roles in aortic valve inflammation and stenosis. Am J Physiol Cell Physiol 2008; 294:C29-35. [DOI: 10.1152/ajpcell.00137.2007] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcific aortic valve stenosis is the most common indication for surgical valve replacement. Inflammation appears to be one of the mechanisms involved in aortic valve calcification, and valve interstitial cells seem to contribute to that process. Although Toll-like receptors (TLRs) play an important role in the cellular inflammatory response, it is unknown whether human aortic valve interstitial cells (HAVICs) express functional TLRs. We examined the expression of TLR2 and TLR4 in human aortic valve leaflets and in isolated HAVICs and analyzed the response of cultured HAVICs to the TLR2 and TLR4 agonists peptidoglycan (PGN) and LPS. Abundant TLR2 and TLR4 proteins were found in human aortic valve leaflets and in isolated HAVICs, and both receptors were detected in the membrane and cytoplasm of cultured HAVICs. Stimulation by either PGN or LPS resulted in the activation of the NF-κB signaling pathway and the production of multiple proinflammatory mediators, including IL-6, IL-8, and ICAM-1. In addition, stimulation by either PGN or LPS upregulated the expression of bone morphogenetic protein-2 (BMP-2) and Runx2, factors associated with osteogenesis. This study demonstrates for the first time that HAVICs express TLR2 and TLR4 and that stimulation of HAVICs by PGN or LPS induces the expression of proinflammatory mediators and the upregulation of osteogenesis-associated factors. These results suggest that TLR2 and TLR4 may play a role in aortic valve inflammation and stenosis.
Collapse
|
404
|
Abstract
Inflammation underpins the development of atherosclerosis. Initiation and progression of vascular inflammation involves a complex cellular network, with macrophages as major contributors. Activated macrophages produce proinflammatory mediators, bridge innate and adaptive immunity, regulate lipid retention, and participate directly in vascular repair and remodeling. Recent efforts to elucidate molecular mechanisms involved in the regulation of vascular inflammation in atherosclerosis have implicated several families of innate immune recognition receptors in inflammatory activation during the course of this disease. This article reviews our current understanding of innate immune recognition receptors, signaling pathways, and putative ligands implicated in activation of macrophages in the disease. In its final section, we propose a model for the role of macrophages in bridging inflammation and atherosclerosis from the perspective of innate immune recognition and activation.
Collapse
Affiliation(s)
- Zhong-qun Yan
- Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.
| | | |
Collapse
|
405
|
Kuchibhotla S, Vanegas D, Kennedy DJ, Guy E, Nimako G, Morton RE, Febbraio M. Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A I/II. Cardiovasc Res 2007; 78:185-96. [PMID: 18065445 DOI: 10.1093/cvr/cvm093] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
AIMS The role of scavenger receptors in atherogenesis is controversial as a result of conflicting reports and a recent hypothesis suggesting that scavenger receptor absence would enhance the pro-inflammatory, pro-atherogenic milieu. This study addresses the effect of combined absence of scavenger receptors CD36 and SRA I/II on atherosclerosis lesion development in the apolipoprotein E knock-out (apoE degrees ) model. METHODS We created background-related strains of apoE degrees , scavenger receptor A I/II knock-out (SRA degrees )/apoE degrees , CD36 knock-out (CD36 degrees )/apoE degrees , and CD36 degrees /SRA degrees /apoE degrees mice that were >99% C57Bl/6. Four-week-old mice were fed a Western diet for 12 weeks and were assessed for lesion burden/morphology, risk factors for atherosclerosis, inflammatory mediators, and macrophage function. RESULTS There was a 61 and 74% decrease in total aortic lesion area in CD36 degrees /apoE degrees males and females, respectively, compared with apoE degrees controls. The absence of SRA was protective (32% decrease in lesion) in female mice. The combined absence of CD36 and SRA provided no further protection in either gender. Macrophages from mice lacking CD36 had decreased pro-inflammatory characteristics and less migration to a pro-inflammatory stimulus. Plasma levels of cytokines/chemokines showed that CD36 degrees /apoE degrees and CD36 degrees /SRA degrees /apoE degrees mice had a less pro-inflammatory phenotype compared with apoE degrees and SRA degrees /apoE degrees mice. Oblivious mice in the apoE degrees background ruled out potential 'passenger gene' effects in the case of CD36. CONCLUSION These results provide new insights into the pro-atherogenic mechanisms of CD36 by implicating processes other than modified lipoprotein uptake.
Collapse
Affiliation(s)
- Sai Kuchibhotla
- Department of Cell Biology, Cleveland Clinic, 9500 Euclid Ave., NC-10, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
406
|
Tobias PS, Curtiss LK. TLR2 in murine atherosclerosis. Semin Immunopathol 2007; 30:23-7. [PMID: 18058099 DOI: 10.1007/s00281-007-0102-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 11/06/2007] [Indexed: 11/29/2022]
Abstract
Atherosclerosis was once thought to be solely a disease of lipid accumulation in the vessel wall. It does involve lipid accumulation, but inflammation appears to be an important driving factor. Consequently, our laboratory undertook to examine the role(s) of TLRs, and especially TLR2, in murine models of atherosclerosis.
