401
|
Fredens J, Færgeman NJ. Quantitative proteomics by amino acid labeling identifies novel NHR-49 regulated proteins in C. elegans. WORM 2013; 1:66-71. [PMID: 24058826 PMCID: PMC3670175 DOI: 10.4161/worm.19044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stable isotope labeling by amino acids combined with mass spectrometry is a widely used methodology to quantitatively examine metabolic and signaling pathways in yeast, fruit flies, plants, cell cultures and mice. However, only metabolic labeling using 15N has been applied to examine such events in the nematode Caenorhabditis elegans. We have recently shown that C. elegans can be completely labeled with heavy-labeled lysine by feeding worms on prelabeled lysine auxotroph Escherichia coli for just one generation. We applied this methodology to examine the organismal response to functional loss or RNAi mediated knock down of the transcription factor NHR-49, and found numerous proteins involved in lipid metabolism to be downregulated, which is consistent with its previously proposed function as a transcriptional regulator of fatty acid metabolism. The combined use of quantitative proteomics and selective gene knockdown by RNAi provides a powerful tool with broad implications for C. elegans biology.
Collapse
Affiliation(s)
- Julius Fredens
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; Odense, Denmark
| | | |
Collapse
|
402
|
Kossack N, Terwort N, Wistuba J, Ehmcke J, Schlatt S, Schöler H, Kliesch S, Gromoll J. A combined approach facilitates the reliable detection of human spermatogonia in vitro. Hum Reprod 2013; 28:3012-25. [PMID: 24001715 DOI: 10.1093/humrep/det336] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Does a combined approach allow for the unequivocal detection of human germ cells and particularly of spermatogonia in vitro? SUMMARY ANSWER Based on our findings, we conclude that an approach comprising: (i) the detailed characterization of patients and tissue samples prior to the selection of biopsies, (ii) the use of unambiguous markers for the characterization of cultures and (iii) the use of biopsies lacking the germ cell population as a negative control is the prerequisite for the establishment of human germ cell cultures. WHAT IS KNOWN ALREADY The use of non-specific marker genes and the failure to assess the presence of testicular somatic cell types in germ cell cultures may have led to a misinterpretation of results and the erroneous description of germ cells in previous studies. STUDY DESIGN, SIZE, DURATION Testicular biopsies were selected from a pool of 264 consecutively obtained biopsies. Based on the histological diagnosis, biopsies with distinct histological phenotypes were selected (n = 35) to analyze the expression of germ cell and somatic cell markers. For germ cell culture experiments, gonadotrophin levels and clinical data were used as selection criteria resulting in the following two groups: (i) biopsies with qualitatively intact spermatogenesis (n = 4) and (ii) biopsies from Klinefelter syndrome Klinefelter patients lacking the germ cell population (n = 3). PARTICIPANTS/MATERIALS, SETTING, METHODS Quantitative real-time PCR analyses were performed to evaluate the specificity of 18 selected germ cell and 3 somatic marker genes. Cell specificity of individual markers was subsequently validated using immunohistochemistry. Finally, testicular cell cultures were established and were analyzed after 10 days for the expression of germ cell- (UTF1, FGFR3, MAGE A4, DDX4) and somatic cell-specific markers (SMA, VIM, LHCGR) at the RNA and the protein levels. MAIN RESULTS AND THE ROLE OF CHANCE Interestingly, only 9 out of 18 marker genes reflected the presence of germ cells and cell specificity could be validated using immunohistochemistry. Furthermore, VIM, SMA and LHCGR were found to reflect the presence of testicular somatic cells at the RNA and the protein levels. Using this validated marker panel and biopsies lacking the germ cell population (n = 3) as a negative control, we demonstrated that germ cell cultures containing spermatogonia can be established from biopsies with normal spermatogenesis (n = 4) and that these cultures can be maintained for the period of 10 days. However, marker profiling has to be performed at regular time points as the composition of testicular cell types may continuously change under longer term culture conditions. LIMITATIONS, REASONS FOR CAUTION There are significant differences regarding the spermatogonial stem cell (SSC) system and spermatogenesis between rodents and primates. It is therefore possible that marker genes that do not reflect the presence of spermatogonia in the human are specific for spermatogonia in other animal models. WIDER IMPLICATIONS OF THE FINDINGS While some studies have reported that human SSCs can be maintained in vitro and show characteristics of pluripotency, the germ cell origin and the differentiation potential of these cells were subsequently called into question. This study provides critical insights into possible sources for the misinterpretation of results regarding the presence of germ cells in human testicular cell cultures and our findings can therefore help to avoid conflicting reports in the future. STUDY FUNDING/COMPETING INTEREST(S) This project was supported by the Stem Cell Network North Rhine-Westphalia and the Innovative Medical Research of the University of Münster Medical School (Grant KO111014). In addition, it was funded by the DFG-Research Unit FOR 1041 Germ Cell Potential (GR 1547/11-1 and SCHL 394/11-2), the BMBF (01GN0809/10) and the IZKF (CRA 03/09). The authors declare that there is no conflict of interest. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- N Kossack
- Institute for Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Albert-Schweitzer-Campus 1 (D11), Münster 48149, Germany
| | | | | | | | | | | | | | | |
Collapse
|
403
|
Schauer KL, Freund DM, Prenni JE, Curthoys NP. Proteomic profiling and pathway analysis of the response of rat renal proximal convoluted tubules to metabolic acidosis. Am J Physiol Renal Physiol 2013; 305:F628-40. [PMID: 23804448 PMCID: PMC3761203 DOI: 10.1152/ajprenal.00210.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/13/2013] [Indexed: 01/10/2023] Open
Abstract
Metabolic acidosis is a relatively common pathological condition that is defined as a decrease in blood pH and bicarbonate concentration. The renal proximal convoluted tubule responds to this condition by increasing the extraction of plasma glutamine and activating ammoniagenesis and gluconeogenesis. The combined processes increase the excretion of acid and produce bicarbonate ions that are added to the blood to partially restore acid-base homeostasis. Only a few cytosolic proteins, such as phosphoenolpyruvate carboxykinase, have been determined to play a role in the renal response to metabolic acidosis. Therefore, further analysis was performed to better characterize the response of the cytosolic proteome. Proximal convoluted tubule cells were isolated from rat kidney cortex at various times after onset of acidosis and fractionated to separate the soluble cytosolic proteins from the remainder of the cellular components. The cytosolic proteins were analyzed using two-dimensional liquid chromatography and tandem mass spectrometry (MS/MS). Spectral counting along with average MS/MS total ion current were used to quantify temporal changes in relative protein abundance. In all, 461 proteins were confidently identified, of which 24 exhibited statistically significant changes in abundance. To validate these techniques, several of the observed abundance changes were confirmed by Western blotting. Data from the cytosolic fractions were then combined with previous proteomic data, and pathway analyses were performed to identify the primary pathways that are activated or inhibited in the proximal convoluted tubule during the onset of metabolic acidosis.
Collapse
Affiliation(s)
- Kevin L Schauer
- Dept. of Biochemistry and Molecular Biology, Colorado State Univ., Campus Delivery 1870, Ft. Collins, CO 80523-1870, USA
| | | | | | | |
Collapse
|
404
|
Nagasawa K, Tanizaki Y, Okui T, Watarai A, Ueda S, Kato T. Significant modulation of the hepatic proteome induced by exposure to low temperature in Xenopus laevis. Biol Open 2013; 2:1057-69. [PMID: 24167716 PMCID: PMC3798189 DOI: 10.1242/bio.20136106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 07/22/2013] [Indexed: 01/24/2023] Open
Abstract
The African clawed frog, Xenopus laevis, is an ectothermic vertebrate that can survive at low environmental temperatures. To gain insight into the molecular events induced by low body temperature, liver proteins were evaluated at the standard laboratory rearing temperature (22°C, control) and a low environmental temperature (5°C, cold exposure). Using nano-flow liquid chromatography coupled with tandem mass spectrometry, we identified 58 proteins that differed in abundance. A subsequent Gene Ontology analysis revealed that the tyrosine and phenylalanine catabolic processes were modulated by cold exposure, which resulted in decreases in hepatic tyrosine and phenylalanine, respectively. Similarly, levels of pyruvate kinase and enolase, which are involved in glycolysis and glycogen synthesis, were also decreased, whereas levels of glycogen phosphorylase, which participates in glycogenolysis, were increased. Therefore, we measured metabolites in the respective pathways and found that levels of hepatic glycogen and glucose were decreased. Although the liver was under oxidative stress because of iron accumulation caused by hepatic erythrocyte destruction, the hepatic NADPH/NADP ratio was not changed. Thus, glycogen is probably utilized mainly for NADPH supply rather than for energy or glucose production. In conclusion, X. laevis responds to low body temperature by modulating its hepatic proteome, which results in altered carbohydrate metabolism.
Collapse
Affiliation(s)
- Kazumichi Nagasawa
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Center for Advanced Life and Medical Science, Waseda University , TWIns Building, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480 , Japan
| | | | | | | | | | | |
Collapse
|
405
|
Nie J, An L, Miao K, Hou Z, Yu Y, Tan K, Sui L, He S, Liu Q, Lei X, Wu Z, Tian J. Comparative analysis of dynamic proteomic profiles between in vivo and in vitro produced mouse embryos during postimplantation period. J Proteome Res 2013; 12:3843-56. [PMID: 23841881 DOI: 10.1021/pr301044b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Assisted reproductive technology (ART) increasingly is associated with long-term side-effects on postnatal development and behaviors. High-throughput gene expression analysis has been extensively used to explore mechanisms responsible for these disorders. Our study, for the first time, provides a comparative proteomic analysis between embryos after in vivo fertilization and development (IVO, control) and in vitro fertilization and culture (IVP). By comparing the dynamic proteome during the postimplantation period, we identified 300 and 262 differentially expressed proteins (DEPs) between IVO and IVP embryos at embryonic day 7.5 (E7.5) and E10.5, respectively. Bioinformatic analysis showed many DEPs functionally associated with post-transcriptional, translational, and post-translational regulation, and these observations were consistent with correlation analysis between mRNA and protein abundance. In addition to altered gene expression due to IVP procedures, our findings suggest that aberrant processes at these various levels also contributed to proteomic alterations. In addition, numerous DEPs were involved in energy and amino acid metabolism, as well as neural and sensory development. These DEPs are potential candidates for further exploring the mechanism(s) of ART-induced intrauterine growth restriction and neurodevelopmental disorders. Moreover, significant enrichment of DEPs in pathways of neurodegenerative diseases implies the potentially increased susceptibility of ART offspring to these conditions as adults.
