1
|
Aspelund SG, Lorange HL, Halldorsdottir T, Baldursdottir B, Valdimarsdottir H, Valdimarsdottir U, Hjördísar Jónsdóttir HL. Assessing neurocognitive outcomes in PTSD: a multilevel meta-analytical approach. Eur J Psychotraumatol 2025; 16:2469978. [PMID: 40062977 PMCID: PMC11894747 DOI: 10.1080/20008066.2025.2469978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/14/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Evidence supporting the association between posttraumatic stress disorder (PTSD) and cognitive impairment is accumulating. However, less is known about which factors influence this association.Objective: The aims of this meta-analysis were to (1) elucidate the association between PTSD and a broad spectrum of cognitive impairment, including the risk of developing neurocognitive disorder (NCD) later in life, using a multilevel meta-analytic approach, and (2) identify potential moderating factors of this association by examining the effects of age (20-39, 40-59, 60+), study design (cross-sectional or longitudinal), study population (war-exposed populations/veterans or the general population), neurocognitive outcome assessed (i.e. a diagnosis of NCD or type of cognitive domain as classified according to A Compendium of Neuropsychological tests), gender (≥50% women or <50% women), study quality (high vs low), type of PTSD measure (self-report or clinical diagnosis), as well as the presence of comorbidities such as traumatic brain injury (TBI), depression, and substance use (all coded as either present or absent).Method: Peer-reviewed studies on this topic were extracted from PubMed and Web of Science with predetermined keywords and criteria. In total, 53 articles met the criteria. Hedge's g effect sizes were calculated for each study and a three-level random effect meta-analysis conducted.Results: After accounting for publication bias, the results suggested a significant association between PTSD and cognitive impairment, g = 0.13 (95% CI: 0.10-0.17), indicating a small effect. This association was consistent across all examined moderators, including various neurocognitive outcomes, age, gender, study design, study population, study quality, type of PTSD measure, and comorbidities such as depression, substance use, and TBI.Conclusions: These findings collectively suggest that PTSD is associated with both cognitive impairment and NCD. This emphasizes the need for early intervention (including prevention strategies) of PTSD, alongside monitoring cognitive function in affected individuals.International Prospective Register of Systematic Reviews (PROSPERO) registration number: CRD42021219189, date of registration: 02.01.2021.
Collapse
Affiliation(s)
| | - Hjordis Lilja Lorange
- Centre of Public Health Sciences, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Birna Baldursdottir
- Department of Psychology, School of Social Sciences, Reykjavik University, Reykjavik, Iceland
| | - Heiddis Valdimarsdottir
- Department of Psychology, School of Social Sciences, Reykjavik University, Reykjavik, Iceland
- Department of Population Health Science and Policy, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Unnur Valdimarsdottir
- Centre of Public Health Sciences, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | | |
Collapse
|
2
|
Pan C, Cao Y, Ge J, Li Y, Feng W, Yan J, Wu L, Lan Q, Lu G, Qi R, Luo Y. Mediation on the association between HPA axis hyperactivity and cognitive impairment by abnormal hippocampal function in people who lost their only child. J Affect Disord 2025; 382:39-47. [PMID: 40221054 DOI: 10.1016/j.jad.2025.04.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/05/2024] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND People who have lost their only child (PLOCs) in China exhibit chronic hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis and a range of abnormal symptoms. The hippocampus may serve as a potential mediator between HPA axis dysregulation and the symptoms. However, the mechanisms underlying these developments remain unclear. METHODS Functional magnetic resonance imaging data were collected from 51 PLOCs and 29 healthy individuals. A linear regression model was utilized to explore the interrelationships between blood cortisol levels, hippocampal structure and function, and abnormal symptoms. Additionally, a mediation effect model was employed to examine the influence of the hippocampus on the relationship between blood cortisol levels and abnormal symptoms. RESULTS Compared with the healthy controls, the PLOCs had significantly reduced gray matter volume in the hippocampus, and increased degree centrality (DC) values in the right hippocampus. Additionally, the PLOCs exhibited more severe cognitive impairment and poorer immediate memory ability, which were significantly negatively correlated with blood cortisol levels. The mediation effect model revealed specific effects of DC values in the right hippocampus on the association between blood cortisol levels and MMSE scores and immediate memory scores. LIMITATIONS Cross-sectional design of this study could not demonstrate the causality. CONCLUSION The alterations in DC in the right hippocampus substantially mediated the relationship between HPA axis dysregulation and cognitive impairment in the sampled Chinese PLOCs. High blood cortisol levels led to cognitive impairment by causing changes in right hippocampal function.
Collapse
Affiliation(s)
- Chenyu Pan
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Yang Cao
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Jiyuan Ge
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Yuefeng Li
- Department of Radiology, School of medicine Jiangsu University, Zhenjiang, China
| | - Wenxi Feng
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Jiaqi Yan
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Luoan Wu
- Department of Psychiatry, Yixing mental health center, Wuxi, China
| | - Qingyue Lan
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rongfeng Qi
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yifeng Luo
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China.
| |
Collapse
|
3
|
Theleritis C, Demetriou M, Stefanou MI, Alevyzakis E, Makris M, Zoumpourlis V, Peppa M, Smyrnis N, Spandidos DA, Rizos E. Zinc in psychosis (Review). Mol Med Rep 2025; 32:201. [PMID: 40376988 PMCID: PMC12105465 DOI: 10.3892/mmr.2025.13566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/03/2025] [Indexed: 05/18/2025] Open
Abstract
Zinc (Zn) may be associated with schizophrenia (SCH), since its altered homeostasis can contribute to abnormal glutamatergic neurotransmission, inflammation, neurodegeneration and autoimmune abnormalities. It has been proposed that a number of patients with SCH could benefit from the use of Zn, either on its own or along with vitamins C, E and B6, and prenatal supplementation of Zn during the gestation period can mitigate the lipopolysaccharide‑induced rat model of maternal immune activation. The aim of the present review was to summarize the various effects of Zn dyshomeostasis on patients with psychosis and to clarify in what ways they could benefit from Zn supplementation.
Collapse
Affiliation(s)
- Christos Theleritis
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Marina Demetriou
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, School of Medicine, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Evangelos Alevyzakis
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Michael Makris
- Allergy Unit, Second Department of Dermatology and Venereology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Melpomeni Peppa
- Second Department of Internal Medicine-Propaedeutic, Endocrine Unit, Research Institute and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, 12462 Athens, Greece
| | - Nikolaos Smyrnis
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Emmanouil Rizos
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
4
|
Malykhin N, Serrano J, Reiz B, Hegadoren K, Pietrasik W, Whittal R. Effects of Variations in Daily Cortisol Pattern and Long-Term Cortisol Output on Hippocampal Subfield Volumes in the Adult Human Brain. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100458. [PMID: 40201775 PMCID: PMC11978376 DOI: 10.1016/j.bpsgos.2025.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 04/10/2025] Open
Abstract
Background Animal models of adult chronic stress indicate that the cornu ammonis 1-3 (CA1-3) and dentate gyrus (DG) hippocampal subfields are most susceptible to cellular changes associated with prolonged psychogenic stressors and glucocorticoid overexposure. However, no study reported to date has examined associations between long-term cortisol output, chronic stress, and hippocampal subfield volumes in healthy adults experiencing different levels of chronic stress. The main goal of the current study was to test whether higher long-term cortisol output measured by hair cortisol concentration would be associated with atrophy of CA1-3 and DG hippocampal subfields. Methods We examined associations between short- and long-term cortisol output and hippocampal subfield volumes in healthy adults (N = 40). High-resolution structural magnetic resonance imaging datasets were acquired together with diurnal salivary cortisol and hair cortisol measures. Hair cortisol concentration was analyzed using the high-resolution liquid chromatography-mass spectrometry method. Results Higher hair cortisol concentration was associated with smaller volumes of all hippocampal subfields in the anterior hippocampus and smaller DG volumes in both the anterior and posterior hippocampus. We found that a larger increase in morning cortisol level after awakening was associated with smaller DG and CA1-3 volumes, while a smaller decrease in cortisol level in the afternoon from awakening was associated with smaller CA1-3 volume in the anterior hippocampus. The observed associations between cortisol and hippocampal subfield volumes were not predicted by individual chronic stress levels or history of childhood trauma. Conclusions Our results suggest that both increased hair cortisol concentration and daily cortisol fluctuations can have a negative impact on the CA1-3 and DG subfields.
Collapse
Affiliation(s)
- Nikolai Malykhin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph Serrano
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Béla Reiz
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kathleen Hegadoren
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Wojciech Pietrasik
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Randy Whittal
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Korewo-Labelle D, Karnia MJ, Myślińska D, Kaczor JJ. Impact of Chronic Cold Water Immersion and Vitamin D3 Supplementation on the Hippocampal Metabolism and Oxidative Stress in Rats. Cells 2025; 14:641. [PMID: 40358165 PMCID: PMC12071205 DOI: 10.3390/cells14090641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/18/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Chronic cold exposure is a stressor that may adversely affect the hippocampal structure and cognitive function. Critical for memory formation and learning processes, the hippocampus is particularly susceptible to hypothalamic-pituitary-adrenal (HPA) axis activity and elevated glucocorticoid levels. Vitamin D plays a complex role in regulating mitochondrial function and may provide neuroprotection. This study aimed to investigate the effects of chronic cold exposure on proteins associated with signaling pathways, mitochondrial function, and oxidative stress in the hippocampus of rats and to evaluate the neuroprotective potential of vitamin D3 supplementation. Male Wistar rats (n = 26) were assigned to four groups: control (CON; n = 4), sham stress (WW; n = 6), chronic cold water immersion (CCWI) (CW group; n = 8), and CCWI with 600 IU/kg/day vitamin D3 (VD3) supplementation (CW + D group; n = 8). Exposure to CCWI significantly reduced the hippocampal mass of rats, an effect not reversed by vitamin D3 supplementation. However, vitamin D3 improved mitochondrial function and exhibited antioxidant effects, partially reducing markers of protein and lipid free radicals damage in neural tissue. Our findings demonstrate the antioxidant properties of VD3 and its potential role in mitigating hippocampal damage during prolonged cold exposure, although its neuroprotective effects remain limited.
Collapse
Affiliation(s)
- Daria Korewo-Labelle
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Mateusz Jakub Karnia
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (M.J.K.); (D.M.)
| | - Dorota Myślińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (M.J.K.); (D.M.)
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (M.J.K.); (D.M.)
| |
Collapse
|
6
|
Djagbletey R, Aryee G, Aborbi VM, Essuman R, Pereko J, Vogelsang JK, Brobbey E, Owusu Darkwa E. Severity of Pain at Admission and Development of Symptoms of Anxiety and Depression: A Study of Burn Patients at a Tertiary Healthcare Facility in Ghana. Cureus 2025; 17:e82034. [PMID: 40351932 PMCID: PMC12065636 DOI: 10.7759/cureus.82034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
Background Burns remain a global public health concern and one of the major causes of painful injury, which impacts patients physically and psychologically. Pain causes more suffering in the acute stage and rehabilitation in burn patients, which is associated with anxiety, depression, and post-traumatic stress disorder that can lead to long-term consequences, which negatively affects the quality of life (QoL) of the patient. Objective This study aimed to determine the influence of the severity of pain at admission on the development of symptoms of anxiety and depression among burn patients within the first week of admission. Methods An analytical cross-sectional study was conducted among adult burn patients at the Burns Centre of the Korle-Bu Teaching Hospital. Patients' demographic and clinical characteristics, such as age, cause of burns, degree of burns, and percentage of total body surface area (TBSA), were recorded. Hospital Anxiety and depression scale (HADS) was used to assess anxiety and depression symptoms, while the Visual Analog Scale (VAS) was used to evaluate the intensity of pain. Simple linear regression was used to determine the influence of the severity of pain at admission on symptoms of anxiety and depression. Results Sixty-five adult inpatients were enrolled, with a mean age of 35.9 years. About 92% presented with severe pain, and two-thirds developed severe anxiety (66.2%) or depressive (67.7%) symptoms. The mean (±SD) anxiety symptoms, depression symptoms, and pain scores were 11.4(±2.7), 11.8(±3.4), and 8.5(±1.6), respectively. Mean anxiety symptom scores were significantly different between the age groups, %TBSA, and severity of pain. Mean depression symptom scores were significantly different between the severity of pain and the cause of burn injury. There was a significant positive relationship between the severity of pain on admission and the level of depression and anxiety symptoms. Conclusion Patients with burn injury present with severe pain at admission, and the majority develop significant anxiety and depressive symptoms within the first week of admission. The intensity of pain at admission is significantly associated with the level of anxiety and depression.