Collapse
Affiliation(s)
- Peter S Tobias
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
407
|
Szanto A, Rőszer T. Nuclear receptors in macrophages: A link between metabolism and inflammation. FEBS Lett 2007; 582:106-16. [DOI: 10.1016/j.febslet.2007.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 11/06/2007] [Indexed: 10/22/2022]
|
408
|
Pålsson-McDermott EM, O’Neill LAJ. The potential of targeting Toll-like receptor 2 in autoimmune and inflammatory diseases. Ir J Med Sci 2007; 176:253-60. [DOI: 10.1007/s11845-007-0103-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 10/25/2007] [Indexed: 01/15/2023]
|
409
|
The protective effect of A20 on atherosclerosis in apolipoprotein E-deficient mice is associated with reduced expression of NF-kappaB target genes. Proc Natl Acad Sci U S A 2007; 104:18601-6. [PMID: 18006655 DOI: 10.1073/pnas.0709011104] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Up-regulation of inflammatory responses is considered a driving force of atherosclerotic lesion development. One key regulator of inflammation is the A20 (also called TNF-alpha-induced protein 3 or Tnfaip3) gene, which is responsible for NF-kappaB termination and maps to an atherosclerosis susceptibility locus revealed by quantitative trait locus-mapping studies at mouse proximal chromosome 10. In the current study, we examined the role of A20 in atherosclerotic lesion development. At the aortic root lesion size was found to be increased in C57BL/6 (BG) apolipoprotein E-deficient (ApoE(-/-)) mice haploinsufficient for A20, compared with B6 ApoE(-/-) controls that expressed A20 normally (60% in males and 23% in females; P < 0.001 and P < 0.05, respectively). In contrast, lesion size was found to be decreased in F(1) (B6 x FVB/N) mice overexpressing A20 by virtue of containing an A20 BAC transgene compared with nontransgenic controls (30% in males, P < 0.001, and 17% in females, P = 0.02). The increase in lesions in the A20 haploinsufficient mice correlated with increased expression of proatherosclerotic NF-kappaB target genes, such as vascular cell adhesion molecule 1, intercellular adhesion molecule 1, and macrophage-colony-stimulating factor, and elevated plasma levels of NF-kappaB-driven cytokines. These findings suggest that A20 diminishes atherosclerosis by decreasing NF-kappaB activity, thereby modulating the proinflammatory state associated with lesion development.
Collapse
|
410
|
O'Connell CM, Ingalls RR, Andrews CW, Scurlock AM, Darville T. Plasmid-deficient Chlamydia muridarum fail to induce immune pathology and protect against oviduct disease. THE JOURNAL OF IMMUNOLOGY 2007; 179:4027-34. [PMID: 17785841 DOI: 10.4049/jimmunol.179.6.4027] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chlamydia trachomatis is the most prevalent sexually transmitted bacterial infection in the world. In women, genital infection can cause endometritis and pelvic inflammatory disease with the severe sequelae of ectopic pregnancy or infertility. Chlamydia sp. do not damage tissues directly, but induce an injurious host inflammatory response at the infected site. In the murine model of genital disease with Chlamydia muridarum, TLR2 plays a role in both early production of inflammatory mediators and development of chronic oviduct pathology. We report the results of studies with plasmid-cured C. muridarum mutants that retain the ability to infect the murine genital tract, but fail to cause disease in the oviduct. These mutants do not stimulate TLR2-dependent cytokine production in mice, nor in innate immune cells or epithelial cells in vitro. They induce an effective Th1 immune response, with no evidence for Th1-immune-mediated collateral tissue damage. Furthermore, mice previously infected with the plasmid-deficient strains are protected against oviduct disease upon challenge with virulent C. muridarum. If plasmid-cured derivatives of human C. trachomatis biovars exhibit similar phenotypic characteristics, they have the potential to serve as vaccines to prevent human disease.
Collapse
Affiliation(s)
- Catherine M O'Connell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA. Catherine.O'
| | | | | | | | | |
Collapse
|
411
|
Papapanou PN, Sedaghatfar MH, Demmer RT, Wolf DL, Yang J, Roth GA, Celenti R, Belusko PB, Lalla E, Pavlidis P. Periodontal therapy alters gene expression of peripheral blood monocytes. J Clin Periodontol 2007; 34:736-47. [PMID: 17716309 PMCID: PMC2670555 DOI: 10.1111/j.1600-051x.2007.01113.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS We investigated the effects of periodontal therapy on gene expression of peripheral blood monocytes. METHODS Fifteen patients with periodontitis gave blood samples at four time points: 1 week before periodontal treatment (#1), at treatment initiation (baseline, #2), 6-week (#3) and 10-week post-baseline (#4). At baseline and 10 weeks, periodontal status was recorded and subgingival plaque samples were obtained. Periodontal therapy (periodontal surgery and extractions without adjunctive antibiotics) was completed within 6 weeks. At each time point, serum concentrations of 19 biomarkers were determined. Peripheral blood monocytes were purified, RNA was extracted, reverse-transcribed, labelled and hybridized with AffymetrixU133Plus2.0 chips. Expression profiles were analysed using linear random-effects models. Further analysis of gene ontology terms summarized the expression patterns into biologically relevant categories. Differential expression of selected genes was confirmed by real-time reverse transcriptase-polymerase chain reaction in a subset of patients. RESULTS Treatment resulted in a substantial improvement in clinical periodontal status and reduction in the levels of several periodontal pathogens. Expression profiling over time revealed more than 11,000 probe sets differentially expressed at a false discovery rate of <0.05. Approximately 1/3 of the patients showed substantial changes in expression in genes relevant to innate immunity, apoptosis and cell signalling. CONCLUSIONS The data suggest that periodontal therapy may alter monocytic gene expression in a manner consistent with a systemic anti-inflammatory effect.
Collapse
Affiliation(s)
- Panos N Papapanou
- Division of Periodontics, Section of Oral and Diagnostic Sciences, College of Dental Medicine, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
412
|
Krebs P, Scandella E, Bolinger B, Engeler D, Miller S, Ludewig B. Chronic Immune Reactivity Against Persisting Microbial Antigen in the Vasculature Exacerbates Atherosclerotic Lesion Formation. Arterioscler Thromb Vasc Biol 2007; 27:2206-13. [PMID: 17656668 DOI: 10.1161/atvbaha.107.141846] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective—
The purpose of this study was to examine the relative contribution of different immunopathological mechanisms during murine cytomegalovirus (MCMV)-mediated acceleration of atheroma formation in apolipoprotein E–deficient (apoE
−/−
) mice.