Collapse
Affiliation(s)
- Jingzhou Nie
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
406
|
Komar AA. "Naked" FACT is unstable. Cell Cycle 2013; 12:2347. [PMID: 23856583 PMCID: PMC3841312 DOI: 10.4161/cc.25661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease; Department of Biological, Geological and Environmental Sciences; Cleveland State University; Cleveland, OH USA
| |
Collapse
|
407
|
Ersland KM, Håvik B, Rinholm JE, Gundersen V, Stansberg C, Steen VM. LOC689986, a unique gene showing specific expression in restricted areas of the rodent neocortex. BMC Neurosci 2013; 14:68. [PMID: 23844656 PMCID: PMC3717020 DOI: 10.1186/1471-2202-14-68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 07/01/2013] [Indexed: 01/02/2023] Open
Abstract
Background The neocortex is a highly specialised and complex brain structure, involved in numerous tasks, ranging from processing and interpretation of somatosensory information, to control of motor functions. The normal function linked to distinct neocortical areas might involve control of highly specific gene expression, and in order to identify such regionally enriched genes, we previously analysed the global gene expression in three different cortical regions (frontomedial, temporal and occipital cortex) from the adult rat brain. We identified distinct sets of differentially expressed genes. One of these genes, namely the hypothetical protein LOC689986 (LOC689986), was of particular interest, due to an almost exclusive expression in the temporal cortex. Results Detailed analysis of LOC689986 in the adult rat brain confirmed the expression in confined areas of parieto-temporal cortex, and revealed highly specific expression in layer 4 of the somatosensory cortex, with sharp borders towards the neighbouring motor cortex. In addition, LOC689986 was found to be translated in vivo, and was detected in the somatosensory cortex and in the Purkinje cells of the cerebellar cortex. The protein was present in neuronal dendrites and also in astrocyte cells. Finally, this unique gene is apparently specific for, and highly conserved in, the vertebrate lineage. Conclusions In this study, we have partially characterised the highly conserved LOC689986 gene, which is specific to the vertebrate linage. The gene displays a distinct pattern of expression in layer 4 of the somatosensory cortex, and areas of the parieto-temporal cortex in rodents.
Collapse
Affiliation(s)
- Kari M Ersland
- Dr E, Martens Research Group for Biological Psychiatry, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | | | | | | | | | | |
Collapse
|
408
|
Baverstock K. Comments on Rithidech, K.N.; et al. Lack of genomic instability in bone marrow cells of SCID mice exposed whole-body to low-dose radiation. Int. J. Environ. Res. Public Health 2013, 10, 1356-1377. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:2732-4. [PMID: 23820534 PMCID: PMC3734453 DOI: 10.3390/ijerph10072732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/19/2013] [Indexed: 11/16/2022]
Abstract
I would like to take issue with Rithidech et al., authors of the paper entitled "Lack of genomic instability in mice at low doses" [1] who claim to have shown that their results on the measurement of late occurring chromosome aberrations after irradiation of SCID mice with X-rays show that lower doses (0.05 Gy) do not induce genomic instability. Their earlier work at higher doses (0.1 and 1.0 Gy) on the same strain of mouse indicated that de novo chromosome aberrations were detected at 6 months post-irradiation. This was taken, almost certainly correctly, to be an indication of the presence of genomic instability: late appearing chromosome damage, as the authors note, seems to be a reliable indicator of the process. The lack of de novo chromosome aberrations at 6 months post-irradiation, however, cannot be taken as evidence of the absence of genomic instability. In drawing their conclusion of a "lack of genomic instability …." the authors have committed two category errors.
Collapse
Affiliation(s)
- Keith Baverstock
- Department of Environmental Sciences, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.
| |
Collapse
|
409
|
Chen G, Chen J, Shi C, Shi L, Tong W, Shi T. Dissecting the Characteristics and Dynamics of Human Protein Complexes at Transcriptome Cascade Using RNA-Seq Data. PLoS One 2013; 8:e66521. [PMID: 23824284 PMCID: PMC3688907 DOI: 10.1371/journal.pone.0066521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/06/2013] [Indexed: 11/19/2022] Open
Abstract
Human protein complexes play crucial roles in various biological processes as the functional module. However, the expression features of human protein complexes at the transcriptome cascade are poorly understood. Here, we used the RNA-Seq data from 16 disparate tissues and four types of human cancers to explore the characteristics and dynamics of human protein complexes. We observed that many individual components of human protein complexes can be generated by multiple distinct transcripts. Similar with yeast, the human protein complex constituents are inclined to co-express in diverse tissues. The dominant isoform of the genes involved in protein complexes tend to encode the complex constituents in each tissue. Our results indicate that the protein complex dynamics not only correlate with the presence or absence of complexes, but may also be related to the major isoform switching for complex subunits. Between any two cancers of breast, colon, lung and prostate, we found that only a few of the differentially expressed transcripts associated with complexes were identical, but 5-10 times more protein complexes involved in differentially expressed transcripts were common. Collectively, our study reveals novel properties and dynamics of human protein complexes at the transcriptome cascade in diverse normal tissues and different cancers.
Collapse
Affiliation(s)
- Geng Chen
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiwei Chen
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Caiping Shi
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Leming Shi
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Weida Tong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Tieliu Shi
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
410
|
The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics. BMC Genomics 2013; 14:394. [PMID: 23758969 PMCID: PMC3701607 DOI: 10.1186/1471-2164-14-394] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/30/2013] [Indexed: 01/09/2023] Open
Abstract
Background Snake venoms generally show sequence and quantitative variation within and between species, but some rattlesnakes have undergone exceptionally rapid, dramatic shifts in the composition, lethality, and pharmacological effects of their venoms. Such shifts have occurred within species, most notably in Mojave (Crotalus scutulatus), South American (C. durissus), and timber (C. horridus) rattlesnakes, resulting in some populations with extremely potent, neurotoxic venoms without the hemorrhagic effects typical of rattlesnake bites. Results To better understand the evolutionary changes that resulted in the potent venom of a population of C. horridus from northern Florida, we sequenced the venom-gland transcriptome of an animal from this population for comparison with the previously described transcriptome of the eastern diamondback rattlesnake (C. adamanteus), a congener with a more typical rattlesnake venom. Relative to the toxin transcription of C. adamanteus, which consisted primarily of snake-venom metalloproteinases, C-type lectins, snake-venom serine proteinases, and myotoxin-A, the toxin transcription of C. horridus was far simpler in composition and consisted almost entirely of snake-venom serine proteinases, phospholipases A2, and bradykinin-potentiating and C-type natriuretic peptides. Crotalus horridus lacked significant expression of the hemorrhagic snake-venom metalloproteinases and C-type lectins. Evolution of shared toxin families involved differential expansion and loss of toxin clades within each species and pronounced differences in the highly expressed toxin paralogs. Toxin genes showed significantly higher rates of nonsynonymous substitution than nontoxin genes. The expression patterns of nontoxin genes were conserved between species, despite the vast differences in toxin expression. Conclusions Our results represent the first complete, sequence-based comparison between the venoms of closely related snake species and reveal in unprecedented detail the rapid evolution of snake venoms. We found that the difference in venom properties resulted from major changes in expression levels of toxin gene families, differential gene-family expansion and loss, changes in which paralogs within gene families were expressed at high levels, and higher nonsynonymous substitution rates in the toxin genes relative to nontoxins. These massive alterations in the genetics of the venom phenotype emphasize the evolutionary lability and flexibility of this ecologically critical trait.
Collapse
|
411
|
Cha IS, Kwon J, Park SB, Jang HB, Nho SW, Kim YK, Hikima JI, Aoki T, Jung TS. Heat shock protein profiles on the protein and gene expression levels in olive flounder kidney infected with Streptococcus parauberis. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1455-1462. [PMID: 23542604 DOI: 10.1016/j.fsi.2013.03.355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
Heat shock proteins (HSPs) have been observed in cells exposed to a variety of stresses, including infectious pathogens. This study used a label-free, quantitative proteomic approach and transcriptional gene expression analysis to investigate infection-related HSP proteins and their encoding genes in whole kidneys from olive flounder (Paralichthys olivaceus). During Streptococcus parauberis infection in the flounder, the genes encoding Hsp10, Hsp40A4, Hsp40B6, Hsp40B11, Hsp60, Hsp70, glucose regulated protein 78 (Grp78), Hsp90α, Hsp90β and Grp94 were induced, and the protein levels of Hsp60, Hsp70, Hsp90α, Hsp90β and Grp94 were differentially regulated over time. Subsequent results also revealed that Hsp60, Hsp70, Hsp90α, Hsp90β and Grp94 appear to be the dominant and critical HSPs in olive flounder during bacterial infection. This is the first estimation of the differential involvement of HSPs in the immune response of olive flounder exposed to bacterial infection.
Collapse
Affiliation(s)
- In Seok Cha
- Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
412
|
Skelly DA, Merrihew GE, Riffle M, Connelly CF, Kerr EO, Johansson M, Jaschob D, Graczyk B, Shulman NJ, Wakefield J, Cooper SJ, Fields S, Noble WS, Muller EGD, Davis TN, Dunham MJ, Maccoss MJ, Akey JM. Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast. Genome Res 2013; 23:1496-504. [PMID: 23720455 PMCID: PMC3759725 DOI: 10.1101/gr.155762.113] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To better understand the quantitative characteristics and structure of phenotypic diversity, we measured over 14,000 transcript, protein, metabolite, and morphological traits in 22 genetically diverse strains of Saccharomyces cerevisiae. More than 50% of all measured traits varied significantly across strains [false discovery rate (FDR) = 5%]. The structure of phenotypic correlations is complex, with 85% of all traits significantly correlated with at least one other phenotype (median = 6, maximum = 328). We show how high-dimensional molecular phenomics data sets can be leveraged to accurately predict phenotypic variation between strains, often with greater precision than afforded by DNA sequence information alone. These results provide new insights into the spectrum and structure of phenotypic diversity and the characteristics influencing the ability to accurately predict phenotypes.