Collapse
Affiliation(s)
- Robert Djagbletey
- Anesthesia, Intensive Care and Pain Management, University of Ghana Medical School, Accra, GHA
| | - George Aryee
- Anesthesia, Intensive Care and Pain Management, University of Ghana Medical School, Accra, GHA
| | | | - Raymond Essuman
- Anesthesia, Intensive Care and Pain Management, University of Ghana Medical School, Accra, GHA
| | - Janet Pereko
- Plastic and Reconstructive Surgery, Korle-Bu Teaching Hospital, Accra, GHA
| | | | - Esther Brobbey
- Respiratory Therapy, University of Ghana School of Biomedical and Allied Health Sciences, Accra, GHA
| | - Ebenezer Owusu Darkwa
- Anesthesia, Intensive Care and Pain Management, University of Ghana Medical School, Accra, GHA
| |
Collapse
|
7
|
Papatheodoropoulos C. Compensatory Regulation of Excitation/Inhibition Balance in the Ventral Hippocampus: Insights from Fragile X Syndrome. BIOLOGY 2025; 14:363. [PMID: 40282228 PMCID: PMC12025323 DOI: 10.3390/biology14040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
The excitation/inhibition (E/I) balance is a critical feature of neural circuits, which is crucial for maintaining optimal brain function by ensuring network stability and preventing neural hyperexcitability. The hippocampus exhibits the particularly interesting characteristics of having different functions and E/I profiles between its dorsal and ventral segments. Furthermore, the hippocampus is particularly vulnerable to epilepsy and implicated in Fragile X Syndrome (FXS), disorders associated with heightened E/I balance and possible deficits in GABA-mediated inhibition. In epilepsy, the ventral hippocampus shows heightened susceptibility to seizures, while in FXS, recent evidence suggests differential alterations in excitability and inhibition between dorsal and ventral regions. This article explores the mechanisms underlying E/I balance regulation, focusing on the hippocampus in epilepsy and FXS, and emphasizing the possible mechanisms that may confer homeostatic flexibility to the ventral hippocampus in maintaining E/I balance. Notably, the ventral hippocampus in adult FXS models shows enhanced GABAergic inhibition, resistance to epileptiform activity, and physiological network pattern (sharp wave-ripples, SWRs), potentially representing a homeostatic adaptation. In contrast, the dorsal hippocampus in these FXS models is more vulnerable to aberrant discharges and displays altered SWRs. These findings highlight the complex, region-specific nature of E/I balance disruptions in neurological disorders and suggest that the ventral hippocampus may possess unique compensatory mechanisms. Specifically, it is proposed that the ventral hippocampus, the brain region most prone to hyperexcitability, may have unique adaptive capabilities at the cellular and network levels that maintain the E/I balance within a normal range to prevent the transition to hyperexcitability and preserve normal function. Investigating the mechanisms underlying these compensatory responses in the ventral hippocampus and their developmental trajectories may offer novel insights into strategies for mitigating E/I imbalances in epilepsy, FXS, and potentially other neuropsychiatric and neurodevelopmental disorders.
Collapse
|
8
|
Krasner H, Ong CV, Hewitt P, Vida TA. From Stress to Synapse: The Neuronal Atrophy Pathway to Mood Dysregulation. Int J Mol Sci 2025; 26:3219. [PMID: 40244068 PMCID: PMC11989442 DOI: 10.3390/ijms26073219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/02/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Mood disorders, including major depressive disorder and bipolar disorder, are among the most prevalent mental health conditions globally, yet their underlying mechanisms remain incompletely understood. This review critically examines the neuronal atrophy hypothesis, which posits that chronic stress and associated neurobiological changes lead to structural and functional deficits in critical brain regions, contributing to mood disorder pathogenesis. Key mechanisms explored include dysregulation of neurotrophic factors such as brain-derived neurotrophic factor (BDNF), elevated glucocorticoids from stress responses, neuroinflammation mediated by cytokines, and mitochondrial dysfunction disrupting neuronal energy metabolism. These processes collectively impair synaptic plasticity, exacerbate structural atrophy, and perpetuate mood dysregulation. Emerging evidence from neuroimaging, genetic, and epigenetic studies underscores the complexity of these interactions and highlights the role of environmental factors such as early-life stress and urbanization. Furthermore, therapeutic strategies targeting neuroplasticity, including novel pharmacological agents, lifestyle interventions, and anti-inflammatory treatments, are discussed as promising avenues for improving patient outcomes. Advancing our understanding of the neuronal atrophy hypothesis could lead to more effective, sustainable interventions for managing mood disorders and mitigating their global health burden.
Collapse
Affiliation(s)
| | | | | | - Thomas A. Vida
- Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, 625 Shadow Lane, Las Vegas, NV 89106, USA; (H.K.); (C.V.O.); (P.H.)
| |
Collapse
|
9
|
van Doeselaar L, Abromeit A, Stark T, Menegaz D, Ballmann M, Mitra S, Yang H, Rehawi G, Huettl RE, Bordes J, Narayan S, Harbich D, Deussing JM, Rammes G, Czisch M, Knauer-Arloth J, Eder M, Lopez JP, Schmidt MV. FKBP51 in glutamatergic forebrain neurons promotes early life stress inoculation in female mice. Nat Commun 2025; 16:2529. [PMID: 40087272 PMCID: PMC11912546 DOI: 10.1038/s41467-025-57952-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
Early life stress (ELS) can increase vulnerability to psychiatric disorders, but also trigger resilience. FKBP51 has been associated with an increased risk for developing psychiatric disorders, specifically in interaction with ELS exposure. Here, the contribution of FKBP51 in glutamatergic forebrain neurons to the long-term consequences of ELS was investigated in both sexes. In female wild-type Fkbp5lox/lox mice, ELS exposure led to an anxiolytic phenotype and improved memory performance in a stressful context, however this ELS effect was absent in Fkbp5Nex mice. These interactive FKBP51 x ELS effects in female mice were also reflected in reduced brain region volumes, and on structural and electrophysiological properties of CA1 pyramidal neurons of the dorsal hippocampus. In contrast, the behavioral, structural and functional effects in male ELS mice were less pronounced and independent of FKBP51. RNA sequencing of the hippocampus revealed the transcription factor 4 (TCF4) as a potential regulator of the female interactive effects. Cre-dependent viral overexpression of TCF4 in female Nex-Cre mice led to similar beneficial effects on behavior as the ELS exposure. This study demonstrates a sex-specific role for FKBP51 in mediating the adaptive effects of ELS on emotional regulation, cognition, and neuronal function, implicating TCF4 as a downstream effector.
Collapse
Affiliation(s)
- Lotte van Doeselaar
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Alexandra Abromeit
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Tibor Stark
- Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany
| | - Danusa Menegaz
- Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Markus Ballmann
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum Rechts der Isar, Munich, Germany
| | - Shiladitya Mitra
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Huanqing Yang
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Ghalia Rehawi
- Department Genes & Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rosa-Eva Huettl
- Core Unit Virus Production, Max Planck Institute of Psychiatry, Munich, Germany
| | - Joeri Bordes
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Sowmya Narayan
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Daniela Harbich
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Genetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Gerhard Rammes
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum Rechts der Isar, Munich, Germany
| | - Michael Czisch
- Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Janine Knauer-Arloth
- Department Genes & Environment, Max Planck Institute of Psychiatry, Munich, Germany
- Computational Health Center, Helmholtz Munich, Neuherberg, Germany
| | - Matthias Eder
- Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Juan Pablo Lopez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
10
|
Rodrigues PMF, Delerue-Matos A. The effect of social exclusion on the cognitive health of middle-aged and older adults: A systematic review. Arch Gerontol Geriatr 2025; 130:105730. [PMID: 39731813 DOI: 10.1016/j.archger.2024.105730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
This systematic review aimed to evaluate the independent and joint effects of social exclusion in three specific domains-economic, social relations, and civic participation-on the cognitive health of middle-aged and older adults. Longitudinal studies from January 2000 to October 2023 were identified via Web of Science, Scopus, and PubMed, with sixty-five studies meeting inclusion criteria. The quality of the studies was assessed with Newcastle-Otawa Scale. Analysis revealed a strong association between economic exclusion and cognitive decline, with most studies indicating a significant negative impact. Ten studies found a positive link between volunteering and cognitive health for civic participation, while eight did not, showing mixed evidence. In social relations, most studies connected loneliness, social isolation, smaller social networks, reduced contact with family and friends, lower engagement in activities, and negative social interactions with cognitive decline. Notably, one study found that older adults experiencing social exclusion in multiple domains simultaneously face even greater cognitive decline. In summary, this review shows that social exclusion in economic, social relations, and civic participation and all together domains is associated with greater cognitive decline in older adults.
Collapse
Affiliation(s)
| | - Alice Delerue-Matos
- Department of Sociology, University of Minho. Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
11
|
Staudacher HM, Teasdale S, Cowan C, Opie R, Jacka FN, Rocks T. Diet interventions for depression: Review and recommendations for practice. Aust N Z J Psychiatry 2025; 59:115-127. [PMID: 39628343 PMCID: PMC11783990 DOI: 10.1177/00048674241289010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
OBJECTIVE this paper aims to present the evidence for the role of diet in the prevention and treatment of depression, review the potential underlying mechanisms and provide practice recommendations for mental health clinicians. METHODS A literature review was conducted through searches of PubMed with the search terms 'depression', 'diet', 'prevention', 'treatment' and 'mechanisms' and combinations thereof. Additional articles were identified through hand searching. RESULTS Greater adherence to several healthy dietary patterns, traditional diets such as the Mediterranean diet and other diets such as the DASH diet are associated with or can treat symptoms of depression. Several limitations of the research were noted, many of which relate to inherent challenges of studying diet. Mechanisms by which dietary intervention can influence mood include the gut microbiome, modulation of inflammatory processes, reduction in oxidative stress and modulation of hypothalamic-pituitary-adrenal axis function. Recommendations for mental health clinicians to enable translation of the evidence into practice are provided. CONCLUSION Diet can play an important role in preventing and treating depression. Mental health clinicians are well placed to provide dietary counselling and to use clinical judgement in choosing the specific approach that reflects the needs of the patient but are encouraged to refer to a specialist dietitian where necessary.
Collapse
Affiliation(s)
- Heidi M Staudacher
- Food & Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Scott Teasdale
- Discipline of Psychiatry and Mental Health, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Caitlin Cowan
- School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Rachelle Opie
- Food for Thought Nutrition and Dietetics, Glen Iris, VIC, Australia
| | - Felice N Jacka
- Food & Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
- Centre for Adolescent Health, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Tetyana Rocks
- Food & Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
12
|
Rolan P, Seckl J, Taylor J, Harrison J, Maruff P, Woodward M, Mills R, Jaros M, Hilt D. Clinical Pharmacology and Approach to Dose Selection of Emestedastat, a Novel Tissue Cortisol Synthesis Inhibitor for the Treatment of Central Nervous System Disease. Clin Pharmacol Drug Dev 2025; 14:105-115. [PMID: 39748632 PMCID: PMC11788964 DOI: 10.1002/cpdd.1496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
This review demonstrates the value of central pharmacodynamics (PD), including positron emission tomography (PET) and computerized cognitive testing, to supplement pharmacokinetic (PK) and peripheral PD for determining the target dose range for clinical efficacy testing of emestedastat, an 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) inhibitor. Combined data from 6 clinical trials in cognitively normal volunteers and patients with Alzheimer disease included a population PK model, endocrine PD, a human PET trial (11β-HSD1 brain imaging), and computerized cognitive testing. PK and PET findings were similar in volunteers and patients with Alzheimer disease. PK modeling suggested that 20 mg daily would be optimal to maintain cerebrospinal fluid concentrations above the brain half maximal inhibitory concentration. However, subsequent PET scanning suggested that emestedastat doses of 10 or even 5 mg daily may be sufficient to adequately inhibit 11β-HSD1. With once-daily doses of 5-20 mg in cognitively normal, older volunteers, a consistent pattern of pro-cognitive benefit, without dose-response, was seen as improvement in attention and working memory but not episodic memory. Thus, emestedastat therapeutic activity might be attained at doses lower than those predicted from cerebrospinal fluid drug levels. Doses as low as 5 mg daily may be efficacious and were studied in subsequent trials.