Methods and Results—
To distinguish between the effects of systemic activation and cognate immune reactivity against a pathogen-derived persisting antigen in the vasculature, we used hypercholesterolemic transgenic mice constitutively expressing the β-galactosidase (β-gal) transgene in the cardiovascular system (apoE
−/−
×SM-LacZ). After infection with β-gal–recombinant MCMV-LacZ, apoE
−/−
, and apoE
−/−
×SM-LacZ mice mounted comparable cellular immune responses against the virus. β-gal–specific CD8
+
T cells expanded rapidly and remained detectable for at least 100 days in both mouse strains. However, compared with apoE
−/−
mice, apoE
−/−
×SM-LacZ mice developed drastically accelerated atherosclerosis. Moreover, atherosclerotic lesions in MCMV-LacZ–infected apoE
−/−
×SM-LacZ but not apoE
−/−
mice were associated with pronounced inflammatory infiltrates.
Conclusions—
Taken together, our data indicate that chronic immune reactivity against pathogen-derived antigens persisting in the vasculature significantly exacerbates atherogenesis.
Collapse
Affiliation(s)
- Philippe Krebs
- Research Department, Kantonsspital St Gallen, Rorschacherstrasse 95, CH-9007 St Gallen, Switzerland
| | | | | | | | | | | |
Collapse
|
413
|
Frantz S, Ertl G, Bauersachs J. Mechanisms of disease: Toll-like receptors in cardiovascular disease. ACTA ACUST UNITED AC 2007; 4:444-54. [PMID: 17653117 DOI: 10.1038/ncpcardio0938] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 05/09/2007] [Indexed: 12/16/2022]
Abstract
The innate immune system detects highly conserved, relatively invariant structural motifs of pathogens. Toll-like receptors (TLRs) have been identified as the primary innate immune receptors. TLRs distinguish between different patterns of pathogens and activate a rapid innate immune response; however, TLRs can also be activated by host-derived molecules. In addition to being expressed in immune cells, TLRs are expressed in other tissues, such as those of the cardiovascular system. TLRs could, therefore, be a key link between cardiovascular disease development and the immune system. Indeed, evidence that TLR activation contributes to the development and progression of atherosclerosis, cardiac dysfunction in sepsis, and congestive heart failure, is convincing. Although much has been learned about TLR activation in cellular components of the cardiovascular system, the role individual TLR family members have in the pathophysiology of cardiovascular diseases and hence in clinical practice remains to be defined. Here we review the rapid progress that has been made in this field, which has improved our understanding of vascular as well as myocardial TLR function in basic and clinical science.
Collapse
Affiliation(s)
- Stefan Frantz
- Universität Würzburg, Medizinische Klinik und Poliklinik I, Herzkreislauf-Zentrum, Würzburg, Germany.
| | | | | |
Collapse
|
414
|
Schoneveld AH, Hoefer I, Sluijter JPG, Laman JD, de Kleijn DPV, Pasterkamp G. Atherosclerotic lesion development and Toll like receptor 2 and 4 responsiveness. Atherosclerosis 2007; 197:95-104. [PMID: 17888930 DOI: 10.1016/j.atherosclerosis.2007.08.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 06/22/2007] [Accepted: 08/02/2007] [Indexed: 12/31/2022]
Abstract
BACKGROUND Toll like receptors (TLR) have been recognized for their role in atherosclerotic lesion development and progression. Endogenous TLR ligands that are also expressed in atherosclerotic tissues have been shown to promote atherosclerosis in mice. Since repetitive stimulation of TLR induces an attenuated inflammatory response, we hypothesized that the TLR response is altered during atherosclerosis development, due to chronic exposure to endogenous ligands. METHODS AND RESULTS We examined five groups of both ApoE-/- and C57Bl/6 mice aged 5, 10, 15, 25 and 40 weeks. In ApoE-/- mice with advanced stages of atherosclerosis, levels of mRNA encoding TLR2 and TLR4, the endogenous TLR ligands EDA and hsp60 as well as intracellular TLR-regulating mediators, like IRAK-M, were increased. Systemic TLR cell surface expression on circulating monocytes and EDA plasma levels were significantly increased in ApoE-/- mice with advanced atherosclerosis. We also observed that the endogenous TLR ligand EDA was capable of activating the TLR-signaling pathway in white blood cells. During the plaque progression stage however, stimulation of TLR2 and TLR4 in blood samples attenuated MIP-1 alpha and RANTES release in atherosclerotic mice. CONCLUSION During atherosclerotic lesion development, TLR2 and TLR4 expression increases in atherosclerotic plaques and on circulating blood cells. However, with advanced stages of atherosclerotic disease, circulating blood cells become less responsive to TLR ligation, which may be due to chronic TLR engagement by endogenous EDA.
Collapse
Affiliation(s)
- A H Schoneveld
- Department of Cardiology, Experimental Cardiology Laboratory, UMC, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
415
|
Shinohara M, Hirata KI, Yamashita T, Takaya T, Sasaki N, Shiraki R, Ueyama T, Emoto N, Inoue N, Yokoyama M, Kawashima S. Local overexpression of toll-like receptors at the vessel wall induces atherosclerotic lesion formation: synergism of TLR2 and TLR4. Arterioscler Thromb Vasc Biol 2007; 27:2384-91. [PMID: 17872459 DOI: 10.1161/atvbaha.106.139253] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Atherosclerosis is now considered as a chronic inflammatory disease, and inflammation is closely related to immune systems, which consist of innate-immunity and adaptive-immunity. Recently, toll-like receptors (TLRs) have been identified as key components of innate-immunity. We examined the role of local expressions of TLRs at the vessel wall in atherosclerosis. METHODS AND RESULTS We transfected cDNA encoding human TLR2 and TLR4 into the carotid arterial vessel wall of rabbits fed high-cholesterol diets with the use of HVJ-liposome. The rabbits were transfected with (1) pCMV-beta-gal, (2) empty vector, (3) TLR2, (4) TLR4, (5) TLR2+4. X-gal staining and immunohistochemical analysis showed that the transfected plasmids were mainly expressed in the media. Neither TLR2 nor TLR4 transfection induced significant augmentation of atherosclerosis. Transfection of TLR2- and TLR4-containing HVJ synergistically accelerated atherosclerosis and increased expressions of vascular cell adhesion molecule 1, intercellular adhesion molecule 1, and MCP-1. Moreover, transfection of TLR2 and TLR4 resulted in synergistic activation of NF-kappaB at the vessel wall in vivo, and in vascular smooth muscle cells in vitro. CONCLUSIONS Expressions of both TLR2 and TLR4 at the vessel wall synergistically accelerated atherosclerosis. The present study revealed the role of TLRs expressed locally at the vessel wall in the early stage of atherosclerosis.