Collapse
Affiliation(s)
- Daniel A Skelly
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
413
|
Zhang LK, Chai F, Li HY, Xiao G, Guo L. Identification of host proteins involved in Japanese encephalitis virus infection by quantitative proteomics analysis. J Proteome Res 2013; 12:2666-78. [PMID: 23647205 DOI: 10.1021/pr400011k] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Japanese encephalitis virus (JEV) enters host cells via receptor-mediated endocytosis and replicates in the cytoplasm of infected cells. To study virus-host cell interactions, we performed a SILAC-based quantitative proteomics study of JEV-infected HeLa cells using a subcellular fractionation strategy. We identified 158 host proteins as differentially regulated by JEV (defined as exhibiting a greater than 1.5-fold change in protein abundance upon JEV infection). The mass spectrometry quantitation data for selected proteins were validated by Western blot and immunofluorescence confocal microscopy. Bioinformatics analyses were used to generate JEV-regulated host response networks consisting of regulated proteins, which included 35 proteins that were newly added based on the results of this study. The JEV infection-induced host response was found to be coordinated primarily through the immune response process, the ubiquitin-proteasome system (UPS), the intracellular membrane system, and lipid metabolism-related proteins. Protein functional studies of selected host proteins using RNA interference-based techniques were carried out in HeLa cells infected with an attenuated or a highly virulent strain of JEV. We demonstrated that the knockdown of interferon-induced transmembrane protein 3 (IFITM3), Ran-binding protein 2 (RANBP2), sterile alpha motif domain-containing protein 9 (SAMD9) and vesicle-associated membrane protein 8 (VAMP8) significantly increased JEV replication. The results presented here not only promote a better understanding of the host response to JEV infection but also highlight multiple potential targets for the development of antiviral agents.
Collapse
Affiliation(s)
- Lei-Ke Zhang
- State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | | | | | | | | |
Collapse
|
414
|
Berisha SZ, Hsu J, Robinet P, Smith JD. Transcriptome analysis of genes regulated by cholesterol loading in two strains of mouse macrophages associates lysosome pathway and ER stress response with atherosclerosis susceptibility. PLoS One 2013; 8:e65003. [PMID: 23705026 PMCID: PMC3660362 DOI: 10.1371/journal.pone.0065003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 04/24/2013] [Indexed: 11/18/2022] Open
Abstract
Cholesterol loaded macrophages in the arterial intima are the earliest histological evidence of atherosclerosis. Studies of mouse models of atherosclerosis have shown that the strain background can have a significant effect on lesion development. We have previously shown that DBA/2 ApoE(-/-) mice have aortic root lesions 10-fold larger than AKR ApoE(-/-) mice. The current study analyzes the response to cholesterol loading of macrophages from these two strains. Macrophages from the atherosclerosis susceptible DBA/2 strain had significantly higher levels of total and esterified cholesterol compared to atherosclerosis resistant AKR macrophages, while free cholesterol levels were higher in AKR cells. Gene expression profiles were obtained and data were analyzed for strain, cholesterol loading, and strain-cholesterol loading interaction effects by a fitted linear model. Pathway and transcriptional motif enrichment were identified by gene set enrichment analysis. In addition to observed strain differences in basal gene expression, we identified many transcripts whose expression was significantly altered in response to cholesterol loading, including P2ry13 and P2ry14, Trib3, Hyal1, Vegfa, Ccr5, Ly6a, and Ifit3. Eight pathways were significantly enriched in transcripts regulated by cholesterol loading, among which the lysosome and cytokine-cytokine receptor interaction pathways had the highest number of significantly regulated transcripts. Of the differentially regulated transcripts with a strain-cholesterol loading interaction effect, we identified three genes known to participate in the endoplasmic reticulum (ER) stress response, Ddit3, Trib3 and Atf4. These three transcripts were highly up-regulated by cholesterol in AKR and either down-regulated or unchanged in loaded DBA/2 macrophages, thus associating a robust ER stress response with atherosclerosis resistance. We identified significant transcripts with strain, loading, or strain-loading interaction effect that reside within previously described quantitative trait loci as atherosclerosis modifier candidate genes. In conclusion, we characterized several strain and cholesterol induced differences that may lead to new insights into cellular cholesterol metabolism and atherosclerosis.
Collapse
Affiliation(s)
- Stela Z. Berisha
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jeffrey Hsu
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Peggy Robinet
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jonathan D. Smith
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
415
|
van Nas A, Pan C, Ingram-Drake LA, Ghazalpour A, Drake TA, Sobel EM, Papp JC, Lusis AJ. The systems genetics resource: a web application to mine global data for complex disease traits. Front Genet 2013; 4:84. [PMID: 23730305 PMCID: PMC3657633 DOI: 10.3389/fgene.2013.00084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/25/2013] [Indexed: 11/13/2022] Open
Abstract
The Systems Genetics Resource (SGR) (http://systems.genetics.ucla.edu) is a new open-access web application and database that contains genotypes and clinical and intermediate phenotypes from both human and mouse studies. The mouse data include studies using crosses between specific inbred strains and studies using the Hybrid Mouse Diversity Panel. SGR is designed to assist researchers studying genes and pathways contributing to complex disease traits, including obesity, diabetes, atherosclerosis, heart failure, osteoporosis, and lipoprotein metabolism. Over the next few years, we hope to add data relevant to deafness, addiction, hepatic steatosis, toxin responses, and vascular injury. The intermediate phenotypes include expression array data for a variety of tissues and cultured cells, metabolite levels, and protein levels. Pre-computed tables of genetic loci controlling intermediate and clinical phenotypes, as well as phenotype correlations, are accessed via a user-friendly web interface. The web site includes detailed protocols for all of the studies. Data from published studies are freely available; unpublished studies have restricted access during their embargo period.
Collapse
Affiliation(s)
- Atila van Nas
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
416
|
Ostalecki C, Konrad A, Thurau E, Schuler G, Croner RS, Pommer AJ, ael Stürzl M. Combined multi-gene analysis at the RNA and protein levels in single FFPE tissue sections. Exp Mol Pathol 2013; 95:1-6. [PMID: 23583336 DOI: 10.1016/j.yexmp.2013.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/19/2013] [Accepted: 03/21/2013] [Indexed: 10/27/2022]
Abstract
Novel approaches of individualized medicine require rapid analyses of comprehensive multi-gene expression patterns both at the RNA and protein levels. Optimally these analyses are achieved with minimal amounts of tissues, which are derived from routine procedures of clinical diagnostics. We demonstrate the parallel analyses of gene expression of six different genes at the RNA and protein levels in two consecutive sections of routinely processed FFPE tissues. This was achieved by combination of multi-epitope-ligand cartography (MELC) and fully automatically magnetic bead-based RNA extraction and subsequent qRT-PCR analysis. Our work provides proof-of-principle that comprehensive analyses of multi-gene expression patterns can be achieved by the combination of these two high content technologies. This may provide new perspectives for the determination of pathogenic gene expression in the framework of individualized medicine.
Collapse
|
417
|
Life as physics and chemistry: A system view of biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 111:108-15. [DOI: 10.1016/j.pbiomolbio.2012.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 09/13/2012] [Accepted: 09/17/2012] [Indexed: 11/17/2022]
|
418
|
Haider S, Pal R. Integrated analysis of transcriptomic and proteomic data. Curr Genomics 2013; 14:91-110. [PMID: 24082820 PMCID: PMC3637682 DOI: 10.2174/1389202911314020003] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/09/2013] [Accepted: 01/22/2013] [Indexed: 12/14/2022] Open
Abstract
Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence between mRNA transcripts and generated protein expressions. However, recent studies have shown that the correlation between mRNA and Protein expressions can be low due to various factors such as different half lives and post transcription machinery. Thus, a joint analysis of the transcriptomic and proteomic data can provide useful insights that may not be deciphered from individual analysis of mRNA or protein expressions. This article reviews the existing major approaches for joint analysis of transcriptomic and proteomic data. We categorize the different approaches into eight main categories based on the initial algorithm and final analysis goal. We further present analogies with other domains and discuss the existing research problems in this area.
Collapse
Affiliation(s)
| | - Ranadip Pal
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
419
|
Lu H, Gunewardena S, Cui JY, Yoo B, Zhong XB, Klaassen CD. RNA-sequencing quantification of hepatic ontogeny and tissue distribution of mRNAs of phase II enzymes in mice. Drug Metab Dispos 2013; 41:844-57. [PMID: 23382457 PMCID: PMC3608454 DOI: 10.1124/dmd.112.050211] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/31/2013] [Indexed: 01/30/2023] Open
Abstract
Phase II conjugating enzymes play key roles in the metabolism of xenobiotics. In the present study, RNA sequencing was used to elucidate hepatic ontogeny and tissue distribution of mRNA expression of all major known Phase II enzymes, including enzymes involved in glucuronidation, sulfation, glutathione conjugation, acetylation, methylation, and amino acid conjugation, as well as enzymes for the synthesis of Phase II cosubstrates, in male C57BL/6J mice. Livers from male C57BL/6J mice were collected at 12 ages from prenatal to adulthood. Many of these Phase II enzymes were expressed at much higher levels in adult livers than in perinatal livers, such as Ugt1a6b, -2a3, -2b1, -2b5, -2b36, -3a1, and -3a2; Gsta1, -m1, -p1, -p2, and -z1; mGst1; Nat8; Comt; Nnmt; Baat; Ugdh; and Gclc. In contrast, hepatic mRNA expression of a few Phase II enzymes decreased during postnatal liver development, such as mGst2, mGst3, Gclm, and Mat2a. Hepatic expression of certain Phase II enzymes peaked during the adolescent stage, such as Ugt1a1, Sult1a1, Sult1c2, Sult1d1, Sult2as, Sult5a1, Tpmt, Glyat, Ugp2, and Mat1a. In adult mice, the total transcripts for Phase II enzymes were comparable in liver, kidney, and small intestine; however, individual Phase II enzymes displayed marked tissue specificity among the three organs. In conclusion, this study unveils for the first time developmental changes in mRNA abundance of all major known Phase II enzymes in mouse liver, as well as their tissue-specific expression in key drug-metabolizing organs. The age- and tissue-specific expression of Phase II enzymes indicate that the detoxification of xenobiotics is highly regulated by age and cell type.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | | | | | | | |
Collapse
|
420
|
Howden AJ, Geoghegan V, Katsch K, Efstathiou G, Bhushan B, Boutureira O, Thomas B, Trudgian DC, Kessler BM, Dieterich DC, Davis BG, Acuto O. QuaNCAT: quantitating proteome dynamics in primary cells. Nat Methods 2013; 10:343-6. [PMID: 23474466 PMCID: PMC3676679 DOI: 10.1038/nmeth.2401] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/08/2013] [Indexed: 01/19/2023]
Abstract
Here we demonstrate quantitation of stimuli-induced proteome dynamics in primary cells by combining the power of bio-orthogonal noncanonical amino acid tagging (BONCAT) and stable-isotope labeling of amino acids in cell culture (SILAC). In conjunction with nanoscale liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS), quantitative noncanonical amino acid tagging (QuaNCAT) allowed us to monitor the early expression changes of >600 proteins in primary resting T cells subjected to activation stimuli.