Collapse
Affiliation(s)
- Paul Rolan
- Actinogen Medical LtdSydneyNew South WalesAustralia
- University of Adelaide Medical SchoolAdelaideSouth AustraliaAustralia
| | - Jonathan Seckl
- Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Jack Taylor
- Actinogen Medical LtdSydneyNew South WalesAustralia
| | - John Harrison
- Scottish Brain SciencesEdinburghUK
- King's CollegeLondonUK
- Alzheimercentrum, Amsterdam University Medical CenterAmsterdamThe Netherlands
| | - Paul Maruff
- Florey Institute for Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Michael Woodward
- Medical Health and Cognitive Research Unit, Austin HealthHeidelberg Repatriation HospitalHeidelberg WestVictoriaAustralia
| | | | | | - Dana Hilt
- Actinogen Medical LtdSydneyNew South WalesAustralia
| |
Collapse
|
13
|
Kürzinger B, Schindler S, Meffert M, Rosenhahn A, Trampel R, Turner R, Schoenknecht P. Basolateral amygdala volume in affective disorders using 7T MRI in vivo. Front Psychiatry 2025; 15:1404594. [PMID: 39834577 PMCID: PMC11744004 DOI: 10.3389/fpsyt.2024.1404594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/29/2024] [Indexed: 01/22/2025] Open
Abstract
Background The basolateral complex of the amygdala is a crucial neurobiological site for Pavlovian conditioning. Investigations into volumetric alterations of the basolateral amygdala in individuals with major depressive disorder (MDD) have yielded conflicting results. These may be reconciled in an inverted U-shape allostatic growth trajectory. This hypothesized trajectory unfolds with an initial phase of volumetric expansion, driven by enhanced dendritic arborization and synaptic plasticity. The increase in volume is followed by a reduction phase, as glucocorticoid exposure cumulatively results in excitotoxic damage, reflecting allostatic load. Methods 7T magnetic resonance brain imaging was conducted on a total of 84 participants (mean age 38 ± 12 years), comprising 20 unmedicated and 20 medicated individuals with MDD, 21 individuals suffering from bipolar disorder and 23 healthy controls. We employed FreeSurfer 7.3.2 for automatic high-resolution segmentation of nine amygdala subnuclei. We conducted analyses of covariance, with volumes of the basolateral complex, the lateral nucleus and, exploratively, the whole amygdala, as dependent variables, while controlling for the total intracranial volume and sex. Quadratic regressions were computed within the MDD group and in relevant subgroups to investigate the presence of a U-shaped relationship between the number of preceding major depressive episodes or the duration of the disease since the first episode and the dependent variables. Results Diagnostic groups did not exhibit statistically significant differences in the volumes of the basolateral amygdala (left F (3,75) = 0.66, p >.05; right F (3,76) = 1.80, p >.05), the lateral nucleus (left F (3,75) = 1.22, p >.05; right F (3,76) = 2.30, p >.05)), or the whole amygdala (left F (3,75) = 0.48, p >.05; right F (3,76) = 1.58, p >.05). No quadratic associations were observed between surrogate parameters of disease progression and any of the examined amygdala volumes. There were no significant correlations between subregion volumes and clinical characteristics. Conclusion We found no evidence for the hypothesis of an inverted U-shaped volumetric trajectory of the basolateral amygdala in MDD. Future research with larger sample sizes, including the measurement of genetic and epigenetic markers, will hopefully further elucidate this compelling paradigm.
Collapse
Affiliation(s)
- Benedikt Kürzinger
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Stephanie Schindler
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Martin Meffert
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Anja Rosenhahn
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Robert Turner
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Peter Schoenknecht
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
- Out-patient Department for Sexual-therapeutic Prevention and Forensic Psychiatry, University Hospital Leipzig, Leipzig, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatic, Saxon State Hospital Altscherbitz, Schkeuditz, Germany
| |
Collapse
|
14
|
Šakić B. The MRL Model: A Valuable Tool in Studies of Autoimmunity-Brain Interactions. Methods Mol Biol 2025; 2868:221-246. [PMID: 39546233 DOI: 10.1007/978-1-0716-4200-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The link between systemic autoimmunity, brain pathology, and aberrant behavior is still largely unexplored field of biomedical science. Accumulating evidence points to causal relationships between immune factors, neurodegeneration, and neuropsychiatric manifestations. By documenting autoimmunity-associated neuronal degeneration and cytotoxicity of the cerebrospinal fluid from disease-affected subjects, the murine MRL model has shown high validity in revealing principal pathogenic circuits. In addition, unlike any other autoimmune strain, MRL mice produce antibodies commonly found in patients suffering from lupus and other autoimmune disorders. This review highlights the importance of the MRL model as a useful preparation for understanding the links between the immune system and brain function.
Collapse
Affiliation(s)
- Boris Šakić
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
15
|
Acosta H, Jansen A, Kircher T. The association between childhood adversity and hippocampal volumes is moderated by romantic relationship experiences. Eur J Neurosci 2025; 61:e16593. [PMID: 39551574 DOI: 10.1111/ejn.16593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024]
Abstract
Reduced hippocampal volumes are a feature of many mental disorders. Childhood maltreatment is a known risk factor for the development of psychopathology and has consistently been linked to hippocampal volume reductions in adults, but not in children and adolescents. We propose that maltreatment-related difficulties in coping with developmental tasks in adolescence and young adulthood might underlie the delayed emergence of hippocampal volume reductions in maltreated individuals. In a study with 196 healthy young adults (mean age [years]: 24.0 ± 3.2, 50% female, 20.6% living with a partner (missings: n = 2)), we investigated the interaction between childhood maltreatment (Childhood Trauma Screener) and the breakup of a steady romantic relationship (List of Threatening Experiences Questionnaire) on hippocampal magnetic resonance imaging grey matter volumes. The experience of a romantic relationship breakup moderated the association between childhood maltreatment and bilateral hippocampal volumes, revealing more negative associations with hippocampal volumes in participants with at least one breakup compared to those with no breakup experience (right hippocampus: β = - 0.05 ± 0.02, p = 0.031, p (FDR) = 0.031; left hippocampus: β = -0.06 ± 0.02, p = 0.005, p (FDR) = 0.009). Moreover, our findings provide some evidence that childhood maltreatment is related to smaller bilateral hippocampal volumes only in those adults who suffered from a relationship breakup (right hippocampus: β = -0.23 ± 0.10, p = 0.018, p (FDR) = 0.018; left hippocampus: β = -0.24 ± 0.10, p = 0.016, p (FDR) = 0.018;). Our study highlights the interaction of adult social bonds with early adversity on vulnerability to psychopathology.
Collapse
Affiliation(s)
- H Acosta
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Germany
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland
| | - A Jansen
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Germany
- Core Facility Brainimaging, Faculty of Medicine, Philipps University Marburg, Germany
| | - T Kircher
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Germany
| |
Collapse
|
16
|
Grey DK, Purcell JB, Buford KN, Schuster MA, Elliott MN, Emery ST, Mrug S, Knight DC. Discrimination Exposure, Neural Reactivity to Stress, and Psychological Distress. Am J Psychiatry 2024; 181:1112-1126. [PMID: 39473266 DOI: 10.1176/appi.ajp.20220884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
OBJECTIVE Discrimination exposure has a detrimental impact on mental health, increasing the risk of depression, anxiety, and posttraumatic stress. The impact discrimination exposure has on mental health is likely mediated by neural processes associated with emotion expression and regulation. However, the specific neural processes that mediate the relationship between discrimination exposure and mental health remain to be determined. The present study investigated the relationship adolescent discrimination exposure has with stress-elicited brain activity and mental health symptoms in young adulthood. METHODS A total of 301 participants completed the Montreal Imaging Stress Task while functional MRI data were collected. Discrimination exposure was measured four times from ages 11 to 19, and stress-elicited brain activity and psychological distress (depression, anxiety, posttraumatic stress) were assessed in young adulthood (age 20). RESULTS Stress-elicited dorsolateral and dorsomedial prefrontal cortex (PFC), inferior parietal lobule (IPL), and hippocampal activity varied with discrimination exposure. Activity within these brain regions varied with the cumulative amount and trajectory of discrimination exposure across adolescence (initial exposure, change in exposure, and acceleration of exposure). Depression, anxiety, and posttraumatic stress symptoms varied with discrimination exposure. Stress-elicited activity within the dorsolateral PFC and the IPL statistically mediated the relationship between discrimination exposure and psychological distress. CONCLUSIONS The findings suggest that adolescent discrimination exposure may alter the neural response to future stressors (i.e., within regions associated with emotion expression and regulation), which may in turn modify susceptibility and resilience to psychological distress. Thus, differences in stress-elicited neural reactivity may represent an important neurobiological mechanism underlying discrimination-related mental health disparities.
Collapse
Affiliation(s)
- Devon K Grey
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Juliann B Purcell
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Kristen N Buford
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Mark A Schuster
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Marc N Elliott
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Susan Tortolero Emery
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Sylvie Mrug
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - David C Knight
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| |
Collapse
|
17
|
Kim JS, Lee MM, Kim DS, Shin CS. Effects of Barefoot Walking in Urban Forests on CRP, IFNγ, and Serotonin Levels. Healthcare (Basel) 2024; 12:2372. [PMID: 39684992 DOI: 10.3390/healthcare12232372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study investigated the effects of barefoot walking on an urban forest path on participants' C-reactive protein (CRP), interferon gamma (IFNγ), and serotonin levels, which are associated with feelings of well-being. METHODS Participants in the walking program included 62 consenting adults, divided into a sneaker-wearing and barefoot group (each N = 31). The program comprised 20 sessions, each consisting of a 90 min 4.4 km walk at a 50-70% target heart rate, held four times per week for 5 weeks. Physiological measurements were taken from pre-program saliva samples and after 10 and 20 sessions, respectively. RESULTS The sneaker-wearing group showed a consistent CRP increase, with levels reaching statistical significance after 20 sessions. In the barefoot group, CRP increased up to Session 10 but was lower than at the end of Session 20. The analysis of those with an initial CRP above 100 pg/mL showed that CRP was statistically significantly lower in the barefoot (N = 14) than in the sneaker-wearing (t = -0.048, p = 0.963) group after 20 sessions compared to before the program (t = 3.027, p = 0.010). IFNγ increased in both groups up to Session 10 but showed minimal change between Sessions 10 and 20. Serotonin was statistically significantly higher after 20 sessions than before the program in the barefoot group (t = -2.081, p = 0.046). CONCLUSIONS Barefoot walking on forest trails is effective for people with above-normal inflammation, increasing serotonin levels.
Collapse
Affiliation(s)
- Jae Sun Kim
- Department of Forest Therapy, Graduate School of Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Mi Mi Lee
- Ecological Meditation Community, Goyang 10450, Republic of Korea
| | - Dong Soo Kim
- Department of Natural Science, Korean Air Force Academy, Cheongju 28100, Republic of Korea
| | - Chang Seob Shin
- Department of Forest, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
18
|
Xu J, Wang X, Xu W, Zhang Y, Pan L, Gao J. The protective effect of S-adenosylmethionine on chronic adolescent stress-induced depression-like behaviors by regulating gut microbiota. Eur J Pharmacol 2024; 982:176939. [PMID: 39182548 DOI: 10.1016/j.ejphar.2024.176939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The efficacy and tolerability of current antidepressants for adolescent depression are inadequate. S-adenosylmethionine (SAMe), known for its effectiveness and minimal side effects in adult depression, remains unstudied in adolescents. This study explored the potential of SAMe to address depression-like behaviors in juvenile rats induced by chronic unpredictable mild stress (CUMS), with a focus on gut microbiome interactions. Adolescent male Wistar rats were subjected to a 4-week CUMS regimen and received daily intraperitoneal injections of 300 mg/kg SAMe. Behavioral assessments included the sucrose preference test, elevated plus maze test, open field test, and Y-maze test. Histopathological changes of the hippocampus and colon were observed by Nissl staining and hematoxylin and eosin staining, respectively. Gut microbiome composition was analyzed using Accurate 16S absolute quantification sequencing. The results showed that SAMe significantly improved behavioral outcomes, reduced histopathological damages in hippocampal neurons and colon tissues, and modulated the gut microbiota of depressed rats. It favorably altered the ratio of Bacteroidetes to Firmicutes, decreased the absolute abundance of Deferribacteres, and adjusted levels of key microbial genera associated with depression-like behaviors. These results suggested that SAMe could effectively counter depression-like behaviors in CUMS-exposed adolescent rats by mitigating hippocampal neuronal and colon damage and modulating the gut microbiota. This supports SAMe as a viable and tolerable treatment option for adolescent depression, highlighting the importance of the gut-brain axis in therapeutic strategies.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Xinqi Wang
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Wangwang Xu
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Yang Zhang
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Liangke Pan
- Qingdao No.9 High School, Shandong Province, Qingdao, Shandong, 266000, China
| | - Jin Gao
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China.
| |
Collapse
|
19
|
Jiang Z, Xu Z, Zhou M, Huijun Z, Zhou S. The influence of healthy eating index on cognitive function in older adults: chain mediation by psychological balance and depressive symptoms. BMC Geriatr 2024; 24:904. [PMID: 39487392 PMCID: PMC11529442 DOI: 10.1186/s12877-024-05497-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND This study aims to investigate the relationships between the Chinese Healthy Eating Index (CHEI), psychological balance, depressive symptoms, and cognitive function in the rural older population. Additionally, it examines the impact of CHEI on cognitive function and the potential chain mediating roles of psychological balance and depressive symptoms. METHODS The study utilized data from 2,552 rural older adults aged 65 and above, drawn from the Chinese Longitudinal Healthy Longevity Study (CLHLS). The CHEI was self-reported, with scores ranging from 0 to 50, representing adherence to healthy eating habits. Psychological balance was assessed using status and personality-emotion characteristics recorded in the database, with scores ranging from 6 to 30. Cognitive function was measured using the Mini-Mental State Examination (MMSE), with scores ranging from 0 to 30; higher scores indicated better cognitive function. Depressive symptoms were evaluated using the 10-item Center for Epidemiologic Studies Depression Scale (CESD-10), with scores ranging from 0 to 30, where higher scores reflected more severe depressive symptoms. RESULTS The median CHEI score was 40.0 (IQR: 34.0-45.0), reflecting moderate adherence to healthy dietary practices. The median Psychological Balance score was 19.0 (IQR: 17.0-21.0), and the median Depressive Symptoms score was 13.0 (IQR: 10.0-15.0), indicating mild depressive symptoms among participants. Additionally, the median Cognitive Function score was 28.0 (IQR: 27.0-29.0), suggesting relatively stable cognitive abilities within the sample. Correlational analysis revealed the following: (1) Depressive symptoms were negatively correlated with both cognitive function (rs = -0.100, p < 0.001) and CHEI (rs = -0.206, p < 0.001), as well as with psychological balance (rs = -0.142, p < 0.001). (2) CHEI was positively correlated with both cognitive function (rs = 0.144, p < 0.001) and psychological balance (rs = 0.131, p < 0.001). (3) Cognitive function was also positively correlated with psychological balance (rs = 0.096, p < 0.001). Mediation analysis demonstrated that both psychological balance and depressive symptoms partially mediated the relationship between CHEI and cognitive function, forming a chain-mediating effect. CONCLUSION The Chinese Healthy Eating Index was found to have a direct positive impact on cognitive function in rural older adults. Furthermore, it exerted an indirect effect through the independent and chain-mediating roles of psychological balance and depressive symptoms. These findings suggest that dietary adherence can influence cognitive health not only directly but also by improving psychological well-being and reducing depressive symptoms.
