1
|
Bédard-Matteau J, Soulé A, Liu KY, Fourcade L, Fraser DD, Emad A, Rousseau S. Circulating IL-17F, but not IL-17A, is elevated in severe COVID-19 and leads to an ERK1/2 and p38 MAPK-dependent increase in ICAM-1 cell surface expression and neutrophil adhesion on endothelial cells. Front Immunol 2024; 15:1452788. [PMID: 39493750 PMCID: PMC11527637 DOI: 10.3389/fimmu.2024.1452788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/17/2024] [Indexed: 11/05/2024] Open
Abstract
Background Severe COVID-19 is associated with neutrophilic inflammation and immunothrombosis. Several members of the IL-17 cytokine family have been associated with neutrophilic inflammation and activation of the endothelium. Therefore, we investigated whether these cytokines were associated with COVID-19. Methods We investigated the association between COVID-19 and circulating plasma levels of IL-17 cytokine family members in participants to the Biobanque québécoise de la COVID-19 (BQC19), a prospective observational cohort and an independent cohort from Western University (London, Ontario). We measured the in vitro impact of IL-17F on intercellular adhesion molecule 1 (ICAM-1) cell surface expression and neutrophil adhesion on endothelial cells in culture. The contribution of two Mitogen Activated Protein Kinase (MAPK) pathways was determined using small molecule inhibitors PD184352 (a MKK1/MKK2 inhibitor) and BIRB0796 (a p38 MAPK inhibitor). Results We found increased IL-17D and IL-17F plasma levels when comparing SARS-CoV-2-positive vs negative hospitalized participants. Moreover, increased plasma levels of IL-17D, IL-17E and IL-17F were noted when comparing severe versus mild COVID-19. IL-17F, but not IL-17A, was significantly elevated in people with COVID-19 compared to healthy controls and with more severe disease. In vitro work on endothelial cells treated with IL-17F for 24h showed an increase cell surface expression of ICAM-1 accompanied by neutrophil adhesion. The introduction of two MAPK inhibitors significantly reduced the binding of neutrophils while also reducing ICAM-1 expression at the surface level of endothelial cells, but not its intracellular expression. Discussion Overall, these results have identified an association between two cytokines of the IL-17 family (IL-17D and IL-17F) with COVID-19 and disease severity. Considering that IL-17F stimulation promotes neutrophil adhesion to the endothelium in a MAPK-dependent manner, it is attractive to speculate that this pathway may contribute to pathogenic immunothrombosis in concert with other molecular effectors.
Collapse
Affiliation(s)
- Jérôme Bédard-Matteau
- The Meakins-Christie Laboratories, Research Institute of the McGill University Heath Centre, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Antoine Soulé
- Department of Electrical and Computer Engineering, McGill University, Montréal, QC, Canada
| | - Katelyn Yixiu Liu
- The Meakins-Christie Laboratories, Research Institute of the McGill University Heath Centre, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Lyvia Fourcade
- The Meakins-Christie Laboratories, Research Institute of the McGill University Heath Centre, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Douglas D. Fraser
- Children’s Health Research Institute & Lawson Health Research Institute, London, ON, Canada
- Department of Pediatrics, Western University, London, ON, Canada
| | - Amin Emad
- Department of Electrical and Computer Engineering, McGill University, Montréal, QC, Canada
- Mila, Quebec AI Institute, Montréal, QC, Canada
| | - Simon Rousseau
- The Meakins-Christie Laboratories, Research Institute of the McGill University Heath Centre, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| |
Collapse
|
2
|
Mang G, Chen J, Sun P, Ma R, Du J, Wang X, Cui J, Yang M, Tong Z, Yan X, Wang D, Xie H, Chen Y, Yang Q, Kong Y, Jin J, Wu J, Zhang M, Yu B. Von Willebrand factor exacerbates heart failure through formation of neutrophil extracellular traps. Eur Heart J 2024; 45:3853-3867. [PMID: 39165142 DOI: 10.1093/eurheartj/ehae517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/14/2023] [Accepted: 07/28/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND AND AIMS Heart failure (HF) is a leading cause of mortality worldwide and characterized by significant co-morbidities and dismal prognosis. Neutrophil extracellular traps (NETs) aggravate inflammation in various cardiovascular diseases; however, their function and mechanism of action in HF pathogenesis remain underexplored. This study aimed to investigate the involvement of a novel VWF-SLC44A2-NET axis in HF progression. METHODS NET levels were examined in patients with HF and mouse models of transverse aortic constriction (TAC) HF. PAD4 knockout mice and NET inhibitors (GSK-484, DNase I, NEi) were used to evaluate the role of NETs in HF. RNA sequencing was used to investigate the downstream mechanisms. Recombinant human ADAMTS13 (rhADAMTS13), ADAMTS13, and SLC44A2 knockouts were used to identify novel upstream factors of NETs. RESULTS Elevated NET levels were observed in patients with HF and TAC mouse models of HF. PAD4 knockout and NET inhibitors improved the cardiac function. Mechanistically, NETs induced mitochondrial dysfunction in cardiomyocytes, inhibiting mitochondrial biogenesis via the NE-TLR4-mediated suppression of PGC-1α. Furthermore, VWF/ADAMTS13 regulated NET formation via SLC44A2. Additionally, sacubitril/valsartan amplifies the cardioprotective effects of the VWF-SLC44A2-NET axis blockade. CONCLUSIONS This study established the role of a novel VWF-SLC44A2-NET axis in regulating mitochondrial homeostasis and function, leading to cardiac apoptosis and contributing to HF pathogenesis. Targeting this axis may offer a potential therapeutic approach for HF treatment.