Collapse
Affiliation(s)
- Andrew J.M. Howden
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Vincent Geoghegan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Kristin Katsch
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Georgios Efstathiou
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Bhaskar Bhushan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Omar Boutureira
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Benjamin Thomas
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - David C. Trudgian
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Benedikt M. Kessler
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford ,OX3 7BN, UK
| | - Daniela C. Dieterich
- Emmy Noether Research Group Neuralomics, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg,and Otto-von-Guericke University, Institute for Pharmacology and Toxicology, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Benjamin G. Davis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
421
|
Paulo JA, Kadiyala V, Banks PA, Conwell DL, Steen H. Mass spectrometry-based quantitative proteomic profiling of human pancreatic and hepatic stellate cell lines. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:105-13. [PMID: 23528454 PMCID: PMC4123426 DOI: 10.1016/j.gpb.2013.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/05/2013] [Accepted: 01/15/2013] [Indexed: 02/06/2023]
Abstract
The functions of the liver and the pancreas differ; however, chronic inflammation in both organs is associated with fibrosis. Evidence suggests that fibrosis in both organs is partially regulated by organ-specific stellate cells. We explore the proteome of human hepatic stellate cells (hHSC) and human pancreatic stellate cells (hPaSC) using mass spectrometry (MS)-based quantitative proteomics to investigate pathophysiologic mechanisms. Proteins were isolated from whole cell lysates of immortalized hHSC and hPaSC. These proteins were tryptically digested, labeled with tandem mass tags (TMT), fractionated by OFFGEL, and subjected to MS. Proteins significantly different in abundance (P < 0.05) were classified via gene ontology (GO) analysis. We identified 1223 proteins and among them, 1222 proteins were quantifiable. Statistical analysis determined that 177 proteins were of higher abundance in hHSC, while 157 were of higher abundance in hPaSC. GO classification revealed that proteins of relatively higher abundance in hHSC were associated with protein production, while those of relatively higher abundance in hPaSC were involved in cell structure. Future studies using the methodologies established herein, but with further upstream fractionation and/or use of enhanced MS instrumentation will allow greater proteome coverage, achieving a comprehensive proteomic analysis of hHSC and hPaSC.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
422
|
Weischenfeldt J, Symmons O, Spitz F, Korbel JO. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat Rev Genet 2013; 14:125-38. [PMID: 23329113 DOI: 10.1038/nrg3373] [Citation(s) in RCA: 401] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genomic structural variants have long been implicated in phenotypic diversity and human disease, but dissecting the mechanisms by which they exert their functional impact has proven elusive. Recently however, developments in high-throughput DNA sequencing and chromosomal engineering technology have facilitated the analysis of structural variants in human populations and model systems in unprecedented detail. In this Review, we describe how structural variants can affect molecular and cellular processes, leading to complex organismal phenotypes, including human disease. We further present advances in delineating disease-causing elements that are affected by structural variants, and we discuss future directions for research on the functional consequences of structural variants.
Collapse
Affiliation(s)
- Joachim Weischenfeldt
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, 69117, Germany
| | | | | | | |
Collapse
|
423
|
Reinhardt TA, Sacco RE, Nonnecke BJ, Lippolis JD. Bovine milk proteome: quantitative changes in normal milk exosomes, milk fat globule membranes and whey proteomes resulting from Staphylococcus aureus mastitis. J Proteomics 2013; 82:141-54. [PMID: 23459212 DOI: 10.1016/j.jprot.2013.02.013] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/31/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
Abstract
UNLABELLED Milk protein expression in healthy cows and cows with mastitis will provide information important for the dairy food industry and immune function in the mammary gland. To facilitate protein discovery, milk was fractioned into whey, milk fat globule membranes (MFGM) and exosomes from healthy and Staphylococcus aureus infected cows. Amine-reactive isobaric tags (iTRAQ) were used to quantify protein changes between milk fractions isolated from healthy and S. aureus infected cows. 2971 milk proteins were identified with a false discovery rate of 0.1%. Greater than 300 milk proteins associated with host defense were identified and 94 were significantly differentially regulated in S. aureus infected milk compared to their uninfected controls. These differentially regulated host defense proteins were selectively segregated in the 3 milk compartments examined. An example of this segregation of host defense proteins was the partitioning and high concentration of proteins indicative of neutrophil extracellular traps (NETs) formation in the MFGM preparations from S. aureus infected milk as compared to exosomes or whey. Protein composition changes found in milk exosomes, MFGM and whey during an infection provides new and comprehensive information on milk protein composition in general as well as changes occurring during an infection. BIOLOGICAL SIGNIFICANCE The significance of this study is the identification and quantification of the individual components of the neutrophil extracellular traps (NET) functional proteome in an apparent stable complex with MFGM and/or milk fat globules during an intra-mammary infection. NETs could be functionally relevant in intra-mammary infection, as it is known that during an infection neutrophils ingest large amounts of milk fat that down regulates many of their traditional immune functions. Thus the presence of NETs in milk fat provides new insights to mammary immune function and suggests a role for NETs in clinical mastitis. These in vivo NETs can now be tested to determine if they retain functional antimicrobial activity when primarily associated with milk fat. Then we can estimate their real world functional relevance during an intra-mammary infection, which is one key to understanding clinical mastitis in dairy cows.
Collapse
Affiliation(s)
- Timothy A Reinhardt
- Ruminant Diseases and Immunology Unit, National Animal Disease Center, USDA/ARS, Ames IA 50010, USA.
| | | | | | | |
Collapse
|
424
|
Stevens SG, Brown CM. In silico estimation of translation efficiency in human cell lines: potential evidence for widespread translational control. PLoS One 2013; 8:e57625. [PMID: 23460887 PMCID: PMC3584024 DOI: 10.1371/journal.pone.0057625] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/27/2013] [Indexed: 11/19/2022] Open
Abstract
Recently large scale transcriptome and proteome datasets for human cells have become available. A striking finding from these studies is that the level of an mRNA typically predicts no more than 40% of the abundance of protein. This correlation represents the overall figure for all genes. We present here a bioinformatic analysis of translation efficiency – the rate at which mRNA is translated into protein. We have analysed those human datasets that include genome wide mRNA and protein levels determined in the same study. The analysis comprises five distinct human cell lines that together provide comparable data for 8,170 genes. For each gene we have used levels of mRNA and protein combined with protein stability data from the HeLa cell line to estimate translation efficiency. This was possible for 3,990 genes in one or more cell lines and 1,807 genes in all five cell lines. Interestingly, our analysis and modelling shows that for many genes this estimated translation efficiency has considerable consistency between cell lines. Some deviations from this consistency likely result from the regulation of protein degradation. Others are likely due to known translational control mechanisms. These findings suggest it will be possible to build improved models for the interpretation of mRNA expression data. The results we present here provide a view of translation efficiency for many genes. We provide an online resource allowing the exploration of translation efficiency in genes of interest within different cell lines (http://bioanalysis.otago.ac.nz/TranslationEfficiency).
Collapse
Affiliation(s)
- Stewart G. Stevens
- Biochemistry and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Chris M Brown
- Biochemistry and Genetics Otago, University of Otago, Dunedin, New Zealand
- * E-mail:
| |
Collapse
|
425
|
Picotti P, Clément-Ziza M, Lam H, Campbell DS, Schmidt A, Deutsch EW, Röst H, Sun Z, Rinner O, Reiter L, Shen Q, Michaelson JJ, Frei A, Alberti S, Kusebauch U, Wollscheid B, Moritz RL, Beyer A, Aebersold R. A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 2013; 494:266-70. [PMID: 23334424 PMCID: PMC3951219 DOI: 10.1038/nature11835] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 11/30/2012] [Indexed: 12/25/2022]
Abstract
Experience from different fields of life sciences suggests that accessible, complete reference maps of the components of the system under study are highly beneficial research tools. Examples of such maps include libraries of the spectroscopic properties of molecules, or databases of drug structures in analytical or forensic chemistry. Such maps, and methods to navigate them, constitute reliable assays to probe any sample for the presence and amount of molecules contained in the map. So far, attempts to generate such maps for any proteome have failed to reach complete proteome coverage. Here we use a strategy based on high-throughput peptide synthesis and mass spectrometry to generate an almost complete reference map (97% of the genome-predicted proteins) of the Saccharomyces cerevisiae proteome. We generated two versions of this mass-spectrometric map, one supporting discovery-driven (shotgun) and the other supporting hypothesis-driven (targeted) proteomic measurements. Together, the two versions of the map constitute a complete set of proteomic assays to support most studies performed with contemporary proteomic technologies. To show the utility of the maps, we applied them to a protein quantitative trait locus (QTL) analysis, which requires precise measurement of the same set of peptides over a large number of samples. Protein measurements over 78 S. cerevisiae strains revealed a complex relationship between independent genetic loci, influencing the levels of related proteins. Our results suggest that selective pressure favours the acquisition of sets of polymorphisms that adapt protein levels but also maintain the stoichiometry of functionally related pathway members.
