1
|
Li J, He J, Ren H, Li Z, Ma X, Yuan L, Ouyang L, Li C, He Y, Tang J, Chen X. Inter- and intra-hemispheric lateralization alterations in auditory verbal hallucinations of Schizophrenia: insights from resting-state functional connectivity. Eur Arch Psychiatry Clin Neurosci 2025:10.1007/s00406-024-01955-0. [PMID: 39751656 DOI: 10.1007/s00406-024-01955-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 12/14/2024] [Indexed: 01/04/2025]
Abstract
Auditory verbal hallucinations (AVHs) in schizophrenia are hypothesized to involve alterations in hemispheric lateralization, but the specific neural mechanisms remain unclear. This study investigated functional intra- and inter-hemispheric connectivity to identify lateralization patterns unique to AVHs. Resting-state fMRI data were collected from 60 schizophrenia patients with persistent AVHs (p-AVH group), 39 patients without AVHs (n-AVH group), and 59 healthy controls (HC group). Using a homotopic atlas, we quantified lateralization indices of functional segregation and integration across 200 homotopic ROI pairs. Segregation was defined as the degree of preferential intra-hemispheric communication within each hemisphere versus inter-hemispheric communication. Integration was used to assess the extent of inter-hemispheric communication between the two hemispheres. Our findings revealed a significant rightward lateralization of segregation in two lateral prefrontal cortex homotopic pairs in the p-AVH group. Additionally, we observed a leftward lateralization of integration in an inferior parietal lobule homotopic pair within the temporoparietal junction region, specifically in the p-AVH group. Importantly, the lateralization index of segregation in the prefrontal cortex was negatively correlated with AVH severity, indicating that greater rightward lateralization is associated with more severe AVHs. These lateralization changes were absent when comparing the n-AVH group to HC group, suggesting they are unique to AVHs in schizophrenia. Our results underscore the pivotal role of altered hemispheric lateralization of functional segregation and integration in the etiology of AVHs, providing new insights into the neural mechanisms underlying these symptoms.
Collapse
Affiliation(s)
- Jinguang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
| | - Jingqi He
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Honghong Ren
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Taian, Shandong, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China
| | - Xiaoqian Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China
| | - Liu Yuan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China
| | - Lijun Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China.
| | - Jinsong Tang
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China.
| |
Collapse
|
2
|
Martini F, Spangaro M, Sapienza J, Cavallaro R. Cerebral asymmetries in schizophrenia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:89-99. [PMID: 40074419 DOI: 10.1016/b978-0-443-15646-5.00018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Historically, the first observations of a lower prevalence of right-handed patients among subjects with schizophrenia led to the hypothesis that brain asymmetry could play a significant role in the etiopathogenesis of the disease. Over the last decades, a growing number of findings obtained through many different techniques such as EEG, MEG, MRI, and fMRI, consistently reported reduction/loss of brain asymmetries as a core feature of schizophrenia, further suggesting such alterations to play a cardinal role in the pathogenesis of the disease. Moreover, several cognitive and psychopathologic dimensions have shown significant correlations with the reduced degree of asymmetry. In particular, the absence or even reversal of structural asymmetries has been documented in language-related brain such as the Sylvian fissure and planum temporale. These findings have been reprocessed within an evolutionary and psychopathologic framework pointing at the loss of asymmetry and the consequent language impairment as primum moves in the pathogenesis of schizophrenia. Overall, despite growing evidence demonstrating a heterogeneous and multifaced etiopathogenesis in schizophrenia, the "old concept" of brain asymmetry still offers intriguing hints and thought-provoking elements for clinicians and researchers who deal with schizophrenia.
Collapse
Affiliation(s)
- Francesca Martini
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Spangaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jacopo Sapienza
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy.
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Su W, Wang J, Tang Y. A narrative literature review of white matter microstructure in individuals at clinical high risk for psychosis. PSYCHORADIOLOGY 2024; 5:kkae031. [PMID: 40406529 PMCID: PMC12097486 DOI: 10.1093/psyrad/kkae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 12/08/2024] [Accepted: 12/22/2024] [Indexed: 05/26/2025]
Abstract
Schizophrenia is a severe psychiatric disorder characterized by widespread white matter (WM) alterations, manifesting as neurodevelopmental deficits and dysconnectivity abnormalities. Over the past two decades, studies have focused on the clinical high-risk (CHR) stage of psychosis and have yielded fruitful information on WM abnormalities that exist prior to the full onset of psychosis, shedding light on biological mechanisms underlying psychosis development. This review presents a summary of current findings on cross-sectional and longitudinal WM alterations in individuals with CHR and their links to clinical symptoms and neurocognitive dysfunction. Next, we review the utilization of WM characterization in predicting clinical outcomes. Taken together, the literature suggests the clinical significance of WM characteristics and their great potential in predicting the conversion to psychosis, despite some methodological and conceptual challenges that remain to be addressed in future studies. Future CHR research would greatly benefit from utilizing WM to guide pharmacological and non-pharmacological targeted treatments, optimize clinical prediction models, and enable more accurate clinical care.
Collapse
Affiliation(s)
- Wenjun Su
- Department of Psychiatry, NYU Langone Health, New York, NY 10016, USA
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai 200031, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
4
|
Dumitru ML, Johnsen E, Kroken RA, Løberg EM, Lilleskare L, Ersland L, Hugdahl K. Widespread asymmetries of amygdala nuclei predict auditory verbal hallucinations in schizophrenia. BMC Psychiatry 2024; 24:826. [PMID: 39563258 DOI: 10.1186/s12888-024-06301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Auditory verbal hallucinations, which frequently involve negative emotions, are reliable symptoms of schizophrenia. Brain asymmetries have also been linked to the condition, but the relevance of asymmetries within the amygdala, which coordinates all emotional signals, to the content of and response to auditory verbal hallucinations has not been explored. METHODS We evaluated the performance of two asymmetry biomarkers that were recently introduced in literature: the distance index, which captures global asymmetries, and a revised version of the laterality index, which captures left-right local asymmetries. We deployed random forest regression models over values computed with the distance index and with the laterality index over amygdala nuclei volumes (lateral, basal, accessory-basal, anterior amygdaloid area, central, medial, cortical, cortico-amygdaloid area, and paralaminar) for 71 patients and 71 age-matched controls. RESULTS Both biomarkers made successful predictions for the 35 items of the revised version of the Belief About Voices Questionnaire, such that hallucination severity increased with increasing local asymmetries and with decreasing global asymmetries of the amygdala. CONCLUSIONS Our findings highlight a global reorganization of the amygdala, where left and right nuclei volumes differ pairwise but become proportionally more similar as hallucinations increase in severity. Identifying asymmetries in particular brain structures relevant to specific symptoms could help monitor the evolution and outcome of psychopathological conditions.
Collapse
Affiliation(s)
- Magda L Dumitru
- Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53 A/B, Postboks 5006, Bergen, Norway.
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
- Institute of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Rune A Kroken
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
- Institute of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Else-Marie Løberg
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Institute of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Lin Lilleskare
- Institute of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Lars Ersland
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
5
|
Abdolmaleky HM, Nohesara S, Thiagalingam S. Epigenome Defines Aberrant Brain Laterality in Major Mental Illnesses. Brain Sci 2024; 14:261. [PMID: 38539649 PMCID: PMC10968810 DOI: 10.3390/brainsci14030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 11/03/2024] Open
Abstract
Brain-hemisphere asymmetry/laterality is a well-conserved biological feature of normal brain development. Several lines of evidence, confirmed by the meta-analysis of different studies, support the disruption of brain laterality in mental illnesses such as schizophrenia (SCZ), bipolar disorder (BD), attention-deficit/hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), and autism. Furthermore, as abnormal brain lateralization in the planum temporale (a critical structure in auditory language processing) has been reported in patients with SCZ, it has been considered a major cause for the onset of auditory verbal hallucinations. Interestingly, the peripheral counterparts of abnormal brain laterality in mental illness, particularly in SCZ, have also been shown in several structures of the human body. For instance, the fingerprints of patients with SCZ exhibit aberrant asymmetry, and while their hair whorl rotation is random, 95% of the general population exhibit a clockwise rotation. In this work, we present a comprehensive literature review of brain laterality disturbances in mental illnesses such as SCZ, BD, ADHD, and OCD, followed by a systematic review of the epigenetic factors that may be involved in the disruption of brain lateralization in mental health disorders. We will conclude with a discussion on whether existing non-pharmacological therapies such as rTMS and ECT may be used to influence the altered functional asymmetry of the right and left hemispheres of the brain, along with their epigenetic and corresponding gene-expression patterns.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Surgery, Nutrition/Metabolism Laboratory, BIDMC, Harvard Medical School, Boston, MA 02215, USA
| | - Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
6
|
Cao P, Chen C, Si Q, Li Y, Ren F, Han C, Zhao J, Wang X, Xu G, Sui Y. Volumes of hippocampal subfields suggest a continuum between schizophrenia, major depressive disorder and bipolar disorder. Front Psychiatry 2023; 14:1191170. [PMID: 37547217 PMCID: PMC10400724 DOI: 10.3389/fpsyt.2023.1191170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Objective There is considerable debate as to whether the continuum of major psychiatric disorders exists and to what extent the boundaries extend. Converging evidence suggests that alterations in hippocampal volume are a common sign in psychiatric disorders; however, there is still no consensus on the nature and extent of hippocampal atrophy in schizophrenia (SZ), major depressive disorder (MDD) and bipolar disorder (BD). The aim of this study was to verify the continuum of SZ - BD - MDD at the level of hippocampal subfield volume and to compare the volume differences in hippocampal subfields in the continuum. Methods A total of 412 participants (204 SZ, 98 MDD, and 110 BD) underwent 3 T MRI scans, structured clinical interviews, and clinical scales. We segmented the hippocampal subfields with FreeSurfer 7.1.1 and compared subfields volumes across the three diagnostic groups by controlling for age, gender, education, and intracranial volumes. Results The results showed a gradual increase in hippocampal subfield volumes from SZ to MDD to BD. Significant volume differences in the total hippocampus and 13 of 26 hippocampal subfields, including CA1, CA3, CA4, GC-ML-DG, molecular layer and the whole hippocampus, bilaterally, and parasubiculum in the right hemisphere, were observed among diagnostic groups. Medication treatment had the most effect on subfields of MDD compared to SZ and BD. Subfield volumes were negatively correlated with illness duration of MDD. Positive correlations were found between subfield volumes and drug dose in SZ and MDD. There was no significant difference in laterality between diagnostic groups. Conclusion The pattern of hippocampal volume reduction in SZ, MDD and BD suggests that there may be a continuum of the three disorders at the hippocampal level. The hippocampus represents a phenotype that is distinct from traditional diagnostic strategies. Combined with illness duration and drug intervention, it may better reflect shared pathophysiology and mechanisms across psychiatric disorders.
Collapse
Affiliation(s)
- Peiyu Cao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Congxin Chen
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qi Si
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
- Huai’an No. 3 People’s Hospital, Huai’an, China
| | - Yuting Li
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Fangfang Ren
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Chongyang Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Jingjing Zhao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Xiying Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Guoxin Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Yuxiu Sui
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| |
Collapse
|
7
|
Reflections on measuring disordered thoughts as expressed via language. Psychiatry Res 2023; 322:115098. [PMID: 36848708 DOI: 10.1016/j.psychres.2023.115098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Thought disorder, as inferred from disorganized and incoherent speech, is an important part of the clinical presentation in schizophrenia. Traditional measurement approaches essentially count occurrences of certain speech events which may have restricted their usefulness. Applying speech technologies in assessment can help automate traditional clinical rating tasks and thereby complement the process. Adopting these computational approaches affords clinical translational opportunities to enhance the traditional assessment by applying such methods remotely and scoring various parts of the assessment automatically. Further, digital measures of language may help detect subtle clinically significant signs and thus potentially disrupt the usual manner by which things are conducted. If proven beneficial to patient care, methods where patients' voice are the primary data source could become core components of future clinical decision support systems that improve risk assessment. However, even if it is possible to measure thought disorder in a sensitive, reliable and efficient manner, there remain many challenges to then translate into a clinically implementable tool that can contribute towards providing better care. Indeed, embracing technology - notably artificial intelligence - requires vigorous standards for reporting underlying assumptions so as to ensure a trustworthy and ethical clinical science.
