401
|
Abstract
Internalization of receptors, lipids, pathogens, and other cargo at the plasma membrane involves several different pathways and requires coordinated interactions between a variety of protein and lipid molecules. The actin cytoskeleton is an integral part of the cell cortex, and there is growing evidence that F-actin plays a direct role in these endocytic events. Genetic studies in yeast have firmly established a functional connection between actin and endocytosis. Identification of several proteins that may function at the interface between actin and the endocytic machinery has provided further evidence for this association in both yeast and mammalian cells. Several of these proteins are directly involved in regulating actin assembly and could thus harness forces produced during actin polymerization to facilitate specific steps in the endocytic process. Recent microscopy studies in mammalian cells provide powerful evidence that localized recruitment and polymerization of actin occurs at endocytic sites. In this review, we focus on progress made in elucidating the functions of the actin cytoskeleton in endocytosis.
Collapse
Affiliation(s)
- Asa E Y Engqvist-Goldstein
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | |
Collapse
|
402
|
Shiratsuchi H, Basson MD. Extracellular pressure stimulates macrophage phagocytosis by inhibiting a pathway involving FAK and ERK. Am J Physiol Cell Physiol 2004; 286:C1358-66. [PMID: 14761895 DOI: 10.1152/ajpcell.00553.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We hypothesized that changes in extracellular pressure during inflammation or infection regulate macrophage phagocytosis through modulating the focal adhesion kinase (FAK)-ERK pathway. Undifferentiated (monocyte-like) or PMA-differentiated (macrophage-like) THP-1 cells were incubated at 37 degrees C with serum-opsonized latex beads under ambient or 20-mmHg increased pressure. Pressure did not affect monocyte phagocytosis but significantly increased macrophage phagocytosis (29.9 +/- 1.8 vs. 42.0 +/- 1.6%, n = 9, P < 0.001). THP-1 macrophages constitutively expressed activated FAK, ERK, and Src. Exposure of macrophages to pressure decreased ERK and FAK-Y397 phosphorylation (77.6 +/- 7.9%, n = 7, P < 0.05) but did not alter FAK-Y576 or Src phosphorylation. FAK small interfering RNA (SiRNA) reduced FAK expression by >75% and the basal amount of phosphorylated FAK by 25% and significantly increased basal macrophage phagocytosis (P < 0.05). Pressure inhibited FAK-Y397 phosphorylation in mock-transfected or scrambled SiRNA-transfected macrophages, but phosphorylated FAK was not significantly reduced further by pressure in cells transfected with FAK SiRNA. Pressure increased phagocytosis in all three groups. However, FAK-SiRNA-transfected cells exhibited only 40% of the pressure effect on phagocytosis observed in scrambled SiRNA-transfected cells so that phagocytosis inversely paralleled FAK activation. PD-98059 (50 microM), an ERK activation inhibitor, increased basal phagocytosis (26.9 +/- 1.8 vs. 31.7 +/- 1.1%, n = 15, P < 0.05), but pressure did not further increase phagocytosis in PD-98059-treated cells. Pressure also inhibited ERK activation after mock transfection or transfection with scrambled SiRNA, but transfection of FAK SiRNA abolished ERK inhibition by pressure. Pressure did not increase phagocytosis in MonoMac-1 cells that do not express FAK. Increased extracellular pressure during infection or inflammation enhances macrophage phagocytosis by inhibiting FAK and, consequently, decreasing ERK activation.
Collapse
Affiliation(s)
- Hiroe Shiratsuchi
- Department of Surgery, Wayne State University School of Medicine, and John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | | |
Collapse
|
403
|
Maderna P, Godson C. Phagocytosis of apoptotic cells and the resolution of inflammation. Biochim Biophys Acta Mol Basis Dis 2004; 1639:141-51. [PMID: 14636945 DOI: 10.1016/j.bbadis.2003.09.004] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Clearance of apoptotic cells by phagocytic cells plays a significant role in the resolution of inflammation, protecting tissue from harmful exposure to the inflammatory and immunogenic contents of dying cells. Apoptosis induces cell surface changes that are important for recognition and engulfment of cells by phagocytes. These changes include alterations in surface sugars, externalization of phosphatidylserine and qualitative changes in the adhesion molecule ICAM-3. Several studies have contributed to clarify the role of the receptors on the surface of phagocytes that are involved in apoptotic cell clearance. The phagocytic removal of apoptotic cells does not elicit pro-inflammatory responses; in contrast, apoptotic cell engulfment appears to activate signals that suppress release of pro-inflammatory cytokines. Therefore, clearance of apoptotic leucocytes is implicated in the resolution of inflammation and mounting evidence suggests that defective clearance of apoptotic cells contributes to inflammatory and autoimmune diseases. Defining the ligands on apoptotic cells and the corresponding receptors on phagocytes with which they engage, is likely to lead to the development of novel anti-inflammatory pro-resolution drugs. In this article, we will review the recognition and signaling mechanisms involved in the phagocytosis of apoptotic cells as well as the role of endogenous compounds that play a relevant role in the modulation of inflammation. We will also discuss what is currently known about diseases that may reflect impaired phagocytosis and the consequences on inflammation and immune responses.
Collapse
Affiliation(s)
- Paola Maderna
- Centre for Molecular Inflammation and Vascular Research, Mater Misericordiae Hospital, Dublin, Ireland
| | | |
Collapse
|
404
|
Hayes MJ, Merrifield CJ, Shao D, Ayala-Sanmartin J, Schorey CD, Levine TP, Proust J, Curran J, Bailly M, Moss SE. Annexin 2 binding to phosphatidylinositol 4,5-bisphosphate on endocytic vesicles is regulated by the stress response pathway. J Biol Chem 2004; 279:14157-64. [PMID: 14734570 PMCID: PMC1351152 DOI: 10.1074/jbc.m313025200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Annexin 2 is a Ca(2+)-binding protein that has an essential role in actin-dependent macropinosome motility. We show here that macropinosome rocketing can be induced by hyperosmotic shock, either alone or synergistically when combined with phorbol ester or pervanadate. Rocketing was blocked by inhibitors of phosphatidylinositol-3-kinase(s), p38 mitogen-activated protein (MAP) kinase, and calcium, suggesting the involvement of phosphoinositide signaling. Since various phosphoinositides are enriched on inwardly mobile vesicles, we examined whether or not annexin 2 binds to any of this class of phospholipid. In liposome sedimentation assays, we show that recombinant annexin 2 binds to phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5P(2)) but not to other poly- and mono-phosphoinositides. The affinity of annexin 2 for PtdIns-4,5P(2) (K(D) approximately 5 microm) is comparable with those reported for a variety of PtdIns-4,5P(2)-binding proteins and is enhanced in the presence of Ca(2+). Although annexin 1 also bound to PtdIns-4,5P(2), annexin 5 did not, indicating that this is not a generic annexin property. To test whether annexin 2 binds to PtdIns-4,5P(2) in vivo, we microinjected rat basophilic leukemia cells stably expressing annexin 2-green fluorescent protein (GFP) with fluorescently tagged antibodies to PtdIns-4,5P(2). Annexin 2-GFP and anti-PtdIns-4,5P(2) IgG co-localize at sites of pinosome formation, and annexin 2-GFP relocalizes to intracellular membranes in Ptk cells microinjected with Arf6Q67L, which has been shown to stimulate PtdIns-4,5P(2) synthesis on pinosomes through activation of phosphatidylinositol 5 kinase. These results establish a novel phospholipid-binding specificity for annexin 2 consistent with a role in mediating the interaction between the macropinosome surface and the polymerized actin tail.
Collapse
Affiliation(s)
- Matthew J. Hayes
- From the Division of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, United Kingdom, the
| | - Christien J. Merrifield
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Dongmin Shao
- From the Division of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, United Kingdom, the
| | - Jesus Ayala-Sanmartin
- INSERM U538, Trafic membranaire et signalization dans les cellules épithéliales, CHU Saint Antoine, 27, rue Chaligny, 75012 Paris, France, the
| | - Crislyn D’Souza Schorey
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556-0369, and
| | - Tim P. Levine
- From the Division of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, United Kingdom, the
| | - Jezabel Proust
- UMR 5546 CNRS/Université P. Sabatier, Pôle de Biotechnologies Végétales, 24, chemin de Borde Rouge, B.P. 17 Auzeville, 31326 Castanet-Tolosan, France
| | - Julie Curran
- From the Division of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, United Kingdom, the
| | - Maryse Bailly
- From the Division of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, United Kingdom, the
| | - Stephen E. Moss
- From the Division of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, United Kingdom, the
- ‡‡ To whom correspondence should be addressed. Tel.: 020-7608-6973; Fax: 020-7608-4034; E-mail:
| |
Collapse
|
405
|
Botelho RJ, Scott CC, Grinstein S. Phosphoinositide involvement in phagocytosis and phagosome maturation. Curr Top Microbiol Immunol 2004; 282:1-30. [PMID: 14594212 DOI: 10.1007/978-3-642-18805-3_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cells of the innate immune system engulf invading microorganisms into plasma membrane-derived vacuoles called phagosomes. Newly formed phagosomes gradually acquire microbicidal properties by a maturation process which involves sequential and coordinated rounds of fusion with endomembranes and concomitant fission. Some pathogens interfere with this maturation sequence and thereby evade killing by the immune cells, managing to survive intracellularly as parasites. Phosphoinositides seem to be intimately involved in the processes of phagosome formation and maturation, and initial observations suggest that the ability of some microorganisms to survive intracellularly is associated with alterations in phosphoinositide metabolism. This chapter presents a brief overview of phosphoinositides in cells of the immune system, their metabolism in the context of phagocytosis and phagosome maturation and their possible derangements during infectious pathogenosis.