Collapse
Affiliation(s)
- Paola Picotti
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
426
|
Ackert-Bicknell C, Paigen B, Korstanje R. Recalculation of 23 mouse HDL QTL datasets improves accuracy and allows for better candidate gene analysis. J Lipid Res 2013; 54:984-94. [PMID: 23393305 DOI: 10.1194/jlr.m033035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the past 15 years, the quantitative trait locus (QTL) mapping approach has been applied to crosses between different inbred mouse strains to identify genetic loci associated with plasma HDL cholesterol levels. Although successful, a disadvantage of this method is low mapping resolution, as often several hundred candidate genes fall within the confidence interval for each locus. Methods have been developed to narrow these loci by combining the data from the different crosses, but they rely on the accurate mapping of the QTL and the treatment of the data in a consistent manner. We collected 23 raw datasets used for the mapping of previously published HDL QTL and reanalyzed the data from each cross using a consistent method and the latest mouse genetic map. By utilizing this approach, we identified novel QTL and QTL that were mapped to the wrong part of chromosomes. Our new HDL QTL map allows for reliable combining of QTL data and candidate gene analysis, which we demonstrate by identifying Grin3a and Etv6, as candidate genes for QTL on chromosomes 4 and 6, respectively. In addition, we were able to narrow a QTL on Chr 19 to five candidates.
Collapse
|
427
|
Linking proteomic and transcriptional data through the interactome and epigenome reveals a map of oncogene-induced signaling. PLoS Comput Biol 2013; 9:e1002887. [PMID: 23408876 PMCID: PMC3567149 DOI: 10.1371/journal.pcbi.1002887] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 11/30/2012] [Indexed: 02/06/2023] Open
Abstract
Cellular signal transduction generally involves cascades of post-translational protein modifications that rapidly catalyze changes in protein-DNA interactions and gene expression. High-throughput measurements are improving our ability to study each of these stages individually, but do not capture the connections between them. Here we present an approach for building a network of physical links among these data that can be used to prioritize targets for pharmacological intervention. Our method recovers the critical missing links between proteomic and transcriptional data by relating changes in chromatin accessibility to changes in expression and then uses these links to connect proteomic and transcriptome data. We applied our approach to integrate epigenomic, phosphoproteomic and transcriptome changes induced by the variant III mutation of the epidermal growth factor receptor (EGFRvIII) in a cell line model of glioblastoma multiforme (GBM). To test the relevance of the network, we used small molecules to target highly connected nodes implicated by the network model that were not detected by the experimental data in isolation and we found that a large fraction of these agents alter cell viability. Among these are two compounds, ICG-001, targeting CREB binding protein (CREBBP), and PKF118–310, targeting β-catenin (CTNNB1), which have not been tested previously for effectiveness against GBM. At the level of transcriptional regulation, we used chromatin immunoprecipitation sequencing (ChIP-Seq) to experimentally determine the genome-wide binding locations of p300, a transcriptional co-regulator highly connected in the network. Analysis of p300 target genes suggested its role in tumorigenesis. We propose that this general method, in which experimental measurements are used as constraints for building regulatory networks from the interactome while taking into account noise and missing data, should be applicable to a wide range of high-throughput datasets. The ways in which cells respond to changes in their environment are controlled by networks of physical links among the proteins and genes. The initial signal of a change in conditions rapidly passes through these networks from the cytoplasm to the nucleus, where it can lead to long-term alterations in cellular behavior by controlling the expression of genes. These cascades of signaling events underlie many normal biological processes. As a result, being able to map out how these networks change in disease can provide critical insights for new approaches to treatment. We present a computational method for reconstructing these networks by finding links between the rapid short-term changes in proteins and the longer-term changes in gene regulation. This method brings together systematic measurements of protein signaling, genome organization and transcription in the context of protein-protein and protein-DNA interactions. When used to analyze datasets from an oncogene expressing cell line model of human glioblastoma, our approach identifies key nodes that affect cell survival and functional transcriptional regulators.
Collapse
|
428
|
Žd'árská M, Zatloukalová P, Benítez M, Šedo O, Potěšil D, Novák O, Svačinová J, Pešek B, Malbeck J, Vašíčková J, Zdráhal Z, Hejátko J. Proteome analysis in Arabidopsis reveals shoot- and root-specific targets of cytokinin action and differential regulation of hormonal homeostasis. PLANT PHYSIOLOGY 2013; 161:918-30. [PMID: 23209126 PMCID: PMC3561029 DOI: 10.1104/pp.112.202853] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The plant hormones cytokinins (CKs) regulate multiple developmental and physiological processes in Arabidopsis (Arabidopsis thaliana). Responses to CKs vary in different organs and tissues (e.g. the response to CKs has been shown to be opposite in shoot and root samples). However, the tissue-specific targets of CKs and the mechanisms underlying such specificity remain largely unclear. Here, we show that the Arabidopsis proteome responds with strong tissue and time specificity to the aromatic CK 6-benzylaminopurine (BAP) and that fast posttranscriptional and/or posttranslational regulation of protein abundance is involved in the contrasting shoot and root proteome responses to BAP. We demonstrate that BAP predominantly regulates proteins involved in carbohydrate and energy metabolism in the shoot as well as protein synthesis and destination in the root. Furthermore, we found that BAP treatment affects endogenous hormonal homeostasis, again with strong tissue specificity. In the shoot, BAP up-regulates the abundance of proteins involved in abscisic acid (ABA) biosynthesis and the ABA response, whereas in the root, BAP rapidly and strongly up-regulates the majority of proteins in the ethylene biosynthetic pathway. This was further corroborated by direct measurements of hormone metabolites, showing that BAP increases ABA levels in the shoot and 1-aminocyclopropane-1-carboxylic acid, the rate-limiting precursor of ethylene biosynthesis, in the root. In support of the physiological importance of these findings, we identified the role of proteins mediating BAP-induced ethylene production, METHIONINE SYNTHASE1 and ACC OXIDASE2, in the early root growth response to BAP.
Collapse
|
429
|
Ciandrini L, Stansfield I, Romano MC. Ribosome traffic on mRNAs maps to gene ontology: genome-wide quantification of translation initiation rates and polysome size regulation. PLoS Comput Biol 2013; 9:e1002866. [PMID: 23382661 PMCID: PMC3561044 DOI: 10.1371/journal.pcbi.1002866] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/13/2012] [Indexed: 11/19/2022] Open
Abstract
To understand the complex relationship governing transcript abundance and the level of the encoded protein, we integrate genome-wide experimental data of ribosomal density on mRNAs with a novel stochastic model describing ribosome traffic dynamics during translation elongation. This analysis reveals that codon arrangement, rather than simply codon bias, has a key role in determining translational efficiency. It also reveals that translation output is governed both by initiation efficiency and elongation dynamics. By integrating genome-wide experimental data sets with simulation of ribosome traffic on all Saccharomyces cerevisiae ORFs, mRNA-specific translation initiation rates are for the first time estimated across the entire transcriptome. Our analysis identifies different classes of mRNAs characterised by their initiation rates, their ribosome traffic dynamics, and by their response to ribosome availability. Strikingly, this classification based on translational dynamics maps onto key gene ontological classifications, revealing evolutionary optimisation of translation responses to be strongly influenced by gene function. Gene expression regulation is central to all living systems. Here we introduce a new framework and methodology to study the last stage of protein production in cells, where the genetic information encoded in the mRNAs is translated from the language of nucleotides into functional proteins. The process, on each mRNA, is carried out concurrently by several ribosomes; like cars on a small countryside road, they cannot overtake each other, and can form queues. By integrating experimental data with genome-wide simulations of our model, we analyse ribosome traffic across the entire Saccharomyces cerevisiae genome, and for the first time estimate mRNA-specific translation initiation rates for each transcript. Crucially, we identify different classes of mRNAs characterised by different ribosome traffic dynamics. Remarkably, this classification based on translational dynamics, and the evaluation of mRNA-specific initiation rates, map onto key gene ontological classifications, revealing evolutionary optimisation of translation responses to be strongly influenced by gene function.
Collapse
Affiliation(s)
- Luca Ciandrini
- SUPA, Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Aberdeen, United Kingdom.
| | | | | |
Collapse
|
430
|
Inder KL, Davis M, Hill MM. Ripples in the pond--using a systems approach to decipher the cellular functions of membrane microdomains. MOLECULAR BIOSYSTEMS 2013; 9:330-8. [PMID: 23322173 DOI: 10.1039/c2mb25300c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Membrane microdomains such as lipid rafts and caveolae regulate a myriad of cellular functions including cell signalling, protein trafficking, cell viability, and cell movement. They have been implicated in diseases such as cancer, diabetes and Alzheimer's disease, highlighting the essential role they play in cell processes. Despite much research and debate on the size, composition and dynamics of membrane microdomains, the molecular mechanism(s) of their action remain poorly understood. Most studies have dealt solely with the content and properties of the membrane microdomain as an entity in itself. However, recent work shows that membrane microdomain disruption has wide ranging effects on other subcellular compartments, and the cell as a whole. Hence we propose that a systems approach incorporating many cellular attributes such as subcellular localisation is required in order to understand the global impact of microdomains on cell function. Although analysis of sub-proteome changes already provides additional insight, we further propose biological network analysis of functional proteomics data to capture effects at the systems level. In this review, we highlight the use of protein-protein interactions networks and mixed networks to portray and visualize the relationships between proteins within and between subcellular fractions. Such a systems analysis will be required to improve our understanding of the full cellular function of membrane microdomains.
Collapse
|
431
|
Larsson O, Tian B, Sonenberg N. Toward a genome-wide landscape of translational control. Cold Spring Harb Perspect Biol 2013; 5:a012302. [PMID: 23209130 PMCID: PMC3579401 DOI: 10.1101/cshperspect.a012302] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Genome-wide analysis of translational control has taken strides in recent years owing to the advent of high-throughput technologies, including DNA microarrays and deep sequencing. Global studies have unraveled a principal role, among posttranscriptional mechanisms, for mRNA translation in determining protein levels in the cell. The impact of translational control in dynamic regulation of the proteome under different conditions is increasingly appreciated. Here we review genome-wide studies that use high-throughput techniques and bioinformatics to assess the role of mRNA translation in the regulation of protein levels; we also discuss how genome-wide data on mRNA translation can be obtained, analyzed, and used to identify mechanisms of translational control.