Collapse
Affiliation(s)
- Masakazu Shinohara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
416
|
Pasini AF, Anselmi M, Garbin U, Franchi E, Stranieri C, Nava MC, Boccioletti V, Vassanelli C, Cominacini L. Enhanced Levels of Oxidized Low-Density Lipoprotein Prime Monocytes to Cytokine Overproduction via Upregulation of CD14 and Toll-Like Receptor 4 in Unstable Angina. Arterioscler Thromb Vasc Biol 2007; 27:1991-7. [PMID: 17600225 DOI: 10.1161/atvbaha.107.142695] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The purpose of this study was to establish whether oxidized low-density lipoprotein (oxLDL) contributes to cytokine overproduction via upregulation of CD14 and toll-like receptor-4 (TLR-4) expression on circulating monocytes of unstable angina (UA) patients. METHODS AND RESULTS Expression of CD14 and TLR-4 on circulating monocytes, and the concentration of plasma oxLDL, (interleukin [IL])-6, IL-1 beta, IL-8, tumor necrosis factor (TNF)-alpha, monocyte chemoattractant protein-1 (MCP-1) were measured in 27 control (C) subjects, 29 patients with stable angina (SA), and 27 with UA. CD14 and TLR-4 expression on monocytes and circulating IL-6, IL-1 beta, and oxLDL were higher in UA than in SA and C subjects (P<0.001). In in vitro experiments, oxLDL increased CD14 and TLR-4 expression (P<0.001) in control monocytes as well as IL-6, IL-1 beta, and at a lower extent TNF-alpha and MCP-1 levels in the supernatant (P from <0.05 to <0.001). The preincubation of sera derived from UA patients but with control monocytes also induced a significant increase of CD14 and TLR-4 expression (P<0.001) and of IL-6 and IL-1 beta production (P<0.001) in the supernatant. CONCLUSIONS In UA patients oxLDL may contribute to monocyte overproduction of some cytokines by upregulating CD14 and TLR-4 expression.
Collapse
Affiliation(s)
- A Fratta Pasini
- Department of Biomedical and Surgical Sciences, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
417
|
Koedel U, Merbt UM, Schmidt C, Angele B, Popp B, Wagner H, Pfister HW, Kirschning CJ. Acute brain injury triggers MyD88-dependent, TLR2/4-independent inflammatory responses. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:200-13. [PMID: 17591966 PMCID: PMC1941591 DOI: 10.2353/ajpath.2007.060821] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endogenous molecules released from disrupted cells and extracellular matrix degradation products activate Toll-like receptors (TLRs) and, thus, might contribute to immune activation after tissue injury. Here, we show that aseptic, cold-induced cortical injury triggered an acute immune response that involves increased production of multiple cytokines/chemokines accompanied by neutrophil recruitment to the lesion site. We observed selective reductions in injury-induced cytokine/chemokine expression as well as in neutrophil accumulation in mice lacking the common TLR signaling adaptor MyD88 compared with wild-type mice. Notably, attenuation of the immune response was paralleled by a reduction in lesion size. Neutrophil depletion of wild-type mice and transplantation of MyD88-deficient bone marrow into lethally irradiated wild-type recipients had no substantial impact on injury-induced expression of cytokines/chemokines and on lesion development. In contrast to MyD88 deficiency, double deficiency of TLR2 and TLR4 -- despite the two receptors being activated by specific endogenous molecules associated to danger and signal through MyD88 -- altered neither immune response nor extent of tissue lesion size on injury. Our data indicate modulation of the neuroinflammatory response and lesion development after aseptic cortical injury through MyD88-dependent but TLR2/4-independent signaling by central nervous system resident nonmyeloid cells.
Collapse
Affiliation(s)
- Uwe Koedel
- Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians-University, Marchioninistr 15, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
418
|
Liu X, Ukai T, Yumoto H, Davey M, Goswami S, Gibson FC, Genco CA. Toll-like receptor 2 plays a critical role in the progression of atherosclerosis that is independent of dietary lipids. Atherosclerosis 2007; 196:146-154. [PMID: 17466307 PMCID: PMC2243224 DOI: 10.1016/j.atherosclerosis.2007.03.025] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/05/2007] [Accepted: 03/13/2007] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Toll-like receptors (TLRs), a group of pathogen-associated microbial pattern recognition receptors, play an important role in innate immune signaling and are differentially regulated in chronic inflammatory diseases such as atherosclerosis. However, the involvement of TLRs in the progression of atherosclerosis is still unclear. METHODS AND RESULTS TLR2 and apolipoprotein E double knockout (Tlr2(-/-)Apoe(-/-)) mice were generated and the progressive formation of atherosclerotic plaque in the aortas was examined in mice fed a normal chow diet. We demonstrate that inactivation of TLR2 resulted in reduced progression of atherosclerosis in both male and female Apoe(-/-) mice. Likewise, TLR2 deficiency resulted in a reduction in lipid accumulation and decreased macrophage recruitment to the aortic sinus, as well as reduced monocyte chemoattractant protein-1 (MCP-1) levels. Furthermore, macrophages isolated from Tlr2(-/-)Apoe(-/-) mice demonstrated significantly reduced MCP-1 production upon stimulation with a TLR2 ligand. However, no differences in acetylated low-density lipoprotein uptake and foam cell formation were observed in macrophages isolated from Tlr2(-/-)Apoe(-/-) mice as compared to Apoe(-/-) mice. CONCLUSIONS TLR2 plays a critical role in the progression of atherosclerosis in Apoe(-/-) mice, which is independent of dietary lipids and macrophage lipid uptake.