Collapse
Affiliation(s)
- R J Botelho
- Programme in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
406
|
|
407
|
Berry CC, Charles S, Wells S, Dalby MJ, Curtis ASG. The influence of transferrin stabilised magnetic nanoparticles on human dermal fibroblasts in culture. Int J Pharm 2004; 269:211-25. [PMID: 14698593 DOI: 10.1016/j.ijpharm.2003.09.042] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Magnetic nanoparticles have been used for bio-medical purposes including drug delivery, cell destruction and as MRI contrast agents for several years. A more recent biological application has focused on targeted drug delivery. To this end, a wide variety of iron oxide nanoparticles have been synthesised. This study involves the use of magnetic nanoparticles synthesised and derivatised with human transferrin, compared to identical underivatised particles. Human fibroblasts were used, representative of a tissue cell-type. The influence in vitro was determined using light and fluorescence microscopy, scanning and transmission electron microscopy, and 1718 gene microarray. The results indicate that the transferrin derivatised particles appear to localise to the cell membrane without instigating receptor-mediated endocytosis, and also induce up-regulation in the cells for many genes, particularly in the area of cytoskeleton and cell signalling. The microscopy results further support these findings.
Collapse
Affiliation(s)
- Catherine C Berry
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, Scotland, UK.
| | | | | | | | | |
Collapse
|
408
|
Abstract
PURPOSE OF REVIEW This review focuses on recent developments in understanding the roles and regulation of the cytoskeleton in the function of leukocytes. RECENT FINDINGS New studies have shed light on the regulation and dynamics of actin and microtubules in leukocytes relevant both to cell motility generally and to immune function specifically. The roles of cytoskeletal dynamics in processes such as cell activation, cell migration, and phagocytosis are being elucidated. Dramatic progress has been made recently in understanding the mechanisms of leukocyte directional sensing, polarization, and chemotaxis. SUMMARY Leukocytes need to be activated, polarize, change shape, move, or phagocytose in response to their environment. Leukocytes accomplish these processes by remodeling their cytoskeleton, the active musculoskeletal system of the cell that is not just the ultimate effector of motile responses but is also a dynamic framework for subcellular organization and regional signaling. Active areas of research include the direct and indirect reciprocal interactions between the cytoskeleton and the membrane and among cytoskeletal elements. The pervasive and multi-layered roles played by small GTPases of the Rho family and phosphoinositides in leukocyte function are also becoming clearer.
Collapse
Affiliation(s)
- Gabriel Fenteany
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607-7061, USA.
| | | |
Collapse
|
409
|
Vakevainen M, Greenberg S, Hansen EJ. Inhibition of phagocytosis by Haemophilus ducreyi requires expression of the LspA1 and LspA2 proteins. Infect Immun 2003; 71:5994-6003. [PMID: 14500520 PMCID: PMC201102 DOI: 10.1128/iai.71.10.5994-6003.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus ducreyi previously has been shown to inhibit the phagocytosis of both secondary targets and itself by certain cells in vitro. Wild-type H. ducreyi strain 35000HP contains two genes, lspA1 and lspA2, whose encoded protein products are predicted to be 456 and 543 kDa, respectively. An isogenic mutant of H. ducreyi 35000HP with inactivated lspA1 and lspA2 genes has been shown to exhibit substantially decreased virulence in the temperature-dependent rabbit model for chancroid. This lspA1 lspA2 mutant was tested for its ability to inhibit phagocytosis of immunoglobulin G-opsonized particles by differentiated HL-60 and U-937 cells and by J774A.1 cells. The wild-type strain H. ducreyi 35000HP readily inhibited phagocytosis, whereas the lspA1 lspA2 mutant was unable to inhibit phagocytosis. Similarly, the wild-type strain was resistant to phagocytosis, whereas the lspA1 lspA2 mutant was readily engulfed by phagocytes. This inhibitory effect of wild-type H. ducreyi on phagocytic activity was primarily associated with live bacterial cells but could also be found, under certain conditions, in concentrated H. ducreyi culture supernatant fluids that lacked detectable outer membrane fragments. Both the wild-type strain and the lspA1 lspA2 mutant attached to phagocytes at similar levels. These results indicate that the LspA1 and LspA2 proteins of H. ducreyi are involved, directly or indirectly, in the antiphagocytic activity of this pathogen, and they provide a possible explanation for the greatly reduced virulence of the lspA1 lspA2 mutant.
Collapse
Affiliation(s)
- Merja Vakevainen
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9048, USA
| | | | | |
Collapse
|
410
|
Affiliation(s)
- Antonio Jacinto
- Instituto Gulbenkian de Ciencia, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | | |
Collapse
|
411
|
Berry CC, Wells S, Charles S, Curtis ASG. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 2003; 24:4551-7. [PMID: 12950997 DOI: 10.1016/s0142-9612(03)00237-0] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Magnetic nanoparticles have been used for biomedical purposes for several years. In recent years, nanotechnology has developed to a stage that makes it possible to engineer particles to provide opportunities for the site-specific delivery of drugs. To this end a variety of iron oxide particles have been synthesised. The size and surface of the particles are crucial factors in the application of the particles. This study therefore involves the use of magnetic nanoparticles synthesised and derivatised with either dextran or albumin, compared to identical underivatised plain particles. This influence in vitro was assessed using human dermal fibroblasts and various techniques to observe cell-particles interaction, including light and fluorescence microscopy, scanning and transmission electron microscopy. The results indicate that the derivatised particles induce alterations in cell behaviour and morphology distinct from the plain particles, suggesting that cell response can be directed via specifically engineered particle surfaces.
Collapse
Affiliation(s)
- Catherine C Berry
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, Scotland, UK.
| | | | | | | |
Collapse
|
412
|
Forsberg M, Druid P, Zheng L, Stendahl O, Särndahl E. Activation of Rac2 and Cdc42 on Fc and complement receptor ligation in human neutrophils. J Leukoc Biol 2003; 74:611-9. [PMID: 12960248 DOI: 10.1189/jlb.1102525] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Phagocytosis is a complex process engaging a concerted action of signal-transduction cascades that leads to ingestion, subsequent phagolysosome fusion, and oxidative activation. We have previously shown that in human neutrophils, C3bi-mediated phagocytosis elicits a significant oxidative response, suggesting that activation of the small GTPase Rac is involved in this process. This is contradictory to macrophages, where only Fc receptor for immunoglobulin G (FcgammaR)-mediated activation is Rac-dependent. The present study shows that engagement of the complement receptor 3 (CR3) and FcgammaR and CR3- and FcgammaR-mediated phagocytosis activates Rac, as well as Cdc42. Furthermore, following receptor-engagement of the CR3 or FcgammaRs, a downstream target of these small GTPases, p21-activated kinase, becomes phosphorylated, and Rac2 is translocated to the membrane fraction. Using the methyltransferase inhibitors N-acetyl-S-farnesyl-L-cysteine and N-acetyl-S-geranylgeranyl-L-cysteine, we found that the phagocytic uptake of bacteria was not Rac2- or Cdc42-dependent, whereas the oxidative activation was decreased. In conclusion, our results indicate that in neutrophils, Rac2 and Cdc42 are involved in FcR- and CR3-induced activation and for properly functioning signal transduction involved in the generation of oxygen radicals.