Collapse
Affiliation(s)
- Ola Larsson
- Department of Oncology-Pathology, Karolinska Institute, Stockholm SE-171 76, Sweden.
| | | | | |
Collapse
|
432
|
Fan Y, Thompson JW, Dubois LG, Moseley MA, Wernegreen JJ. Proteomic analysis of an unculturable bacterial endosymbiont (Blochmannia) reveals high abundance of chaperonins and biosynthetic enzymes. J Proteome Res 2012. [PMID: 23205679 DOI: 10.1021/pr3007842] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many insect groups have coevolved with bacterial endosymbionts that live within specialized host cells. As a salient example, ants in the tribe Camponotini rely on Blochmannia, an intracellular bacterial mutualist that synthesizes amino acids and recycles nitrogen for the host. We performed a shotgun, label-free, LC/MS/MS quantitative proteomic analysis to investigate the proteome of Blochmannia associated with Camponotus chromaiodes. We identified more than 330 Blochmannia proteins, or 54% coverage of the predicted proteome, as well as 244 Camponotus proteins. Using the average intensity of the top 3 "best flier" peptides along with spiking of a surrogate standard at a known concentration, we estimated the concentration (fmol/μg) of those proteins with confident identification. The estimated dynamic range of Blochmannia protein abundance spanned 3 orders of magnitude and covered diverse functional categories, with particularly high representation of metabolism, information transfer, and chaperones. GroEL, the most abundant protein, totaled 6% of Blochmannia protein abundance. Biosynthesis of essential amino acids, fatty acids, and nucleotides, and sulfate assimilation had disproportionately high coverage in the proteome, further supporting a nutritional role of the symbiosis. This first quantitative proteomic analysis of an ant endosymbiont illustrates a promising approach to study the functional basis of intimate symbioses.
Collapse
Affiliation(s)
- Yongliang Fan
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | |
Collapse
|
433
|
Friehs I, Cowan DB, Choi YH, Black KM, Barnett R, Bhasin MK, Daly C, Dillon SJ, Libermann TA, McGowan FX, del Nido PJ, Levitsky S, McCully JD. Pressure-overload hypertrophy of the developing heart reveals activation of divergent gene and protein pathways in the left and right ventricular myocardium. Am J Physiol Heart Circ Physiol 2012; 304:H697-708. [PMID: 23262132 DOI: 10.1152/ajpheart.00802.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Right ventricular (RV) and left ventricular (LV) myocardium differ in their pathophysiological response to pressure-overload hypertrophy. In this report we use microarray and proteomic analyses to identify pathways modulated by LV-aortic banding (AOB) and RV-pulmonary artery banding (PAB) in the immature heart. Newborn New Zealand White rabbits underwent banding of the descending thoracic aorta [LV-AOB; n = 6]. RV-PAB was achieved by banding the pulmonary artery (n = 6). Controls (n = 6 each) were sham-manipulated. After 4 (LV-AOB) and 6 (RV-PAB) wk recovery, the hearts were removed and matched RNA and proteins samples were isolated for microarray and proteomic analysis. Microarray and proteomic data demonstrate that in LV-AOB there is increased transcript expression levels for oxidative phosphorylation, mitochondria energy pathways, actin, ILK, hypoxia, calcium, and protein kinase-A signaling and increased protein expression levels of proteins for cellular macromolecular complex assembly and oxidative phosphorylation. In RV-PAB there is also an increased transcript expression levels for cardiac oxidative phosphorylation but increased protein expression levels for structural constituents of muscle, cardiac muscle tissue development, and calcium handling. These results identify divergent transcript and protein expression profiles in LV-AOB and RV-PAB and provide new insight into the biological basis of ventricular specific hypertrophy. The identification of these pathways should allow for the development of specific therapeutic interventions for targeted treatment and amelioration of LV-AOB and RV-PAB to ameliorate morbidity and mortality.
Collapse
Affiliation(s)
- Ingeborg Friehs
- Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
434
|
Abstract
A current challenge in the era of genome-wide studies is to determine the responsible genes and mechanisms underlying newly identified loci. Screening of the plasma proteome by high-throughput mass spectrometry (MALDI-TOF MS) is considered a promising approach for identification of metabolic and disease processes. Therefore, plasma proteome screening might be particularly useful for identifying responsible genes when combined with analysis of variation in the genome. Here, we describe a proteomic quantitative trait locus (pQTL) study of plasma proteome screens in an F(2) intercross of 455 mice mapped with 177 genetic markers across the genome. A total of 69 of 176 peptides revealed significant LOD scores (≥5.35) demonstrating strong genetic regulation of distinct components of the plasma proteome. Analyses were confirmed by mechanistic studies and MALDI-TOF/TOF, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of the two strongest pQTLs: A pQTL for mass-to-charge ratio (m/z) 3494 (LOD 24.9, D11Mit151) was identified as the N-terminal 35 amino acids of hemoglobin subunit A (Hba) and caused by genetic variation in Hba. Another pQTL for m/z 8713 (LOD 36.4; D1Mit111) was caused by variation in apolipoprotein A2 (Apoa2) and cosegregated with HDL cholesterol. Taken together, we show that genome-wide plasma proteome profiling in combination with genome-wide genetic screening aids in the identification of causal genetic variants affecting abundance of plasma proteins.
Collapse
|
435
|
Purcell EK, Naim Y, Yang A, Leach MK, Velkey JM, Duncan RK, Corey JM. Combining topographical and genetic cues to promote neuronal fate specification in stem cells. Biomacromolecules 2012; 13:3427-38. [PMID: 23098293 PMCID: PMC3992984 DOI: 10.1021/bm301220k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is little remedy for the devastating effects resulting from neuronal loss caused by neural injury or neurodegenerative disease. Reconstruction of damaged neural circuitry with stem cell-derived neurons is a promising approach to repair these defects, but controlling differentiation and guiding synaptic integration with existing neurons remain significant unmet challenges. Biomaterial surfaces can present nanoscale topographical cues that influence neuronal differentiation and process outgrowth. By combining these scaffolds with additional molecular biology strategies, synergistic control over cell fate can be achieved. Here, we review recent progress in promoting neuronal fate using techniques at the interface of biomaterial science and genetic engineering. New data demonstrates that combining nanofiber topography with an induced genetic program enhances neuritogenesis in a synergistic fashion. We propose combining patterned biomaterial surface cues with prescribed genetic programs to achieve neuronal cell fates with the desired sublineage specification, neurochemical profile, targeted integration, and electrophysiological properties.
Collapse
Affiliation(s)
- Erin K Purcell
- University of Michigan, 1150 W. Medical Center Drive, 5323A Med Sci I, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
436
|
Abstract
In this issue of Neuron, Konopka et al. (2012) describe their comparison of transcriptomes from frontal pole, caudate nucleus, and hippocampus of multiple adult humans, chimpanzees, and rhesus monkeys. The data provide an initial opportunity for linking genomic and brain differences among these primate species.
Collapse
|
437
|
Janga SC. From specific to global analysis of posttranscriptional regulation in eukaryotes: posttranscriptional regulatory networks. Brief Funct Genomics 2012; 11:505-21. [PMID: 23124862 DOI: 10.1093/bfgp/els046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulation of gene expression occurs at several levels in eukaryotic organisms and is a highly controlled process. Although RNAs have been traditionally viewed as passive molecules in the pathway from transcription to translation, there is mounting evidence that their metabolism is controlled by a class of proteins called RNA-binding proteins (RBPs), as well as a number of small RNAs. In this review, I provide an overview of the recent developments in our understanding of the repertoire of RBPs across diverse model systems, and discuss the computational and experimental approaches currently available for the construction of posttranscriptional networks governed by them. I also present an overview of the different roles played by RBPs in the cellular context, based on their cis-regulatory modules identified in the literature and discuss how their interplay can result in the dynamic, spatial and tissue-specific expression maps of RNAs. I finally present the concept of posttranscriptional network of RBPs and their cognate RNA targets and discuss their cross-talk with other important posttranscriptional regulatory molecules such as microRNAs s, resulting in diverse functional network motifs. I argue that with rapid developments in the genome-wide elucidation of posttranscriptional networks it would not only be possible to gain a deeper understanding of regulation at a level that has been under-appreciated in the past, but would also allow us to use the newly developed high-throughput approaches to interrogate the prevalence of these phenomena in different states, and thereby study their relevance to physiology and disease across organisms.
Collapse
Affiliation(s)
- Sarath Chandra Janga
- School of Informatics, Indiana University Purdue University, Indianapolis, Indiana, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 719 Indiana Ave Ste 319, Walker Plaza Building, IN 46202, USA.
| |
Collapse
|
438
|
Gunasekera K, Wüthrich D, Braga-Lagache S, Heller M, Ochsenreiter T. Proteome remodelling during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass spectrometry. BMC Genomics 2012; 13:556. [PMID: 23067041 PMCID: PMC3545838 DOI: 10.1186/1471-2164-13-556] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/11/2012] [Indexed: 12/12/2022] Open
Abstract
Background Trypanosoma brucei is the causative agent of human African sleeping sickness and Nagana in cattle. In addition to being an important pathogen T. brucei has developed into a model system in cell biology. Results Using Stable Isotope Labelling of Amino acids in Cell culture (SILAC) in combination with mass spectrometry we determined the abundance of >1600 proteins in the long slender (LS), short stumpy (SS) mammalian bloodstream form stages relative to the procyclic (PC) insect-form stage. In total we identified 2645 proteins, corresponding to ~30% of the total proteome and for the first time present a comprehensive overview of relative protein levels in three life stages of the parasite. Conclusions We can show the extent of pre-adaptation in the SS cells, especially at the level of the mitochondrial proteome. The comparison to a previously published report on monomorphic in vitro grown bloodstream and procyclic T. brucei indicates a loss of stringent regulation particularly of mitochondrial proteins in these cells when compared to the pleomorphic in vivo situation. In order to better understand the different levels of gene expression regulation in this organism we compared mRNA steady state abundance with the relative protein abundance-changes and detected moderate but significant correlation indicating that trypanosomes possess a significant repertoire of translational and posttranslational mechanisms to regulate protein abundance.