Collapse
|
8
|
Mohammad SA, Nashaat NH, Okba AAMB, Kilany A, Abdel-Rahman AS, Abd-Elhamed AM, Abdelraouf ER. Asymmetry Matters: Diffusion Tensor Tractography of the Uncinate Fasciculus in Children with Verbal Memory Deficits. AJNR Am J Neuroradiol 2022; 43:1042-1047. [PMID: 35680160 DOI: 10.3174/ajnr.a7535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/18/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Verbal declarative memory performance relies on frontotemporal connectivity. The uncinate fasciculus is a major association tract connecting the frontal and temporal lobes. Hemispheric asymmetries contribute to various cognitive and neurobehavioral abilities. Here we investigated microstructural alterations and hemispheric asymmetry of the uncinate fasciculus and their possible correlation to memory performance of children with learning disorders attributed to verbal memory deficits. MATERIALS AND METHODS Two groups of right-handed children with learning disorders attributed to verbal memory deficits and typically developing children (n = 20 and 22, respectively) underwent DTI on a 1.5T scanner. Tractography of the uncinate fasciculus in both hemispheres was performed, and fractional anisotropy and diffusivity indices (radial diffusivity, axial diffusivity, and trace) were obtained. The asymmetry index was calculated. Verbal memory was assessed using subsets of the Stanford Binet Intelligence Scale, 4th edition, a dyslexia assessment test, and the Illinois test of Psycholinguistic Abilities. Correlation between diffusion metrics and verbal memory performance was investigated in the learning disorders group. Also, hemispheric differences in each group were tested, and between-group comparisons were performed. RESULTS Children with learning disorders showed absence of the normal left-greater-than-right asymmetry of fractional anisotropy and the normal right-greater-than-left asymmetry of radial diffusivity seen in typically developing children. Correlation with verbal memory subsets revealed that the higher the fractional anisotropy and asymmetry index, the better the rapid naming performance (P <.05) was. CONCLUSIONS These findings demonstrated microstructural aberrations with reduction of hemispheric asymmetry of the uncinate fasciculus, which could disrupt the normal frontotemporal connectivity in children with learning disorders attributed to verbal memory deficits. This outcome gives more understanding of pathologic mechanisms underlying this disorder.
Collapse
Affiliation(s)
- S A Mohammad
- From the Department of Diagnostic and Interventional Radiology and Molecular Imaging (S.A.M., A.A.M.B.O., A.S.A.-R., A.M.A.-E.), Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - N H Nashaat
- Research on Children with Special Needs Department (N.H.N., A.K., E.R.A.), Medical Research Division, National Research Centre, Cairo, Egypt
| | - A A M B Okba
- From the Department of Diagnostic and Interventional Radiology and Molecular Imaging (S.A.M., A.A.M.B.O., A.S.A.-R., A.M.A.-E.), Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - A Kilany
- Research on Children with Special Needs Department (N.H.N., A.K., E.R.A.), Medical Research Division, National Research Centre, Cairo, Egypt
| | - A S Abdel-Rahman
- From the Department of Diagnostic and Interventional Radiology and Molecular Imaging (S.A.M., A.A.M.B.O., A.S.A.-R., A.M.A.-E.), Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - A M Abd-Elhamed
- From the Department of Diagnostic and Interventional Radiology and Molecular Imaging (S.A.M., A.A.M.B.O., A.S.A.-R., A.M.A.-E.), Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - E R Abdelraouf
- Research on Children with Special Needs Department (N.H.N., A.K., E.R.A.), Medical Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
9
|
AĞDANLI O, TOPUZOGLU A, KARABAY N, ALPTEKİN K. Corpus Callosum Volume in Patients with First-Episode Psychosis. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2022. [DOI: 10.33808/clinexphealthsci.789999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Onur AĞDANLI
- Sağlık Bakanlığı, İzmir Katip Çelebi Üniverstesi Atatürk Eğitim Araştırma Hastanesi, Psikiyatri Kliniği
| | - Ahmet TOPUZOGLU
- MARMARA ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, HALK SAĞLIĞI ANABİLİM DALI
| | - Nuri KARABAY
- Dokuz Eylül Üniversitesi Tıp Fakültesi Dahili Bilimler, Radyoloji Anabilim Dalı
| | - Köksal ALPTEKİN
- DOKUZ EYLÜL ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, RUH SAĞLIĞI VE HASTALIKLARI ANABİLİM DALI
| |
Collapse
|
10
|
Lei D, Suo X, Qin K, Pinaya WHL, Ai Y, Li W, Kuang W, Lui S, Kemp GJ, Sweeney JA, Gong Q. Magnetization transfer imaging alterations and its diagnostic value in antipsychotic-naïve first-episode schizophrenia. Transl Psychiatry 2022; 12:189. [PMID: 35523792 PMCID: PMC9076920 DOI: 10.1038/s41398-022-01939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/08/2023] Open
Abstract
Magnetization transfer imaging (MTI) may provide more sensitivity and mechanistic understanding of neuropathological changes associated with schizophrenia than volumetric MRI. This study aims to identify brain magnetization transfer ratio (MTR) changes in antipsychotic-naïve first-episode schizophrenia (FES), and to correlate MTR findings with clinical symptom severity. A total of 143 individuals with antipsychotic-naïve FES and 147 healthy controls (HCs) were included and underwent 3.0 T brain MTI between August 2005 and July 2014. Voxelwise analysis was performed to test for MTR differences with family-wise error corrections. Relationships of these differences to symptom severity were assessed using partial correlations. Exploratory analyses using a support vector machine (SVM) classifier were conducted to discriminate FES from HCs using MTR maps. Model performance was examined using a 10-fold stratified cross-validation. Compared with HCs, individuals with FES exhibited higher MTR values in left thalamus, precuneus, cuneus, and paracentral lobule, that were positively correlated with schizophrenia symptom severity [precuneus (r = 0.34, P = 0.0004), cuneus (r = 0.33, P = 0.0006) and paracentral lobule (r = 0.37, P = 0.001)]. Whole-brain MTR maps identified individuals with FES with overall accuracy 75.5% (219 of 290 individuals) based on SVM approach. In antipsychotic-naïve FES, clinically relevant biophysical abnormalities detected by MTI mainly in the left parieto-occipital regions are informative about local brain pathology, and have potential as diagnostic markers.
Collapse
Affiliation(s)
- Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, 45227, USA
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Walter H L Pinaya
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, WC2R 2LS, UK
| | - Yuan Ai
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3GE, UK
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, 45227, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361022, China.
| |
Collapse
|
11
|
Abstract
Graph-theoretical approaches are increasingly used to study the brain and may enhance our understanding of its asymmetries. In this paper, we hypothesize that the structure of the left hemisphere is, on average, more modular. To this end, we analyzed resting-state functional magnetic resonance imaging data of 90 healthy subjects. We computed functional connectivity by Pearson’s correlation coefficient, turned the matrix into an unweighted graph by keeping a certain percentage of the strongest connections, and quantified modularity separately for the subgraph formed by each hemisphere. Our results show that the left hemisphere is more modular. The result is consistent across a range of binarization thresholds, regardless of whether the two hemispheres are thresholded together or separately. This illustrates that graph-theoretical analysis can provide a robust characterization of lateralization of brain functional connectivity.
Collapse
|
12
|
Wu X, Kong X, Vatansever D, Liu Z, Zhang K, Sahakian BJ, Robbins TW, Feng J, Thompson P, Zhang J. Dynamic changes in brain lateralization correlate with human cognitive performance. PLoS Biol 2022; 20:e3001560. [PMID: 35298460 PMCID: PMC8929635 DOI: 10.1371/journal.pbio.3001560] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Hemispheric lateralization constitutes a core architectural principle of human brain organization underlying cognition, often argued to represent a stable, trait-like feature. However, emerging evidence underlines the inherently dynamic nature of brain networks, in which time-resolved alterations in functional lateralization remain uncharted. Integrating dynamic network approaches with the concept of hemispheric laterality, we map the spatiotemporal architecture of whole-brain lateralization in a large sample of high-quality resting-state fMRI data (N = 991, Human Connectome Project). We reveal distinct laterality dynamics across lower-order sensorimotor systems and higher-order associative networks. Specifically, we expose 2 aspects of the laterality dynamics: laterality fluctuations (LF), defined as the standard deviation of laterality time series, and laterality reversal (LR), referring to the number of zero crossings in laterality time series. These 2 measures are associated with moderate and extreme changes in laterality over time, respectively. While LF depict positive association with language function and cognitive flexibility, LR shows a negative association with the same cognitive abilities. These opposing interactions indicate a dynamic balance between intra and interhemispheric communication, i.e., segregation and integration of information across hemispheres. Furthermore, in their time-resolved laterality index, the default mode and language networks correlate negatively with visual/sensorimotor and attention networks, which are linked to better cognitive abilities. Finally, the laterality dynamics are associated with functional connectivity changes of higher-order brain networks and correlate with regional metabolism and structural connectivity. Our results provide insights into the adaptive nature of the lateralized brain and new perspectives for future studies of human cognition, genetics, and brain disorders. Hemispheric lateralization constitutes a core architectural principle of human brain organization, often argued to represent a stable, trait-like feature, but how does this fit with our increasing appreciation of the inherently dynamic nature of brain networks? This neuroimaging study reveals the dynamic nature of functional brain lateralization at resting-state and its relationship with language function and cognitive flexibility.
Collapse
Affiliation(s)
- Xinran Wu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xiangzhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Zhejiang, China
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Zhaowen Liu
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kai Zhang
- School of Computer Science and Technology, East China Normal University, Shanghai, China
| | - Barbara J. Sahakian
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W. Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
- Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- Shanghai Center for Mathematical Sciences, Shanghai, China
| | - Paul Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
13
|
Gutman BA, van Erp TG, Alpert K, Ching CRK, Isaev D, Ragothaman A, Jahanshad N, Saremi A, Zavaliangos‐Petropulu A, Glahn DC, Shen L, Cong S, Alnæs D, Andreassen OA, Doan NT, Westlye LT, Kochunov P, Satterthwaite TD, Wolf DH, Huang AJ, Kessler C, Weideman A, Nguyen D, Mueller BA, Faziola L, Potkin SG, Preda A, Mathalon DH, Bustillo J, Calhoun V, Ford JM, Walton E, Ehrlich S, Ducci G, Banaj N, Piras F, Piras F, Spalletta G, Canales‐Rodríguez EJ, Fuentes‐Claramonte P, Pomarol‐Clotet E, Radua J, Salvador R, Sarró S, Dickie EW, Voineskos A, Tordesillas‐Gutiérrez D, Crespo‐Facorro B, Setién‐Suero E, van Son JM, Borgwardt S, Schönborn‐Harrisberger F, Morris D, Donohoe G, Holleran L, Cannon D, McDonald C, Corvin A, Gill M, Filho GB, Rosa PGP, Serpa MH, Zanetti MV, Lebedeva I, Kaleda V, Tomyshev A, Crow T, James A, Cervenka S, Sellgren CM, Fatouros‐Bergman H, Agartz I, Howells F, Stein DJ, Temmingh H, Uhlmann A, de Zubicaray GI, McMahon KL, Wright M, Cobia D, Csernansky JG, Thompson PM, Turner JA, Wang L. A meta-analysis of deep brain structural shape and asymmetry abnormalities in 2,833 individuals with schizophrenia compared with 3,929 healthy volunteers via the ENIGMA Consortium. Hum Brain Mapp 2022; 43:352-372. [PMID: 34498337 PMCID: PMC8675416 DOI: 10.1002/hbm.25625] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia.