Collapse
Affiliation(s)
- Maria Forsberg
- Department of Cell Biology, Faculty of Health Sciences, Linköping University, Sweden
| | | | | | | | | |
Collapse
|
413
|
Gasman S, Chasserot-Golaz S, Bader MF, Vitale N. Regulation of exocytosis in adrenal chromaffin cells: focus on ARF and Rho GTPases. Cell Signal 2003; 15:893-9. [PMID: 12873702 DOI: 10.1016/s0898-6568(03)00052-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neurons and neuroendocrine cells release transmitters and hormones by exocytosis, a highly regulated process in which secretory vesicles or granules fuse with the plasma membrane to release their contents in response to a calcium trigger. Several stages have been recognized in exocytosis. After recruitment and docking at the plasma membrane, vesicles/granules enter a priming step, which is then followed by the fusion process. Cortical actin remodelling accompanies the exocytotic reaction, but the links between actin dynamics and trafficking events remain poorly understood. Here, we review the action of Rho and ADP-ribosylation factor (ARF) GTPases within the exocytotic pathway in adrenal chromaffin cells. Rho proteins are well known for their pivotal role in regulating the actin cytoskeleton. ARFs were originally identified as regulators of vesicle transport within cells. The possible interplay between these two families of GTPases and their downstream effectors provides novel insights into the mechanisms that govern exocytosis.
Collapse
Affiliation(s)
- Stéphane Gasman
- CNRS UPR-2356 Neurotransmission et Sécrétion Neuroendocrine, Centre de Neurochimie, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | | | | | | |
Collapse
|
414
|
McCaw SE, Schneider J, Liao EH, Zimmermann W, Gray-Owen SD. Immunoreceptor tyrosine-based activation motif phosphorylation during engulfment of Neisseria gonorrhoeae by the neutrophil-restricted CEACAM3 (CD66d) receptor. Mol Microbiol 2003; 49:623-37. [PMID: 12864848 DOI: 10.1046/j.1365-2958.2003.03591.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Gonorrhea is characterized by a purulent urethral or cervical discharge consisting primarily of neutrophils associated with Neisseria gonorrhoeae. These interactions are facilitated by gonococcal colony opacity-associated (Opa) protein binding to host cellular CEACAM receptors. Of these, CEACAM3 is restricted to neutrophils and contains an immunoreceptor tyrosine-based activation motif (ITAM) reminiscent of that found within certain phagocytic Fc receptors. CEACAM3 was tyrosine phosphorylated by a Src family kinase-dependent process upon infection by gonococci expressing CEACAM-specific Opa proteins. This phosphorylation was necessary for efficient bacterial uptake; however, a less efficient uptake process became evident when kinase inhibitors or mutagenesis of the ITAM were used to prevent phosphorylation. Ligated CEACAM3 was recruited to a cytoskeleton-containing fraction, intense foci of polymerized actin were evident where bacteria attached to HeLa-CEACAM3, and disruption of polymerized actin by cytochalasin D blocked all bacterial uptake by these cells. These data support a model whereby CEACAM3 can mediate the Opa-dependent uptake of N. gonorrhoeae via either an efficient, ITAM phosphorylation-dependent process that resembles phagocytosis or a less efficient, tyrosine phosphorylation-independent mechanism.
Collapse
Affiliation(s)
- Shannon E McCaw
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
415
|
Sano H, Hsu DK, Apgar JR, Yu L, Sharma BB, Kuwabara I, Izui S, Liu FT. Critical role of galectin-3 in phagocytosis by macrophages. J Clin Invest 2003. [DOI: 10.1172/jci200317592] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
416
|
Pearson AM, Baksa K, Rämet M, Protas M, McKee M, Brown D, Ezekowitz RAB. Identification of cytoskeletal regulatory proteins required for efficient phagocytosis in Drosophila. Microbes Infect 2003; 5:815-24. [PMID: 12919849 DOI: 10.1016/s1286-4579(03)00157-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phagocytosis is a complex and apparently evolutionarily conserved process that plays a central role in the immune response to infection. By ultrastructural and functional criteria, Drosophila hemocyte (macrophage) phagocytosis resembles mammalian phagocytosis. Using a non-saturated forward genetic screen for larval hemocyte phagocytosis mutants, D-SCAR and profilin were identified as important regulators of phagocytosis in Drosophila. In both hemocytes ex vivo and the macrophage-like S2 cell line, lack of D-SCAR significantly decreased phagocytosis of Escherichia coli and Staphylococcus aureus. In contrast, profilin mutant hemocytes exhibited increased phagocytic activity. Analysis of double mutants suggests that D-SCAR and profilin interact during phagocytosis. Finally, RNA interference studies in S2 cells indicated that the D-SCAR homolog D-WASp also participates in phagocytosis. This study demonstrates that Drosophila provides a viable model system in which to dissect the complex interactions that regulate phagocytosis.
Collapse
Affiliation(s)
- Alan M Pearson
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
417
|
Niedergang F, Colucci-Guyon E, Dubois T, Raposo G, Chavrier P. ADP ribosylation factor 6 is activated and controls membrane delivery during phagocytosis in macrophages. J Cell Biol 2003; 161:1143-50. [PMID: 12810696 PMCID: PMC2172982 DOI: 10.1083/jcb.200210069] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Engulfment of particles by phagocytes is induced by their interaction with specific receptors on the cell surface, which leads to actin polymerization and the extension of membrane protrusions to form a closed phagosome. Membrane delivery from internal pools is considered to play an important role in pseudopod extension during phagocytosis. Here, we report that endogenous ADP ribosylation factor 6 (ARF6), a small GTP-binding protein, undergoes a sharp and transient activation in macrophages when phagocytosis was initiated via receptors for the Fc portion of immunoglobulins (FcRs). A dominant-negative mutant of ARF6 (T27N mutation) dramatically affected FcR-mediated phagocytosis. Expression of ARF6-T27N lead to a reduction in the focal delivery of vesicle-associated membrane protein 3+ endosomal recycling membranes at phagocytosis sites, whereas actin polymerization was unimpaired. This resulted in an early blockade in pseudopod extension and accumulation of intracellular vesicles, as observed by electron microscopy. We conclude that ARF6 is a major regulator of membrane recycling during phagocytosis.
Collapse
Affiliation(s)
- Florence Niedergang
- Membrane and Cytoskeleton Dynamics Laboratory, UMR144 CNRS, Institut Curie, 26 rue d'Ulm, F-75248 Paris cedex 05, France.
| | | | | | | | | |
Collapse
|
418
|
Abstract
Pathogen entry into cells occurs by direct penetration of the plasma membrane, clathrin-mediated endocytosis, caveolar endocytosis, pinocytosis or macropinocytosis. For a particular agent, the infectious pathways are typically restricted, reflecting a tight relationship with the host. Here, we survey the uptake process of human adenovirus (Ad) type 2 and 5 and integrate it into the cell biology of endocytosis. Ad2 and Ad5 naturally infect respiratory epithelial cells. They bind to a primary receptor, the coxsackie virus B Ad receptor (CAR). The CAR-docked particles activate integrin coreceptors and this triggers a variety of cell responses, including endocytosis. Ad2/Ad5 endocytosis is clathrin-mediated and involves the large GTPase dynamin and the adaptor protein 2. A second endocytic process is induced simultaneously with viral uptake, macropinocytosis. Together, these pathways are associated with viral infection. Macropinocytosis requires integrins, F-actin, protein kinase C and small G-proteins of the Rho family, but not dynamin. Macropinocytosis per se is not required for viral uptake into epithelial cells, but it appears to be a productive entry pathway of Ad artificially targeted to the high-affinity Fcgamma receptor CD64 of hematopoietic cells lacking CAR. In epithelial and hematopoietic cells, the macropinosomal contents are released to the cytosol. This requires viral signalling from the surface and coincides with particle escape from endosomes and infection. It emerges that incoming Ad2 and Ad5 distinctly modulate the endocytic trafficking and disrupt selective cellular compartments. These features can be exploited for effective artificial targeting of Ad vectors to cell types of interest.
Collapse
Affiliation(s)
- Oliver Meier
- Zoologisches Institut der Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | |
Collapse
|
419
|
Abstract
Eukaryotic cells use actin polymerization to change shape, move, and internalize extracellular materials by phagocytosis and endocytosis, and to form contractile structures. In addition, several pathogens have evolved to use host cell actin assembly for attachment, internalization, and cell-to-cell spread. Although cells possess multiple mechanisms for initiating actin polymerization, attention in the past five years has focused on the regulation of actin nucleation-the formation of new actin filaments from actin monomers. The Arp2/3 complex and the multiple nucleation-promoting factors (NPFs) that regulate its activity comprise the only known cellular actin-nucleating factors and may represent a universal machine, conserved across eukaryotic phyla, that nucleates new actin filaments for various cellular structures with numerous functions. This review focuses on our current understanding of the mechanism of actin nucleation by the Arp2/3 complex and NPFs and how these factors work with other cytoskeletal proteins to generate structurally and functionally diverse actin arrays in cells.
Collapse
Affiliation(s)
- Matthew D Welch
- Department of Molecular and Cell Biology, 301 LSA, University of California, Berkeley 94720-3200, USA.
| | | |
Collapse
|
420
|
Abstract
Although vesicular trafficking is essential for a large variety of cellular processes, the regulation of vesicular trafficking is still poorly understood. Members of the Rho family of small GTPases have recently emerged as important control elements of many stages of vesicular trafficking, providing new insight into the regulation of these events. We will discuss the diverse roles played by Rho proteins in membrane trafficking and focus on the biological implications of these functions.