Collapse
Affiliation(s)
- Ge Mang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100013, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Jianfeng Chen
- Experimental Animal Centre, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Ping Sun
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Ruishuang Ma
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Jingwen Du
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Xiaoqi Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Jingxuan Cui
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Mian Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Zhonghua Tong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Xiangyu Yan
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Dongni Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Huiqi Xie
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Yujia Chen
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Qiannan Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Yingjin Kong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Jiaqi Jin
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St., Beijing 100053, China
| | - Jian Wu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Maomao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Harbin Medical University, Harbin 150086, Heilongjiang, China
| |
Collapse
|
3
|
Ling S, Xu JW. Phenotypes and functions of "aged" neutrophils in cardiovascular diseases. Biomed Pharmacother 2024; 179:117324. [PMID: 39216451 DOI: 10.1016/j.biopha.2024.117324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Neutrophils are important effector cells of innate immunity and undergo several phenotypic changes after release from the bone marrow. Neutrophils with a late life cycle phenotype are often referred to as "aged" neutrophils. These neutrophils undergo functional changes that accompany stimuli of inflammation, tissue senescence and injury, inducing their maturation and senescence in the circulation and locally in damaged tissues, forming a unique late-life neutrophil phenotype. "Aged" neutrophils, although attenuated in antibacterial capacity, are more active in aging and age-related diseases, exhibit high levels of mitochondrial ROS and mitochondrial DNA leakage, promote senescence of neighboring cells, and exacerbate cardiac and vascular tissue damage, including vascular inflammation, myocardial infarction, atherosclerosis, stroke, abdominal aortic aneurysm, and SARS-CoV-2 myocarditis. In this review, we outline the phenotypic changes of "aged" neutrophils characterized by CXCR4high/CD62Llow, investigate the mechanisms driving neutrophil aging and functional transformation, and analyze the damage caused by "aged" neutrophils to various types of heart and blood vessels. Tissue injury and senescence promote neutrophil infiltration and induce neutrophil aging both in the circulation and locally in damaged tissues, resulting in an "aged" neutrophil phenotype characterized by CXCR4high/CD62Llow. We also discuss the effects of certain agents, such as neutralizing mitochondrial ROS, scavenging IsoLGs, blocking VDAC oligomers and mPTP channel activity, activating Nrf2 activity, and inhibiting neutrophil PAD4 activity, to inhibit neutrophil NET formation and ameliorate age-associated cardiovascular disease, providing a new perspective for anti-aging therapy in cardiovascular disease.
Collapse
Affiliation(s)
- Shuang Ling
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jin-Wen Xu
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Becker RC, Tantry US, Khan M, Gurbel PA. The COVID-19 thrombus: distinguishing pathological, mechanistic, and phenotypic features and management. J Thromb Thrombolysis 2024:10.1007/s11239-024-03028-4. [PMID: 39179952 DOI: 10.1007/s11239-024-03028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
A heightened risk for thrombosis is a hallmark of COVID-19. Expansive clinical experience and medical literature have characterized small (micro) and large (macro) vessel involvement of the venous and arterial circulatory systems. Most events occur in patients with serious or critical illness in the hyperacute (first 1-2 weeks) or acute phases (2-4 weeks) of SARS-CoV-2 infection. However, thrombosis involving the venous, arterial, and microcirculatory systems has been reported in the subacute (4-8 weeks), convalescent (> 8-12 weeks) and chronic phases (> 12 weeks) among patients with mild-to-moderate illness. The purpose of the current focused review is to highlight the distinguishing clinical features, pathological components, and potential mechanisms of venous, arterial, and microvascular thrombosis in patients with COVID-19. The overarching objective is to better understand the proclivity for thrombosis, laying a solid foundation for screening and surveillance modalities, preventive strategies, and optimal patient management.