Collapse
|
439
|
Dresner E, Malishkevich A, Arviv C, Leibman Barak S, Alon S, Ofir R, Gothilf Y, Gozes I. Novel evolutionary-conserved role for the activity-dependent neuroprotective protein (ADNP) family that is important for erythropoiesis. J Biol Chem 2012; 287:40173-85. [PMID: 23071114 DOI: 10.1074/jbc.m112.387027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND ADNP is vital for embryonic development. Is this function conserved for the homologous protein ADNP2? RESULTS Down-regulation/silencing of ADNP or ADNP2 in zebrafish embryos or mouse erythroleukemia cells inhibited erythroid maturation, with ADNP directly associating with the β-globin locus control region. CONCLUSION ADNPs are novel molecular regulators of erythropoiesis. SIGNIFICANCE New regulators of globin synthesis are suggested. Activity-dependent neuroprotective protein (ADNP) and its homologue ADNP2 belong to a homeodomain, the zinc finger-containing protein family. ADNP is essential for mouse embryonic brain formation. ADNP2 is associated with cell survival, but its role in embryogenesis has not been evaluated. Here, we describe the use of the zebrafish model to elucidate the developmental roles of ADNP and ADNP2. Although we expected brain defects, we were astonished to discover that the knockdown zebrafish embryos were actually lacking blood and suffered from defective hemoglobin production. Evolutionary conservation was established using mouse erythroleukemia (MEL) cells, a well studied erythropoiesis model, in which silencing of ADNP or ADNP2 produced similar results as in zebrafish. Exogenous RNA encoding ADNP/ADNP2 rescued the MEL cell undifferentiated state, demonstrating phenotype specificity. Brg1, an ADNP-interacting chromatin-remodeling protein involved in erythropoiesis through regulation of the globin locus, was shown here to interact also with ADNP2. Furthermore, chromatin immunoprecipitation revealed recruitment of ADNP, similar to Brg1, to the mouse β-globin locus control region in MEL cells. This recruitment was apparently diminished upon dimethyl sulfoxide (DMSO)-induced erythrocyte differentiation compared with the nondifferentiated state. Importantly, exogenous RNA encoding ADNP/ADNP2 significantly increased β-globin expression in MEL cells in the absence of any other differentiation factors. Taken together, our results reveal an ancestral role for the ADNP protein family in maturation and differentiation of the erythroid lineage, associated with direct regulation of β-globin expression.
Collapse
Affiliation(s)
- Efrat Dresner
- Adams Super Center for Brain Studies, Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Department of Human Molecular Genetics and Biochemistry, Sagol School of Neuroscience, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | |
Collapse
|
440
|
Müller S, Baldin C, Groth M, Guthke R, Kniemeyer O, Brakhage AA, Valiante V. Comparison of transcriptome technologies in the pathogenic fungus Aspergillus fumigatus reveals novel insights into the genome and MpkA dependent gene expression. BMC Genomics 2012; 13:519. [PMID: 23031507 PMCID: PMC3505472 DOI: 10.1186/1471-2164-13-519] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/21/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The filamentous fungus Aspergillus fumigatus has become the most important airborne fungal pathogen causing life-threatening infections in immuno-compromised patients. Recently developed high-throughput transcriptome and proteome technologies, such as microarrays, RNA deep-sequencing, and LC-MS/MS of peptide mixtures, are of enormous value for systematically investigating pathogenic organisms. In the field of infection biology, one of the priorities is to collect and standardise data, in order to generate datasets that can be used to investigate and compare pathways and gene responses involved in pathogenicity. The "omics" era provides a multitude of inputs that need to be integrated and assessed. We therefore evaluated the potential of paired-end mRNA-Seq for investigating the regulatory role of the central mitogen activated protein kinase (MpkA). This kinase is involved in the cell wall integrity signalling pathway of A. fumigatus and essential for maintaining an intact cell wall in response to stress. RESULTS The comparison of the transcriptome and proteome of an A. fumigatus wild-type strain with an mpkA null mutant strain revealed that 70.4% of the genome was found to be expressed and that MpkA plays a significant role in the regulation of many genes involved in cell wall remodelling, oxidative stress and iron starvation response, and secondary metabolite biosynthesis. Moreover, absence of the mpkA gene also strongly affects the expression of genes involved in primary metabolism. The data were further processed to evaluate the potential of the mRNA-Seq technique. We comprehensively matched up our data to published transcriptome studies and were able to show an improved data comparability of mRNA-Seq experiments independently of the technique used. Analysis of transcriptome and proteome data revealed only a weak correlation between mRNA and protein abundance. CONCLUSIONS High-throughput analysis of MpkA-dependent gene expression confirmed many previous findings that this kinase is important for regulating many genes involved in metabolic pathways. Our analysis showed more than 2000 differentially regulated genes. RNA deep-sequencing is less error-prone than established microarray-based technologies. It also provides additional information in A. fumigatus studies and as a result is more suitable for the creation of extensive datasets.
Collapse
Affiliation(s)
- Sebastian Müller
- Department of Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Beutenbergstr. 11a, Jena 07745, Germany
| | | | | | | | | | | | | |
Collapse
|
441
|
Ghazalpour A, Rau CD, Farber CR, Bennett BJ, Orozco LD, van Nas A, Pan C, Allayee H, Beaven SW, Civelek M, Davis RC, Drake TA, Friedman RA, Furlotte N, Hui ST, Jentsch JD, Kostem E, Kang HM, Kang EY, Joo JW, Korshunov VA, Laughlin RE, Martin LJ, Ohmen JD, Parks BW, Pellegrini M, Reue K, Smith DJ, Tetradis S, Wang J, Wang Y, Weiss JN, Kirchgessner T, Gargalovic PS, Eskin E, Lusis AJ, LeBoeuf RC. Hybrid mouse diversity panel: a panel of inbred mouse strains suitable for analysis of complex genetic traits. Mamm Genome 2012; 23:680-92. [PMID: 22892838 PMCID: PMC3586763 DOI: 10.1007/s00335-012-9411-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/04/2012] [Indexed: 11/28/2022]
Abstract
We have developed an association-based approach using classical inbred strains of mice in which we correct for population structure, which is very extensive in mice, using an efficient mixed-model algorithm. Our approach includes inbred parental strains as well as recombinant inbred strains in order to capture loci with effect sizes typical of complex traits in mice (in the range of 5% of total trait variance). Over the last few years, we have typed the hybrid mouse diversity panel (HMDP) strains for a variety of clinical traits as well as intermediate phenotypes and have shown that the HMDP has sufficient power to map genes for highly complex traits with resolution that is in most cases less than a megabase. In this essay, we review our experience with the HMDP, describe various ongoing projects, and discuss how the HMDP may fit into the larger picture of common diseases and different approaches.
Collapse
Affiliation(s)
- Anatole Ghazalpour
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Christoph D. Rau
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Charles R. Farber
- Departments of Medicine and Biochemistry and Molecular Genetics, and Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Brian J. Bennett
- Department of Genetics, and Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Luz D. Orozco
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Atila van Nas
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Calvin Pan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hooman Allayee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Simon W. Beaven
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Mete Civelek
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Richard C. Davis
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Thomas A. Drake
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Rick A. Friedman
- Department of Otology/Skull Base Surgery, House Research Institute, Los Angeles, CA, USA
| | - Nick Furlotte
- Department of Computer Sciences, University of California, Los Angeles, CA, USA
| | - Simon T. Hui
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - J. David Jentsch
- Department of Psychology & Behavioral Neuroscience and Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Emrah Kostem
- Department of Computer Sciences, University of California, Los Angeles, CA, USA
| | - Hyun Min Kang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Eun Yong Kang
- Department of Computer Sciences, University of California, Los Angeles, CA, USA
| | - Jong Wha Joo
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. Bioinformatics Program, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Vyacheslav A. Korshunov
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Rick E. Laughlin
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Lisa J. Martin
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jeffrey D. Ohmen
- Department of Cell Biology and Genetics, House Research Institute, Los Angeles, CA, USA
| | - Brian W. Parks
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Desmond J. Smith
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sotirios Tetradis
- Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. Division of Diagnostic and Surgical Science, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Jessica Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yibin Wang
- Division of Molecular Medicine, Department of Anesthesiology, Physiology and Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - James N. Weiss
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Todd Kirchgessner
- Department of Cardiovascular Drug Discovery, Bristol-Myers Squibb Co, Pennington, NJ, USA
| | - Peter S. Gargalovic
- Department of Cardiovascular Drug Discovery, Bristol-Myers Squibb Co, Pennington, NJ, USA
| | - Eleazar Eskin
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. Department of Computer Sciences, University of California, Los Angeles, CA, USA
| | - Aldons J. Lusis
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA. Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. Division of Diagnostic and Surgical Science, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Renée C. LeBoeuf
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109-4725, USA
| |
Collapse
|
442
|
Palmer RHC, McGeary JE, Francazio S, Raphael BJ, Lander AD, Heath AC, Knopik VS. The genetics of alcohol dependence: advancing towards systems-based approaches. Drug Alcohol Depend 2012; 125:179-91. [PMID: 22854292 PMCID: PMC3470479 DOI: 10.1016/j.drugalcdep.2012.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 01/02/2023]
Abstract
BACKGROUND Personalized treatment for psychopathologies, in particular alcoholism, is highly dependent upon our ability to identify patterns of genetic and environmental effects that influence a person's risk. Unfortunately, array-based whole genome investigations into heritable factors that explain why one person becomes dependent upon alcohol and another does not, have indicated that alcohol's genetic architecture is highly complex. That said, uncovering and interpreting the missing heritability in alcohol genetics research has become all the more important, especially since the problem may extend to our inability to model the cumulative and combinatorial relationships between common and rare genetic variants. As numerous studies begin to illustrate the dependency of alcohol pharmacotherapies on an individual's genotype, the field is further challenged to identify new ways to transcend agnostic genomewide association approaches. We discuss insights from genetic studies of alcohol related diseases, as well as issues surrounding alcohol's genetic complexity and etiological heterogeneity. Finally, we describe the need for innovative systems-based approaches (systems genetics) that can provide additional statistical power that can enhance future gene-finding strategies and help to identify heretofore-unrealized mechanisms that may provide new targets for prevention/treatments efforts. Emerging evidence from early studies suggest that systems genetics has the potential to organize our neurological, pharmacological, and genetic understanding of alcohol dependence into a biologically plausible framework that represents how perturbations across evolutionarily robust biological systems determine susceptibility to alcohol dependence.