Collapse
Affiliation(s)
- Xinyan Liu
- Department of Medicine, Section of Molecular Medicine, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, United States
| | - Takashi Ukai
- Department of Medicine, Section of Molecular Medicine, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, United States; Department of Periodontology, Unit of Translational Medicine, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Hiromichi Yumoto
- Department of Medicine, Section of Molecular Medicine, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, United States; Department of Conservative Dentistry, The Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504, Japan
| | - Michael Davey
- Department of Periodontology and Oral Biology, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, United States
| | - Sulip Goswami
- Department of Medicine, Section of Molecular Medicine, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, United States
| | - Frank C Gibson
- Department of Medicine, Section of Molecular Medicine, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, United States
| | - Caroline A Genco
- Department of Medicine, Section of Molecular Medicine, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, United States; Department of Periodontology and Oral Biology, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, United States; Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States.
| |
Collapse
|
419
|
Abstract
Oxidative stress and inflammation are accepted as major factors in the pathogenesis of atherosclerosis, but how they interact to produce a plaque has not been delineated clearly. Recent data suggest that oxidized lipids may act in part by regulating production of chemokines and chemokine receptors, which in turn, may direct monocytes and other blood leukocytes to the vessel wall, where they may interact with endothelial cells and smooth muscle cells. The receptors may act at the level of recruitment, retention, and egress, not only through classic, chemotactic mechanisms but also through direct, intercellular adhesion. The results suggest a coordinated mechanism for inflammatory cell accumulation in plaque and identify novel targets, such as CCR2 and CX3CR1, for potential drug development in coronary artery disease.
Collapse
Affiliation(s)
- Jana Barlic
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
420
|
Nakamura N, Yoshida M, Umeda M, Huang Y, Kitajima S, Inoue Y, Ishikawa I, Iwai T. Extended exposure of lipopolysaccharide fraction from Porphyromonas gingivalis facilitates mononuclear cell adhesion to vascular endothelium via Toll-like receptor-2 dependent mechanism. Atherosclerosis 2007; 196:59-67. [PMID: 17374371 DOI: 10.1016/j.atherosclerosis.2007.01.039] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2006] [Revised: 01/24/2007] [Accepted: 01/31/2007] [Indexed: 11/15/2022]
Abstract
Certain infectious pathogens contribute to atherogenesis. Indeed, the strong relationship between periodontal pathogens, such as Porphyromonas gingivalis (P.g.) and coronary heart disease has been demonstrated. We investigated the potential role of P.g. in monocyte-endothelial interaction. Lipopolysaccharide (LPS) fraction was extracted from P.g. cultured under anaerobic conditions and compared to that obtained from an Escherichia coli (E. coli) strain (JM109). Human umbilical vein endothelial cells (HUVECs) were incubated in the presence of P.g.-LPS fraction or E. coli-LPS fraction for various periods and mononuclear cell adhesion assays were conducted under flow. The adhesion of mononuclear cells to HUVECs treated with P.g.-LPS fraction peaked after 24h of incubation, whereas those treated with E. coli-LPS fraction maximized after 4h of incubation. A fluorescent immunobinding assay revealed that P.g.-LPS fraction significantly upregulated ICAM-1 and VCAM-1 in HUVECs. Antibodies against ICAM-1 and Toll-like receptor (TLR)-2, but not TLR-4, attenuated P.g.-LPS fraction-facilitated mononuclear cell adhesion to HUVECs. In conclusion, these results suggest that chronic P.g. infection may facilitate monocyte recruitment to vascular endothelium through sustained upregulation of ICAM-1 and VCAM-1. Our findings provide new evidence that the TLR-2 pathway may contribute to atherogenesis by mediating P.g.-LPS signal transduction.
Collapse
Affiliation(s)
- Naokazu Nakamura
- Department of Medical Biochemistry, Tokyo, Japan; Department of Vascular and Applied Surgery, Graduate School of Medicine, Tokyo, Japan
| | | | - Makoto Umeda
- Department of Periodontology, Graduate School of Dental Medicine, Tokyo, Japan
| | - Yi Huang
- Department of Periodontology, Graduate School of Dental Medicine, Tokyo, Japan
| | - Shigetaka Kitajima
- Department of Biochemical Genetics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshinori Inoue
- Department of Vascular and Applied Surgery, Graduate School of Medicine, Tokyo, Japan
| | - Isao Ishikawa
- Department of Periodontology, Graduate School of Dental Medicine, Tokyo, Japan
| | - Takehisa Iwai
- Department of Vascular and Applied Surgery, Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
421
|
Favre J, Musette P, Douin-Echinard V, Laude K, Henry JP, Arnal JF, Thuillez C, Richard V. Toll-like receptors 2-deficient mice are protected against postischemic coronary endothelial dysfunction. Arterioscler Thromb Vasc Biol 2007; 27:1064-71. [PMID: 17332486 DOI: 10.1161/atvbaha.107.140723] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Toll-like receptors (TLR) 2 are expressed in cardiac and inflammatory cells, and regulate leukocyte function. Because leukocyte adhesion is a critical event in endothelial injury induced by ischemia/reperfusion (I/R), we assessed whether TLR2 were involved in I/R-induced coronary endothelial injury. METHODS AND RESULTS Ischemia-reperfusion markedly decreased NO-mediated coronary relaxations to acetylcholine assessed ex vivo. In contrast, in TLR2 deficient mice, I/R paradoxically improved the NO-mediated responses to acetylcholine. To precise the cellular compartment expressing TLR2 which is involved in endothelial injury, we developed bone-marrow chimeric mice by transplanting TLR2-/- bone marrow to WT mice or WT bone marrow to TLR2-/- mice and submitted them to I/R 5 weeks after transplant. Both chimeric mice displayed similar protection as TLR2-/- mice against I/R-induced endothelial dysfunction, suggesting a role of TLR2 expressed on both non-bone marrow cells (in our case presumably endothelial cells and/or cardiomyocytes) and cells of bone marrow origin (presumably neutrophils). TLR2 deficiency was also associated with a smaller infarct size, and reduced reperfusion-induced production of reactive oxygen species and leukocyte infiltration. CONCLUSIONS TLR2 contribute to coronary endothelial dysfunction after I/R, possibly through stimulation of neutrophil- (and free radical-) mediated endothelial injury.