Collapse
Affiliation(s)
- Marc Symons
- Center for Oncology and Cell Biology, North Shore-LIJ Research Institute, 350 Community Dr., Manhasset, New York 11030, USA.
| | | |
Collapse
|
421
|
Agero U, Monken CH, Ropert C, Gazzinelli RT, Mesquita ON. Cell surface fluctuations studied with defocusing microscopy. PHYSICAL REVIEW E 2003; 67:051904. [PMID: 12786175 DOI: 10.1103/physreve.67.051904] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2002] [Indexed: 11/07/2022]
Abstract
Phase objects can become visible by slightly defocusing an optical microscope, a technique seldom used as a useful tool. We revisited the theory of defocusing and apply it to our optical microscope with optics corrected at infinity. In our approximation, we obtain that the image contrast is proportional to the two-dimensional (2D) Laplacian of the phase difference introduced by the phase object. If the index of refraction of the phase object is uniform the image obtained from defocusing microscopy is the image of curvature (Laplacian of the local thickness) of the phase object, while standard phase-contrast microscopy gives information about the thickness of the object. We made artificial phase objects and measured image contrasts with defocusing microscopy. Measured contrasts are in excellent agreement with our theoretical model. We use defocusing microscopy to study curvature fluctuations (ruffles) on the surface of macrophages (cell of the innate immune system), and try to correlate mechanical properties of macrophage surface and phagocytosis. We observe large coherent propagating structures: Their shape, speed, density are measured and curvature energy estimated. Inhomogeneities of cytoskeleton refractive index, curvature modulations due to thermal fluctuations and/or periodic changes in cytoskeleton-membrane interactions cause random fluctuations in image contrast. From the temporal and spatial contrast correlation functions, we obtain the decay time and correlation length of such fluctuations that are related to their size and the viscoelastic properties of the cytoskeleton. In order to associate the dynamics of cytoskeleton with the process of phagocytosis, we use an optical tweezers to grab a zymosan particle and put it into contact with the macrophage. We then measure the time for a single phagocytosis event. We add the drug cytochalasin D that depolymerizes the cytoskeleton F-actin network: It inhibits the large propagating coherent fluctuations on the cell surface, increases the relaxation time of cytoskeleton fluctuations, and increases the phagocytosis time. Our results suggest that the methods developed in this work can be of utility to assess the importance of cytoskeleton motility in the dynamics of cellular processes such as phagocytosis exhibited by macrophages.
Collapse
Affiliation(s)
- U Agero
- Departamento de Física, ICEX, Universidade Federal de Minas Gerais, Caixa Postal 702, Belo Horizonte, CEP 30123-970 Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
422
|
Abstract
In the past few years, an important question in microbiology has arisen from reports indicating that several pathogenic bacteria have evolved virulence factors directed towards a Ras subfamily of GTPases, namely the Rho GTPases. Progress made in studying both the virulence factors and the signaling pathways involving Rho GTPases has shed light on this crosstalk. One central question is raised by the findings that both activating and inactivating virulence factors that target Rho GTPases coexist in some pathogenic bacteria. Further studies on this peculiar aspect of the bacteria-host cell interactions, which leads to the outbreak of infectious diseases, might clarify whether this aspect of Rho GTPase activation or inactivation represents a finely adapted response of the pathogen for its own benefit or might lead to a reaction of the host against the bacteria.
Collapse
Affiliation(s)
- Patrice Boquet
- INSERM U452, IFR50, Faculty of Medicine 28 Avenue de Valombrose, 06107 Nice, France.
| | | |
Collapse
|
423
|
Abstract
F-actin cleavage was studied in PBMC after treatment with anti-dsDNA antibodies. Significant changes in F-actin disruption detected by decrease of FITC-phalloidin staining occurred after apoptosis induction with anti-dsDNA antibodies (p < 0.006). Despite of similar F-actin disruption, the switch of phosphatidylserine (PS) to the outer leaflet of the cell membrane as detected by annexin V binding was lower after anti-dsDNA antibody than without antibody treatment (58.4 +/- 11.0% vs. 81.9 +/- 7.7%). F-actin disruption was accompanied by activation of caspase 3 within the cytoplasm (r = -0.92599; p < 8.87446 x 10-(10)) under both conditions with and without autoantibodies. These findings indicate that anti-dsDNA antibody-induced apoptosis is more marked within the cell than upon the cell surface. The diminished externalization of PS might result in a decreased phagocytosis. Thereby, the reduced clearance of apoptotic cells could induce autoantibody production possibly against epitopes which arise due to the apoptotic disruption of cells.
Collapse
Affiliation(s)
- Ingrid Böhm
- Department of Radiology, University of Bonn, Sigmund-Freud Strasse 25, 53105 Bonn, Germany.
| |
Collapse
|
424
|
Häussler S, Rohde M, von Neuhoff N, Nimtz M, Steinmetz I. Structural and functional cellular changes induced by Burkholderia pseudomallei rhamnolipid. Infect Immun 2003; 71:2970-5. [PMID: 12704181 PMCID: PMC153222 DOI: 10.1128/iai.71.5.2970-2975.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study we report that extracellular Burkholderia pseudomallei rhamnolipid induced cytopathic changes characterized by retraction, rounding up, and, finally, detachment in phagocytic and nonphagocytic cell lines. These changes were due to a progressive reorganization of the F-actin network resulting in impaired cell cycle progression and a reduced phagocytic function of macrophages.
Collapse
Affiliation(s)
- S Häussler
- Institute of Medical Microbiology. Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover. German Research Centre for Biotechnology, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
425
|
Di A, Nelson DJ, Bindokas V, Brown ME, Libunao F, Palfrey HC. Dynamin regulates focal exocytosis in phagocytosing macrophages. Mol Biol Cell 2003; 14:2016-28. [PMID: 12802072 PMCID: PMC165094 DOI: 10.1091/mbc.e02-09-0626] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Phagocytosis in macrophages is thought to involve insertion of cytoplasmic vesicles at sites of membrane expansion before particle ingestion ("focal" exocytosis). Capacitance (Cm) measurements of cell surface area were biphasic, with an initial rise indicative of exocytosis followed by a fall upon phagocytosis. Unlike other types of regulated exocytosis, the Cm rise was insensitive to intracellular Ca2+, but was inhibited by guanosine 5'-O-(2-thio)diphosphate. Particle uptake, but not Cm rise, was affected by phosphatidylinositol 3-kinase inhibitors. Inhibition of actin polymerization eliminated the Cm rise, suggesting possible coordination between actin polymerization and focal exocytosis. Introduction of anti-pan-dynamin IgG blocked Cm changes, suggesting that dynamin controls focal exocytosis and thereby phagocytosis. Similarly, recombinant glutathione S-transferase*amphiphysin-SH3 domain, but not a mutated form that cannot bind to dynamin, inhibited both focal exocytosis and phagocytosis. Immunochemical analysis of endogenous dynamin distribution in macrophages revealed a substantial particulate pool, some of which localized to a presumptive endosomal compartment. Expression of enhanced green fluorescent protein*dynamin-2 showed a motile dynamin pool, a fraction of which migrated toward and within the phagosomal cup. These results suggest that dynamin is involved in the production and/or movement of vesicles from an intracellular organelle to the cell surface to support membrane expansion around the engulfed particle.
Collapse
Affiliation(s)
- Anke Di
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
426
|
Abstract
Pathogenic microbes subvert normal host-cell processes to create a specialized niche, which enhances their survival. A common and recurring target of pathogens is the host cell's cytoskeleton, which is utilized by these microbes for purposes that include attachment, entry into cells, movement within and between cells, vacuole formation and remodelling, and avoidance of phagocytosis. Our increased understanding of these processes in recent years has not only contributed to a greater comprehension of the molecular causes of infectious diseases, but has also revealed fundamental insights into normal functions of the cytoskeleton. From the use of bacterial toxins to investigate Rho family GTPases to in vitro studies of actin polymerization using Listeria and Shigella, the study of pathogenesis has provided important tools to probe cytoskeletal function.
Collapse
Affiliation(s)
- Samantha Gruenheid
- Biotechnology Laboratory, University of British Columbia, Vancouver, Canada V6T 1Z3
| | | |
Collapse
|
427
|
Abstract
Genomics and other high-throughput approaches, such as proteomics, are changing the way we study complex biological systems. In the past few years, these approaches have contributed markedly to improving our understanding of phagocytosis. Indeed, the ability to study biological systems by monitoring hundreds of proteins provides a level of resolution that is not attainable by the usual 'one protein at a time' approach. In this article, I discuss how proteomic approaches have revealed surprising findings that enable us to revisit established concepts, such as the origin of the phagosome membrane, and to propose new models of cell organization and the link between innate and adaptive immunity.