Collapse
Affiliation(s)
- Boris A. Gutman
- Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
- Institute for Information Transmission Problems (Kharkevich Institute)MoscowRussia
| | - Theo G.M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
- Center for the Neurobiology of Learning and MemoryUniversity of California IrvineIrvineCaliforniaUSA
| | - Kathryn Alpert
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Dmitry Isaev
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - Anjani Ragothaman
- Department of biomedical engineeringOregon Health and Science universityPortlandOregonUSA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Arvin Saremi
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Artemis Zavaliangos‐Petropulu
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - David C. Glahn
- Department of PsychiatryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Li Shen
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shan Cong
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dag Alnæs
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Ole Andreas Andreassen
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Nhat Trung Doan
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Lars T. Westlye
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Peter Kochunov
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Theodore D. Satterthwaite
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Daniel H. Wolf
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Alexander J. Huang
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Charles Kessler
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Andrea Weideman
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Dana Nguyen
- Department of PediatricsUniversity of California IrvineIrvineCaliforniaUSA
| | - Bryon A. Mueller
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lawrence Faziola
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Steven G. Potkin
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Adrian Preda
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Daniel H. Mathalon
- Department of Psychiatry and Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Judith Ford Mental HealthVA San Francisco Healthcare SystemSan FranciscoCaliforniaUSA
| | - Juan Bustillo
- Departments of Psychiatry & NeuroscienceUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Vince Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology]Emory UniversityAtlantaGeorgiaUSA
- Department of Electrical and Computer EngineeringThe University of New MexicoAlbuquerqueNew MexicoUSA
| | - Judith M. Ford
- Judith Ford Mental HealthVA San Francisco Healthcare SystemSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Stefan Ehrlich
- Division of Psychological & Social Medicine and Developmental NeurosciencesFaculty of Medicine, TU‐DresdenDresdenGermany
| | | | - Nerisa Banaj
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Fabrizio Piras
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Federica Piras
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Gianfranco Spalletta
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
- Menninger Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonTexasUSA
| | | | | | | | - Joaquim Radua
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
- Institut d'Investigacions Biomdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
| | - Erin W. Dickie
- Centre for Addiction and Mental Health (CAMH)TorontoCanada
| | | | | | | | | | | | - Stefan Borgwardt
- Department of PsychiatryUniversity of BaselBaselSwitzerland
- Department of Psychiatry and PsychotherapyUniversity of LübeckLübeckGermany
| | | | - Derek Morris
- Centre for Neuroimaging and Cognitive Genomics, Discipline of BiochemistryNational University of Ireland GalwayGalwayIreland
| | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics, School of PsychologyNational University of Ireland GalwayGalwayIreland
| | - Laurena Holleran
- Centre for Neuroimaging and Cognitive Genomics, School of PsychologyNational University of Ireland GalwayGalwayIreland
| | - Dara Cannon
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive GenomicsNational University of Ireland GalwayGalwayIreland
| | - Colm McDonald
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive GenomicsNational University of Ireland GalwayGalwayIreland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of PsychiatryTrinity College DublinDublinIreland
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, Department of PsychiatryTrinity College DublinDublinIreland
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
| | - Geraldo Busatto Filho
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Pedro G. P. Rosa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Mauricio H. Serpa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Marcus V. Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Hospital Sirio‐LibanesSao PauloSPBrazil
| | - Irina Lebedeva
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Vasily Kaleda
- Department of Endogenous Mental DisordersMental Health Research CenterMoscowRussia
| | - Alexander Tomyshev
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Tim Crow
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Anthony James
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Simon Cervenka
- Centre for Psychiatry Reserach, Department of Clinical NeuroscienceKarolinska Institutet, & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - Carl M Sellgren
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Helena Fatouros‐Bergman
- Centre for Psychiatry Reserach, Department of Clinical NeuroscienceKarolinska Institutet, & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - Ingrid Agartz
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Fleur Howells
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Neuroscience InstituteUniversity of Cape Town, Cape TownWCSouth Africa
| | - Dan J. Stein
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Neuroscience InstituteUniversity of Cape Town, Cape TownWCSouth Africa
- SA MRC Unit on Risk & Resilience in Mental DisordersUniversity of Cape TownCape TownWCSouth Africa
| | - Henk Temmingh
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
| | - Anne Uhlmann
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Department of Child and Adolescent PsychiatryTU DresdenGermany
| | - Greig I. de Zubicaray
- School of Psychology, Faculty of HealthQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Katie L. McMahon
- School of Clinical SciencesQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Margie Wright
- Queensland Brain InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | - Derin Cobia
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Psychology and Neuroscience CenterBrigham Young UniversityProvoUtahUSA
| | - John G. Csernansky
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Lei Wang
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Psychiatry and Behavioral HealthOhio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
14
|
Niyas S, Chethana Vaisali S, Show I, Chandrika T, Vinayagamani S, Kesavadas C, Rajan J. Segmentation of focal cortical dysplasia lesions from magnetic resonance images using 3D convolutional neural networks. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
McKenna F, Babb J, Miles L, Goff D, Lazar M. Reduced Microstructural Lateralization in Males with Chronic Schizophrenia: A Diffusional Kurtosis Imaging Study. Cereb Cortex 2021; 30:2281-2294. [PMID: 31819950 DOI: 10.1093/cercor/bhz239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Decreased brain lateralization is considered a trait marker of schizophrenia. Whereas reductions in both functional and macrostructural gray matter laterality in schizophrenia are well established, the investigation of gray matter microstructural lateralization has so far been limited to a small number of ex vivo studies, which limits the understanding of neurobiological substrates involved and development of adequate treatments. The aim of the current study was to assess in vivo gray matter microstructure lateralization patterns in schizophrenia by employing the diffusion kurtosis imaging (DKI)-derived mean kurtosis (MK) metric. MK was calculated for 18 right-handed males with chronic schizophrenia and 19 age-matched healthy control participants in 46 bilateral gray matter regions of interest (ROI). Microstructural laterality indexes (μLIs) were calculated for each subject and ROI, and group comparisons were conducted across regions. The relationship between μLI values and performance on the Wisconsin Card Sorting Test (WCST) was also evaluated. We found that compared with healthy controls, males with chronic schizophrenia had significantly decreased μLI across cortical and subcortical gray matter regions, which was correlated with poorer performance on the WCST. Our results suggest the ability of DKI-derived MK to capture gray matter microstructural lateralization pathology in vivo.
Collapse
Affiliation(s)
- Faye McKenna
- Department of Radiology, Center for Biomedical Imaging, New York, NY 10016, USA.,Sackler Institute of Graduate Biomedical Sciences New York University School of Medicine, New York, NY 10016, USA
| | - James Babb
- Department of Radiology, Center for Biomedical Imaging, New York, NY 10016, USA
| | - Laura Miles
- Department of Radiology, Center for Biomedical Imaging, New York, NY 10016, USA
| | - Donald Goff
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Mariana Lazar
- Department of Radiology, Center for Biomedical Imaging, New York, NY 10016, USA.,Sackler Institute of Graduate Biomedical Sciences New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
16
|
Roeske MJ, Konradi C, Heckers S, Lewis AS. Hippocampal volume and hippocampal neuron density, number and size in schizophrenia: a systematic review and meta-analysis of postmortem studies. Mol Psychiatry 2021; 26:3524-3535. [PMID: 32724199 PMCID: PMC7854798 DOI: 10.1038/s41380-020-0853-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Reduced hippocampal volume is a consistent finding in neuroimaging studies of individuals with schizophrenia. While these studies have the advantage of large-sample sizes, they are unable to quantify the cellular basis of structural or functional changes. In contrast, postmortem studies are well suited to explore subfield and cellular alterations, but low sample sizes and subject heterogeneity impede establishment of statistically significant differences. Here we use a meta-analytic approach to synthesize the extant literature of hippocampal subfield volume and cellular composition in schizophrenia patients and healthy control subjects. Following pre-registration (PROSPERO CRD42019138280), PubMed, Web of Science, and PsycINFO were searched using the term: (schizophrenia OR schizoaffective) AND (post-mortem OR postmortem) AND hippocampus. Subjects were adult men and women with schizophrenia or schizoaffective disorder or non-psychiatric control subjects, and key outcomes, stratified by hippocampal hemisphere and subfield, were volume, neuron number, neuron density, and neuron size. A random effects meta-analysis was performed. Thirty-two studies were included (413 patients, 415 controls). In patients, volume and neuron number were significantly reduced in multiple hippocampal subfields in left, but not right hippocampus, whereas neuron density was not significantly different in any hippocampal subfield. Neuron size, averaged bilaterally, was also significantly reduced in all calculated subfields. Heterogeneity was minimal to moderate, with rare evidence of publication bias. Meta-regression of age and illness duration did not explain heterogeneity of total hippocampal volume effect sizes. These results extend neuroimaging findings of smaller hippocampal volume in schizophrenia patients and further our understanding of regional and cellular neuropathology in schizophrenia.
Collapse
Affiliation(s)
- Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Christine Konradi
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Alan S Lewis
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
- Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
| |
Collapse
|
17
|
Zhu Y, Wang S, Gong X, Edmiston EK, Zhong S, Li C, Zhao P, Wei S, Jiang X, Qin Y, Kang J, Wang Y, Sun Q, Gong G, Wang F, Tang Y. Associations between hemispheric asymmetry and schizophrenia-related risk genes in people with schizophrenia and people at a genetic high risk of schizophrenia. Br J Psychiatry 2021; 219:392-400. [PMID: 35048853 PMCID: PMC8529637 DOI: 10.1192/bjp.2021.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Schizophrenia is considered a polygenic disorder. People with schizophrenia and those with genetic high risk of schizophrenia (GHR) have presented with similar neurodevelopmental deficits in hemispheric asymmetry. The potential associations between neurodevelopmental abnormalities and schizophrenia-related risk genes in both schizophrenia and those with GHR remains unclear. AIMS To investigate the shared and specific alternations to the structural network in people with schizophrenia and those with GHR. And to identify an association between vulnerable structural network alternation and schizophrenia-related risk genes. METHOD A total of 97 participants with schizophrenia, 79 participants with GHR and 192 healthy controls, underwent diffusion tensor imaging (DTI) scans at a single site. We used graph theory to characterise hemispheric and whole-brain structural network topological metrics. For 26 people in the schizophrenia group and 48 in the GHR group with DTI scans we also calculated their schizophrenia-related polygenic risk scores (SZ-PRSs). The correlations between alterations to the structural network and SZ-PRSs were calculated. Based on the identified genetic-neural association, bioinformatics enrichment was explored. RESULTS There were significant hemispheric asymmetric deficits of nodal efficiency, global and local efficiency in the schizophrenia and GHR groups. Hemispheric asymmetric deficit of local efficiency was significantly positively correlated with SZ-PRSs in the schizophrenia and GHR groups. Bioinformatics enrichment analysis showed that these risk genes may be linked to signal transduction, neural development and neuron structure. The schizophrenia group showed a significant decrease in the whole-brain structural network. CONCLUSIONS The shared asymmetric deficits in people with schizophrenia and those with GHR, and the association between anomalous asymmetry and SZ-PRSs suggested a vulnerability imaging marker regulated by schizophrenia-related risk genes. Our findings provide new insights into asymmetry regulated by risk genes and provides a better understanding of the genetic-neural pathological underpinnings of schizophrenia.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, PR China; and Brain Function Research Section, The First Affiliated Hospital of China Medical University, PR China
| | - Shuai Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, PR China; Brain Function Research Section, The First Affiliated Hospital of China Medical University, PR China; and Department of Psychology, Weifang Medical University, PR China
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering and Human Phenome Institute, School of Life Sciences, Fudan University, PR China
| | | | - Suyu Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Chao Li
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, PR China; and Department of Radiology, The First Affiliated Hospital of China Medical University, PR China
| | - Pengfei Zhao
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, PR China; and Brain Function Research Section, The First Affiliated Hospital of China Medical University, PR China
| | - Shengnan Wei
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, PR China; and Department of Radiology, The First Affiliated Hospital of China Medical University, PR China
| | - Xiaowei Jiang
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, PR China; and Department of Radiology, The First Affiliated Hospital of China Medical University, PR China
| | - Yue Qin
- State Key Laboratory of Genetic Engineering and Human Phenome Institute, School of Life Sciences, Fudan University, PR China
| | - Jujiao Kang
- State Key Laboratory of Genetic Engineering and Human Phenome Institute, School of Life Sciences, Fudan University, PR China
| | - Yi Wang
- State Key Laboratory of Genetic Engineering and Human Phenome Institute, School of Life Sciences, Fudan University, PR China
| | - Qikun Sun
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, PR China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, PR China; Brain Function Research Section, The First Affiliated Hospital of China Medical University, PR China; Department of Radiology, The First Affiliated Hospital of China Medical University, PR China; and Department of Psychiatry, Yale School of Medicine, USA
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, PR China; Brain Function Research Section, The First Affiliated Hospital of China Medical University, PR China; and Department of Geriatrics, The First Affiliated Hospital of China Medical University, PR China,Correspondence: Yanqing Tang.
| |
Collapse
|
18
|
Jia C, Ou Y, Chen Y, Ma J, Zhan C, Lv D, Yang R, Shang T, Sun L, Wang Y, Zhang G, Sun Z, Wang W, Wang X, Guo W, Li P. Disrupted Asymmetry of Inter- and Intra-Hemispheric Functional Connectivity at Rest in Medication-Free Obsessive-Compulsive Disorder. Front Neurosci 2021; 15:634557. [PMID: 34177445 PMCID: PMC8220135 DOI: 10.3389/fnins.2021.634557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Disrupted functional asymmetry of cerebral hemispheres may be altered in patients with obsessive-compulsive disorder (OCD). However, little is known about whether anomalous brain asymmetries originate from inter- and/or intra-hemispheric functional connectivity (FC) at rest in OCD. In this study, resting-state functional magnetic resonance imaging was applied to 40 medication-free patients with OCD and 38 gender-, age-, and education-matched healthy controls (HCs). Data were analyzed using the parameter of asymmetry (PAS) and support vector machine methods. Patients with OCD showed significantly increased PAS in the left posterior cingulate cortex, left precentral gyrus/postcentral gyrus, and right inferior occipital gyrus and decreased PAS in the left dorsolateral prefrontal cortex (DLPFC), bilateral middle cingulate cortex (MCC), left inferior parietal lobule, and left cerebellum Crus I. A negative correlation was found between decreased PAS in the left DLPFC and Yale-Brown Obsessive-compulsive Scale compulsive behavior scores in the patients. Furthermore, decreased PAS in the bilateral MCC could be used to distinguish OCD from HCs with a sensitivity of 87.50%, an accuracy of 88.46%, and a specificity of 89.47%. These results highlighted the contribution of disrupted asymmetry of intra-hemispheric FC within and outside the cortico-striato-thalamocortical circuits at rest in the pathophysiology of OCD, and reduced intra-hemispheric FC in the bilateral MCC may serve as a potential biomarker to classify individuals with OCD from HCs.