Collapse
Affiliation(s)
- Julie Favre
- Inserm U644 & Rouen University Hospital, Institute for Biomedical Research and IFRMP 23, University of Rouen, France
| | | | | | | | | | | | | | | |
Collapse
|
422
|
Into T, Kanno Y, Dohkan JI, Nakashima M, Inomata M, Shibata KI, Lowenstein CJ, Matsushita K. Pathogen recognition by Toll-like receptor 2 activates Weibel-Palade body exocytosis in human aortic endothelial cells. J Biol Chem 2007; 282:8134-41. [PMID: 17227763 DOI: 10.1074/jbc.m609962200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The endothelial cell-specific granule Weibel-Palade body releases vasoactive substances capable of modulating vascular inflammation. Although innate recognition of pathogens by Toll-like receptors (TLRs) is thought to play a crucial role in promotion of inflammatory responses, the molecular basis for early-phase responses of endothelial cells to bacterial pathogens has not fully been understood. We here report that human aortic endothelial cells respond to bacterial lipoteichoic acid (LTA) and synthetic bacterial lipopeptides, but not lipopolysaccharide or peptidoglycan, to induce Weibel-Palade body exocytosis, accompanied by release or externalization of the storage components von Willebrand factor and P-selectin. LTA could activate rapid Weibel-Palade body exocytosis through a TLR2- and MyD88-dependent mechanism without de novo protein synthesis. This process was at least mediated through MyD88-dependent phosphorylation and activation of phospholipase Cgamma. Moreover, LTA activated interleukin-1 receptor-associated kinase-1-dependent delayed exocytosis with de novo protein synthesis and phospholipase Cgamma-dependent activation of the NF-kappaB pathway. Increased TLR2 expression by transfection or interferon-gamma treatment increased TLR2-mediated Weibel-Palade body exocytosis, whereas reduced TLR2 expression under laminar flow decreased the response. Thus, we propose a novel role for TLR2 in induction of a primary proinflammatory event in aortic endothelial cells through Weibel-Palade body exocytosis, which may be an important step for linking innate recognition of bacterial pathogens to vascular inflammation.
Collapse
Affiliation(s)
- Takeshi Into
- Department of Oral Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Obu, Aichi 474-8522, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
423
|
Into T, Matsushita K. Recognition of bacterial compounds by aortic endothelial cells activates Weibel-Palade body exocytosis. Inflamm Regen 2007. [DOI: 10.2492/inflammregen.27.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
424
|
Abstract
PURPOSE OF REVIEW Chronic inflammation and disordered lipid metabolism represent hallmarks of atherosclerosis. Considerable evidence has accumulated to suggest that innate immune defense mechanisms might interact with proinflammatory pathways and exacerbate or perhaps even initiate development of arterial plaques. Until recently the preponderance of such evidence has been indirectly emerging from clinical and epidemiologic studies, with some support from experimental animal models of atherosclerosis. RECENT FINDINGS Recent data now directly implicate signaling by toll-like receptor 4 and the common adaptor molecule MyD88 in the pathogenesis of atherosclerosis, establishing a key link between atherosclerosis and defense against both foreign pathogens and endogenously generated inflammatory ligands. SUMMARY Here we briefly review these and closely related studies, highlighting areas that should provide fertile ground for future studies aimed at a more comprehensive understanding of the interplay between innate immune defense mechanisms, atherosclerosis and related vascular disorders.
Collapse
Affiliation(s)
- Kathrin S Michelsen
- Division of Pediatric Infectious Diseases and Immunology, Burns and Allen Research Institute, Cedars-Sinai Medical Center and David Geffen School of Medicine, University of California, Los Angeles, California 90048, USA
| | | |
Collapse
|
425
|
Cao F, Castrillo A, Tontonoz P, Re F, Byrne GI. Chlamydia pneumoniae--induced macrophage foam cell formation is mediated by Toll-like receptor 2. Infect Immun 2006; 75:753-9. [PMID: 17145941 PMCID: PMC1828523 DOI: 10.1128/iai.01386-06] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chlamydia pneumoniae induces macrophage foam cell formation, a hallmark of early atherosclerosis, in the presence of low-density lipoprotein (LDL). This study examined the role that Toll-like receptor 2 (TLR2) and TLR4 may play in pathogen-induced foam cell formation. Murine macrophage RAW 264.7 cells either infected with C. pneumoniae or treated with the TLR4 ligand E. coli lipopolysaccharide (LPS) or the TLR2 ligand Pam(3)-Cys-Ala-Gly-OH (Pam) became Oil Red O-stained foam cells and showed increased cholesteryl ester (CE) content when cocultured with LDL. In macrophages from TLR2(-/-) mice, foam cells were induced by Escherichia coli LPS but not by C. pneumoniae or Pam. Conversely, C. pneumoniae or Pam, but not E. coli LPS, induced foam cells in the TLR4-deficient GG2EE macrophage cell line, suggesting that C. pneumoniae elicits foam cell formation predominantly via TLR2. Enhancing cholesterol efflux using the liver X receptor (LXR) agonist GW3965 significantly decreased the CE content of cells exposed to each of the three TLR ligands (C. pneumoniae, Pam, and E. coli LPS). Overall, our results suggest that activation of the LXR signaling pathway may affect potentially atherogenic processes modulated by the TLR ligands.