Collapse
Affiliation(s)
- Michel Desjardins
- Département de pathologie et biologie cellulaire, Université de Montréal and Caprion Pharmaceuticals, Montreal, Canada.
| |
Collapse
|
428
|
Oku T, Itoh S, Okano M, Suzuki A, Suzuki K, Nakajin S, Tsuji T, Nauseef WM, Toyoshima S. Two regions responsible for the actin binding of p57, a mammalian coronin family actin-binding protein. Biol Pharm Bull 2003; 26:409-16. [PMID: 12673016 DOI: 10.1248/bpb.26.409] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The actin-binding protein p57, a member of the coronin protein family, is expressed in a variety of immune cells. It has five WD repeats and a coiled-coil motif containing a leucine zipper, both of which are known to mediate protein-protein interactions. In order to identify the precise actin-binding regions in p57, and to assess the contribution of these structural motifs, we prepared various truncated p57 as fusion proteins with glutathione S-transferase (GST) and examined their actin-binding activity. A co-sedimentation assay demonstrated that p57(1-371) (C-terminal truncated p57) had the ability to bind F-actin, but p57(372-461) (a fragment containing the coiled-coil motif) did not. A segment consisting of the N-terminal 34 amino acids of p57 (p57(1-34)) was found to bind to F-actin in the co-sedimentation assay. Furthermore, fluorescence microscopic observation showed that p57(1-34) was co-localized with F-actin in COS-1 cells after the transfection with the p57(1-34) construct. Deletion of (10)KFRHVF(15), a sequence conserved among coronin-related proteins, from p57(1-34) abolished its actin-binding activity, suggesting that this sequence with basic and hydrophobic amino acids is crucial for p57 to bind to F-actin. However, the N-terminal deletion mutant p57(63-461) retained the binding ability to F-actin. This result suggests the presence of a second actin-binding region. Further deletion analysis revealed that p57(111-204), which includes the second and third WD repeats, also exhibited weak actin-binding activity in the co-sedimentation assay. Taken together, these data strongly suggest that at least two regions within Met-1 to Asp-34 and Ile-111 to Glu-204 of p57 are responsible for its binding to the actin cytoskeleton.
Collapse
Affiliation(s)
- Teruaki Oku
- Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
429
|
Holm A, Tejle K, Gunnarsson T, Magnusson KE, Descoteaux A, Rasmusson B. Role of protein kinase C alpha for uptake of unopsonized prey and phagosomal maturation in macrophages. Biochem Biophys Res Commun 2003; 302:653-8. [PMID: 12646218 DOI: 10.1016/s0006-291x(03)00231-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein kinase C alpha (PKC alpha) participates in F-actin remodeling during phagocytosis and phagosomal maturation in macrophages. Leishmania donovani promastigotes, which inhibit phagosomal maturation, cause accumulation of periphagosomal F-actin instead of the disassembly observed around other prey [Cell. Microbiol. 7 (2001) 439]. This accumulation is induced by promastigote lipophosphoglycan (LPG), which has several effects on macrophages including inhibition of PKC alpha. To investigate a possible connection between PKC alpha and LPG's effects on actin dynamics, we utilized RAW264.7 macrophages overexpressing dominant-negative PCK alpha (DN PKC alpha). We found increased cortical F-actin and decreased phagocytic capacity, as well as defective periphagosomal F-actin breakdown and inhibited phagosomal maturation in the DN PKC alpha-overexpressing cells, effects similar to those seen in controls subjected to LPG-coated prey. The results indicate that PKC alpha is involved in F-actin turnover in macrophages and that PKC alpha-dependent breakdown of periphagosomal F-actin is required for phagosomal maturation, and endorse the hypothesis that intracellular survival of L. donovani involves inhibition of PKC alpha by LPG.
Collapse
Affiliation(s)
- A Holm
- Division of Medical Microbiology, Department of Molecular and Clinical Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden.
| | | | | | | | | | | |
Collapse
|
430
|
|
431
|
Sankaranarayanan S, Atluri PP, Ryan TA. Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nat Neurosci 2003; 6:127-35. [PMID: 12536209 DOI: 10.1038/nn1002] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Accepted: 12/17/2002] [Indexed: 11/09/2022]
Abstract
We used actin tagged with enhanced green fluorescent protein (EGFP-actin) to characterize the distribution and dynamics of actin in living presynaptic terminals in rat CNS neurons. Actin was preferentially concentrated around--and appeared to surround--the presynaptic vesicle cluster. In resting terminals, approximately 30% of actin was found to be in a polymerized but dynamic state, with a remodeling time scale of approximately 20 s. During electrical activity, actin was further polymerized and recruited from nearby axonal regions to the regions surrounding vesicles. Treatment of terminals with the actin monomer-sequestering agent latrunculin-A completely dispersed the actin network and abolished activity-dependent actin dynamics. We used a variety of methods to examine the role of actin in the presynaptic vesicle cycle. These data rule out a propulsive role for actin, either in maintaining the vesicle cluster or in guiding vesicle recycling. Instead, we propose that actin acts as a scaffolding system for regulatory molecules in the nerve terminal.
Collapse
Affiliation(s)
- Sethuraman Sankaranarayanan
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
432
|
Durán JM, Valderrama F, Castel S, Magdalena J, Tomás M, Hosoya H, Renau-Piqueras J, Malhotra V, Egea G. Myosin motors and not actin comets are mediators of the actin-based Golgi-to-endoplasmic reticulum protein transport. Mol Biol Cell 2003; 14:445-59. [PMID: 12589046 PMCID: PMC149984 DOI: 10.1091/mbc.e02-04-0214] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have previously reported that actin filaments are involved in protein transport from the Golgi complex to the endoplasmic reticulum. Herein, we examined whether myosin motors or actin comets mediate this transport. To address this issue we have used, on one hand, a combination of specific inhibitors such as 2,3-butanedione monoxime (BDM) and 1-[5-isoquinoline sulfonyl]-2-methyl piperazine (ML7), which inhibit myosin and the phosphorylation of myosin II by the myosin light chain kinase, respectively; and a mutant of the nonmuscle myosin II regulatory light chain, which cannot be phosphorylated (MRLC2(AA)). On the other hand, actin comet tails were induced by the overexpression of phosphatidylinositol phosphate 5-kinase. Cells treated with BDM/ML7 or those that express the MRLC2(AA) mutant revealed a significant reduction in the brefeldin A (BFA)-induced fusion of Golgi enzymes with the endoplasmic reticulum (ER). This delay was not caused by an alteration in the formation of the BFA-induced tubules from the Golgi complex. In addition, the Shiga toxin fragment B transport from the Golgi complex to the ER was also altered. This impairment in the retrograde protein transport was not due to depletion of intracellular calcium stores or to the activation of Rho kinase. Neither the reassembly of the Golgi complex after BFA removal nor VSV-G transport from ER to the Golgi was altered in cells treated with BDM/ML7 or expressing MRLC2(AA). Finally, transport carriers containing Shiga toxin did not move into the cytosol at the tips of comet tails of polymerizing actin. Collectively, the results indicate that 1) myosin motors move to transport carriers from the Golgi complex to the ER along actin filaments; 2) nonmuscle myosin II mediates in this process; and 3) actin comets are not involved in retrograde transport.
Collapse
Affiliation(s)
- Juan M Durán
- Departament de Biologia Cel.lular i Anatomia Patològica, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
433
|
Ibrahim-Granet O, Philippe B, Boleti H, Boisvieux-Ulrich E, Grenet D, Stern M, Latgé JP. Phagocytosis and intracellular fate of Aspergillus fumigatus conidia in alveolar macrophages. Infect Immun 2003; 71:891-903. [PMID: 12540571 PMCID: PMC145364 DOI: 10.1128/iai.71.2.891-903.2003] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aspergillus fumigatus is the most prevalent airborne fungal pathogen responsible for fatal invasive aspergillosis in immunocompromised patients. Upon arrival in the lung alveolus, conidia of A. fumigatus are phagocytosed by alveolar macrophages, the major phagocytic cells of the lung. Engulfment and intracellular trafficking of A. fumigatus conidia in alveolar macrophages of two different origins, the murine cell line MH-S and human pulmonary alveolar macrophages, were analyzed by electron microscopy and immunofluorescence. Phagocytosis of A. fumigatus conidia required actin polymerization and phosphatidylinositol 3-kinase activity. Fusion of A. fumigatus phagosomes with early and late endosomes was shown by immunolabeling with specific markers for the transferrin receptor, early endosome antigen, and Rab7. Maturation of A. fumigatus phagolysosomes was monitored by using a fixable acidotropic probe, LysoTracker Red DND-99, and an anti-cathepsin D antibody. Bafilomycin A-induced inhibition of lysosomal acidification abolished the conidial killing by the macrophages. These data suggest that the maturation of A. fumigatus phagosomes results from fusion with the compartments of the endocytic pathway and that the killing of conidia depends on phagolysosome acidification. A model for the phagocytosis of A. fumigatus conidia by alveolar macrophages is proposed on the basis of these results.