Collapse
Affiliation(s)
- Zhaoquan Jiang
- School of Nursing, Jinzhou Medical University, No.40, Section 3, Songpo Road, Linghe District, Jinzhou City, Liaoning Province, People's Republic of China
| | - Zhaoxu Xu
- School of Nursing, Jinzhou Medical University, No.40, Section 3, Songpo Road, Linghe District, Jinzhou City, Liaoning Province, People's Republic of China
| | - Mingyue Zhou
- School of Nursing, Jinzhou Medical University, No.40, Section 3, Songpo Road, Linghe District, Jinzhou City, Liaoning Province, People's Republic of China
| | - Zhang Huijun
- School of Nursing, Jinzhou Medical University, No.40, Section 3, Songpo Road, Linghe District, Jinzhou City, Liaoning Province, People's Republic of China
| | - Shixue Zhou
- School of Nursing, Jinzhou Medical University, No.40, Section 3, Songpo Road, Linghe District, Jinzhou City, Liaoning Province, People's Republic of China.
| |
Collapse
|
20
|
Díez-Solinska A, De Miguel Z, Azkona G, Vegas O. Behavioral coping with chronic defeat stress in mice: A systematic review of current protocols. Neurobiol Stress 2024; 33:100689. [PMID: 39628708 PMCID: PMC11612788 DOI: 10.1016/j.ynstr.2024.100689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
Social stress is the most significant source of chronic stress in humans and is commonly associated with health impairment. Individual differences in the behavioral coping responses to stress have been proposed to mediate the negative effects of stress on physical, behavioral and mental health. Animal models, particularly mice, offer valuable insights into the physiological and neurobiological correlates of behavioral coping strategies in response to chronic social stress. Here we aim to identify differences and similarities among stress protocols in mice, with particular attention to how neuroendocrine and/or behavioral responses vary according to different coping strategies, while highlighting the need for standardized approaches in future research. A systematic review was undertaken following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA statement). A total of 213 references were identified by electronic search, and after the screening, 18 articles were found to meet all the established criteria. We analyzed differences in the stress protocol, the characterization and classification of coping strategies and the physiological and behavioral differences according to coping. The results show that differences in behavioural expression under chronic social stress (coping) may also be associated with physiological differences and differential susceptibility to disease. However, this review also underlines the importance of a cautious interpretation of the results obtained. The lack of consistency in the nomenclature and procedures associated with the study of coping strategies for social stress, as well as the absence of a uniform classification, highlight the importance of using a common language when approaching the study of coping strategies. Thereby, this review encourages the development of a more defined method and criteria for assessing coping strategies, based on both behavioral and biological indicators.
Collapse
Affiliation(s)
- Alina Díez-Solinska
- Department of Basic Psychological Processes and Their Development, University of the Basque Country UPV/EHU, 20018, Donostia-San Sebastian, Spain
| | - Zurine De Miguel
- Department of Psychology, California State University, Monterey Bay, CA, USA
- Department of Health Sciences, Public University of Navarre UPNA, 31006, Pamplona, Spain
| | - Garikoitz Azkona
- Department of Basic Psychological Processes and Their Development, University of the Basque Country UPV/EHU, 20018, Donostia-San Sebastian, Spain
| | - Oscar Vegas
- Department of Basic Psychological Processes and Their Development, University of the Basque Country UPV/EHU, 20018, Donostia-San Sebastian, Spain
- Biogipuzkoa Health Research Institute, 20014, Donostia-San Sebastian, Spain
| |
Collapse
|
21
|
Daniilidou M, Holleman J, Hagman G, Kåreholt I, Aspö M, Brinkmalm A, Zetterberg H, Blennow K, Solomon A, Kivipelto M, Sindi S, Matton A. Neuroinflammation, cerebrovascular dysfunction and diurnal cortisol biomarkers in a memory clinic cohort: Findings from the Co-STAR study. Transl Psychiatry 2024; 14:364. [PMID: 39251589 PMCID: PMC11385239 DOI: 10.1038/s41398-024-03072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
Cortisol dysregulation, neuroinflammation, and cerebrovascular dysfunction are biological processes that have been separately shown to be affected in Alzheimer's disease (AD). Here, we aimed to identify biomarker signatures reflecting these pathways in 108 memory clinic patients with subjective cognitive decline (SCD, N = 40), mild cognitive impairment (MCI, N = 39), and AD (N = 29). Participants were from the well-characterized Cortisol and Stress in Alzheimer's Disease (Co-STAR) cohort, recruited at Karolinska University Hospital. Salivary diurnal cortisol measures and 41 CSF proteins were analyzed. Principal component analysis was applied to identify combined biosignatures related to AD pathology, synaptic loss, and neuropsychological assessments, in linear regressions adjusted for confounders, such as age, sex, education and diagnosis. We found increased CSF levels of C-reactive protein (CRP), interferon γ-inducible protein (IP-10), thymus and activation-regulated chemokine (TARC), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in MCI patients. Further, markers of cortisol dysregulation (flattened salivary cortisol awakening response and flattened cortisol slope) correlated with increased levels of placental growth factor (PlGF), IP-10, and chitinase 3-like 1 (YKL-40) in the total cohort. A biosignature composed of cortisol awakening response, cortisol slope, and CSF IL-6 was downregulated in AD patients. Moreover, biomarker signatures reflecting overlapping pathophysiological processes of neuroinflammation and vascular injury were associated with AD pathology, synaptic loss, and worsened processing speed. Our findings suggest an early dysregulation of immune and cerebrovascular processes during the MCI stage and provide insights into the interrelationship of chronic stress and neuroinflammation in AD.
Collapse
Affiliation(s)
- Makrina Daniilidou
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| | - Jasper Holleman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Göran Hagman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Ingemar Kåreholt
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Institute of Gerontology, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Malin Aspö
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Alina Solomon
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, London, UK
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, London, UK
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Shireen Sindi
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Anna Matton
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
22
|
Macoveanu J, Craciun S, Ketterer-Sykes EB, Ysbæk-Nielsen AT, Zarp J, Kessing LV, Jørgensen MB, Miskowiak KW. Amygdala and hippocampal substructure volumes and their association with improvement in mood symptoms in patients with mood disorders undergoing electroconvulsive therapy. Psychiatry Res Neuroimaging 2024; 343:111859. [PMID: 38986265 DOI: 10.1016/j.pscychresns.2024.111859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Electroconvulsive therapy (ECT) demonstrates favorable outcomes in the management of severe depressive disorders. ECT has been consistently associated with volumetric increases in the amygdala and hippocampus. However, the underlying mechanisms of these structural changes and their association to clinical improvement remains unclear. In this cross-sectional structural MRI study, we assessed the difference in amygdala subnuclei and hippocampus subfields in n = 37 patients with either unipolar or bipolar disorder immediately after eighth ECT sessions compared to (n = 40) demographically matched patients in partial remission who did not receive ECT (NoECT group). Relative to NoECT, the ECT group showed significantly larger bilateral amygdala volumes post-treatment, with the effect originating from the lateral, basal, and paralaminar nuclei and the left corticoamydaloid transition area. No significant group differences were observed for the hippocampal or cortical volumes. ECT was associated with a significant decrease in depressive symptoms. However, there were no significant correlations between amygdala subnuclei volumes and symptom improvement. Our study corroborates previous reports on increased amygdalae volumes following ECT and further identifies the subnuclei driving this effect. However, the therapeutic effect of ECT does not seem to be directly related to structural changes in the amygdala.
Collapse
Affiliation(s)
- Julian Macoveanu
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Copenhagen, Denmark; Neurocogntion and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, and Department of Psychology, University of Copenhagen, Copenhagen, Denmark.
| | - Sabina Craciun
- DIS Copenhagen, Copenhagen, Denmark; Dickinson College, Carlisle, PA, USA
| | | | - Alexander Tobias Ysbæk-Nielsen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Copenhagen, Denmark; Neurocogntion and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, and Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Jeff Zarp
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Copenhagen, Denmark; Neurocogntion and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, and Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Martin Balslev Jørgensen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Copenhagen, Denmark; Neurocogntion and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, and Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Valk SL, Engert V, Puhlmann L, Linz R, Caldairou B, Bernasconi A, Bernasconi N, Bernhardt BC, Singer T. Differential increase of hippocampal subfield volume after socio-affective mental training relates to reductions in diurnal cortisol. eLife 2024; 12:RP87634. [PMID: 39196261 DOI: 10.7554/elife.87634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
The hippocampus is a central modulator of the HPA-axis, impacting the regulation of stress on brain structure, function, and behavior. The current study assessed whether three different types of 3 months mental Training Modules geared towards nurturing (a) attention-based mindfulness, (b) socio-affective, or (c) socio-cognitive skills may impact hippocampal organization by reducing stress. We evaluated mental training-induced changes in hippocampal subfield volume and intrinsic functional connectivity, by combining longitudinal structural and resting-state fMRI connectivity analysis in 332 healthy adults. We related these changes to changes in diurnal and chronic cortisol levels. We observed increases in bilateral cornu ammonis volume (CA1-3) following the 3 months compassion-based module targeting socio-affective skills (Affect module), as compared to socio-cognitive skills (Perspective module) or a waitlist cohort with no training intervention. Structural changes were paralleled by relative increases in functional connectivity of CA1-3 when fostering socio-affective as compared to socio-cognitive skills. Furthermore, training-induced changes in CA1-3 structure and function consistently correlated with reductions in cortisol output. Notably, using a multivariate approach, we found that other subfields that did not show group-level changes also contributed to changes in cortisol levels. Overall, we provide a link between a socio-emotional behavioural intervention, changes in hippocampal subfield structure and function, and reductions in cortisol in healthy adults.
Collapse
Affiliation(s)
- Sofie Louise Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- INM-7, FZ Jülich, Jülich, Germany
- Institute for System Neurosciences, Heinrich Heine University, Düsseldorf, Germany
| | - Veronika Engert
- Institute for Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Lara Puhlmann
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Roman Linz
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Benoit Caldairou
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Andrea Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Tania Singer
- Social Neuroscience Lab, Max Planck Society, Berlin, Germany
| |
Collapse
|
24
|
Tang X, Hu W, Zhao X, Liu Y, Ren Y, Tang Z, Yang J. The role of personal, relational, and collective self-esteem in predicting acute salivary cortisol response and perceived stress. Appl Psychol Health Well Being 2024; 16:1386-1402. [PMID: 38362823 DOI: 10.1111/aphw.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Personal self-esteem (PSE) has been well recognized as a buffer against stress; however, the effects of other types of self-esteem, such as relational self-esteem (RSE) and collective self-esteem (CSE), on stress have not been adequately explored. This study investigated the roles of PSE, RSE, and CSE in reducing stress response. The Rosenberg, Relational, and Collective Self-Esteem Scales were adopted to assess PSE, RSE, and CSE, respectively. Participants underwent an acute social stress paradigm, and their acute stress response was assessed using subjective stress reports and salivary cortisol levels. Chronic stress level was estimated using the Perceived Stress Scale and hair cortisol concentration. The results showed that PSE was negatively correlated with salivary cortisol response during acute social stress; however, no significant associations were found between any type of self-esteem and subjective stress reports. For chronic stress, all types of self-esteem were negatively associated with perceived stress level, but not with hair cortisol concentration. Further hierarchical regression analyses suggested that only PSE negatively predicted acute salivary cortisol response and perceived stress level. Overall, the findings suggest the essential role of PSE in predicting acute salivary cortisol responses and perceived stress.