Collapse
Affiliation(s)
- Fei Cao
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
426
|
Abstract
PURPOSE OF REVIEW Toll-like receptors are key regulators of both innate and adaptive immune responses. This review outlines the recently emerged multiple roles of Toll-like receptor signaling in atherosclerosis. RECENT FINDINGS Mice deficient in TLR4, TLR2 and MyD88 all have reduced atherosclerosis which establishes that Toll-like receptor-dependent pathways contribute to disease development. Although it is likely that total "infectious burden" contributes to atherosclerosis progression, endogenous ligands may also initiate and modulate Toll-like receptor signaling pathways. CD36, with established roles in recognition of endogenous ligands and atherosclerotic disease, facilitates TLR2 signaling and might therefore represent a bridge between endogenous lipid ligands and Toll-like receptor pathways. Furthermore, lipoprotein oxidation generates ligands that activate Toll-like receptor pathways. At the same time, Toll-like receptor activation may be inhibited by accumulating oxidized phospholipids, which could result in reduced dendritic cell maturation and impaired immunological priming. SUMMARY Activation of Toll-like receptor signaling can promote atherosclerosis by multiple mechanisms, while some beneficial Toll-like receptor pathways may be inhibited by lipid accumulation. Due to their central role in the disease process, Toll-like receptor signaling pathways represent a target of immunomodulatory therapy with the goal of tipping the balance from excessive chronic inflammation towards resolution of inflammation, while not compromising host defense or atheroprotective immune functions.
Collapse
Affiliation(s)
- Harry Björkbacka
- Department of Clinical Sciences, Malmö University Hospital, Lund University, SE-205 02 Malmö, Sweden.
| |
Collapse
|
427
|
Mullick AE, Tobias PS, Curtiss LK. Toll-like receptors and atherosclerosis: key contributors in disease and health? Immunol Res 2006; 34:193-209. [PMID: 16891671 DOI: 10.1385/ir:34:3:193] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/10/2023]
Abstract
The identification of Toll-like receptors (TLRs) as key patternrecognition receptors of innate immunity has opened inquiries into previously unknown disease mechanisms. The ability of TLRs to detect a spectrum of pathogen-derived molecules defines their importance in innate immunity and provides a mechanistic link between infection and disease. Atherosclerosis is a chronic inflammatory disease where immune and metabolic factors interact to initiate and propagate arterial lesions. An understanding of TLRs in atherosclerosis could clarify the etiology of this complex process. Furthermore, the existence of host-derived endogenous TLR ligands may implicate TLR involvement in disease mechanisms beyond innate immunity, such as a role in homeostatic mechanisms to resolve injury. Our current knowledge of TLRs in atherosclerosis is discussed in this review with emphasis on experimental studies in atherosclerosis-susceptible mouse models. Highlights from studies of TLR involvement in other disease processes have demonstrated that TLR-dependent mechanisms probably parallel those found in atherosclerosis, some of which could be important in mitigating atherosclerotic injury. Finally, an appreciation of the pro- and anti-atherosclerotic mechanisms of TLR activation over the entire lifetime of an organism will provide clues to the role of TLRs in both health and disease.
Collapse
Affiliation(s)
- Adam E Mullick
- Department of Immunology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | | | | |
Collapse
|
428
|
Hasebe A, Pennock ND, Mu HH, Chan FV, Taylor ML, Cole BC. A Microbial TLR2 Agonist Imparts Macrophage-Activating Ability to Apolipoprotein A-1. THE JOURNAL OF IMMUNOLOGY 2006; 177:4826-32. [PMID: 16982924 DOI: 10.4049/jimmunol.177.7.4826] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is increasing epidemiologic evidence implying a role for chronic infection in atherosclerosis and that microbial TLR agonists may contribute to this disease. Mycoplasma arthritidis is an agent of acute and chronic inflammatory disease in rodents, and has been used extensively as a model for defining the mechanisms involved in arthritis and other inflammatory diseases. We have purified a 28-kDa, apolipoprotein A-1 (apoA-1)-like TLR2-dependent macrophage-activating moiety from a culture of a virulent strain of M. arthritidis. ApoA-1 similarly isolated from uninoculated mycoplasma medium was without bioactivity. The activity of the mycoplasma-derived molecule was resistant to heat and to digestion with proteinase K, but was susceptible to alkaline hydrolysis and H(2)O(2) oxidation. Infrared profiles of normal apoA-1 and that derived from mycoplasma were distinct. Unlike the activity of other mycoplasmal TLR2 agonists such as macrophage-activating lipopeptide-2, activity of the M. arthritidis-derived 28-kDa component was dependent upon CD14, a coreceptor for LPS. Finally, we showed that bioactive lipopeptides prepared from M. arthritidis grown in serum-free medium and also from a 41-kDa known bioactive lipoprotein of M. arthritidis, avidly bound to purified apoA-1 that separated out by SDS-PAGE, induced TNF-alpha and IL-12p40 both in vitro and in vivo. ApoA-1 is a key functional component of the high-density lipoprotein cholesterol complex by scavenging and removing unwanted lipids. Our finding that this molecule can acquire macrophage-activating properties from microbial TLR2-dependent agonists suggests a novel mechanism whereby some microbial agents might reverse the protective role of apoA-1, thus contributing to the genesis of atherosclerosis.