Collapse
Affiliation(s)
- O Ibrahim-Granet
- Unité des Aspergillus, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
434
|
Araki N, Hatae T, Furukawa A, Swanson JA. Phosphoinositide-3-kinase-independent contractile activities associated with Fcgamma-receptor-mediated phagocytosis and macropinocytosis in macrophages. J Cell Sci 2003; 116:247-57. [PMID: 12482911 DOI: 10.1242/jcs.00235] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous studies have shown that Fcgamma receptor (FcR)-mediated phagocytosis and macropinocytosis in macrophages consist of two dissociable activities: a phosphoinositide 3-kinase (PI3K)-independent extension of phagocytic cups and a PI3K-dependent contractile mechanism that closes phagosomes and ruffles into intracellular organelles. Here, we identify an additional contractile activity that persists in the presence of the PI3K inhibitor wortmannin. ML-7, an inhibitor of myosin-light-chain kinase (MLCK), inhibited FcR-mediated phagocytosis, macropinocytosis and cell movements associated with ruffling. Scanning electron microscopy demonstrated a striking difference in morphology between phagocytic cups in the different inhibitors: whereas phagocytic cups of control cells and wortmannin-treated cells conformed closely to particles and appeared to have constricted them, the phagocytic cups in cells treated with ML-7 were more open. Video microscopy of macrophages expressing green-fluorescent-protein (GFP)-actin fusions revealed that bound IgG-opsonized erythrocytes were squeezed during phagosome formation and closure. In ML-7, GFP-actin-rich protrusions extended outward but failed to squeeze particles. Moreover, in contrast to the effects of PI3K inhibitors, ML-7 markedly reduced ruffle movement, and perturbed circular ruffle formation. These PI3K-independent myosin-II-based contractile activities that squeeze phagocytic cups and curve ruffles therefore represent a third component activity of the actin cytoskeleton during phagocytosis and macropinocytosis.
Collapse
Affiliation(s)
- Nobukazu Araki
- Department of Histology and Cell Biology, Kagawa Medical University, Miki, Kagawa 761-0793, Japan.
| | | | | | | |
Collapse
|
435
|
McGee K, Holmfeldt P, Fällman M. Microtubule-dependent regulation of Rho GTPases during internalisation of Yersinia pseudotuberculosis. FEBS Lett 2003; 533:35-41. [PMID: 12505155 DOI: 10.1016/s0014-5793(02)03745-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Internalisation of the human pathogen Yersinia pseudotuberculosis via interaction of bacterial invasin with host beta1 integrins depends on the actin cytoskeleton and involves Src family kinases, focal adhesion kinase, p130Crk-associated substrate, proline-rich tyrosine kinase 2, Rac, Arp 2/3 complex and WASP family members. We show here that Rho GTPases are regulated by the microtubule system during bacterial uptake. Interfering with microtubule organisation using nocodazole or paclitaxel suppressed uptake by HeLa cells. The nocodazole effect on microtubule depolymerisation was partially inhibited through overexpression of Rac, Cdc42, RhoG or RhoA and completely prevented by expression of Vav2. This suggests that microtubules influence Rho GTPases during invasin-mediated phagocytosis and in the absence of functional microtubules Vav2 can mimic their effect on one, or more, of the Rho family GTPases. Lastly, overexpression of p50 dynamitin partially inhibited bacterial uptake and this effect was also blocked by co-expression of Vav2, thus further implicating this guanine nucleotide exchange factor in activating Rho GTPases for internalisation during loss of microtubule function.
Collapse
Affiliation(s)
- Karen McGee
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
| | | | | |
Collapse
|
436
|
García‐García E, Rosales C. Signal transduction during Fc receptor‐mediated phagocytosis. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.6.1092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Erick García‐García
- Immunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| | - Carlos Rosales
- Immunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| |
Collapse
|
437
|
Botelho RJ, Tapper H, Furuya W, Mojdami D, Grinstein S. Fc gamma R-mediated phagocytosis stimulates localized pinocytosis in human neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4423-9. [PMID: 12370376 DOI: 10.4049/jimmunol.169.8.4423] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Engulfment of IgG-coated particles by neutrophils and macrophages is an essential component of the innate immune response. This process, known as phagocytosis, is triggered by clustering of FcgammaR at sites where leukocytes make contact with the opsonized particles. We found that phagocytosis is accompanied by a burst of fluid phase pinocytosis, which is largely restricted to the immediate vicinity of the phagosomal cup. FcgammaR-induced pinocytosis preceded and appeared to be independent of phagosomal sealing. Accordingly, fluid phase uptake was accentuated by actin depolymerization, which precludes phagocytosis. Stimulation of pinocytosis required phosphatidylinositol 3-kinase activity and was eliminated when changes in the cytosolic free Ca(2+) concentration were prevented. Because stimulation of FcgammaR also induces secretion, which is similarly calcium and phosphatidylinositol 3-kinase dependent, we studied the possible relationship between these events. Neutrophil fragments devoid of secretory granules (cytoplasts) were prepared by sedimentation through Ficoll gradients. Cytoplasts could perform FcgammaR-mediated phagocytosis, which was not accompanied by activation of pinocytosis. This observation suggests that granule exocytosis is required for stimulation of pinocytosis. Analysis of the cytosolic Ca(2+) dependence of secretion and pinocytosis suggests that primary (lysosomal) granule exocytosis is the main determinant of pinocytosis during FcgammaR stimulation. Importantly, primary granules are secreted in a polarized fashion near forming phagosomes. Focal pinocytosis during particle engulfment may contribute to Ag processing and presentation and/or to retrieval of components of the secretory machinery. Alternatively, it may represent an early event in the remodeling of the phagosomal membrane, leading to phagosomal maturation.
Collapse
Affiliation(s)
- Roberto J Botelho
- Program in Cell Biology, Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | |
Collapse
|
438
|
Dewitt S, Hallett MB. Cytosolic free Ca(2+) changes and calpain activation are required for beta integrin-accelerated phagocytosis by human neutrophils. J Cell Biol 2002; 159:181-9. [PMID: 12379807 PMCID: PMC2173489 DOI: 10.1083/jcb.200206089] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phagocytosis of microbes coated with opsonins such as the complement component C3bi is the key activity of neutrophils. However, the mechanism by which opsonins enhance the rate of phagocytosis by these cells is unknown and has been difficult to study, partly because of the problem of observing and quantifying the events associated with phagocytosis. In this study, C3bi-opsonized particles were presented to neutrophils with a micromanipulator, so that the events of binding, pseudopod cup formation, engulfment, and completion of phagocytosis were clearly defined and distinguished from those involved with chemotaxis. Using this approach in combination with simultaneous phase contrast and Ca(2+) imaging, the temporal relationship between changes in cytosolic free Ca(2+) concentration and phagocytosis were correlated. Here we show that whereas small, localized Ca(2+) changes occur at the site of particle attachment and cup formation as a result of store release, rapid engulfment of the particle required a global change in cytosolic free Ca(2+) which resulted from Ca(2+) influx. This latter rise in cytosolic free Ca(2+) concentration also liberated a fraction of beta2 integrin receptors which were initially immobile on the neutrophil surface, as demonstrable by both fluorescence recovery after laser bleaching and by visualization of localized beta2 integrin labelling. Inhibitors of calpain activation prevented both the Ca(2+)-induced liberation of beta2 integrin and the rapid stage of phagocytosis, despite the persistence of the global Ca(2+) signal. Therefore, we propose that Ca(2+) activation of calpain causes beta2 integrin liberation, and that this signal plays a key role in the acceleration of beta2 integrin-mediated phagocytosis.