Collapse
Affiliation(s)
- Cuicui Jia
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Yangpan Ou
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yunhui Chen
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Jidong Ma
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, China
| | - Chuang Zhan
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, China
| | - Dan Lv
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Ru Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tinghuizi Shang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Lei Sun
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Yuhua Wang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Guangfeng Zhang
- Department of Radiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Zhenghai Sun
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Wei Wang
- Department of Library, Qiqihar Medical University, Qiqihar, China
| | - Xiaoping Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
19
|
Mavroudis I, Petrides F, Kazis D, Chatzikonstantinou S, Karantali E, Ciobica A, Iordache AC, Dobrin R, Trus C, Njau S, Costa V, Baloyannis S. Morphological alterations of the pyramidal and stellate cells of the visual cortex in schizophrenia. Exp Ther Med 2021; 22:669. [PMID: 33986834 PMCID: PMC8111868 DOI: 10.3892/etm.2021.10101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/19/2021] [Indexed: 11/05/2022] Open
Abstract
Schizophrenia is a severe brain disorder characterized by certain types of delusion, hallucination and thought disorder. Studies have revealed impaired synaptic plasticity and reduced gamma-aminobutyric acid levels of the visual cortex in patients with schizophrenia. While previous work established a critical role for interneurons and cortical connectivity in the generation of hallucinations, the present study set out to examine the morphology of pyramidal cells and interneurons from layers 3 and 4 in the primary visual cortex from schizophrenic brains and to identify any dendritic and spinal alterations in comparison to normal control brains. The morphological and morphometric changes of the pyramidal cells and the interneurons of the visual cortices of 10 brains obtained from patients with schizophrenia, in comparison to 10 age-matched controls, were studied using the Golgi method and 3D neuronal reconstruction techniques. Analysis using the Golgi impregnation technique revealed a significant loss of distal dendritic segments, tortuous branches and varicosities and an overall restriction of the dendritic field in the brains of schizophrenic patients in both pyramidal cells and in aspiny interneurons. The present results may explain certain clinical phenomena associated with the visual cortex usually encountered in schizophrenia.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Laboratory of Neuropathology and Electron Microscopy First Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece.,Department of Neurology, Leeds Teaching Hospitals, Leeds LS1 3EX, UK.,Institute For Research Of Alzheimer's Disease, Other Neurodegenerative Diseases And Normal Aging, Heraklion Langada 57200, Greece
| | - Foivos Petrides
- Laboratory of Neuropathology and Electron Microscopy First Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece.,Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | | | - Eleni Karantali
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, Iasi 700506, Romania.,Academy of Romanian Scientists, Bucuresti 050094, Romania.,Center of Biomedical Research, Romanian Academy, Iasi 700506, Romania
| | - Alin-Constantin Iordache
- Faculty of Medicine, 'Grigore T. Popa', University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Romeo Dobrin
- Faculty of Medicine, 'Grigore T. Popa', University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Constantin Trus
- Department of Morphological and Functional Sciences, Faculty of Medicine, Dunarea de Jos University, Galati 050094, Romania
| | - Samuel Njau
- Department of Forensic Medicine and Toxicology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece
| | - Vasiliki Costa
- Laboratory of Neuropathology and Electron Microscopy First Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece.,Institute For Research Of Alzheimer's Disease, Other Neurodegenerative Diseases And Normal Aging, Heraklion Langada 57200, Greece
| | - Stavros Baloyannis
- Laboratory of Neuropathology and Electron Microscopy First Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece.,Institute For Research Of Alzheimer's Disease, Other Neurodegenerative Diseases And Normal Aging, Heraklion Langada 57200, Greece
| |
Collapse
|
20
|
Kim NS, Lee TY, Hwang WJ, Kwak YB, Kim S, Moon SY, Lho SK, Oh S, Kwon JS. White Matter Correlates of Theory of Mind in Patients With First-Episode Psychosis. Front Psychiatry 2021; 12:617683. [PMID: 33746794 PMCID: PMC7973210 DOI: 10.3389/fpsyt.2021.617683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/08/2021] [Indexed: 11/15/2022] Open
Abstract
Deficits in theory of mind (ToM) are considered as a distinctive feature of schizophrenia. Functional magnetic resonance imaging (fMRI) studies have suggested that aberrant activity among the regions comprising the mentalizing network is related to observed ToM deficits. However, the white matter structures underlying the ToM functional network in schizophrenia remain unclear. To investigate the relationship between white matter integrity and ToM impairment, 35 patients with first-episode psychosis (FEP) and 29 matched healthy controls (HCs) underwent diffusion tensor imaging (DTI). Using tract-based spatial statistics (TBSS), fractional anisotropy (FA) values of the two regions of interest (ROI)-the cingulum and superior longitudinal fasciculus (SLF)-were acquired, and correlational analysis with ToM task scores was performed. Among the patients with FEP, ToM strange story scores were positively correlated with the FA values of the left cingulum and left SLF. There was no significant correlation between FA and ToM task scores in HCs. These results suggest that the left cingulum and SLF constitute a possible neural basis for ToM deficits in schizophrenia. Our study is the first to demonstrate the white matter connectivity underlying the mentalizing network, as well as its relation to ToM ability in patients with FEP.
Collapse
Affiliation(s)
- Nahrie Suk Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, South Korea
- Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Tae Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
- Department of Psychiatry, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Wu Jeong Hwang
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, South Korea
| | - Yoo Bin Kwak
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, South Korea
| | - Seowoo Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, South Korea
| | - Sun-Young Moon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Silvia Kyungjin Lho
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Sanghoon Oh
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Lucock M. Vitamin-related phenotypic adaptation to exposomal factors: The folate-vitamin D-exposome triad. Mol Aspects Med 2021; 87:100944. [PMID: 33551238 DOI: 10.1016/j.mam.2021.100944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/02/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022]
Abstract
The biological role of two key vitamins, folic acid and vitamin D is so fundamental to life processes, it follows that their UV sensitivity, dietary abundance (both key exposomal factors) and variability in dependent genes will modify their functional efficacy, particularly in the context of maintaining the integrity and function of genome and epigenome. This article therefore examines folate and vitamin D-related phenotypic adaptation to environmental factors which vary across the human life cycle as well as over an evolutionary time-scale. Molecular mechanisms, key nutrigenomic factors, phenotypic maladaptation and evolutionary models are discussed.
Collapse
Affiliation(s)
- Mark Lucock
- School of Environmental & Life Sciences, University of Newcastle, PO Box 127, Brush Rd, Ourimbah, NSW, 2258, Australia.
| |
Collapse
|
22
|
Abstract
Comparative studies on brain asymmetry date back to the 19th century but then largely disappeared due to the assumption that lateralization is uniquely human. Since the reemergence of this field in the 1970s, we learned that left-right differences of brain and behavior exist throughout the animal kingdom and pay off in terms of sensory, cognitive, and motor efficiency. Ontogenetically, lateralization starts in many species with asymmetrical expression patterns of genes within the Nodal cascade that set up the scene for later complex interactions of genetic, environmental, and epigenetic factors. These take effect during different time points of ontogeny and create asymmetries of neural networks in diverse species. As a result, depending on task demands, left- or right-hemispheric loops of feedforward or feedback projections are then activated and can temporarily dominate a neural process. In addition, asymmetries of commissural transfer can shape lateralized processes in each hemisphere. It is still unclear if interhemispheric interactions depend on an inhibition/excitation dichotomy or instead adjust the contralateral temporal neural structure to delay the other hemisphere or synchronize with it during joint action. As outlined in our review, novel animal models and approaches could be established in the last decades, and they already produced a substantial increase of knowledge. Since there is practically no realm of human perception, cognition, emotion, or action that is not affected by our lateralized neural organization, insights from these comparative studies are crucial to understand the functions and pathologies of our asymmetric brain.
Collapse
Affiliation(s)
- Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Felix Ströckens
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
23
|
Sasabayashi D, Takayanagi Y, Takahashi T, Katagiri N, Sakuma A, Obara C, Katsura M, Okada N, Koike S, Yamasue H, Nakamura M, Furuichi A, Kido M, Nishikawa Y, Noguchi K, Matsumoto K, Mizuno M, Kasai K, Suzuki M. Subcortical Brain Volume Abnormalities in Individuals With an At-risk Mental State. Schizophr Bull 2020; 46:834-845. [PMID: 32162659 PMCID: PMC7342178 DOI: 10.1093/schbul/sbaa011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Previous structural magnetic resonance imaging studies of psychotic disorders have demonstrated volumetric alterations in subcortical (ie, the basal ganglia, thalamus) and temporolimbic structures, which are involved in high-order cognition and emotional regulation. However, it remains unclear whether individuals at high risk for psychotic disorders with minimal confounding effects of medication exhibit volumetric changes in these regions. This multicenter magnetic resonance imaging study assessed regional volumes of the thalamus, caudate, putamen, nucleus accumbens, globus pallidus, hippocampus, and amygdala, as well as lateral ventricular volume using FreeSurfer software in 107 individuals with an at-risk mental state (ARMS) (of whom 21 [19.6%] later developed psychosis during clinical follow-up [mean = 4.9 years, SD = 2.6 years]) and 104 age- and gender-matched healthy controls recruited at 4 different sites. ARMS individuals as a whole demonstrated significantly larger volumes for the left caudate and bilateral lateral ventricles as well as a smaller volume for the right accumbens compared with controls. In male subjects only, the left globus pallidus was significantly larger in ARMS individuals. The ARMS group was also characterized by left-greater-than-right asymmetries of the lateral ventricle and caudate nucleus. There was no significant difference in the regional volumes between ARMS groups with and without later psychosis onset. The present study suggested that significant volume expansion of the lateral ventricle, caudate, and globus pallidus, as well as volume reduction of the accumbens, in ARMS subjects, which could not be explained only by medication effects, might be related to general vulnerability to psychopathology.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan,To whom correspondence should be addressed; Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan; tel: +81-76-434-7323, fax: +81-76-434-5030, e-mail:
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Atsushi Sakuma
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Chika Obara
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Masahiro Katsura
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidenori Yamasue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yumiko Nishikawa
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kazunori Matsumoto
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan,Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| |
Collapse
|
24
|
Wang Y, Wang YM, Lui SSY, Chan RCK. Clinical Implication of Brain Asymmetries in Psychiatric Disorders. Biol Psychiatry 2020; 87:1014-1016. [PMID: 32498786 DOI: 10.1016/j.biopsych.2020.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Ming Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom
| | - Simon S Y Lui
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Castle Peak Hospital, Hong Kong, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
DeRamus T, Silva R, Iraji A, Damaraju E, Belger A, Ford J, McEwen S, Mathalon D, Mueller B, Pearlson G, Potkin S, Preda A, Turner J, Vaidya J, van Erp T, Calhoun V. Covarying structural alterations in laterality of the temporal lobe in schizophrenia: A case for source-based laterality. NMR IN BIOMEDICINE 2020; 33:e4294. [PMID: 32207187 PMCID: PMC8311554 DOI: 10.1002/nbm.4294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
The human brain is asymmetrically lateralized for certain functions (such as language processing) to regions in one hemisphere relative to the other. Asymmetries are measured with a laterality index (LI). However, traditional LI measures are limited by a lack of consensus on metrics used for its calculation. To address this limitation, source-based laterality (SBL) leverages an independent component analysis for the identification of laterality-specific alterations, identifying covarying components between hemispheres across subjects. SBL is successfully implemented with simulated data with inherent differences in laterality. SBL is then compared with a voxel-wise analysis utilizing structural data from a sample of patients with schizophrenia and controls without schizophrenia. SBL group comparisons identified three distinct temporal regions and one cerebellar region with significantly altered laterality in patients with schizophrenia relative to controls. Previous work highlights reductions in laterality (ie, reduced left gray matter volume) in patients with schizophrenia compared with controls without schizophrenia. Results from this pilot SBL project are the first, to our knowledge, to identify covarying laterality differences within discrete temporal brain regions. The authors argue SBL provides a unique focus to detect covarying laterality differences in patients with schizophrenia, facilitating the discovery of laterality aspects undetected in previous work.