Collapse
Affiliation(s)
- Akira Hasebe
- Division of Rheumatology, Department of Internal Medicine, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | | | | | | | | | | |
Collapse
|
429
|
Erridge C, Webb DJ, Spickett CM. Toll-like receptor 4 signalling is neither sufficient nor required for oxidised phospholipid mediated induction of interleukin-8 expression. Atherosclerosis 2006; 193:77-85. [PMID: 16982060 DOI: 10.1016/j.atherosclerosis.2006.08.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 08/04/2006] [Accepted: 08/14/2006] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Toll-like receptor (TLR)-4 signalling has been shown to accelerate atherosclerosis. As oxidised phospholipids are present in atherosclerotic plaque and have been shown to modulate TLR4 signalling, we investigated the role of oxidised 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC) in the regulation of TLR 1, 2, 4 and 6 signalling. METHODS AND RESULTS Unlike established TLR agonists, OxPAPC did not induce NF-kappaB-dependent gene expression in monocytic THP-1 cells, human aortic endothelial cells or TLR-deficient HEK-293 cells transfected with TLRs 1, 2, 4 or 6. OxPAPC induction of IL-8 was not blocked by the TLR4 specific antagonist Rhodobacter sphaeroides LPS in human aortic endothelial cells, though OxPAPC potently inhibited TLR4 mediated IL-8 induction in these cells. OxPAPC upregulated IL-8 production in TLR4 deficient HEK-293 cells and this was not increased following TLR4 overexpression. Lipids extracted from carotid atherectomy samples did not stimulate TLR 1, 2, 4 or 6 signalling in a HEK-293 transfection assay. CONCLUSIONS TLR4 signalling does not contribute to OxPAPC induced IL-8 expression in human epithelial HEK-293, monocytic THP-1 or aortic endothelial cells. As lipids extracted from diseased human artery also induced no TLR signalling, it is likely that the TLR-activating materials contributing to atherosclerosis are not of endogenous lipid origin.
Collapse
Affiliation(s)
- Clett Erridge
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 204 George Street, Glasgow G1 1XW, UK.
| | | | | |
Collapse
|
430
|
Földes G, von Haehling S, Anker SD. Toll-like receptor modulation in cardiovascular disease: a target for intervention? Expert Opin Investig Drugs 2006; 15:857-71. [PMID: 16859390 DOI: 10.1517/13543784.15.8.857] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Toll-like receptors (TLRs) form a family of pattern recognition receptors that have emerged as key mediators of innate immunity. These receptors sense invading microbes and initiate the immune response. TLR-mediated inflammation is an important pathogenic link between innate immunity and a diverse panel of clinical disorders. Among the processes in which TLRs play a role are cardiovascular disorders such as cardiac ischaemia, coronary artery disease, ventricular remodelling, cancer angiogenesis or transplant rejection. From these, many important opportunities for disease modification through TLR signalling manipulation can be imagined. Their role as potential targets for therapeutic intervention is just beginning to be appreciated and this article reviews the current status of these treatment strategies for cardiovascular disease.
Collapse
Affiliation(s)
- Gábor Földes
- Semmelweis University, 1st Department of Medicine, Budapest, Hungary.
| | | | | |
Collapse
|
431
|
Abstract
Toll-like receptors (TLRs) play an important role in innate immunity. Individual TLRs recognise microbial components that are conserved among pathogens. Such recognition initiates necessary inflammatory immune responses and induces subsequent activation of adaptive immunity. Studies in people with polymorphisms in genes encoding TLR signalling can elucidate the relationship between TLRs and human diseases, such as infectious diseases, atherosclerosis and immunodeficiency. Indeed, accumulating data in respect to TLR signalling suggest that TLRs are closely related with the pathogenesis of autoimmune diseases. This review looks at the role of TLRs in various immune disorders, and discusses the pathogenesis of diseases.
Collapse
Affiliation(s)
- Satoshi Uematsu
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita Osaka 565-0851, Japan
| | | |
Collapse
|
432
|
|
433
|
Holvoet P, Davey PC, De Keyzer D, Doukouré M, Deridder E, Bochaton-Piallat ML, Gabbiani G, Beaufort E, Bishay K, Andrieux N, Benhabilès N, Marguerie G. Oxidized low-density lipoprotein correlates positively with toll-like receptor 2 and interferon regulatory factor-1 and inversely with superoxide dismutase-1 expression: studies in hypercholesterolemic swine and THP-1 cells. Arterioscler Thromb Vasc Biol 2006; 26:1558-65. [PMID: 16690872 DOI: 10.1161/01.atv.0000226553.01555.02] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Oxidized low-density lipoprotein (LDL) is associated with cardiovascular disease. Macrophages contribute to LDL oxidation, and oxidized LDL (oxLDL) affects macrophage function. We searched for the strongest gene correlates of oxLDL in macrophages in coronary plaques and studied the effect of oxLDL on their expression in THP-1 cells. METHODS AND RESULTS Gene expression in macrophages isolated from coronary plaque macrophages from hypercholesterolemic swine was measured on Agilent Human cDNA microarrays. Compared with a universal reference, 1653 transcripts were deregulated. The expression of 11 genes correlated positively and the expression of 5 genes correlated negatively with plaque oxLDL. Interferon regulatory factor-1 (IRF1; R2 = 0.69) and toll-like receptor 2 (TLR2; R2 = 0.18) were the strongest positive correlates of oxLDL. Superoxide dismutase 1 (SOD1) was the strongest inverse correlate of oxLDL (R2 = 0.57). Immunohistochemical analysis showed colocalization of IRF1, TLR2, and SOD1 protein in macrophages and confirmed the RNA expression data. OxLDL-induced foam cell formation in THP-1 macrophages was associated with increased expression of IRF1 and TLR2 and decreased expression of SOD1. CONCLUSIONS Our data support the hypothesis that oxLDL is a proinflammatory stimulus that induces the expression of TLR2 and IRF1, 2 important gene regulators of innate immune response, and inhibits the expression of the antioxidant SOD1.
Collapse
Affiliation(s)
- Paul Holvoet
- Atherosclerosis and Metabolism Unit, Department of Cardiovascular Diseases, Katholieke Universiteit Leuven, Herestraat 49, PB 705, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|