Collapse
Affiliation(s)
- Xinli Tang
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| | - Weiyu Hu
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| | - Xiaolin Zhao
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| | - Yadong Liu
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| | - Yipeng Ren
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| | - Zihan Tang
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| | - Juan Yang
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Alateeq R, Akhtar A, De Luca SN, Chan SMH, Vlahos R. Apocynin Prevents Cigarette Smoke-Induced Anxiety-Like Behavior and Preserves Microglial Profiles in Male Mice. Antioxidants (Basel) 2024; 13:855. [PMID: 39061923 PMCID: PMC11274253 DOI: 10.3390/antiox13070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally and is primarily caused by cigarette smoking (CS). Neurocognitive comorbidities such as anxiety and cognitive impairments are common among people with COPD. CS-induced lung inflammation and oxidative stress may "spill-over" into the systemic circulation, driving the onset of these comorbidities. We investigated whether a prophylactic treatment with the NADPH Oxidase 2 (NOX2) inhibitor, apocynin, could prevent CS-induced neurocognitive impairments. Adult male BALB/c mice were exposed to CS (9 cigarettes/day, 5 days/week) or room air (sham) for 8 weeks with co-administration of apocynin (5 mg/kg, intraperitoneal injection once daily) or vehicle (0.01% DMSO in saline). Following 7 weeks of CS exposure, mice underwent behavioral testing to assess recognition and spatial memory (novel object recognition and Y maze, respectively) and anxiety-like behaviors (open field and elevated plus maze). Mice were then euthanized, and blood, lungs, and brains were collected. Apocynin partially improved CS-induced lung neutrophilia and reversed systemic inflammation (C-reactive protein) and oxidative stress (malondialdehyde). Apocynin exerted an anxiolytic effect in CS-exposed mice, which was associated with restored microglial profiles within the amygdala and hippocampus. Thus, targeting oxidative stress using apocynin can alleviate anxiety-like behaviors and could represent a novel strategy for managing COPD-related anxiety disorders.
Collapse
Affiliation(s)
| | | | | | | | - Ross Vlahos
- Respiratory Research Group, Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia; (R.A.); (A.A.); (S.N.D.L.)
| |
Collapse
|
26
|
Theleritis C, Stefanou MI, Demetriou M, Alevyzakis E, Triantafyllou K, Smyrnis N, Spandidos DA, Rizos E. Association of gut dysbiosis with first‑episode psychosis (Review). Mol Med Rep 2024; 30:130. [PMID: 38785152 PMCID: PMC11148526 DOI: 10.3892/mmr.2024.13254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
The gut‑microbiota‑brain axis is a complex bidirectional communication system linking the gastrointestinal tract to the brain. Changes in the balance, composition and diversity of the gut‑microbiota (gut dysbiosis) have been found to be associated with the development of psychosis. Early‑life stress, along with various stressors encountered in different developmental phases, have been shown to be associated with the abnormal composition of the gut microbiota, leading to irregular immunological and neuroendocrine functions, which are potentially responsible for the occurrence of first‑episode psychosis (FEP). The aim of the present narrative review was to summarize the significant differences of the altered microbiome composition in patients suffering from FEP vs. healthy controls, and to discuss its effects on the occurrence and intensity of symptoms in FEP.
Collapse
Affiliation(s)
- Christos Theleritis
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, School of Medicine, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Marina Demetriou
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Evangelos Alevyzakis
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, Second Department of Propaedeutic Internal Medicine, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Smyrnis
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Emmanouil Rizos
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
27
|
Díez-Solinska A, Goñi-Balentziaga O, Beitia-Oyarzabal G, Muñoz-Culla M, Vegas O, Azkona G. Chronic defeat stress induces monoamine level dysregulation in the prefrontal cortex but not in the hippocampus of OF1 male mice. Behav Brain Res 2024; 467:115023. [PMID: 38688411 DOI: 10.1016/j.bbr.2024.115023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Chronic social stress can increase susceptibility to chronic diseases such as depression. One of the most used models to study the physiological mechanisms and behavioral outcomes of this type of stress is chronic defeat stress (CDS) in male mice. OF1 male mice were subjected to a stress period lasting 18 days. During that time, non-stressed animals were housed in groups. The cluster analysis of the behavioral profile displayed during the first social interaction divided subjects into two groups: active/aggressive (AA) and passive/reactive (PR). The day after the end of the stress period, the following behavioral analyses were performed: the sucrose preference test (SPT) on day 19, the open field test (OFT) on day 20, and the forced swim test (FST) on day 21. Immediately after completing the last test, animals were weighed, and blood samples were obtained. Then, they were sacrificed, and their prefrontal cortices and hippocampi were removed and stored to analyze monoamine levels. Stressed animals displayed anhedonia, and solely the PR mice continued to show higher levels of immobility in the OFT and FST. All stressed animals, regardless of the coping strategy, presented higher plasma corticosterone levels. In addition, stressed mice showed lower levels of tyrosine, dopamine, DOPAC, MHPG, kynurenine, kynurenic acid, and 5-HIAA levels but higher serotonin levels in the prefrontal cortex, not in the hippocampus. In conclusion, our results show that CSD induces differences in monoamine levels between brain areas, and these differences did not respond to the coping strategy adopted.
Collapse
Affiliation(s)
- Alina Díez-Solinska
- Department of Basic Psychological Processes and their Development, University of the Basque Country (UPV/EHU), Donostia-San Sebastian 20018, Spain
| | - Olatz Goñi-Balentziaga
- Department of Clinical and Health Psychology, and Research Methods, School of Psychology, University of the Basque Country (UPV/EHU), Donostia-San Sebastian 20018, Spain
| | - Garikoitz Beitia-Oyarzabal
- Department of Basic Psychological Processes and their Development, University of the Basque Country (UPV/EHU), Donostia-San Sebastian 20018, Spain
| | - Maider Muñoz-Culla
- Department of Basic Psychological Processes and their Development, University of the Basque Country (UPV/EHU), Donostia-San Sebastian 20018, Spain; Biogipuzkoa Health Research Institute, Donostia-San Sebastian 20014, Spain
| | - Oscar Vegas
- Department of Basic Psychological Processes and their Development, University of the Basque Country (UPV/EHU), Donostia-San Sebastian 20018, Spain; Biogipuzkoa Health Research Institute, Donostia-San Sebastian 20014, Spain
| | - Garikoitz Azkona
- Department of Basic Psychological Processes and their Development, University of the Basque Country (UPV/EHU), Donostia-San Sebastian 20018, Spain.
| |
Collapse
|
28
|
Song Y, Cho JH, Kim H, Eum YJ, Cheong EN, Choi S, Park JH, Tak S, Park B, Sohn JH, Cho G, Cheong C. Association Between Taurine Level in the Hippocampus and Major Depressive Disorder in Young Women: A Proton Magnetic Resonance Spectroscopy Study at 7T. Biol Psychiatry 2024; 95:465-472. [PMID: 37678539 DOI: 10.1016/j.biopsych.2023.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/24/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by depressed mood or loss of interest or pleasure. Generally, women are twice as likely as men to have depression. Taurine, a type of amino acid, plays critical roles in neuronal generation, differentiation, arborization, and formation of synaptic connections. Importantly, it enhances proliferation and synaptogenesis in the hippocampus. When injected into animals, taurine has an antidepressant effect. However, there is no in vivo evidence to show an association between taurine concentration in the human brain and the development of MDD. METHODS Forty-one unmedicated young women with MDD (ages 18-29) and 43 healthy control participants matched for gender and age were recruited in South Korea. Taurine concentration was measured in the hippocampus, anterior cingulate cortex, and occipital cortex of the MDD and healthy control groups using proton magnetic resonance spectroscopy at 7T. Analysis of covariance was used to examine differences in taurine concentration, adjusting for age as a covariate. RESULTS Taurine concentration in the hippocampus was lower (F1,75 = 5.729, p = .019, Δη2 = 0.073) for the MDD group (mean [SEM] = 0.91 [0.06] mM) than for the healthy control group (1.13 [0.06] mM). There was no significant difference in taurine concentration in the anterior cingulate cortex or occipital cortex between the two groups. CONCLUSIONS This study demonstrates that a lower level of taurine concentration in the hippocampus may be a novel characteristic of MDD.
Collapse
Affiliation(s)
- Youngkyu Song
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jee-Hyun Cho
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Hyungjun Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Young-Ji Eum
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - E-Nae Cheong
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Sunyoung Choi
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Jeong-Heon Park
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Sungho Tak
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Bumwoo Park
- Big Data Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Jin-Hun Sohn
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gyunggoo Cho
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea.
| | - Chaejoon Cheong
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea.
| |
Collapse
|
29
|
Villemagne VL, Doré V, Chong L, Kassiou M, Mulligan R, Feizpour A, Taylor J, Roesner M, Miller T, Rowe CC. Brain 11β-Hydroxysteroid Dehydrogenase Type 1 Occupancy by Xanamem™ Assessed by PET in Alzheimer's Disease and Cognitively Normal Individuals. J Alzheimers Dis 2024; 97:1463-1475. [PMID: 38250767 PMCID: PMC10836555 DOI: 10.3233/jad-220542] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates intracellular cortisol and its inhibition by the small molecule inhibitor, Xanamem™, may provide a disease-modifying strategy for Alzheimer's disease (AD). Animal models suggest a range of 30-60% enzyme inhibition may suffice to provide neuroprotection. OBJECTIVE To determine the regional brain occupancy of 11β-HSD1 by Xanamem™ in cognitively normal participants (CN) and mild cognitive impairment (MCI)/mild AD patients to investigate potential dosing ranges for future efficacy studies. METHODS Seventeen MCI/AD and 23 CN were included. Regional brain time-activity curves (TAC), standardized uptake values (SUV40-60) and volume of distribution (VT) from Logan plot with image derived input function from 11C-TARACT positron emission tomography (PET) were used to assess the degree of 11β-HSD1 occupancy by increasing doses of Xanamem™ (5 mg, 10 mg, 20 mg or 30 mg daily for 7 days). RESULTS All measures showed high 11β-HSD1 occupancy with Xanamem to similar degree in CN and MCI/AD. The dose-response relationship was relatively flat above 5 mg. Respective median (interquartile range [Q1-Q3]) 11β-HSD1 occupancy in the MCI/AD and CN groups after treatment with 10 mg Xanamem were 80% [79-81%] and 75% [71-76%] in the neocortex, 69% [64-70%] and 61% [52-63%] in the medial temporal lobe, 80% [79-80%] and 73% [68-73%] in the basal ganglia, and 71% [67-75%] and 66% [62-68%] in the cerebellum. CONCLUSIONS TAC, SUV40-60, and VT measures indicate Xanamem achieves high target occupancy levels with near saturation at 10 mg daily. These data support exploration of doses of≤10 mg daily in future clinical studies.
Collapse
Affiliation(s)
- Victor L. Villemagne
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VA, Australia
- Department of Psychiatry, The University of Pittsburgh, Pittsburgh, PA, USA
| | - Vincent Doré
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VA, Australia
- CSIRO e-Health Research Centre, Brisbane, QLD, Australia
| | - Lee Chong
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VA, Australia
| | - Michael Kassiou
- The University of Sydney, School of Chemistry, Sydney, Australia
| | - Rachel Mulligan
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VA, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VA, Australia
| | - Azadeh Feizpour
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VA, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VA, Australia
| | | | | | | | - Christopher C. Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VA, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VA, Australia
| |
Collapse
|
30
|
Taylor J, Jaros M, Chen C, Harrison J, Hilt D. Plasma pTau181 Predicts Clinical Progression in a Phase 2 Randomized Controlled Trial of the 11β-HSD1 Inhibitor Xanamem® for Mild Alzheimer's Disease. J Alzheimers Dis 2024; 100:139-150. [PMID: 38848180 PMCID: PMC11307031 DOI: 10.3233/jad-231456] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/09/2024]
Abstract
Background Blood biomarkers are proposed as a diagnostic alternative to amyloid PET or cerebrospinal fluid (CSF) analyses for the diagnosis of Alzheimer's disease (AD). Relatively little is known of the natural history of patients identified by different blood biomarkers. Objective To identify patients with elevated plasma phosphorylated tau (pTau)181 from a prior Phase 2a trial, and explore the natural histories of their clinical progression, and potential efficacy of Xanamem, a selective inhibitor of 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in these patients. Methods A prespecified, double-blind analysis was conducted in 72 participants with clinically diagnosed AD and available plasma samples from baseline and Week 12 of the "XanADu" Phase 2a trial of Xanamem versus placebo. The analysis prespecified plasma pTau181 > median to identify patients more likely to have AD ("H", > 6.74 pg/mL, n = 34). Cohen's d (d) of≥0.2 defined potential clinical significance. Results In the placebo group, H patients showed greater clinical progression compared to L patients (pTau181≤median) on ADCOMS (d = 0.55, p < 0.001), CDR-SB (d = 0.63, p < 0.001), MMSE (d = 0.52, p = 0.12), and ADAS-Cog14 (d = 0.53, p = 0.19). In H patients, a potentially clinically meaningful Xanamem treatment effect compared to placebo was seen in the CDR-SB (LS mean difference 0.6 units, d = 0.41, p = 0.09) and Neuropsychological Test Battery (NTB; LS mean difference 1.8 units, d = 0.26, p = 0.48) but not ADCOMS or ADAS-Cog14. Conclusions This trial demonstrates that elevated plasma pTau181 identifies participants more likely to have progressive AD and is a suitable method for enrichment in AD clinical trials. Xanamem treatment showed evidence of potential clinically meaningful benefits.