Collapse
Affiliation(s)
- T.P. DeRamus
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - R.F. Silva
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - A. Iraji
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - E. Damaraju
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - A. Belger
- Department of Psychiatry, University of North Carolina Chapel Hill, North Carolina, USA
| | - J.M. Ford
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - S. McEwen
- Pacific Neuroscience Institute Foundation, Santa Monica, CA, USA
| | - D.H. Mathalon
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - B.A. Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - G.D. Pearlson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Institute of Living, Olin Neuropsychiatry Research Center, Hartford, CT, USA
| | - S.G. Potkin
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - A. Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - J.A. Turner
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
- Department of Psychology, Georgia State University, GA, USA
| | - J.G. Vaidya
- Department of Psychiatry, University of Iowa, IA, USA
| | - T.G.M. van Erp
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - V.D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Georgia State University, GA, USA
- Department of Electrical and Computer Engineering, Georgia Tech, GA, USA
| |
Collapse
|
26
|
Gorynia I, Heinz A, Wüstenberg T. Laterality patterns in relation to schizophrenia patients' age at onset. Laterality 2020; 25:349-362. [DOI: 10.1080/1357650x.2019.1690497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Inge Gorynia
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité –Universitätsmedizin, Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité –Universitätsmedizin, Berlin, Germany
| | - Torsten Wüstenberg
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité –Universitätsmedizin, Berlin, Germany
| |
Collapse
|
27
|
Régio Brambilla C, Veselinović T, Rajkumar R, Mauler J, Orth L, Ruch A, Ramkiran S, Heekeren K, Kawohl W, Wyss C, Kops ER, Scheins J, Tellmann L, Boers F, Neumaier B, Ermert J, Herzog H, Langen K, Jon Shah N, Lerche C, Neuner I. mGluR5 receptor availability is associated with lower levels of negative symptoms and better cognition in male patients with chronic schizophrenia. Hum Brain Mapp 2020; 41:2762-2781. [PMID: 32150317 PMCID: PMC7294054 DOI: 10.1002/hbm.24976] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/29/2022] Open
Abstract
Consistent findings postulate disturbed glutamatergic function (more specifically a hypofunction of the ionotropic NMDA receptors) as an important pathophysiologic mechanism in schizophrenia. However, the role of the metabotropic glutamatergic receptors type 5 (mGluR5) in this disease remains unclear. In this study, we investigated their significance (using [11C]ABP688) for psychopathology and cognition in male patients with chronic schizophrenia and healthy controls. In the patient group, lower mGluR5 binding potential (BPND) values in the left temporal cortex and caudate were associated with higher general symptom levels (negative and depressive symptoms), lower levels of global functioning and worse cognitive performance. At the same time, in both groups, mGluR5 BPND were significantly lower in smokers (F[27,1] = 15.500; p = .001), but without significant differences between the groups. Our findings provide support for the concept that the impaired function of mGluR5 underlies the symptoms of schizophrenia. They further supply a new perspective on the complex relationship between tobacco addiction and schizophrenia by identifying glutamatergic neurotransmission—in particularly mGluR5—as a possible connection to a shared vulnerability.
Collapse
Affiliation(s)
- Cláudia Régio Brambilla
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Tanja Veselinović
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Ravichandran Rajkumar
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
- JARA – BRAIN – Translational MedicineAachenGermany
| | - Jörg Mauler
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Linda Orth
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Andrej Ruch
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Shukti Ramkiran
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Karsten Heekeren
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity Hospital of PsychiatryZürichSwitzerland
| | - Wolfram Kawohl
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity Hospital of PsychiatryZürichSwitzerland
| | - Christine Wyss
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity Hospital of PsychiatryZürichSwitzerland
| | - Elena Rota Kops
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Jürgen Scheins
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Lutz Tellmann
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Frank Boers
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Bernd Neumaier
- INM‐5, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Johannes Ermert
- INM‐5, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Hans Herzog
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Karl‐Josef Langen
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- JARA – BRAIN – Translational MedicineAachenGermany
- Department of Nuclear MedicineRWTH Aachen UniversityAachenGermany
| | - N. Jon Shah
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- JARA – BRAIN – Translational MedicineAachenGermany
- INM‐11, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of NeurologyRWTH Aachen UniversityAachenGermany
| | - Christoph Lerche
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Irene Neuner
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
- JARA – BRAIN – Translational MedicineAachenGermany
| |
Collapse
|
28
|
Saarinen AIL, Huhtaniska S, Pudas J, Björnholm L, Jukuri T, Tohka J, Granö N, Barnett JH, Kiviniemi V, Veijola J, Hintsanen M, Lieslehto J. Structural and functional alterations in the brain gray matter among first-degree relatives of schizophrenia patients: A multimodal meta-analysis of fMRI and VBM studies. Schizophr Res 2020; 216:14-23. [PMID: 31924374 DOI: 10.1016/j.schres.2019.12.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE We conducted a multimodal coordinate-based meta-analysis (CBMA) to investigate structural and functional brain alterations in first-degree relatives of schizophrenia patients (FRs). METHODS We conducted a systematic literature search from electronic databases to find studies that examined differences between FRs and healthy controls using whole-brain functional magnetic resonance imaging (fMRI) or voxel-based morphometry (VBM). A CBMA of 30 fMRI (754 FRs; 959 controls) and 11 VBM (885 FRs; 775 controls) datasets were conducted using the anisotropic effect-size version of signed differential mapping. Further, we conducted separate meta-analyses about functional alterations in different cognitive tasks: social cognition, executive functioning, working memory, and inhibitory control. RESULTS FRs showed higher fMRI activation in the right frontal gyrus during cognitive tasks than healthy controls. In VBM studies, there were no differences in gray matter density between FRs and healthy controls. Furthermore, multi-modal meta-analysis obtained no differences between FRs and healthy controls. By utilizing the BrainMap database, we showed that the brain region which showed functional alterations in FRs (i) overlapped only slightly with the brain regions that were affected in the meta-analysis of schizophrenia patients and (ii) correlated positively with the brain regions that exhibited increased activity during cognitive tasks in healthy individuals. CONCLUSIONS Based on this meta-analysis, FRs may exhibit only minor functional alterations in the brain during cognitive tasks, and the alterations are much more restricted and only slightly overlapping with the regions that are affected in schizophrenia patients. The familial risk did not relate to structural alterations in the gray matter.
Collapse
Affiliation(s)
- Aino I L Saarinen
- Research Unit of Psychology, University of Oulu, Finland; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland; Research Unit of Clinical Neuroscience, Department of Psychiatry, University of Oulu, Finland.
| | - Sanna Huhtaniska
- Center for Life Course Health Research, University of Oulu, Finland
| | - Juho Pudas
- Research Unit of Clinical Neuroscience, Department of Psychiatry, University of Oulu, Finland
| | - Lassi Björnholm
- Research Unit of Clinical Neuroscience, Department of Psychiatry, University of Oulu, Finland
| | - Tuomas Jukuri
- Research Unit of Clinical Neuroscience, Department of Psychiatry, University of Oulu, Finland
| | - Jussi Tohka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Niklas Granö
- Helsinki University Hospital, Department of Adolescent Psychiatry, Finland
| | - Jennifer H Barnett
- Cambridge Cognition, Cambridge, UK; Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Vesa Kiviniemi
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Juha Veijola
- Research Unit of Clinical Neuroscience, Department of Psychiatry, University of Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | | | - Johannes Lieslehto
- Center for Life Course Health Research, University of Oulu, Finland; Section for Neurodiagnostic Applications, Department of Psychiatry, Ludwig Maximilian University, Nussbaumstrasse 7, 80336 Munich, Bavaria, Germany
| |
Collapse
|
29
|
Stephan-Otto C, Lombardini F, Núñez C, Senior C, Ochoa S, Usall J, Brébion G. Fluctuating asymmetry in patients with schizophrenia is related to hallucinations and thought disorganisation. Psychiatry Res 2020; 285:112816. [PMID: 32036154 DOI: 10.1016/j.psychres.2020.112816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 11/26/2022]
Abstract
Fluctuating asymmetry represents the degree to which the right and left side of the body are asymmetrical, and is a sign of developmental instability. Higher levels of fluctuating asymmetry have been observed in individuals within the schizophrenia spectrum. We aimed to explore the associations of fluctuating asymmetry with psychotic and affective symptoms in schizophrenia patients, as well as with propensity to these symptoms in non-clinical individuals. A measure of morphological fluctuating asymmetry was calculated for 39 patients with schizophrenia and 60 healthy individuals, and a range of clinical and subclinical psychiatric symptoms was assessed. Regression analyses of the fluctuating asymmetry measure were conducted within each group. In the patient cohort, fluctuating asymmetry was significantly associated with the hallucination and thought disorganisation scores. T-test comparisons revealed that the patients presenting either hallucinations or thought disorganisation were significantly more asymmetrical than were the healthy individuals, while the patients without these key symptoms were equivalent to the healthy individuals. A positive association with the anxiety score emerged in a subsample of 36 healthy participants who were rated on affective symptoms. These findings suggest that fluctuating asymmetry may be an indicator of clinical hallucinations and thought disorganisation rather than an indicator of schizophrenia disease.
Collapse
Affiliation(s)
- Christian Stephan-Otto
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | | | - Christian Núñez
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Carl Senior
- School of Life & Health Sciences, Aston University, Birmingham, UK; Research and Development Unit - Parc Sanitari Sant Joan de Déu, c/ Dr. Antoni Pujadas, 42, 08830 - Sant Boi de Llobregat, Barcelona, Spain
| | - Susana Ochoa
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Judith Usall
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Gildas Brébion
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| |
Collapse
|
30
|
Carrion-Castillo A, Pepe A, Kong XZ, Fisher SE, Mazoyer B, Tzourio-Mazoyer N, Crivello F, Francks C. Genetic effects on planum temporale asymmetry and their limited relevance to neurodevelopmental disorders, intelligence or educational attainment. Cortex 2019; 124:137-153. [PMID: 31887566 DOI: 10.1016/j.cortex.2019.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 11/27/2022]
Abstract
Previous studies have suggested that altered asymmetry of the planum temporale (PT) is associated with neurodevelopmental disorders, including dyslexia, schizophrenia, and autism. Shared genetic factors have been suggested to link PT asymmetry to these disorders. In a dataset of unrelated subjects from the general population (UK Biobank, N = 18,057), we found that PT volume asymmetry had a significant heritability of roughly 14%. In genome-wide association analysis, two loci were significantly associated with PT asymmetry, including a coding polymorphism within the gene ITIH5 that is predicted to affect the protein's function and to be deleterious (rs41298373, p = 2.01 × 10-15), and a locus that affects the expression of the genes BOK and DTYMK (rs7420166, p = 7.54 × 10-10). DTYMK showed left-right asymmetry of mRNA expression in post mortem PT tissue. Cortex-wide mapping of these SNP effects revealed influences on asymmetry that went somewhat beyond the PT. Using publicly available genome-wide association statistics from large-scale studies, we saw no significant genetic correlations of PT asymmetry with autism spectrum disorder, attention deficit hyperactivity disorder, schizophrenia, educational attainment or intelligence. Of the top two individual loci associated with PT asymmetry, rs41298373 showed a tentative association with intelligence (unadjusted p = .025), while the locus at BOK/DTYMK showed tentative association with educational attainment (unadjusted Ps < .05). These findings provide novel insights into the genetic contributions to human brain asymmetry, but do not support a substantial polygenic association of PT asymmetry with cognitive variation and mental disorders, as far as can be discerned with current sample sizes.
Collapse
Affiliation(s)
- Amaia Carrion-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Antonietta Pepe
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, et Université; de Bordeaux, Bordeaux, France
| | - Xiang-Zhen Kong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Bernard Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, et Université; de Bordeaux, Bordeaux, France
| | - Nathalie Tzourio-Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, et Université; de Bordeaux, Bordeaux, France
| | - Fabrice Crivello
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, et Université; de Bordeaux, Bordeaux, France
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
31
|
Palaniyappan L. Inefficient neural system stabilization: a theory of spontaneous resolutions and recurrent relapses in psychosis. J Psychiatry Neurosci 2019; 44:367-383. [PMID: 31245961 PMCID: PMC6821513 DOI: 10.1503/jpn.180038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 02/07/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
A striking feature of psychosis is its heterogeneity. Presentations of psychosis vary from transient symptoms with no functional consequence in the general population to a tenacious illness at the other extreme, with a wide range of variable trajectories in between. Even among patients with schizophrenia, who are diagnosed on the basis of persistent deterioration, marked variation is seen in response to treatment, frequency of relapses and degree of eventual recovery. Existing theoretical accounts of psychosis focus almost exclusively on how symptoms are initially formed, with much less emphasis on explaining their variable course. In this review, I present an account that links several existing notions of the biology of psychosis with the variant clinical trajectories. My aim is to incorporate perspectives of systems neuroscience in a staging framework to explain the individual variations in illness course that follow the onset of psychosis.
Collapse
Affiliation(s)
- Lena Palaniyappan
- From the Department of Psychiatry and Robarts Research Institute, University of Western Ontario and Lawson Health Research Institute, London, Ont., Canada
| |
Collapse
|
32
|
Abstract
A hypothesis offering diglossia as a potential risk factor for schizophrenia is presented. This is supported primarily by an account of the numerous co-occurrences between the diglossic phenomenon and the established risk factors and features of schizophrenia, such as language impairment, working memory dysfunction, social adversity, urbanicity, migration, and ethnicity, as well as some of the broader educational elements including illiteracy, reading deficits, and poor academic attainment. With an emphasis on the inherent role of language in schizophrenia and the demand for elucidating a mechanism behind its risk factors, we propose that a diglossic environment in childhood may constitute a neurodevelopmental insult predisposing to the development of the disorder. This relationship may be mediated by the reduced lateralization of language in the brain, which has been observed in relation to schizophrenia.