Collapse
Affiliation(s)
- Sharon Dewitt
- Neutrophil Signalling Group, University Department of Surgery, University of Wales College of Medicine, Cardiff CF14 4XN, United Kingdom
| | | |
Collapse
|
439
|
Berón W, Gutierrez MG, Rabinovitch M, Colombo MI. Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics. Infect Immun 2002; 70:5816-21. [PMID: 12228312 PMCID: PMC128334 DOI: 10.1128/iai.70.10.5816-5821.2002] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The obligate intracellular bacterium Coxiella burnetii, the agent of Q fever in humans and of coxiellosis in other animals, survives and replicates within large, acidified, phagolysosome-like vacuoles known to fuse homo- and heterotypically with other vesicles. To further characterize these vacuoles, HeLa cells were infected with C. burnetii phase II; 48 h later, bacteria-containing vacuoles were labeled by LysoTracker, a marker of acidic compartments, and accumulated monodansylcadaverine and displayed protein LC3, both markers of autophagic vacuoles. Furthermore, 3-methyladenine and wortmannin, agents known to inhibit early stages in the autophagic process, each blocked Coxiella vacuole formation. These autophagosomal features suggest that Coxiella vacuoles interact with the autophagic pathway. The localization and role of wild-type and mutated Rab5 and Rab7, markers of early and late endosomes, respectively, were also examined to determine the role of these small GTPases in the trafficking of C. burnetii phase II. Green fluorescent protein (GFP)-Rab5 and GFP-Rab7 constructs were overexpressed and visualized by fluorescence microscopy. Coxiella-containing large vacuoles were labeled with wild-type Rab7 (Rab7wt) and with GTPase-deficient mutant Rab7Q67L, whereas no colocalization was observed with the dominant-negative mutant Rab7T22N. The vacuoles were also decorated by GFP-Rab5Q79L but not by GFP-Rab5wt. These results suggest that Rab7 participates in the biogenesis of the parasitophorous vacuoles.
Collapse
Affiliation(s)
- Walter Berón
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza 5500, Argentina
| | | | | | | |
Collapse
|
440
|
Adachi R, Takeuchi K, Suzuki K. Antisense oligonucleotide to cofilin enhances respiratory burst and phagocytosis in opsonized zymosan-stimulated mouse macrophage J774.1 cells. J Biol Chem 2002; 277:45566-71. [PMID: 12297504 DOI: 10.1074/jbc.m207419200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phagocytes play a central role in the host defense system, and the relationship between the mechanism of their activation and cytoskeletal reorganization has been studied. We have previously reported a possible involvement of cofilin, an actin-binding protein, in phagocyte functions through its phosphorylation/dephosphorylation and translocation to the plasma membrane regions. In this work, we have obtained a new line of evidence showing an important role of cofilin in phagocyte functions using the mouse macrophage cell line J774.1 and an antisense oligonucleotide to cofilin. Upon stimulation with opsonized zymosan (OZ), cofilin was phosphorylated, and it accumulated around phagocytic vesicles. As the antisense oligonucleotide to cofilin, a 20-mer S-oligo corresponding to the sequence including the AUG translational initiation site was found to be effective. In the cells treated with the antisense oligonucleotide, the amount of cofilin was less than 30% of that in the control cells, and the level of F-actin was two or three times higher than that in the control cells before and throughout the cell activation. In the antisense oligonucleotide-treated cells, OZ-triggered superoxide production was three times faster than that in the control cells. Furthermore, phagocytosis of OZ was enhanced by the antisense. These results show that cofilin plays an essential role in the control of phagocyte function through regulation of actin filament dynamics.
Collapse
Affiliation(s)
- Reiko Adachi
- National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | |
Collapse
|
441
|
Bierne H, Cossart P. InlB, a surface protein ofListeria monocytogenesthat behaves as an invasin and a growth factor. J Cell Sci 2002; 115:3357-67. [PMID: 12154067 DOI: 10.1242/jcs.115.17.3357] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Molecules from some pathogenic bacteria mimic natural host cell ligands and trigger engulfment of the bacterium after specifically interacting with cell-surface receptors. The leucine-rich repeat (LRR)-containing protein InlB of Listeria monocytogenes is one such molecule. It triggers bacterial entry by interacting with the hepatocyte growth factor receptor (HGF-R or Met)and two other cellular components: gC1q-R and proteoglycans. Recent studies point to significant similarities between the molecular mechanisms underlying InlB-mediated entry into cells and classic phagocytosis. In addition, InlB, in common with HGF, activates signaling cascades that are not involved in bacterial entry. Therefore, studies of InlB may help us to analyze the previously noticed similarities between growth factor receptor activation and phagocytosis.
Collapse
Affiliation(s)
- Hélène Bierne
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris cedex 15, France
| | | |
Collapse
|
442
|
Howard MJ, Isacke CM. The C-type lectin receptor Endo180 displays internalization and recycling properties distinct from other members of the mannose receptor family. J Biol Chem 2002; 277:32320-31. [PMID: 12068012 DOI: 10.1074/jbc.m203631200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Endo180/urokinase plasminogen activator receptor-associated protein together with the mannose receptor, the phospholipase A(2) receptor, and DEC-205/MR6-gp200 comprise the four members of the mannose receptor family. These receptors have a unique structural composition due to the presence of multiple C-type lectin-like domains within a single polypeptide backbone. In addition, they are all constitutively internalized from the plasma membrane via clathrin-mediated endocytosis and recycled back to the cell surface. Endo180 is a multifunctional receptor displaying Ca(2+)-dependent lectin activity, collagen binding, and association with the urokinase plasminogen activator receptor, and it has a proposed role in extracellular matrix degradation and remodeling. Within their short cytoplasmic domains, all four receptors contain both a conserved tyrosine-based and dihydrophobic-based putative endocytosis motif. Unexpectedly, Endo180 was found to be distinct within the family in that the tyrosine-based motif is not required for efficient delivery to and recycling from early endosomes. By contrast, receptor internalization is completely dependent on the dihydrophobic motif and modulated by a conserved upstream acidic residue. Furthermore, unlike the mannose receptor, Endo180 does not function as a phagocytic receptor in vitro. These findings demonstrate that despite an overall structural similarity, members of this receptor family employ distinct trafficking mechanisms that may reflect important differences in their physiological functions.
Collapse
Affiliation(s)
- Matthew J Howard
- Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Rd., London SW3 6JB, United Kingdom
| | | |
Collapse
|
443
|
Gagnon E, Duclos S, Rondeau C, Chevet E, Cameron PH, Steele-Mortimer O, Paiement J, Bergeron JJM, Desjardins M. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 2002; 110:119-31. [PMID: 12151002 DOI: 10.1016/s0092-8674(02)00797-3] [Citation(s) in RCA: 502] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phagocytosis is a key aspect of our innate ability to fight infectious diseases. In this study, we have found that fusion of the endoplasmic reticulum (ER) with the macrophage plasmalemma, underneath phagocytic cups, is a source of membrane for phagosome formation in macrophages. Successive waves of ER become associated with maturing phagosomes during phagolysosome biogenesis. Thus, the ER appears to possess unexpectedly pluripotent fusion properties. ER-mediated phagocytosis is regulated in part by phosphatidylinositol 3-kinase and used for the internalization of inert particles and intracellular pathogens, regardless of their final trafficking in the host. In neutrophils, where pathogens are rapidly killed, the ER is not used as a major source of membrane for phagocytosis. We propose that intracellular pathogens have evolved to adapt and exploit ER-mediated phagocytosis to avoid destruction in host cells.
Collapse
Affiliation(s)
- Etienne Gagnon
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
444
|
Bruce-Staskal PJ, Weidow CL, Gibson JJ, Bouton AH. Cas, Fak and Pyk2 function in diverse signaling cascades to promote Yersinia uptake. J Cell Sci 2002; 115:2689-700. [PMID: 12077360 DOI: 10.1242/jcs.115.13.2689] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The interplay between pathogen-encoded virulence factors and host cell signaling networks is critical for both the establishment and clearance of microbial infections. Yersinia uptake into host cells serves as an in vitro model for exploring how host cells respond to Yersinia adherence. In this study, we provide insight into the molecular nature and regulation of signaling networks that contribute to the uptake process. Using a reconstitution approach in Fak-/- fibroblasts, we have been able to specifically address the interplay between Fak, Cas and Pyk2 in this process. We show that both Fak and Cas play roles in the Yersinia uptake process and that Cas can function in a novel pathway that is independent of Fak. Fak-dependent Yersinia uptake does not appear to involve Cas-Crk signaling. By contrast, Cas-mediated uptake in the absence of Fak requires Crk as well as the protein tyrosine kinases Pyk2 and Src. In spite of these differences, the requirement for Rac1 activity is a common feature of both pathways. Furthermore, blocking the function of either Fak or Cas induces similar morphological defects in Yersinia internalization, which are manifested by incomplete membrane protrusive activity that is consistent with an inhibition of Rac1 activity. Pyk2 also functions in Yersinia uptake by macrophages, which are physiologically important for clearing Yersinia infections. Taken together, these data provide new insight into the host cellular signaling networks that are initiated upon infection with Y. pseudotuberculosis. Importantly, these findings also contribute to a better understanding of other cellular processes that involve actin remodeling, including the host response to other microbial pathogens, cell adhesion and migration.