Collapse
Affiliation(s)
- Jack Taylor
- Actinogen Medical, Sydney, New South Wales, Australia
| | | | - Christopher Chen
- Department of Pharmacology, Memory Aging and Cognition Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John Harrison
- Scottish Brain Sciences, Edinburgh, UK
- King’s College, London, UK
- Alzheimercentrum, AUmc, Amsterdam, The Netherlands
| | - Dana Hilt
- Actinogen Medical, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Ben-Zion Z, Korem N, Fine NB, Katz S, Siddhanta M, Funaro MC, Duek O, Spiller TR, Danböck SK, Levy I, Harpaz-Rotem I. Structural Neuroimaging of Hippocampus and Amygdala Subregions in Posttraumatic Stress Disorder: A Scoping Review. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:120-134. [PMID: 38298789 PMCID: PMC10829655 DOI: 10.1016/j.bpsgos.2023.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 02/02/2024] Open
Abstract
Numerous studies have explored the relationship between posttraumatic stress disorder (PTSD) and the hippocampus and the amygdala because both regions are implicated in the disorder's pathogenesis and pathophysiology. Nevertheless, those key limbic regions consist of functionally and cytoarchitecturally distinct substructures that may play different roles in the etiology of PTSD. Spurred by the availability of automatic segmentation software, structural neuroimaging studies of human hippocampal and amygdala subregions have proliferated in recent years. Here, we present a preregistered scoping review of the existing structural neuroimaging studies of the hippocampus and amygdala subregions in adults diagnosed with PTSD. A total of 3513 studies assessing subregion volumes were identified, 1689 of which were screened, and 21 studies were eligible for this review (total N = 2876 individuals). Most studies examined hippocampal subregions and reported decreased CA1, CA3, dentate gyrus, and subiculum volumes in PTSD. Fewer studies investigated amygdala subregions and reported altered lateral, basal, and central nuclei volumes in PTSD. This review further highlights the conceptual and methodological limitations of the current literature and identifies future directions to increase understanding of the distinct roles of hippocampal and amygdalar subregions in posttraumatic psychopathology.
Collapse
Affiliation(s)
- Ziv Ben-Zion
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Nachshon Korem
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Naomi B. Fine
- Sagol Brain Institute Tel-Aviv, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Social Sciences, School of Psychological Science, Tel Aviv University, Tel Aviv, Israel
| | - Sophia Katz
- Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Megha Siddhanta
- Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Melissa C. Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, Connecticut
| | - Or Duek
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Department of Epidemiology, Biostatistics and Community Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tobias R. Spiller
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Sarah K. Danböck
- Yale School of Medicine, Yale University, New Haven, Connecticut
- Division of Clinical Psychology and Psychopathology, Department of Psychology, Paris London University of Salzburg, Salzburg, Austria
| | - Ifat Levy
- Yale School of Medicine, Yale University, New Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Ilan Harpaz-Rotem
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| |
Collapse
|
32
|
Guo Y, Sun Y, Li M, Qi WY, Tan L, Tan MS. Amyloid Pathology Modulates the Associations of Neuropsychiatric Symptoms with Cognitive Impairments and Neurodegeneration in Non-Demented Elderly. J Alzheimers Dis 2024; 97:471-484. [PMID: 38143362 DOI: 10.3233/jad-230918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND The associations between neuropsychiatric symptoms (NPSs) and Alzheimer's disease (AD) have been well-studied, yet gaps remain. OBJECTIVE We aimed to examine the associations of four subsyndromes (hyperactivity, psychosis, affective symptoms, and apathy) of NPSs with cognition, neurodegeneration, and AD pathologies. METHODS Totally 1,040 non-demented elderly (48.07% males) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were included. We assessed the relationships between NPSs and AD neuropathologies, cognition, neurodegeneration, and clinical correlates in cross-sectional and longitudinal via multiple linear regression, linear mixed effects, and Cox proportional hazard models. Causal mediation analyses were conducted to explore the mediation effects of AD pathologies on cognition and neurodegeneration. RESULTS We found that individuals with hyperactivity, psychosis, affective symptoms, or apathy displayed a poorer cognitive status, a lower CSF amyloid-β (Aβ) level and a higher risk of clinical conversion (p < 0.05). Hyperactivity and affective symptoms were associated with increasing cerebral Aβ deposition (p < 0.05). Except psychosis, the other three subsyndromes accompanied with faster atrophy of hippocampal volume (p < 0.05). Specific NPSs were predominantly associated with different cognitive domains decline through an 8-year follow-up (p < 0.05). Moreover, the relationships between NPSs and cognitive decline, neurodegeneration might be associated with Aβ, the mediation percentage varied from 6.05% to 17.51% (p < 0.05). CONCLUSIONS NPSs could be strongly associated with AD. The influences of NPSs on cognitive impairments, neurodegeneration might be partially associated with Aβ.
Collapse
Affiliation(s)
- Yun Guo
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Meng Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wan-Yi Qi
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Meng-Shan Tan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Neurology, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
33
|
Tanner MK, Mellert SM, Fallon IP, Baratta MV, Greenwood BN. Multiple Sex- and Circuit-Specific Mechanisms Underlie Exercise-Induced Stress Resistance. Curr Top Behav Neurosci 2024; 67:37-60. [PMID: 39080242 DOI: 10.1007/7854_2024_490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Prior physical activity reduces the risk of future stress-related mental health disorders including depression, anxiety, and post-traumatic stress disorder. Rodents allowed to engage in voluntary wheel running are similarly protected from behavioral consequences of stress. The present review summarizes current knowledge on mechanisms underlying exercise-induced stress resistance. A conceptual framework involving the development (during exercise) and expression (during stress) of stress resistance from exercise is proposed. During the development of stress resistance, adaptations involving multiple exercise signals and molecular mediators occur within neural circuits orchestrating various components of the stress response, which then respond differently to stress during the expression of stress resistance. Recent data indicate that the development and expression of stress resistance from exercise involve multiple independent mechanisms that depend on sex, stressor severity, and behavioral outcome. Recent insight into the role of the prefrontal cortex in exercise-induced stress resistance illustrates these multiple mechanisms. This knowledge has important implications for the design of future experiments aimed at identifying the mechanisms underlying exercise-induced stress resistance.
Collapse
Affiliation(s)
- Margaret K Tanner
- Department of Psychology, University of Colorado Denver, Denver, CO, USA
| | - Simone M Mellert
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Isabella P Fallon
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Michael V Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | | |
Collapse
|
34
|
Spannenburg L, Reed H. Adverse cognitive effects of glucocorticoids: A systematic review of the literature. Steroids 2023; 200:109314. [PMID: 37758053 DOI: 10.1016/j.steroids.2023.109314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVES Glucocorticoids as a drug class are widely used in the treatment of many conditions including more recently as one of the mainstay treatments for the SARS-CoV-2 infection. The physiological adverse effects are well described. However, less is known and understood about the potentially deleterious neuro-cognitive effects of this class of medication. METHODS We carried out a systematic review of the literature using two separate search strategies. The first focussed on the rates of reporting of adverse cognitive effects of glucocorticoid use in randomised controlled trials. The second looked at those studies focussing directly on adverse cognitive effects associated with the use of glucocorticoids. MEDLINE, Embase and Cochrane Library was searched for randomised controlled trials utilising glucocorticoids as a part of a treatment regimen. Additionally, these databases were also used to search for articles looking directly at the adverse cognitive effects of glucocorticoids. RESULTS Of the forty-three RCTs included as a part of the first search strategy, only one (2.3%) included specific documentation pertaining to cognitive side effects. As a part of the twenty studies included in the second search strategy, eleven of the included studies (55%) were able to demonstrate a correlation between glucocorticoid use and decreased cognition. Most studies within this strategy showed that GCs predominately affected hippocampus-dependent functions such as memory, while sparing executive function and attention. CONCLUSIONS Overall, the data reporting of adverse clinical effects of glucocorticoid use is poor in recent RCTs. Given the demonstrable effect on predominately hippocampal-dependent cognitive functions evident within the literature, more thorough documentation is needed within clinical research to fully appreciate the potentially widespread nature of these effects.
Collapse
Affiliation(s)
- Liam Spannenburg
- Faculty of Medicine, University of Queensland, School of Clinical Medicine, Herston, QLD 4006, Australia; Metro South Hospital & Health Service, Department of Medicine, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia.
| | - Hayley Reed
- Faculty of Medicine, University of Queensland, School of Clinical Medicine, Herston, QLD 4006, Australia; Mater Research Institute, University of Queensland, Brisbane 4101, Australia
| |
Collapse
|
35
|
Schwartz JA, Granger DA, Calvi JL, Jodis CA, Steiner B. The Implications of Stress Among Correctional Officers: A Summary of the Risks and Promising Intervention Strategies. INTERNATIONAL JOURNAL OF OFFENDER THERAPY AND COMPARATIVE CRIMINOLOGY 2023:306624X231213316. [PMID: 38124325 DOI: 10.1177/0306624x231213316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
This paper provides a detailed summary and discussion of the concept of stress and how it relates to the health, wellbeing, and performance of corrections officers. In line with these objectives, we focus on three areas: (1) providing a more detailed definition of the concept of stress; (2) a discussion of the ways that increased exposure to stress may impact corrections officers' physical and mental health; and (3) a summary of prevention and intervention strategies that are relevant for corrections officers and have shown promise in dampening the consequences of increased stress exposure. More in-depth knowledge of the concept of stress and the underlying processes that link stress to negative outcomes will provide policy makers and corrections departments with an understanding of the characteristics of prevention and intervention strategies that are expected to be most effective in limiting the consequences of stress.
Collapse
Affiliation(s)
| | - Douglas A Granger
- The Johns Hopkins University, Baltimore, MD, USA
- University of California, Irvine, USA
| | | | | | | |
Collapse
|
36
|
Torres DB, Lopes A, Rodrigues AJ, Lopes MG, Ventura-Silva AP, Sousa N, Gontijo JAR, Boer PA. Gestational protein restriction alters early amygdala neurochemistry in male offspring. Nutr Neurosci 2023; 26:1103-1119. [PMID: 36331123 DOI: 10.1080/1028415x.2022.2131064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Gestational protein intake restriction-induced long-lasting harmful outcomes in the offspring's organs and systems. However, few studies have focused on this event's impact on the brain's structures and neurochemical compounds. AIM The present study investigated the effects on the amygdala neurochemical composition and neuronal structure in gestational protein-restricted male rats' offspring. METHODS Dams were maintained on isocaloric standard rodent laboratory chow with regular protein [NP, 17%] or low protein content [LP, 6%]. Total cells were quantified using the Isotropic fractionator method, Neuronal 3D reconstruction, and dendritic tree analysis using the Golgi-Cox technique. Western blot and high-performance liquid chromatography performed neurochemical studies. RESULTS The gestational low-protein feeding offspring showed a significant decrease in birth weight up to day 14, associated with unaltered brain weight in youth or adult progenies. The amygdala cell numbers were unchanged, and the dendrites length and dendritic ramifications 3D analysis in LP compared to age-matched NP progeny. However, the current study shows reduced amygdala content of norepinephrine, epinephrine, and dopamine in LP progeny. These offspring observed a significant reduction in the amygdala glucocorticoid (GR) and mineralocorticoid (MR) receptor protein levels. Also corticotrophin-releasing factor (CRF) amygdala protein content was reduced in 7 and 14-day-old LP rats. CONCLUSION The observed amygdala neurochemical changes may represent adaptation during embryonic development in response to elevated fetal exposure to maternal corticosteroid levels. In this way, gestational malnutrition stress can alter the amygdala's neurochemical content and may contribute to known behavioral changes induced by gestational protein restriction.
Collapse
Affiliation(s)
- Daniele B Torres
- Fetal Programming and Hydro-electrolyte Metabolism Laboratory, Internal Medicine Department, School of Medicine, State University of Campinas, Campinas, SP, Brazil
| | - Agnes Lopes
- Fetal Programming and Hydro-electrolyte Metabolism Laboratory, Internal Medicine Department, School of Medicine, State University of Campinas, Campinas, SP, Brazil
| | - Ana J Rodrigues
- Fetal Programming and Hydro-electrolyte Metabolism Laboratory, Internal Medicine Department, School of Medicine, State University of Campinas, Campinas, SP, Brazil
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Marcelo G Lopes
- Fetal Programming and Hydro-electrolyte Metabolism Laboratory, Internal Medicine Department, School of Medicine, State University of Campinas, Campinas, SP, Brazil
| | - Ana P Ventura-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - José A R Gontijo
- Fetal Programming and Hydro-electrolyte Metabolism Laboratory, Internal Medicine Department, School of Medicine, State University of Campinas, Campinas, SP, Brazil
| | - Patricia A Boer
- Fetal Programming and Hydro-electrolyte Metabolism Laboratory, Internal Medicine Department, School of Medicine, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
37
|
Korewo-Labelle D, Karnia MJ, Myślińska D, Kaczor JJ. Supplementation with Vitamin D 3 Protects against Mitochondrial Dysfunction and Loss of BDNF-Mediated Akt Activity in the Hippocampus during Long-Term Dexamethasone Treatment in Rats. Int J Mol Sci 2023; 24:13941. [PMID: 37762245 PMCID: PMC10530487 DOI: 10.3390/ijms241813941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Dexamethasone (DEXA) is a commonly used steroid drug with immunosuppressive and analgesic properties. Unfortunately, long-term exposure to DEXA severely impairs brain function. This study aimed to investigate the effects of vitamin D3 supplementation during chronic DEXA treatment on neurogenesis, mitochondrial energy metabolism, protein levels involved in the BDNF-mediated Akt activity, and specific receptors in the hippocampus. We found reduced serum concentrations of 25-hydroxyvitamin D3 (25(OH)D3), downregulated proBDNF and pAkt, dysregulated glucocorticosteroid and mineralocorticoid receptors, impaired mitochondrial biogenesis, and dysfunctional mitochondria energy metabolism in the DEXA-treated group. In contrast, supplementation with vitamin D3 restored the 25(OH)D3 concentration to a value close to that of the control group. There was an elevation in neurotrophic factor protein level, along with augmented activity of pAkt and increased citrate synthase activity in the hippocampus after vitamin D3 administration in long-term DEXA-treated rats. Our findings demonstrate that vitamin D3 supplementation plays a protective role in the hippocampus and partially mitigates the deleterious effects of long-term DEXA administration. The association between serum 25(OH)D3 concentration and BDNF level in the hippocampus indicates the importance of applying vitamin D3 supplementation to prevent and treat pathological conditions.