Collapse
|
33
|
Automatic detection and localization of Focal Cortical Dysplasia lesions in MRI using fully convolutional neural network. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.04.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Guo J, Han Y, Li Y, Reddick WE. Reduced brain microstructural asymmetry in patients with childhood leukemia treated with chemotherapy compared with healthy controls. PLoS One 2019; 14:e0216554. [PMID: 31071157 PMCID: PMC6508708 DOI: 10.1371/journal.pone.0216554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/18/2019] [Indexed: 11/18/2022] Open
Abstract
Microstructural asymmetry of the brain can provide more direct causal explanations of functional lateralization than can macrostructural asymmetry. We performed a cross-sectional diffusion imaging study of 314 patients treated for childhood acute lymphoblastic leukemia (ALL) at a single institution and 92 healthy controls. An asymmetry index based on diffusion metrics was computed to quantify brain microstructural asymmetry. The effects of age and the asymmetry metrics of the two cohorts were examined with t-tests and linear models. We discovered two new types of microstructural asymmetry. Myelin-related asymmetry in controls was prominent in the back brain (89% right), whereas axon-related asymmetry occurred in the front brain (67% left) and back brain (88% right). These asymmetries indicate that white matter is more mature and more myelinated in the left back brain, potentially explaining the leftward lateralization of language and visual functions. The asymmetries increase throughout childhood and adolescence (P = 0.04) but were significantly less in patients treated for ALL (P<0.01), especially in younger patients. Our results indicate that atypical brain development may appear long before patients treated with chemotherapy become symptomatic.
Collapse
Affiliation(s)
- Junyu Guo
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail:
| | - Yuanyuan Han
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Yimei Li
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Wilburn E. Reddick
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| |
Collapse
|
35
|
Gómez-Gastiasoro A, Zubiaurre-Elorza L, Peña J, Ibarretxe-Bilbao N, Rilo O, Schretlen DJ, Ojeda N. Altered frontal white matter asymmetry and its implications for cognition in schizophrenia: A tractography study. Neuroimage Clin 2019; 22:101781. [PMID: 30991613 PMCID: PMC6449782 DOI: 10.1016/j.nicl.2019.101781] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/05/2019] [Accepted: 03/14/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND White matter (WM) alterations are well documented in schizophrenia. Abnormalities in interhemispheric fibers appear to account for altered WM asymmetry in the illness. However, the regional specificity (e.g., frontal versus occipital) of these alterations and their potential contribution to cognitive dysfunction in schizophrenia remain unknown. METHODS Forty one patients with schizophrenia and 21 healthy controls (HC) underwent diffusion-weighted imaging on a 3 Tesla MRI machine. Tract-based spatial statistic (FSL) was used to assess whole brain differences in WM. Probabilistic tractography was performed in order to separately measure frontal and occipital WM tracts. Participants also completed tests of verbal memory and processing speed. Repeated measures analyses of covariance and Pearson correlation analyses were performed. RESULTS A significant group x cerebral hemisphere interaction was found for fractional anisotropy (FA) (F(1,17) = 7.03; p = .017; ηp2 = 0.29) and radial diffusivity (RD) (F(1,17) = 4.84; p = .042; ηp2 = 0.22) in the frontal tract of patients versus HC. Healthy controls showed higher mean FA and lower mean RD in the left frontal tract compared to patients, who showed the opposite pattern. In patients with schizophrenia, mean FA and RD in the right frontal tract correlated with verbal memory (r = -0.68, p = .046; r = 0.77, p = .015). CONCLUSIONS Asymmetric WM alterations were found in a frontal tract of patients with schizophrenia. Higher mean FA in the right frontal tract correlated with worse verbal memory performance, suggesting a possible contribution these brain changes to cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- Ainara Gómez-Gastiasoro
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - Leire Zubiaurre-Elorza
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - Javier Peña
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain.
| | - Naroa Ibarretxe-Bilbao
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - Oiane Rilo
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - David J Schretlen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 218, Baltimore, MD 21287-7218. United States
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| |
Collapse
|
36
|
Wang Q, Zhang J, Liu Z, Crow TJ, Zhang K, Palaniyappan L, Li M, Zhao L, Li X, Deng W, Guo W, Ma X, Cheng W, Ma L, Wan L, Lu G, Liu Z, Wang J, Feng J, Li T. "Brain Connectivity Deviates by Sex and Hemisphere in the First Episode of Schizophrenia"-A Route to the Genetic Basis of Language and Psychosis? Schizophr Bull 2019; 45:484-494. [PMID: 29939349 PMCID: PMC6403095 DOI: 10.1093/schbul/sby061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Schizophrenia is genetic in origin and associated with a fecundity disadvantage. The deficits in schizophrenia have been attributed to variation related to the human capacity for language or brain laterality. How sex influences the relative connectivity of the 2 hemispheres is a route to understanding these 2 functions. Using resting-state functional magnetic resonance imaging (fMRI) we searched for sex- and hemisphere-specific changes in whole-brain functional-connectivity in multi-site datasets (altogether 672 subjects including 286 patients, all right-handed) in the first-episode schizophrenia (illness duration ≤ 1 year, mostly drug naive) and in chronic stages of schizophrenia (illness duration > 1 year), respectively. We used meta-analyses to integrate data from different sources concerning individuals at the same illness stage. We found first-episode male patients are predominantly left-lateralized in aberrant connectivity with a focus on Broca's area. Female patients show a lesser degree of lateralization than males, but to the right particularly in orbital frontal cortex. In the chronic stage, the focus of aberrant connectivity shifted from anterior to posterior structures with prominent involvement of the thalamus and pre- and post-central gyri bilaterally and in both sexes. While the "deviant connectivity" is right-sided in both the first-episode and the chronic stages in females, in males there is a shift between stages from the left to the right hemisphere. We hypothesized that the pathophysiology of schizophrenia may lie in the interaction between sex and lateralization, ie, in genetic mechanisms located on the X and Y chromosomes, intrinsic to the evolution of language.
Collapse
Affiliation(s)
- Qiang Wang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, PR China,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China,Key Laboratory of Computational Neuroscience and BrainInspired Intelligence (Fudan University), Ministry of Education, PR China
| | - Zhaowen Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi’an, PR China,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, PR China,School of Computer Science and Technology, Xidian University, Xi’an, PR China
| | - Tim J Crow
- POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Kai Zhang
- Department of Computer and Information Sciences, Temple University, Philadelphia, PA
| | - Lena Palaniyappan
- Robarts Research Institute, University of Western Ontario & Lawson Health Research Institute, London, ON, Canada,Centre for Translational Neuroimaging, Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - Mingli Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, PR China,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, PR China,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Xiaojing Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, PR China,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Wei Deng
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, PR China,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Wanjun Guo
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, PR China,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, PR China,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China,Key Laboratory of Computational Neuroscience and BrainInspired Intelligence (Fudan University), Ministry of Education, PR China
| | - Liang Ma
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
| | - Lin Wan
- POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK,Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, PR China
| | - Guangming Lu
- Department of Computer and Information Sciences, Temple University, Philadelphia, PA,Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Zhening Liu
- Mental Health Center, Xiangya Hospital, Central South University, Changsha, PR China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500), Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China,Key Laboratory of Computational Neuroscience and BrainInspired Intelligence (Fudan University), Ministry of Education, PR China,Department of Computer Science, University of Warwick, Coventry, UK,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, PR China,Shanghai Center for Mathematical Sciences, Shanghai, PR China,Zhongshan Hospital, Fudan University, Shanghai, PR China,To whom correspondence should be addressed; Jianfeng Feng: Department of Computer Science, University of Warwick, and Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, PR China; tel:+86-21-65648379, e-mail: and Tao Li: Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; tel: +86-28-85423561, e-mail:
| | - Tao Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, PR China,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China,To whom correspondence should be addressed; Jianfeng Feng: Department of Computer Science, University of Warwick, and Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, PR China; tel:+86-21-65648379, e-mail: and Tao Li: Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; tel: +86-28-85423561, e-mail:
| |
Collapse
|
37
|
Abdolmaleky HM, Gower AC, Wong CK, Cox JW, Zhang X, Thiagalingam A, Shafa R, Sivaraman V, Zhou JR, Thiagalingam S. Aberrant transcriptomes and DNA methylomes define pathways that drive pathogenesis and loss of brain laterality/asymmetry in schizophrenia and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2019; 180:138-149. [PMID: 30468562 PMCID: PMC6386618 DOI: 10.1002/ajmg.b.32691] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/23/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Although the loss of brain laterality is one of the most consistent modalities in schizophrenia (SCZ) and bipolar disorder (BD), its molecular basis remains elusive. Our limited previous studies indicated that epigenetic modifications are key to the asymmetric transcriptomes of brain hemispheres. We used whole-genome expression microarrays to profile postmortem brain samples from subjects with SCZ, psychotic BD [BD[+]] or non-psychotic BD [BD(-)], or matched controls (10/group) and performed whole-genome DNA methylation (DNAM) profiling of the same samples (3-4/group) to identify pathways associated with SCZ or BD[+] and genes/sites susceptible to epigenetic regulation. qRT-PCR and quantitative DNAM analysis were employed to validate findings in larger sample sets (35/group). Gene Set Enrichment Analysis (GSEA) demonstrated that BMP signaling and astrocyte and cerebral cortex development are significantly (FDR q < 0.25) coordinately upregulated in both SCZ and BD[+], and glutamate signaling and TGFβ signaling are significantly coordinately upregulated in SCZ. GSEA also indicated that collagens are downregulated in right versus left brain of controls, but not in SCZ or BD[+] patients. Ingenuity Pathway Analysis predicted that TGFB2 is an upstream regulator of these genes (p = .0012). While lateralized expression of TGFB2 in controls (p = .017) is associated with a corresponding change in DNAM (p ≤ .023), lateralized expression and DNAM of TGFB2 are absent in SCZ or BD. Loss of brain laterality in SCZ and BD corresponds to aberrant epigenetic regulation of TGFB2 and changes in TGFβ signaling, indicating potential avenues for disease prevention/treatment.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA,Nutrition/Metabolism Laboratory, BIDMC, Harvard Medical School, Boston, MA,Corresponding Authors: Hamid Mostafavi Abdolmaleky () and Sam Thiagalingam ()
| | - Adam Chapin Gower
- Clinical and Translational Science Institute, Boston University School of Medicine, Boston, MA
| | - Chen Khuan Wong
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA,Genetics & Genomics Graduate Program, Boston University School of Medicine, Boston, MA
| | - Jiayi Wu Cox
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA,Bioinformatics Graduate Program, Boston University, Boston, MA
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA
| | - Arunthathi Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA
| | | | - Vadivelu Sivaraman
- Critical Care Medicine, Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, BIDMC, Harvard Medical School, Boston, MA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA,Genetics & Genomics Graduate Program, Boston University School of Medicine, Boston, MA,Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA,Corresponding Authors: Hamid Mostafavi Abdolmaleky () and Sam Thiagalingam ()
| |
Collapse
|
38
|
Clarifying associations between cortical thickness, subcortical structures, and a comprehensive assessment of clinical insight in enduring schizophrenia. Schizophr Res 2019; 204:245-252. [PMID: 30150023 DOI: 10.1016/j.schres.2018.08.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/31/2018] [Accepted: 08/13/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND The relationship between poor insight and less favorable outcomes in schizophrenia has promoted research efforts to understand its neurobiological basis. Thus far, research on neural correlates of insight has been constrained by small samples, incomplete insight assessments, and a focus on frontal lobes. The purpose of this study was to examine associations of cortical thickness and subcortical volumes, with a comprehensive assessment of clinical insight, in a large sample of enduring schizophrenia patients. METHODS Two dimensions of clinical insight previously identified by a factor analysis of 4 insight assessments were used: Awareness of Illness and Need for Treatment (AINT) and Awareness of Symptoms and Consequences (ASC). T1-weighted structural images were acquired on a 3 T MRI scanner for 110 schizophrenia patients and 69 healthy controls. MR images were processed using CIVET (version 2.0) and MAGeT and quality controlled pre and post-processing. Whole-brain and region-of-interest, vertex-wise linear models were applied between cortical thickness, and levels of AINT and ASC. Partial correlations were conducted between volumes of the amygdala, thalamus, striatum, and hippocampus and insight levels. RESULTS No significant associations between both insight factors and cortical thickness were observed. Moreover, no significant associations emerged between subcortical volumes and both insight factors. CONCLUSIONS These results do not replicate previous findings obtained with smaller samples using single-item measures of insight into illness, suggesting a limited role of neurobiological factors and a greater role of psychological processes in explaining levels of clinical insight.