Collapse
Affiliation(s)
- R H C Palmer
- Division of Behavioral Genetics, Department of Psychiatry at Rhode Island Hospital, USA.
| | | | | | | | | | | | | |
Collapse
|
443
|
Black KM, Barnett RJ, Bhasin MK, Daly C, Dillon ST, Libermann TA, Levitsky S, McCully JD. Microarray and proteomic analysis of the cardioprotective effects of cold blood cardioplegia in the mature and aged male and female. Physiol Genomics 2012; 44:1027-41. [PMID: 22968637 DOI: 10.1152/physiolgenomics.00011.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently we have shown that the cardioprotection afforded by cardioplegia is modulated by age and gender and is significantly decreased in the aged female. In this report we use microarray and proteomic analyses to identify transcriptomic and proteomic alterations affecting cardioprotection using cold blood cardioplegia in the mature and aged male and female heart. Mature and aged male and female New Zealand White rabbits were used for in situ blood perfused cardiopulmonary bypass. Control hearts received 30 min sham ischemia and 120 min sham reperfusion. Global ischemia (GI) hearts received 30 min of GI achieved by cross-clamping of the aorta. Cardioplegia (CP) hearts received cold blood cardioplegia prior to GI. Following 30 min of GI the hearts were reperfused for 120 min and then used for RNA and protein isolation. Microarray and proteomic analyses were performed. Functional enrichment analysis showed that mitochondrial dysfunction, oxidative phosphorylation and calcium signaling pathways were significantly enriched in all experimental groups. Glycolysis/gluconeogenesis and the pentose phosphate pathway were significantly changed in the aged male only (P < 0.05), while glyoxylate/dicarboxylate metabolism was significant in the aged female only (P < 0.05). Our data show that specific pathways associated with the mitochondrion modulate cardioprotection with CP in the aged and specifically in the aged female. The alteration of these pathways significantly contributes to decreased myocardial functional recovery and myonecrosis following ischemia and may be modulated to allow for enhanced cardioprotection in the aged and specifically in the aged female.
Collapse
Affiliation(s)
- Kendra M Black
- Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
444
|
Correia C, Grayson W, Eton R, Gimble JM, Sousa RA, Reis RL, Vunjak-Novakovic G. Human adipose-derived cells can serve as a single-cell source for the in vitro cultivation of vascularized bone grafts. J Tissue Eng Regen Med 2012; 8:629-39. [PMID: 22903929 DOI: 10.1002/term.1564] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 04/30/2012] [Accepted: 05/29/2012] [Indexed: 12/27/2022]
Abstract
Orthopaedic surgery often requires bone grafts to correct large defects resulting from congenital defects, surgery or trauma. Great improvements have been made in the tissue engineering of bone grafts. However, these grafts lack the vascularized component that is critical for their survival and function. From a clinical perspective, it would be ideal to engineer vascularized bone grafts starting from one single-cell harvest obtained from the patient. To this end, we explored the potential of human adipose-derived mesenchymal stem cells (hASCs) as a single-cell source for osteogenic and endothelial differentiation and the assembly of bone and vascular compartments within the same scaffold. hASCs were encapsulated in fibrin hydrogel as an angioinductive material for vascular formation, combined with a porous silk fibroin sponge to support osteogenesis, and subjected to sequential application of growth factors. Three strategies were evaluated by changing spatiotemporal cues: (a) induction of osteogenesis prior to vasculogenesis; (b) induction of vasculogenesis prior to osteogenesis; or (c) simultaneous induction of osteogenesis and vasculogenesis. By 5 weeks of culture, bone-like tissue development was evidenced by the deposition of bone matrix proteins, alkaline phosphatase activity and calcium deposition, along with the formation of vascular networks, evidenced by endothelial cell surface markers, such as CD31 and von Willebrand factor, and morphometric analysis. Most robust development of the two tissue compartments was achieved by sequential induction of osteogenesis followed by the induction of vasculogenesis. Taken together, the collected data strongly support the utility of hASCs as a single-cell source for the formation of vascularized bone tissue.
Collapse
Affiliation(s)
- Cristina Correia
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal; ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Biomedical Engineering, Columbia University, New York, USA
| | | | | | | | | | | | | |
Collapse
|
445
|
D'souza D, Lai RYJ, Shuen M, Hood DA. mRNA stability as a function of striated muscle oxidative capacity. Am J Physiol Regul Integr Comp Physiol 2012; 303:R408-17. [DOI: 10.1152/ajpregu.00085.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A change in mRNA stability alters the abundance of mRNA available for translation and is emerging as a critical pathway influencing gene expression. Variations in the stability of functional and regulatory mitochondrial proteins may contribute to the divergent mitochondrial densities observed in striated muscle. Thus we hypothesized that the stability of mRNAs encoding for regulatory nuclear and mitochondrial transcription factors would be inversely proportional to muscle oxidative capacity and would be facilitated by the activity of RNA binding proteins (RBPs). The stability of mitochondrial transcription factor A (Tfam), peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), and nuclear respiratory factor 2α (NRF-2α) mRNA was assessed in striated muscles with distinct oxidative capacities using in vitro decay assays. All three mitochondrial regulators were rapidly degraded in cardiac and slow-twitch red (STR) muscle, resulting in a ∼60–65% lower ( P < 0.05) mRNA half-life ( t1/2) compared with fast-twitch white (FTW) fibers. This accelerated rate of Tfam mRNA decay was matched by a 2.5-fold increase in Tfam transcription in slow- compared with fast-twitch muscle ( P = 0.05). Protein expression of four unique RBPs [AU-rich binding factor 1 (AUF1), human antigen R (HuR), KH-homology splicing regulatory protein (KSRP), and CUG binding protein 1 (CUGBP1)] believed to modulate mRNA stability was elevated in cardiac and STR muscles ( P < 0.05) and was moderately associated with the decay of Tfam, PGC-1α, and NRF-2α mRNA. Variable rates of transcript degradation were apparent when comparing all transcripts within the same muscle type. Thus the distribution of RBPs appears to follow a fiber-type specific pattern and subsequently functions to alter the stability of specific mitochondrial regulators in a transcript- and tissue-specific fashion.
Collapse
Affiliation(s)
- Donna D'souza
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada; and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Ruanne Y. J. Lai
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada; and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Michael Shuen
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada; and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - David A. Hood
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada; and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
446
|
Copy number variations of 11 macronuclear chromosomes and their gene expression in Oxytricha trifallax. Gene 2012; 505:75-80. [DOI: 10.1016/j.gene.2012.05.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/25/2012] [Accepted: 05/21/2012] [Indexed: 01/17/2023]
|
447
|
Oleksiak MF, Crawford DL. The relationship between phenotypic and environmental variation: do physiological responses reduce interindividual differences? Physiol Biochem Zool 2012; 85:572-84. [PMID: 23099455 DOI: 10.1086/666904] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
What is the effect of a variable environment on phenotypic variation? Does the physiological response to a new environment increase or decrease the differences among individuals? We provide a speculative hypothesis suggesting that the induction of a physiological response to environmental change minimizes phenotypic differences among individuals in outbred genetically variable populations. Although this suggestion runs counter to the general idea that environmental variation induces phenotypic variation, we provide evidence that this is not always the case. One explanation for this counterintuitive hypothesis is that in a variable environment, the physiological mechanism that maintains homeostasis changes the concentrations of active transcription factors (TFs). This change in TFs reduces the effectiveness of nucleotide polymorphisms in TF binding sites and thus reduces the variation among individuals in mRNA expression and in the phenotypes affected by these mRNA transcripts. Thus, there are fewer differences among individuals in a variable environment compared with the variation observed in a constant environment. Our conjecture is that the physiological mechanisms that maintain homeostasis in response to environmental variation canalize phenotypic variation. If our hypothesis is correct, then the physiological canalization of gene expression in a variable environment hides genetic variation and thereby reduces the evolutionary costs of polymorphism. This hypothesis provides a new perspective on the mechanisms by which high levels of genetic variation can persist in real-world populations.
Collapse
Affiliation(s)
- Marjorie F Oleksiak
- Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida 33149, USA
| | | |
Collapse
|
448
|
Tsimakouridze EV, Straume M, Podobed PS, Chin H, LaMarre J, Johnson R, Antenos M, Kirby GM, Mackay A, Huether P, Simpson JA, Sole M, Gadal G, Martino TA. Chronomics of Pressure Overload–Induced Cardiac Hypertrophy in Mice Reveals Altered Day/Night Gene Expression and Biomarkers of Heart Disease. Chronobiol Int 2012; 29:810-21. [DOI: 10.3109/07420528.2012.691145] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
449
|
The prediction of drug metabolism using scaffold-mediated enhancement of the induced cytochrome P450 activities in fibroblasts by hepatic transcriptional regulators. Biomaterials 2012; 33:5187-97. [DOI: 10.1016/j.biomaterials.2012.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 01/14/2023]
|
450
|
Thompson SR. So you want to know if your message has an IRES? WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:697-705. [PMID: 22733589 DOI: 10.1002/wrna.1129] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Transcriptional regulation of gene expression has been widely studied. More recently, there has been increasing appreciation of the role that translational regulation plays in gene expression, resulting in a number of new fields engaging in translational studies. Regulation of protein synthesis is critical for cell growth, development, and survival, and is primarily controlled at the initiation step. Eukaryotic cells utilize multiple mechanisms to initiate translation, depending on cell stress, growth conditions, viral infection, or the sequences present in the mRNA. While the vast majority of mRNAs are translated in a cap-dependent manner, an important subset of mRNAs uses an alternative mechanism, whereby ribosomes are recruited internally to the message to initiate cap-independent translation. Some of these mRNAs contain an internal ribosome entry site (IRES) located in the 5' untranslated region (UTR). However, establishing that an RNA element is a functional IRES requires a number of carefully executed experiments with specific controls. This review will clearly explain the required experiments, and the pros and cons of various assays, used to determine whether (or not) an RNA element functions as an IRES to promote initiation of translation. We hope that demystifying the accepted methods for assaying IRES activity will open the study of this important mechanism to the broader community.
Collapse
Affiliation(s)
- Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|