Collapse
Affiliation(s)
| | | | | | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (D.K.-L.); (M.J.K.); (D.M.)
| |
Collapse
|
38
|
Sundermann EE, Tang B, Kim M, Paolillo EW, Heaton RK, Moore RC. Neuropsychiatric predictors of cognitive functioning over a one-year follow-up period in HIV. J Affect Disord 2023; 336:92-96. [PMID: 37211052 PMCID: PMC10766340 DOI: 10.1016/j.jad.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Neuropsychiatric symptoms (NPS) and cognitive impairment are highly prevalent among persons with HIV (PWH). We examined the effect of the most common NPS, depression and anxiety, on cognitive change among PWH and compared these associations to those among persons without HIV (PWoH). METHODS Participants included 168 PWH and 91 PWoH who completed baseline self-report measures of depression (Beck Depression Inventory-II) and anxiety (Profile of Mood States [POMS] - Tension-anxiety subscale) and completed a comprehensive neurocognitive evaluation at baseline and at 1-year follow-up. Demographically-corrected scores from 15 neurocognitive tests were used to calculate global and domain-specific T-scores. Linear mixed-effects models examined the effect of depression and anxiety and their interaction with HIV-serostatus and time on global T-scores. RESULTS There were significant depression-by-HIV and anxiety-by-HIV interactions on global T-scores such that, among PWH only, greater depressive and anxiety symptoms at baseline related to worse global T-scores across visits. Non-significant interactions with time suggest stability in these relationships across visits. Follow-up analyses examining cognitive domains revealed that both the depression-by-HIV and the anxiety-by-HIV interactions were driven by learning and recall. LIMITATIONS Follow-up was limited to one-year and there were fewer PWoH than PWH, creating a differential in statistical power. CONCLUSION Findings suggest that anxiety and depression have stronger links to worse cognitive functioning in PWH than PWoH, particularly learning and memory, and that these associations seem to persist for at least one-year.
Collapse
Affiliation(s)
- Erin E Sundermann
- Department of Psychiatry, University of California, 9500 Gilman Dr, La Jolla, CA 92093, USA.
| | - Bin Tang
- Department of Psychiatry, University of California, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Michelle Kim
- Department of Medicine, University of California, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Emily W Paolillo
- Department of Psychiatry, University of California, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Robert K Heaton
- Department of Psychiatry, University of California, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Raeanne C Moore
- Department of Psychiatry, University of California, 9500 Gilman Dr, La Jolla, CA 92093, USA
| |
Collapse
|
39
|
Tong RL, Kahn UN, Grafe LA, Hitti FL, Fried NT, Corbett BF. Stress circuitry: mechanisms behind nervous and immune system communication that influence behavior. Front Psychiatry 2023; 14:1240783. [PMID: 37706039 PMCID: PMC10495591 DOI: 10.3389/fpsyt.2023.1240783] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Inflammatory processes are increased by stress and contribute to the pathology of mood disorders. Stress is thought to primarily induce inflammation through peripheral and central noradrenergic neurotransmission. In healthy individuals, these pro-inflammatory effects are countered by glucocorticoid signaling, which is also activated by stress. In chronically stressed individuals, the anti-inflammatory effects of glucocorticoids are impaired, allowing pro-inflammatory effects to go unchecked. Mechanisms underlying this glucocorticoid resistance are well understood, but the precise circuits and molecular mechanisms by which stress increases inflammation are not as well known. In this narrative review, we summarize the mechanisms by which chronic stress increases inflammation and contributes to the onset and development of stress-related mood disorders. We focus on the neural substrates and molecular mechanisms, especially those regulated by noradrenergic signaling, that increase inflammatory processes in stressed individuals. We also discuss key knowledge gaps in our understanding of the communication between nervous and immune systems during stress and considerations for future therapeutic strategies. Here we highlight the mechanisms by which noradrenergic signaling contributes to inflammatory processes during stress and how this inflammation can contribute to the pathology of stress-related mood disorders. Understanding the mechanisms underlying crosstalk between the nervous and immune systems may lead to novel therapeutic strategies for mood disorders and/or provide important considerations for treating immune-related diseases in individuals suffering from stress-related disorders.
Collapse
Affiliation(s)
- Rose L. Tong
- Corbett Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| | - Ubaidah N. Kahn
- Fried Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| | - Laura A. Grafe
- Grafe Laboratory, Department of Psychology, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Frederick L. Hitti
- Hitti Laboratory, Department of Neurological Surgery and Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nathan T. Fried
- Fried Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| | - Brian F. Corbett
- Corbett Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| |
Collapse
|
40
|
Paredes D, Morilak DA. Ventral Hippocampal Input to Infralimbic Cortex Is Necessary for the Therapeutic-Like Effects of Extinction in Stressed Rats. Int J Neuropsychopharmacol 2023; 26:529-536. [PMID: 37480574 PMCID: PMC10464924 DOI: 10.1093/ijnp/pyad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Posttraumatic stress disorder is characterized by deficits in cognitive flexibility related to dysfunction of the medial prefrontal cortex (mPFC). Exposure therapy can effectively reverse these deficits. Fear extinction in rodents bears similarity to exposure therapy. Extinction reverses chronic stress-induced deficits in cognitive flexibility on the attentional set-shifting test (AST), an mPFC-mediated process. This therapeutic effect requires activity of pyramidal neurons and brain derived neurotrophic factor (BDNF) signaling in infralimbic cortex (IL). However, the circuit mechanisms governing BDNF-mediated plasticity initiated by extinction in IL are unknown. The ventral hippocampus (vHipp) plays a role in regulating IL activity during extinction, and plasticity in vHipp is necessary for extinction memory consolidation. Therefore, we investigated the role of vHipp input to IL in the effects of extinction in reversing stress-induced cognitive deficits. METHODS vHipp input to IL was silenced using a Gi-Designer Receptors Exclusively Activated by Designer Drugs (DREADD) via local infusion of clozapine-N-oxide (CNO) into IL before extinction. A day later, rats were tested on AST. In a separate experiment, we tested whether vHipp input to the IL induces BDNF signaling to exert therapeutic effects. We activated the vHipp using a Gq-DREADD, and injected an anti-BDNF neutralizing antibody into IL. Rats were tested on the AST 24 hours later. RESULTS Silencing the vHipp input to IL prevented the beneficial effects of extinction in reversing stress-induced cognitive deficits. Activating vHipp input to IL in the absence of extinction was sufficient to reverse stress-induced deficits in set-shifting. The beneficial effects were blocked by local infusion of a neutralizing anti-BDNF antibody into IL. CONCLUSIONS vHipp-driven BDNF signaling in IL is critical for extinction to counteract the deleterious cognitive effects of chronic stress.
Collapse
Affiliation(s)
- Denisse Paredes
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David A Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX
| |
Collapse
|
41
|
Giannopoulou I, Georgiades S, Stefanou MI, Spandidos DA, Rizos E. Links between trauma and psychosis (Review). Exp Ther Med 2023; 26:386. [PMID: 37456168 PMCID: PMC10347243 DOI: 10.3892/etm.2023.12085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
The relationship between trauma and psychosis is complex and multifaceted, with evidence suggesting that trauma can be both a risk factor for the development of psychosis and a consequence of psychotic experiences. The present review aimed to provide an overview of the current state of knowledge on the relationship between trauma and psychosis, including historical and conceptual considerations, as well as epidemiological evidence. The potential explanation of the link between trauma and psychosis is provided through available models and similarities in their neurobiological associations. Overall, the research confirms the relationship between trauma and psychosis, and suggests that individuals with a co-occurring history of trauma and psychosis may have increased symptom severity and worse functional outcomes compared with individuals with psychosis alone. Future research should focus on elucidating the underlying causal pathways between trauma exposure and psychosis in order to inform effective treatment approaches aiming to prevent the intensification of psychotic symptoms and processes.
Collapse
Affiliation(s)
- Ioanna Giannopoulou
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Stelios Georgiades
- Department of Basic Clinical Sciences, Medical School, University of Nicosia, 2415 Nicosia, Cyprus
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, School of Medicine, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Emmanouil Rizos
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
42
|
Yusupov N, van Doeselaar L, Röh S, Wiechmann T, Ködel M, Sauer S, Rex-Haffner M, Schmidt MV, Binder EB. Extensive evaluation of DNA methylation of functional elements in the murine Fkbp5 locus using high-accuracy DNA methylation measurement via targeted bisulfite sequencing. Eur J Neurosci 2023; 58:2662-2676. [PMID: 37414581 DOI: 10.1111/ejn.16078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
FKBP5 is an important stress-regulatory gene implicated in stress-related psychiatric diseases. Single nucleotide polymorphisms of the FKBP5 gene were shown to interact with early life stress to alter the glucocorticoid-related stress response and moderate disease risk. Demethylation of cytosine-phosphate-guanine-dinucleotides (CpGs) in regulatory glucocorticoid-responsive elements was suggested to be the mediating epigenetic mechanism for long-term stress effects, but studies on Fkbp5 DNA methylation (DNAm) in rodents are so far limited. We evaluated the applicability of high-accuracy DNA methylation measurement via targeted bisulfite sequencing (HAM-TBS), a next-generation sequencing-based technology, to allow a more in-depth characterisation of the DNA methylation of the murine Fkbp5 locus in three different tissues (blood, frontal cortex and hippocampus). In this study, we not only increased the number of evaluated sites in previously described regulatory regions (in introns 1 and 5), but also extended the evaluation to novel, possibly relevant regulatory regions of the gene (in intron 8, the transcriptional start site, the proximal enhancer and CTCF-binding sites within the 5'UTR). We here describe the assessment of HAM-TBS assays for a panel of 157 CpGs with possible functional relevance in the murine Fkbp5 gene. DNAm profiles were tissue-specific, with lesser differences between the two brain regions than between the brain and blood. Moreover, we identified DNAm changes in the Fkbp5 locus after early life stress exposure in the frontal cortex and blood. Our findings indicate that HAM-TBS is a valuable tool for broader exploration of the DNAm of the murine Fkbp5 locus and its involvement in the stress response.
Collapse
Affiliation(s)
- Natan Yusupov
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Lotte van Doeselaar
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Simone Röh
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Tobias Wiechmann
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Maik Ködel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Susann Sauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Monika Rex-Haffner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
43
|
Binnewies J, Nawijn L, Brandmaier AM, Baaré WFC, Boraxbekk CJ, Demnitz N, Drevon CA, Fjell AM, Lindenberger U, Madsen KS, Nyberg L, Topiwala A, Walhovd KB, Ebmeier KP, Penninx BWJH. Lifestyle-related risk factors and their cumulative associations with hippocampal and total grey matter volume across the adult lifespan: A pooled analysis in the European Lifebrain consortium. Brain Res Bull 2023; 200:110692. [PMID: 37336327 DOI: 10.1016/j.brainresbull.2023.110692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Lifestyle-related risk factors, such as obesity, physical inactivity, short sleep, smoking and alcohol use, have been associated with low hippocampal and total grey matter volumes (GMV). However, these risk factors have mostly been assessed as separate factors, leaving it unknown if variance explained by these factors is overlapping or additive. We investigated associations of five lifestyle-related factors separately and cumulatively with hippocampal and total GMV, pooled across eight European cohorts. METHODS We included 3838 participants aged 18-90 years from eight cohorts of the European Lifebrain consortium. Using individual person data, we performed cross-sectional meta-analyses on associations of presence of lifestyle-related risk factors separately (overweight/obesity, physical inactivity, short sleep, smoking, high alcohol use) as well as a cumulative unhealthy lifestyle score (counting the number of present lifestyle-related risk factors) with FreeSurfer-derived hippocampal volume and total GMV. Lifestyle-related risk factors were defined according to public health guidelines. RESULTS High alcohol use was associated with lower hippocampal volume (r = -0.10, p = 0.021), and overweight/obesity with lower total GMV (r = -0.09, p = 0.001). Other lifestyle-related risk factors were not significantly associated with hippocampal volume or GMV. The cumulative unhealthy lifestyle score was negatively associated with total GMV (r = -0.08, p = 0.001), but not hippocampal volume (r = -0.01, p = 0.625). CONCLUSIONS This large pooled study confirmed the negative association of some lifestyle-related risk factors with hippocampal volume and GMV, although with small effect sizes. Lifestyle factors should not be seen in isolation as there is evidence that having multiple unhealthy lifestyle factors is associated with a linear reduction in overall brain volume.