Collapse
|
39
|
Alexander-Bloch AF, Mathias SR, Fox PT, Olvera RL, Göring HHH, Duggirala R, Curran JE, Blangero J, Glahn DC. Human Cortical Thickness Organized into Genetically-determined Communities across Spatial Resolutions. Cereb Cortex 2019; 29:106-118. [PMID: 29190330 PMCID: PMC6676978 DOI: 10.1093/cercor/bhx309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/19/2017] [Indexed: 12/13/2022] Open
Abstract
The cerebral cortex may be organized into anatomical genetic modules, communities of brain regions with shared genetic influences via pleiotropy. Such modules could represent novel phenotypes amenable to large-scale gene discovery. This modular structure was investigated with network analysis of in vivo MRI of extended pedigrees, revealing a "multiscale" structure where smaller and larger modules exist simultaneously and in partially overlapping fashion across spatial scales, in contrast to prior work suggesting a specific number of cortical thickness modules. Inter-regional genetic correlations, gene co-expression patterns and computational models indicate that two simple organizational principles account for a large proportion of the apparent complexity in the network of genetic correlations. First, regions are strongly genetically correlated with their homologs in the opposite cerebral hemisphere. Second, regions are strongly genetically correlated with nearby regions in the same hemisphere, with an initial steep decrease in genetic correlation with anatomical distance, followed by a more gradual decline. Understanding underlying organizational principles of genetic influence is a critical step towards a mechanistic model of how specific genes influence brain anatomy and mediate neuropsychiatric risk.
Collapse
Affiliation(s)
| | - Samuel R Mathias
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
| | - Peter T Fox
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio, TX, USA
- University of Texas of the Rio Grande Valley, Brownsville, TX, USA
| | - Rene L Olvera
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio, TX, USA
- University of Texas of the Rio Grande Valley, Brownsville, TX, USA
| | - Harold H H Göring
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio, TX, USA
- University of Texas of the Rio Grande Valley, Brownsville, TX, USA
| | - Ravi Duggirala
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio, TX, USA
- University of Texas of the Rio Grande Valley, Brownsville, TX, USA
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio, TX, USA
- University of Texas of the Rio Grande Valley, Brownsville, TX, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio, TX, USA
- University of Texas of the Rio Grande Valley, Brownsville, TX, USA
| | - David C Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
| |
Collapse
|
40
|
Zhu F, Liu F, Guo W, Chen J, Su Q, Zhang Z, Li H, Fan X, Zhao J. Disrupted asymmetry of inter- and intra-hemispheric functional connectivity in patients with drug-naive, first-episode schizophrenia and their unaffected siblings. EBioMedicine 2018; 36:429-435. [PMID: 30241918 PMCID: PMC6197719 DOI: 10.1016/j.ebiom.2018.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/02/2018] [Accepted: 09/10/2018] [Indexed: 11/25/2022] Open
Abstract
Background Lack of normal asymmetry in the brain has been reported in patients with schizophrenia. However, it remains unclear whether disrupted asymmetry originates from inter-hemispheric functional connectivity (FC) and/or intra-hemispheric FC in this patient population. Methods Forty-four patients with drug-naive, first-episode schizophrenia, 42 unaffected siblings, and 44 healthy controls underwent resting-state functional magnetic resonance imaging (fMRI) scan. The parameter of asymmetry (PAS) and support vector machine (SVM) were used to analyze the data. Patients were treated with olanzapine for 8 weeks. Findings Compared with healthy controls, patients showed lower PAS scores in the left middle temporal gyrus (MTG)/inferior temporal gyrus (ITG), left posterior cingulate cortex (PCC)/precuneus and left angular gyrus, and higher PAS scores in the left precentral gyrus/postcentral gyrus. Unaffected siblings also showed lower PAS scores in the left MTG/ITG and left PCC/precuneus relative to healthy controls. Further, SVM analysis showed that a combination of the PAS scores in these two clusters in patients at baseline was able to predict clinical response after 8 weeks of olanzapine treatment with 77.27% sensitivity, 72.73% specificity, and 75.00% accuracy. Interpretation The present study suggests disrupted asymmetry of inter- and intra-hemispheric FC in drug-naive, first-episode schizophrenia; in addition, a reduced asymmetry of inter-hemispheric FC in the left MTG/ITG and left PCC/precuneus may serve as an endophenotype for schizophrenia, and may have clinical utility to predict response to olanzapine treatment. Fund The National Key R&D Program of China and the National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Furong Zhu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300000, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Qinji Su
- Mental Health Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China
| | - Zhikun Zhang
- Mental Health Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiaoduo Fan
- University of Massachusetts Medical School, UMass Memorial Medical Center, One Biotech, Suite 100, 365 Plantation Street, Worcester, MA 01605, United States.
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
41
|
Zeev-Wolf M, Levy J, Jahshan C, Peled A, Levkovitz Y, Grinshpoon A, Goldstein A. MEG resting-state oscillations and their relationship to clinical symptoms in schizophrenia. NEUROIMAGE-CLINICAL 2018; 20:753-761. [PMID: 30238919 PMCID: PMC6154766 DOI: 10.1016/j.nicl.2018.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/24/2018] [Accepted: 09/12/2018] [Indexed: 01/21/2023]
Abstract
Neuroimaging studies suggest that schizophrenia is characterized by disturbances in oscillatory activity, although at present it remains unclear whether these neural abnormalities are driven by dimensions of symptomatology. Examining different subgroups of patients based on their symptomatology is thus very informative in understanding the role of neural oscillation patterns in schizophrenia. In the present study we examined whether neural oscillations in the delta, theta, alpha, beta and gamma bands correlate with positive and negative symptoms in individuals with schizophrenia (SZ) during rest. Resting-state brain activity of 39 SZ and 25 neurotypical controls was recorded using magnetoencephalography. Patients were categorized based on the severity of their positive and negative symptoms. Spectral analyses of beamformer data revealed that patients high in positive symptoms showed widespread low alpha power, and alpha power was negatively correlated with positive symptoms. In contrast, patients high in negative symptoms showed greater beta power in left hemisphere regions than those low in negative symptoms, and beta power was positively correlated with negative symptoms. We further discuss these findings and suggest that different neural mechanisms may underlie positive and negative symptoms in schizophrenia.
Collapse
Affiliation(s)
- Maor Zeev-Wolf
- Gonda Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Department of Education, Ben Gurion University, Beer Sheva, Israel.
| | - Jonathan Levy
- Gonda Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Interdisciplinary Center, Herzliya, Israel
| | - Carol Jahshan
- VISN-22 Mental Illness Research, Education and Clinical Center (MIRECC), VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Abraham Peled
- Sha'ar Menashe Mental Health Center, Hadera, Israel, and Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yechiel Levkovitz
- Beer-Ya'akov-Ness-Ziona-Maban Mental Health Center, Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alexander Grinshpoon
- Sha'ar Menashe Mental Health Center, Hadera, Israel, and Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Abraham Goldstein
- Gonda Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
42
|
Chan CC, Szeszko PR, Wong E, Tang CY, Kelliher C, Penner JD, Perez-Rodriguez MM, Rosell DR, McClure M, Roussos P, New AS, Siever LJ, Hazlett EA. Frontal and temporal cortical volume, white matter tract integrity, and hemispheric asymmetry in schizotypal personality disorder. Schizophr Res 2018; 197:226-232. [PMID: 29454512 PMCID: PMC8043048 DOI: 10.1016/j.schres.2018.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/29/2017] [Accepted: 01/21/2018] [Indexed: 12/29/2022]
Abstract
Abnormalities in temporal and frontal cortical volume, white matter tract integrity, and hemispheric asymmetry have been implicated in schizophrenia-spectrum disorders. Schizotypal personality disorder can provide insight into vulnerability and protective factors in these disorders without the confounds associated with chronic psychosis. However, multimodal imaging and asymmetry studies in SPD are sparse. Thirty-seven individuals with SPD and 29 healthy controls (HC) received clinical interviews and 3T magnetic resonance T1-weighted and diffusion tensor imaging scans. Mixed ANOVAs were performed on gray matter volumes of the lateral temporal regions involved in auditory and language processing and dorsolateral prefrontal cortex involved in executive functioning, as well as fractional anisotropy (FA) of prominent white matter tracts that connect frontal and temporal lobes. In the temporal lobe regions, there were no group differences in volume, but SPD had reduced right>left middle temporal gyrus volume asymmetry compared to HC and lacked the right>left asymmetry in the inferior temporal gyrus volume seen in HC. In the frontal regions, there were no differences between groups on volume or asymmetry. In the white matter tracts, SPD had reduced FA in the left sagittal stratum and superior longitudinal fasciculus, and increased right>left asymmetry in sagittal stratum FA compared to HC. In the SPD group, lower left superior longitudinal fasciculus FA was associated with greater severity of disorganization symptoms. Findings suggest that abnormities in structure and asymmetry of temporal regions and frontotemporal white matter tract integrity are implicated in SPD pathology.
Collapse
Affiliation(s)
- Chi C. Chan
- VISN 2 Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Corresponding author at: Mental Illness Research, Education, and Clinical Center, James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-41G, Bronx, NY 10468, USA, (C.C. Chan)
| | - Philip R. Szeszko
- VISN 2 Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edmund Wong
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cheuk Y. Tang
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caitlin Kelliher
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Justin D. Penner
- VISN 2 Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Daniel R. Rosell
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret McClure
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- VISN 2 Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Genetics and Genomic Sciences and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Antonia S. New
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Larry J. Siever
- VISN 2 Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erin A. Hazlett
- VISN 2 Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
43
|
Sandini C, Zöller D, Scariati E, Padula MC, Schneider M, Schaer M, Van De Ville D, Eliez S. Development of Structural Covariance From Childhood to Adolescence: A Longitudinal Study in 22q11.2DS. Front Neurosci 2018; 12:327. [PMID: 29867336 PMCID: PMC5968113 DOI: 10.3389/fnins.2018.00327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/26/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Schizophrenia is currently considered a neurodevelopmental disorder of connectivity. Still few studies have investigated how brain networks develop in children and adolescents who are at risk for developing psychosis. 22q11.2 Deletion Syndrome (22q11DS) offers a unique opportunity to investigate the pathogenesis of schizophrenia from a neurodevelopmental perspective. Structural covariance (SC) is a powerful approach to explore morphometric relations between brain regions that can furthermore detect biomarkers of psychosis, both in 22q11DS and in the general population. Methods: Here we implement a state-of-the-art sliding-window approach to characterize maturation of SC network architecture in a large longitudinal cohort of patients with 22q11DS (110 with 221 visits) and healthy controls (117 with 211 visits). We furthermore propose a new clustering-based approach to group regions according to trajectories of structural connectivity maturation. We correlate measures of SC with development of working memory, a core executive function that is highly affected in both idiopathic psychosis and 22q11DS. Finally, in 22q11DS we explore correlations between SC dysconnectivity and severity of internalizing psychopathology. Results: In HCs network architecture underwent a quadratic developmental trajectory maturing up to mid-adolescence. Late-childhood maturation was particularly evident for fronto-parietal cortices, while Default-Mode-Network-related regions showed a more protracted linear development. Working memory performance was positively correlated with network segregation and fronto-parietal connectivity. In 22q11DS, we demonstrate aberrant maturation of SC with disturbed architecture selectively emerging during adolescence and correlating more severe internalizing psychopathology. Patients also presented a lack of typical network development during late-childhood, that was particularly prominent for frontal connectivity. Conclusions: Our results suggest that SC maturation may underlie critical cognitive development occurring during late-childhood in healthy controls. Aberrant trajectories of SC maturation may reflect core developmental features of 22q11DS, including disturbed cognitive maturation during childhood and predisposition to internalizing psychopathology and psychosis during adolescence.
Collapse
Affiliation(s)
- Corrado Sandini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Daniela Zöller
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.,Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Elisa Scariati
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Maria C Padula
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.,Department of Neuroscience, Center for Contextual Psychiatry, Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Marie Schaer
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Dimitri Van De Ville
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.,Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
44
|
Turetsky BI, Moberg PJ, Quarmley M, Dress E, Calkins ME, Ruparel K, Prabhakaran K, Gur RE, Roalf DR. Structural anomalies of the peripheral olfactory system in psychosis high-risk subjects. Schizophr Res 2018; 195:197-205. [PMID: 28974405 PMCID: PMC5878118 DOI: 10.1016/j.schres.2017.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Olfactory impairments are prominent in both schizophrenia and the preceding at-risk state. Their presence prior to illness predicts poor functional outcome. In schizophrenia, these impairments reflect peripheral olfactory structural abnormalities, which are hypothesized to arise during early embryonic development. If this is correct, then similar structural anomalies should be apparent among clinical high-risk subjects. METHODS Thirty-nine clinical high-risk (CR) subjects (24M/15F) were compared to 36 low-risk (LR) subjects (19M/17F). Olfactory measures derived from 3T MRI scans included olfactory bulb volume, primary olfactory cortical gray matter volume, and the depth of the olfactory sulcus overlying the bulb. Additionally, nasal cavity volumes were assessed with acoustic rhinometry. RESULTS Male CR subjects exhibited bilateral reductions in olfactory bulb volume and abnormal asymmetries of the posterior nasal cavities and olfactory sulci (left reduced relative to right). Post-hoc contrasts also indicated reduced left, but not right, olfactory cortical gray matter volume. Female CRs had no significant abnormalities, although they exhibited similar trend effects. Left olfactory bulb volume correlated, across all CR subjects, with negative, but not positive, symptoms. In a classification analysis, with 80% target specificity, olfactory measurements distinguished male CR from male LR subjects with 93% sensitivity. Among females, the comparable sensitivity was 69%. CONCLUSION Psychosis-risk youths exhibit an array of sexually dimorphic and laterally asymmetric anomalies of the peripheral olfactory system. These are consistent with a developmental disruption primarily affecting male fetuses. These structural biomarkers may enhance the identification of at-risk subjects with poor prognosis, before their clinical trajectory is apparent.