Collapse
Affiliation(s)
- Pamela J Bruce-Staskal
- Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville, VA 22908-0734, USA
| | | | | | | |
Collapse
|
445
|
Dumont JE, Dremier S, Pirson I, Maenhaut C. Cross signaling, cell specificity, and physiology. Am J Physiol Cell Physiol 2002; 283:C2-28. [PMID: 12055068 DOI: 10.1152/ajpcell.00581.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The literature on intracellular signal transduction presents a confusing picture: every regulatory factor appears to be regulated by all signal transduction cascades and to regulate all cell processes. This contrasts with the known exquisite specificity of action of extracellular signals in different cell types in vivo. The confusion of the in vitro literature is shown to arise from several causes: the inevitable artifacts inherent in reductionism, the arguments used to establish causal effect relationships, the use of less than adequate models (cell lines, transfections, acellular systems, etc.), and the implicit assumption that networks of regulations are universal whereas they are in fact cell and stage specific. Cell specificity results from the existence in any cell type of a unique set of proteins and their isoforms at each level of signal transduction cascades, from the space structure of their components, from their combinatorial logic at each level, from the presence of modulators of signal transduction proteins and of modulators of modulators, from the time structure of extracellular signals and of their transduction, and from quantitative differences of expression of similar sets of factors.
Collapse
Affiliation(s)
- J E Dumont
- Institute of Interdisciplinary Research, Free University of Brussels, Campus Erasme, B-1070 Brussels, Belgium.
| | | | | | | |
Collapse
|
446
|
Barreiro O, Yanez-Mo M, Serrador JM, Montoya MC, Vicente-Manzanares M, Tejedor R, Furthmayr H, Sanchez-Madrid F. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 2002; 157:1233-45. [PMID: 12082081 PMCID: PMC2173557 DOI: 10.1083/jcb.200112126] [Citation(s) in RCA: 456] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ezrin, radixin, and moesin (ERM) regulate cortical morphogenesis and cell adhesion by connecting membrane adhesion receptors to the actin-based cytoskeleton. We have studied the interaction of moesin and ezrin with the vascular cell adhesion molecule (VCAM)-1 during leukocyte adhesion and transendothelial migration (TEM). VCAM-1 interacted directly with moesin and ezrin in vitro, and all of these molecules colocalized at the apical surface of endothelium. Dynamic assessment of this interaction in living cells showed that both VCAM-1 and moesin were involved in lymphoblast adhesion and spreading on the endothelium, whereas only moesin participated in TEM, following the same distribution pattern as ICAM-1. During leukocyte adhesion in static or under flow conditions, VCAM-1, ICAM-1, and activated moesin and ezrin clustered in an endothelial actin-rich docking structure that anchored and partially embraced the leukocyte containing other cytoskeletal components such as alpha-actinin, vinculin, and VASP. Phosphoinositides and the Rho/p160 ROCK pathway, which participate in the activation of ERM proteins, were involved in the generation and maintenance of the anchoring structure. These results provide the first characterization of an endothelial docking structure that plays a key role in the firm adhesion of leukocytes to the endothelium during inflammation.
Collapse
Affiliation(s)
- Olga Barreiro
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
447
|
Maderna P, Cottell DC, Berlasconi G, Petasis NA, Brady HR, Godson C. Lipoxins induce actin reorganization in monocytes and macrophages but not in neutrophils: differential involvement of rho GTPases. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:2275-83. [PMID: 12057930 PMCID: PMC1850826 DOI: 10.1016/s0002-9440(10)61175-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Lipoxins (LXs) are endogenously produced eicosanoids that inhibit neutrophil trafficking and stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. In this study we assessed the effect of LXs on cell ultrastructure and actin reorganization in human leukocytes and investigated the signaling events that subserve LX bioactivity in this context. LXA(4) (10(-9) mol/L), the stable synthetic analogues 15-(R/S)-methyl-LXA(4) and 16-phenoxy-LXA(4) (10(-11) mol/L), but not the LX precursor 15-(S)-HETE, induced marked changes in ultrastructure and rearrangement of actin in monocytes and macrophages. In contrast, LXA(4) did not modify actin distribution in neutrophils under basal conditions and after stimulation with leukotriene B(4). Blockade of Rho kinases by the inhibitor Y-27632 prevented LXA(4)-triggered actin reorganization in macrophages. To investigate the role of the specific small GTPases in LX-induced actin rearrangement we used THP-1 cells differentiated to a macrophage-like phenotype. THP-1 cells stimulated with LXs, but not with 15-(S)-HETE, showed an increase in membrane-associated RhoA and Rac by immunoblotting. Additionally, a twofold increase in Rho activity was seen in response to LXA(4). LX-induced actin rearrangement and RhoA activation were inhibited by the cell permeable cAMP analogue 8-Br-cAMP, whereas Rp-cAMP, an inhibitor of protein kinase A, mimicked the effect of LXA(4). These data demonstrate that LXs stimulate RhoA- and Rac-dependent cytoskeleton reorganization, contributing to the potential role of LXs in the resolution of inflammation.
Collapse
Affiliation(s)
- Paola Maderna
- Centre for Molecular Inflammation and Vascular Research, Mater Misericordiae Hospital, the Department of Medicine and Therapeutics, University College Dublin and Dublin Molecular Medicine Centre, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
448
|
Hoe NP, Ireland RM, DeLeo FR, Gowen BB, Dorward DW, Voyich JM, Liu M, Burns EH, Culnan DM, Bretscher A, Musser JM. Insight into the molecular basis of pathogen abundance: group A Streptococcus inhibitor of complement inhibits bacterial adherence and internalization into human cells. Proc Natl Acad Sci U S A 2002; 99:7646-51. [PMID: 12032337 PMCID: PMC124310 DOI: 10.1073/pnas.112039899] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcal inhibitor of complement (Sic) is a secreted protein made predominantly by serotype M1 Group A Streptococcus (GAS), which contributes to persistence in the mammalian upper respiratory tract and epidemics of human disease. Unexpectedly, an isogenic sic-negative mutant adhered to human epithelial cells significantly better than the wild-type parental strain. Purified Sic inhibited the adherence of a sic negative serotype M1 mutant and of non-Sic-producing GAS strains to human epithelial cells. Sic was rapidly internalized by human epithelial cells, inducing cell flattening and loss of microvilli. Ezrin and moesin, human proteins that functionally link the cytoskeleton to the plasma membrane, were identified as Sic-binding proteins by affinity chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. Sic colocalized with ezrin inside epithelial cells and bound to the F-actin-binding site region located in the carboxyl terminus of ezrin and moesin. Synthetic peptides corresponding to two regions of Sic had GAS adherence-inhibitory activity equivalent to mature Sic and inhibited binding of Sic to ezrin. In addition, the sic mutant was phagocytosed and killed by human polymorphonuclear leukocytes significantly better than the wild-type strain, and Sic colocalized with ezrin in discrete regions of polymorphonuclear leukocytes. The data suggest that binding of Sic to ezrin alters cellular processes critical for efficient GAS contact, internalization, and killing. Sic enhances bacterial survival by enabling the pathogen to avoid the intracellular environment. This process contributes to the abundance of M1 GAS in human infections and their ability to cause epidemics.
Collapse
Affiliation(s)
- Nancy P Hoe
- Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
449
|
Pelkmans L, Püntener D, Helenius A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 2002; 296:535-9. [PMID: 11964480 DOI: 10.1126/science.1069784] [Citation(s) in RCA: 547] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Simian virus 40 (SV40) utilizes endocytosis through caveolae for infectious entry into host cells. We found that after binding to caveolae, virus particles induced transient breakdown of actin stress fibers. Actin was then recruited to virus-loaded caveolae as actin patches that served as sites for actin "tail" formation. Dynamin II was also transiently recruited. These events depended on the presence of cholesterol and on the activation of tyrosine kinases that phosphorylated proteins in caveolae. They were necessary for formation of caveolae-derived endocytic vesicles and for infection of the cell. Thus, caveolar endocytosis is ligand-triggered and involves extensive rearrangement of the actin cytoskeleton.
Collapse
Affiliation(s)
- Lucas Pelkmans
- Swiss Federal Institute of Technology Zurich (ETHZ), HPM1 Building, ETH Hönggerberg, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
450
|
Abstract
Animals have an immune system to fight off challenges from both viruses and bacteria. The first line of defence is innate immunity, which is composed of cells that engulf pathogens as well as cells that release potent signalling molecules to activate an inflammatory response and the adaptive immune system. Pathogenic bacteria have evolved a set of weapons, or effectors, to ensure survival in the host. Yersinia spp. use a type III secretion system to translocate these effector proteins, called Yops, into the host. This report outlines how Yops thwart the signalling machinery of the host immune system.
Collapse
Affiliation(s)
- Stephen J Juris
- University of Michigan, 1301 East Catherine, 4433 Medical Science I, Ann Arbor, MI 48109-0606, USA
| | | | | |
Collapse
|