Collapse
Affiliation(s)
- Julia Binnewies
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, the Netherlands.
| | - Laura Nawijn
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, the Netherlands
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany; Department of Psychology, MSB Medical School Berlin, Berlin, Germany
| | - William F C Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Carl-Johan Boraxbekk
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Sports Medicine Copenhagen (ISMC) and Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Naiara Demnitz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Christian A Drevon
- Vitas Ltd. Oslo Science Park & Department of Nutrition, IMB, University of Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway; Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Anya Topiwala
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway; Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - Klaus P Ebmeier
- Department of Psychiatry, University of Oxford, United Kingdom
| | - Brenda W J H Penninx
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, the Netherlands
| |
Collapse
|
44
|
Cao P, Chen C, Si Q, Li Y, Ren F, Han C, Zhao J, Wang X, Xu G, Sui Y. Volumes of hippocampal subfields suggest a continuum between schizophrenia, major depressive disorder and bipolar disorder. Front Psychiatry 2023; 14:1191170. [PMID: 37547217 PMCID: PMC10400724 DOI: 10.3389/fpsyt.2023.1191170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Objective There is considerable debate as to whether the continuum of major psychiatric disorders exists and to what extent the boundaries extend. Converging evidence suggests that alterations in hippocampal volume are a common sign in psychiatric disorders; however, there is still no consensus on the nature and extent of hippocampal atrophy in schizophrenia (SZ), major depressive disorder (MDD) and bipolar disorder (BD). The aim of this study was to verify the continuum of SZ - BD - MDD at the level of hippocampal subfield volume and to compare the volume differences in hippocampal subfields in the continuum. Methods A total of 412 participants (204 SZ, 98 MDD, and 110 BD) underwent 3 T MRI scans, structured clinical interviews, and clinical scales. We segmented the hippocampal subfields with FreeSurfer 7.1.1 and compared subfields volumes across the three diagnostic groups by controlling for age, gender, education, and intracranial volumes. Results The results showed a gradual increase in hippocampal subfield volumes from SZ to MDD to BD. Significant volume differences in the total hippocampus and 13 of 26 hippocampal subfields, including CA1, CA3, CA4, GC-ML-DG, molecular layer and the whole hippocampus, bilaterally, and parasubiculum in the right hemisphere, were observed among diagnostic groups. Medication treatment had the most effect on subfields of MDD compared to SZ and BD. Subfield volumes were negatively correlated with illness duration of MDD. Positive correlations were found between subfield volumes and drug dose in SZ and MDD. There was no significant difference in laterality between diagnostic groups. Conclusion The pattern of hippocampal volume reduction in SZ, MDD and BD suggests that there may be a continuum of the three disorders at the hippocampal level. The hippocampus represents a phenotype that is distinct from traditional diagnostic strategies. Combined with illness duration and drug intervention, it may better reflect shared pathophysiology and mechanisms across psychiatric disorders.
Collapse
Affiliation(s)
- Peiyu Cao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Congxin Chen
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qi Si
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
- Huai’an No. 3 People’s Hospital, Huai’an, China
| | - Yuting Li
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Fangfang Ren
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Chongyang Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Jingjing Zhao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Xiying Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Guoxin Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Yuxiu Sui
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| |
Collapse
|
45
|
Polcz VE, Barrios EL, Chapin B, Price C, Nagpal R, Chakrabarty P, Casadesus G, Foster T, Moldawer L, Efron PA. Sex, sepsis and the brain: defining the role of sexual dimorphism on neurocognitive outcomes after infection. Clin Sci (Lond) 2023; 137:963-978. [PMID: 37337946 PMCID: PMC10285043 DOI: 10.1042/cs20220555] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Sexual dimorphisms exist in multiple domains, from learning and memory to neurocognitive disease, and even in the immune system. Male sex has been associated with increased susceptibility to infection, as well as increased risk of adverse outcomes. Sepsis remains a major source of morbidity and mortality globally, and over half of septic patients admitted to intensive care are believed to suffer some degree of sepsis-associated encephalopathy (SAE). In the short term, SAE is associated with an increased risk of in-hospital mortality, and in the long term, has the potential for significant impairment of cognition, memory, and acceleration of neurocognitive disease. Despite increasing information regarding sexual dimorphism in neurologic and immunologic systems, research into these dimorphisms in sepsis-associated encephalopathy remains critically understudied. In this narrative review, we discuss how sex has been associated with brain morphology, chemistry, and disease, sexual dimorphism in immunity, and existing research into the effects of sex on SAE.
Collapse
Affiliation(s)
- Valerie E. Polcz
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Evan L. Barrios
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Benjamin Chapin
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Catherine C. Price
- Department of Clinical and Health Psychology, University of Florida College of Public Health and Health Professions, Gainesville, Florida, U.S.A
| | - Ravinder Nagpal
- Florida State University College of Health and Human Sciences, Tallahassee, Florida, U.S.A
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Gemma Casadesus
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Thomas Foster
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Lyle L. Moldawer
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| |
Collapse
|
46
|
Cobb AR, Rubin M, Stote DL, Baldwin BC, Lee HJ, Hariri AR, Telch MJ. Hippocampal volume and volume asymmetry prospectively predict PTSD symptom emergence among Iraq-deployed soldiers. Psychol Med 2023; 53:1906-1913. [PMID: 34802472 PMCID: PMC10106285 DOI: 10.1017/s0033291721003548] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Evidence suggests a link between smaller hippocampal volume (HV) and post-traumatic stress disorder (PTSD). However, there has been little prospective research testing this question directly and it remains unclear whether smaller HV confers risk or is a consequence of traumatization and PTSD. METHODS U.S. soldiers (N = 107) completed a battery of clinical assessments, including structural magnetic resonance imaging pre-deployment. Once deployed they completed monthly assessments of traumatic-stressors and symptoms. We hypothesized that smaller HV would potentiate the effects of traumatic stressors on PTSD symptoms in theater. Analyses evaluated whether total HV, lateral (right v. left) HV, or HV asymmetry (right - left) moderated the effects of stressor-exposure during deployment on PTSD symptoms. RESULTS Findings revealed no interaction between total HV and average monthly traumatic-stressors on PTSD symptoms b = -0.028, p = 0.681 [95% confidence interval (CI) -0.167 to 0.100]. However, in the context of greater exposure to average monthly traumatic stressors, greater right HV was associated with fewer PTSD symptoms b = -0.467, p = 0.023 (95% CI -0.786 to -0.013), whereas greater left HV was unexpectedly associated with greater PTSD symptoms b = 0.435, p = 0.024 (95% CI 0.028-0.715). CONCLUSIONS Our findings highlight the importance of considering the complex role of HV, in particular HV asymmetry, in predicting the emergence of PTSD symptoms in response to war-zone trauma.
Collapse
Affiliation(s)
- Adam R. Cobb
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- PTSD Clinical Team, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Mikael Rubin
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Deborah L. Stote
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Brian C. Baldwin
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Han-Joo Lee
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ahmad R. Hariri
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Michael J. Telch
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
47
|
Holtby AR, Hall TJ, McGivney BA, Han H, Murphy KJ, MacHugh DE, Katz LM, Hill EW. Integrative genomics analysis highlights functionally relevant genes for equine behaviour. Anim Genet 2023. [DOI: 10.1111/age.13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023]
|
48
|
Demnitz-King H, Saba L, Lau Y, Munns L, Zabihi S, Schlosser M, Del-Pino-Casado R, Orgeta V, Marchant NL. Association between anxiety symptoms and Alzheimer's disease biomarkers in cognitively healthy adults: A systematic review and meta-analysis. J Psychosom Res 2023; 166:111159. [PMID: 36709611 DOI: 10.1016/j.jpsychores.2023.111159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Anxiety has been identified as both a risk factor and prodromal symptom for Alzheimer's disease (AD) and related dementias, however, the underlying neurobiological correlates remain unknown. The aim of this systematic review and meta-analysis was to examine the association between anxiety symptoms and two defining markers of AD neuropathology: amyloid-beta (Aβ) and tau. METHODS Systematic literature searches were conducted across 5 databases. Studies investigating the relationship between anxiety and AD neuropathology (i.e., Aβ and/or tau) in cognitively healthy adults were eligible. Where possible, effect sizes were combined across studies, for Aβ and tau separately, using random-effects meta-analyses. Sensitivity analyses were performed to assess whether results differed according to anxiety type (i.e., state and trait) and biomarker assessment modality (i.e., positron emission tomography and cerebrospinal fluid). RESULTS Twenty-seven studies reporting data from 14 unique cohorts met eligibility criteria. Random-effects meta-analyses revealed no associations between self-reported anxiety symptoms and either Aβ (13 studies, Fisher's z = 0.02, 95% confidence interval [CI] -0.01-0.05, p = 0.194) or tau (4 studies, Fisher's z = 0.04, 95% CI -0.02-0.09, p = 0.235). Results remained unchanged across sensitivity analyses. CONCLUSIONS In cognitively healthy adults, meta-analytic syntheses revealed no associations between anxiety symptoms and either Aβ or tau. There is a critical need, however, for larger studies with follow-up periods to examine the effect of anxiety symptom onset, severity, and chronicity on AD neuropathology. Additionally, further research investigating other potential neurobiological correlates is crucial to advance scientific understanding of the relationship between anxiety and dementia.
Collapse
Affiliation(s)
| | - Lisa Saba
- Division of Psychiatry, University College London, London, United Kingdom
| | - Yolanda Lau
- Division of Psychiatry, University College London, London, United Kingdom
| | - Lydia Munns
- Division of Psychiatry, University College London, London, United Kingdom; Department of Psychology, University of York, York, United Kingdom
| | - Sedigheh Zabihi
- Division of Psychiatry, University College London, London, United Kingdom
| | - Marco Schlosser
- Division of Psychiatry, University College London, London, United Kingdom; Department of Psychology, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | | | - Vasiliki Orgeta
- Division of Psychiatry, University College London, London, United Kingdom
| | - Natalie L Marchant
- Division of Psychiatry, University College London, London, United Kingdom.
| |
Collapse
|
49
|
Functional re-organization of hippocampal-cortical gradients during naturalistic memory processes. Neuroimage 2023; 271:119996. [PMID: 36863548 DOI: 10.1016/j.neuroimage.2023.119996] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
The functional organization of the hippocampus mirrors that of the cortex, changing smoothly along connectivity gradients and abruptly at inter-areal boundaries. Hippocampal-dependent cognitive processes require flexible integration of these hippocampal gradients into functionally related cortical networks. To understand the cognitive relevance of this functional embedding, we acquired fMRI data while participants viewed brief news clips, either containing or lacking recently familiarized cues. Participants were 188 healthy mid-life adults and 31 adults with mild cognitive impairment (MCI) or Alzheimer's disease (AD). We employed a recently developed technique - connectivity gradientography - to study gradually changing patterns of voxel to whole brain functional connectivity and their sudden transitions. We observed that functional connectivity gradients of the anterior hippocampus map onto connectivity gradients across the default mode network during these naturalistic stimuli. The presence of familiar cues in the news clips accentuates a stepwise transition across the boundary from the anterior to the posterior hippocampus. This functional transition is shifted in the posterior direction in the left hippocampus of individuals with MCI or AD. These findings shed new light on the functional integration of hippocampal connectivity gradients into large-scale cortical networks, how these adapt with memory context and how these change in the presence of neurodegenerative disease.
Collapse
|
50
|
Bassil K, Krontira AC, Leroy T, Escoto AIH, Snijders C, Pernia CD, Pasterkamp RJ, de Nijs L, van den Hove D, Kenis G, Boks MP, Vadodaria K, Daskalakis NP, Binder EB, Rutten BPF. In vitro modeling of the neurobiological effects of glucocorticoids: A review. Neurobiol Stress 2023; 23:100530. [PMID: 36891528 PMCID: PMC9986648 DOI: 10.1016/j.ynstr.2023.100530] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Hypothalamic-pituitary adrenal (HPA)axis dysregulation has long been implicated in stress-related disorders such as major depression and post-traumatic stress disorder. Glucocorticoids (GCs) are released from the adrenal glands as a result of HPA-axis activation. The release of GCs is implicated with several neurobiological changes that are associated with negative consequences of chronic stress and the onset and course of psychiatric disorders. Investigating the underlying neurobiological effects of GCs may help to better understand the pathophysiology of stress-related psychiatric disorders. GCs impact a plethora of neuronal processes at the genetic, epigenetic, cellular, and molecular levels. Given the scarcity and difficulty in accessing human brain samples, 2D and 3D in vitro neuronal cultures are becoming increasingly useful in studying GC effects. In this review, we provide an overview of in vitro studies investigating the effects of GCs on key neuronal processes such as proliferation and survival of progenitor cells, neurogenesis, synaptic plasticity, neuronal activity, inflammation, genetic vulnerability, and epigenetic alterations. Finally, we discuss the challenges in the field and offer suggestions for improving the use of in vitro models to investigate GC effects.
Collapse
Affiliation(s)
- Katherine Bassil
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Anthi C Krontira
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Thomas Leroy
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Alana I H Escoto
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Clara Snijders
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Cameron D Pernia
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Marco P Boks
- Psychiatry, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Krishna Vadodaria
- Salk Institute for Biological Studies, La Jolla, San Diego, United States
| | | | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|