Collapse
Affiliation(s)
- Bruce I. Turetsky
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Smell and Taste Center, Department of Otorhinolaryngology: Head & Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Paul J. Moberg
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Smell and Taste Center, Department of Otorhinolaryngology: Head & Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Megan Quarmley
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Erich Dress
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Monica E. Calkins
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kosha Ruparel
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Karthik Prabhakaran
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Raquel E. Gur
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - David R. Roalf
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
45
|
Joo SW, Chon MW, Rathi Y, Shenton ME, Kubicki M, Lee J. Abnormal asymmetry of white matter tracts between ventral posterior cingulate cortex and middle temporal gyrus in recent-onset schizophrenia. Schizophr Res 2018; 192:159-166. [PMID: 28506703 DOI: 10.1016/j.schres.2017.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Previous studies have reported abnormalities in the ventral posterior cingulate cortex (vPCC) and middle temporal gyrus (MTG) in schizophrenia patients. However, it remains unclear whether the white matter tracts connecting these structures are impaired in schizophrenia. Our study investigated the integrity of these white matter tracts (vPCC-MTG tract) and their asymmetry (left versus right side) in patients with recent onset schizophrenia. METHOD Forty-seven patients and 24 age-and sex-matched healthy controls were enrolled in this study. We extracted left and right vPCC-MTG tract on each side from T1W and diffusion MRI (dMRI) at 3T. We then calculated the asymmetry index of diffusion measures of vPCC-MTG tracts as well as volume and thickness of vPCC and MTG using the formula: 2×(right-left)/(right+left). We compared asymmetry indices between patients and controls and evaluated their correlations with the severity of psychiatric symptoms and cognition in patients using the Positive and Negative Syndrome Scale (PANSS), video-based social cognition scale (VISC) and the Wechsler Adult Intelligence Scale (WAIS-III). RESULTS Asymmetry of fractional anisotropy (FA) and radial diffusivity (RD) in the vPCC-MTG tract, while present in healthy controls, was not evident in schizophrenia patients. Also, we observed that patients, not healthy controls, had a significant FA decrease and RD increase in the left vPCC-MTG tract. There was no significant association between the asymmetry indices of dMRI measures and IQ, VISC, or PANSS scores in schizophrenia. CONCLUSION Disruption of asymmetry of the vPCC-MTG tract in schizophrenia may contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Sung Woo Joo
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Myong-Wuk Chon
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Brockton Division, Brockton, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jungsun Lee
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Sun Y, Chen Y, Collinson SL, Bezerianos A, Sim K. Reduced Hemispheric Asymmetry of Brain Anatomical Networks Is Linked to Schizophrenia: A Connectome Study. Cereb Cortex 2018; 27:602-615. [PMID: 26503264 DOI: 10.1093/cercor/bhv255] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite convergent evidence indicating a variety of regional abnormalities of hemispheric asymmetry in schizophrenia, patterns of wider neural network asymmetry remain to be determined. In this study, we investigated alterations in hemispheric white matter topology in schizophrenia and their association with clinical manifestations of the illness. Weighted hemispheric brain anatomical networks were constructed for each of 116 right-handed patients with schizophrenia and 66 matched healthy participants. Graph theoretical approaches were then employed to estimate the hemispheric topological properties. We found that although small-world properties were preserved in the hemispheric network, a significant hemispheric-independent deficit of global integration was found in schizophrenia. Furthermore, a significant group-by-hemisphere interaction was revealed in the characteristic path length and global efficiency, attributing to significantly reduced hemispheric asymmetry of global integration in patients compared with healthy controls. Specifically, we found reduced asymmetric nodal efficiency in several frontal regions and the hippocampus. Finally, the abnormal hemispheric asymmetry of brain anatomical network topology was associated with clinical features (duration of illness and psychotic psychopathology) in patients. Our findings provide new insights into lateralized nature of hemispheric dysconnectivity and highlight the potential for using brain network measures of hemispheric asymmetry as neural biomarkers for schizophrenia and its clinical features.
Collapse
Affiliation(s)
- Yu Sun
- Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences
| | - Yu Chen
- Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences
| | - Simon L Collinson
- Department of Psychology, National University of Singapore, Singapore
| | | | - Kang Sim
- Department of General Psychiatry.,Department of Research, Institute of Mental Health (IMH), Singapore
| |
Collapse
|
47
|
Salokangas RKR, Cannon T, Van Erp T, Ilonen T, Taiminen T, Karlsson H, Lauerma H, Leinonen KM, Wallenius E, Kaljonen A, Syvälahti E, Vilkman H, Alanen A, Hietala J. Structural magnetic resonance imaging in patients with first-episode schizophrenia, psychotic and severe non-psychotic depression and healthy controls. Br J Psychiatry 2018; 43:s58-65. [PMID: 12271802 DOI: 10.1192/bjp.181.43.s58] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BackgroundStructural brain abnormalities are prevalent in patients with schizophrenia and affective disorders.AimsTo study how regional brain volumes and their ratios differ between patients with schizophrenia, psychotic depression, severe non-psychotic depression and healthy controls.MethodMagnetic resonance imaging scans of the brain on first-episode patients and on healthy controls.ResultsPatients with schizophrenia had a smaller left frontal grey matter volume than the other three groups. Patients with psychotic depression had larger ventricular and posterior sulcal cerebrospinal fluid (CSF) volumes than controls. Patients with depression had larger white matter volumes than the other patients.ConclusionsLeft frontal lobe, especially its grey matter volume, seems to be specifically reduced in first-episode schizophrenia. Enlarged cerebral ventricles and sulcal CSF volumes are prevalent in psychotic depression. Preserved or expanded white matter is typical of non-psychotic depression.
Collapse
Affiliation(s)
- R K R Salokangas
- Department of Psychiatry, University of Turku, Turku University Central Hospital and Turku Psychiatric Clinic, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sun Y, Li J, Suckling J, Feng L. Asymmetry of Hemispheric Network Topology Reveals Dissociable Processes between Functional and Structural Brain Connectome in Community-Living Elders. Front Aging Neurosci 2017; 9:361. [PMID: 29209197 PMCID: PMC5701647 DOI: 10.3389/fnagi.2017.00361] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/20/2017] [Indexed: 01/17/2023] Open
Abstract
Human brain is structurally and functionally asymmetrical and the asymmetries of brain phenotypes have been shown to change in normal aging. Recent advances in graph theoretical analysis have showed topological lateralization between hemispheric networks in the human brain throughout the lifespan. Nevertheless, apparent discrepancies of hemispheric asymmetry were reported between the structural and functional brain networks, indicating the potentially complex asymmetry patterns between structural and functional networks in aging population. In this study, using multimodal neuroimaging (resting-state fMRI and structural diffusion tensor imaging), we investigated the characteristics of hemispheric network topology in 76 (male/female = 15/61, age = 70.08 ± 5.30 years) community-dwelling older adults. Hemispheric functional and structural brain networks were obtained for each participant. Graph theoretical approaches were then employed to estimate the hemispheric topological properties. We found that the optimal small-world properties were preserved in both structural and functional hemispheric networks in older adults. Moreover, a leftward asymmetry in both global and local levels were observed in structural brain networks in comparison with a symmetric pattern in functional brain network, suggesting a dissociable process of hemispheric asymmetry between structural and functional connectome in healthy older adults. Finally, the scores of hemispheric asymmetry in both structural and functional networks were associated with behavioral performance in various cognitive domains. Taken together, these findings provide new insights into the lateralized nature of multimodal brain connectivity, highlight the potentially complex relationship between structural and functional brain network alterations, and augment our understanding of asymmetric structural and functional specializations in normal aging.
Collapse
Affiliation(s)
- Yu Sun
- Centre for Life Science, Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore
| | - Junhua Li
- Centre for Life Science, Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Herchel Smith for Brain and Mind Sciences, Cambridge, United Kingdom
| | - Lei Feng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
49
|
Longitudinal Study of the Emerging Functional Connectivity Asymmetry of Primary Language Regions during Infancy. J Neurosci 2017; 36:10883-10892. [PMID: 27798142 DOI: 10.1523/jneurosci.3980-15.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 08/24/2016] [Indexed: 02/08/2023] Open
Abstract
Asymmetry in the form of left-hemisphere lateralization is a striking characteristic of the cerebral regions involved in the adult language network. In this study, we leverage a large sample of typically developing human infants with longitudinal resting-state functional magnetic resonance imaging scans to delineate the trajectory of interhemispheric functional asymmetry in language-related regions during the first 2 years of life. We derived the trajectory of interhemispheric functional symmetry of the inferior frontal gyrus (IFG) and superior temporal gyrus (STG), the sensory and visual cortices, and two higher-order regions within the intraparietal sulcus and dorsolateral prefrontal cortex. Longitudinal models revealed a best fit with quadratic age terms and showed significant estimated coefficients of determination for both the IFG (r2 = 0.261, p < 0.001) and the STG (r2 = 0.142, p < 0.001) regions while all other regions were best modeled by log-linear increases. These inverse-U-shaped functions of the language regions peaked at ∼11.5 months of age, indicating that a transition toward asymmetry began in the second year. This shift was accompanied by an increase in the functional connectivity of these regions within the left hemisphere. Finally, we detected an association between the trajectory of the IFG and language outcomes at 4 years of age (χ2 = 10.986, p = 0.011). Our results capture the developmental timeline of the transition toward interhemispheric functional asymmetry during the first 2 years of life. More generally, our findings suggest that increasing interhemispheric functional symmetry in the first year might be a general principle of the developing brain, governing different functional systems, including those that will eventually become lateralized in adulthood. SIGNIFICANCE STATEMENT Cross-sectional studies of the language system in early infancy suggest that the basic neural mechanisms are in place even before birth. This study represents the first of its kind, using a large longitudinal sample of infants, to delineate the early language-related transition toward interhemispheric functional asymmetry in the brain using resting-state functional MRI. More generally, our findings suggest that increasing interhemispheric functional symmetry in the first year might be a general principle of the developing brain governing multiple functional systems, including those that will eventually become lateralized in adulthood. Although resting-state functional MRI cannot provide direct insights into the developmental mechanisms of language lateralization, this study reveals language-related functional connectivity changes during infancy, marking critical points in the development of the brain's functional architecture.
Collapse
|
50
|
Ho NF, Li Z, Ji F, Wang M, Kuswanto CN, Sum MY, Tng HY, Sitoh YY, Sim K, Zhou J. Hemispheric lateralization abnormalities of the white matter microstructure in patients with schizophrenia and bipolar disorder. J Psychiatry Neurosci 2017; 42:242-251. [PMID: 28234211 PMCID: PMC5487271 DOI: 10.1503/jpn.160090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Hemispheric lateralization of the brain occurs during development and underpins specialized functions. It is posited that aberrant neurodevelopment leads to abnormal brain lateralization in individuals with psychotic illnesses. Here, we sought to examine whether white matter hemispheric lateralization is abnormal in individuals with the psychotic spectrum disorders of schizophrenia and bipolar disorder. METHODS We examined the white matter microstructure lateralization in patients with schizophrenia, bipolar disorder with psychotic features and healthy controls by measuring the laterality indices of fractional anisotropy (FA) and mean diffusivity (MD). We also correlated the laterality indices with clinical measures. RESULTS We included 150 patients with schizophrenia, 35 with bipolar disorder and 77 healthy controls in our analyses. Shared FA lateralization abnormalities in patients with schizophrenia and bipolar disorder were found in the cerebral peduncle and posterior limb of internal capsule, with more extensive abnormalities in patients with bipolar disorder than in those with schizophrenia. The shared MD lateralization abnormalities were more widespread, extending to the subcortical, frontal-occipital, limbic and callosal tracts, with patients with bipolar disorder showing greater abnormalities than patients with schizophrenia. While lateralization was decreased in patients with schizophrenia, the lateralization was reversed in those with bipolar disorder, underpinned by the more pronounced microstructural abnormalities in the right hemisphere. The loss of FA lateralization in patients with schizophrenia was associated with lower quality of life and psychosocial functioning. LIMITATIONS Owing to the cross-sectional study design, we cannot confirm whether the lateralization abnormalities are neurodevelopmental or a consequence of psychosis onset or chronicity. CONCLUSION Shared and distinct white matter lateralization abnormalities were found in patients with schizophrenia and bipolar disorder. In distinct regions of abnormalities, the lateralization was attenuated in patients with schizophrenia and reversed in those with bipolar disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Juan Zhou
- Correspondence to: J. Zhou, Neuroscience & Behavioral Disorders Program, Duke-NUS Medical School, Singapore, 8 College Rd, #06-15, Singapore 169857;
| |
Collapse
|