Collapse
Affiliation(s)
- Richard C Becker
- Cardiovascular Center, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
| | - Udaya S Tantry
- Sinai Center for Thrombosis Research and Drug Development, Baltimore, USA
| | - Muhammad Khan
- Division of General Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Paul A Gurbel
- Sinai Center for Thrombosis Research and Drug Development, Baltimore, USA
| |
Collapse
|
5
|
Kapoor S, Mihalovičová L, Pisareva E, Pastor B, Mirandola A, Roch B, Bryant J, Princy AP, Chouaib S, Thierry AR. Association of vascular netosis with COVID-19 severity in asymptomatic and symptomatic patients. iScience 2024; 27:109573. [PMID: 38660409 PMCID: PMC11039348 DOI: 10.1016/j.isci.2024.109573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/19/2023] [Accepted: 03/24/2024] [Indexed: 04/26/2024] Open
Abstract
We examined from a large exploratory study cohort of COVID-19 patients (N = 549) a validated panel of neutrophil extracellular traps (NETs) markers in different categories of disease severity. Neutrophil elastase (NE), myeloperoxidase (MPO), and circulating nuclear DNA (cir-nDNA) levels in plasma were seen to gradually and significantly (p < 0.0001) increase with the disease severity: mild (3.7, 48.9, and 15.8 ng/mL, respectively); moderate (9.8, 77.5, and 27.7 ng/mL, respectively); severe (11.7, 99.5, and 29.0 ng/mL, respectively); and critical (13.1, 110.2, and 46.0 ng/mL, respectively); and are also statistically different with healthy individuals (N = 140; p < 0.0001). All observations made in relation to the Delta variant-infected patients are in line with Omicron-infected patients. We unexpectedly observed significantly higher levels of NETs in asymptomatic individuals as compared to healthy subjects (p < 0.0001). Moreover, the balance of cir-nDNA and circulating mitochondrial DNA level was affected in COVID-19 infected patients attesting to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Suman Kapoor
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, UAE
| | - Lucia Mihalovičová
- IRCM, Institute of Research in Cancerology of Montpellier, INSERM U1194, Centre Hospitalier Universitaire, University of Montpellier, Montpellier, France
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova, Bratislava, Slovakia
| | - Ekaterina Pisareva
- IRCM, Institute of Research in Cancerology of Montpellier, INSERM U1194, Centre Hospitalier Universitaire, University of Montpellier, Montpellier, France
| | - Brice Pastor
- IRCM, Institute of Research in Cancerology of Montpellier, INSERM U1194, Centre Hospitalier Universitaire, University of Montpellier, Montpellier, France
| | - Alexia Mirandola
- IRCM, Institute of Research in Cancerology of Montpellier, INSERM U1194, Centre Hospitalier Universitaire, University of Montpellier, Montpellier, France
| | - Benoit Roch
- IRCM, Institute of Research in Cancerology of Montpellier, INSERM U1194, Centre Hospitalier Universitaire, University of Montpellier, Montpellier, France
| | - Joe Bryant
- Institute of Human Virology, Baltimore, MD, USA
| | | | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, UAE
- Institut Gustave Roussy, Villejuif, France
| | - Alain Roger Thierry
- IRCM, Institute of Research in Cancerology of Montpellier, INSERM U1194, Centre Hospitalier Universitaire, University of Montpellier, Montpellier, France
- Montpellier Cancer Institute (ICM), Montpellier, France
| |
Collapse
|
6
|
Wang Q, Qin Y, Ma J, Zhou K, Xia G, Li Y, Xie L, Afful RG, Lan Q, Huo X, Zou J, Yang H. An early warning indicator of mortality risk in patients with COVID-19: the neutrophil extracellular traps/neutrophilic segmented granulocyte ratio. Front Immunol 2024; 15:1287132. [PMID: 38348024 PMCID: PMC10859410 DOI: 10.3389/fimmu.2024.1287132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Background Neutrophil extracellular traps (NETs) play a key role in thrombus formation in patients with coronavirus disease 2019 (COVID-19). However, the existing detection and observation methods for NETs are limited in their ability to provide quantitative, convenient, and accurate descriptions of in situ NETs. Therefore, establishing a quantitative description of the relationship between NETs and thrombosis remains a challenge. Objective We employed morphological observations of blood cells and statistical analyses to investigate the correlation between the NETs/neutrophilic segmented granulocyte ratio and mortality risk in patients with COVID-19. Methods Peripheral blood samples were collected from 117 hospitalized patients with COVID-19 between November 2022 and February 2023, and various blood cell parameters were measured. Two types of smudge cells were observed in the blood and counted: lymphatic and neutral smudge cells. Statistical data analysis was used to establish COVID-19 mortality risk assessment indicators. Results Morphological observations of neutrophilic smudge cells revealed swelling, eruption, and NETs formation in the neutrophil nuclei. Subsequently, the NETs/neutrophilic segmented granulocyte ratio (NNSR) was calculated. A high concentration of NETs poses a fatal risk for thrombus formation in patients. Statistical analysis indicated that a high NNSR was more suitable for evaluating the risk of death in patients with COVID-19 compared to elevated fibrinogen (FIB) and D-dimer (DD) levels. Conclusion Observing blood cell morphology is an effective method for the detection of NETs, NNSR are important markers for revealing the mortality risk of patients with COVID-19.
Collapse
Affiliation(s)
- Qiong Wang
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yu Qin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jingyun Ma
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Kehao Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guiping Xia
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Ya Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Li Xie
- School of Internet of Things Engineering, Jiangnan University, Wuxi, China
| | - Richmond Godwin Afful
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qian Lan
- School of Internet of Things Engineering, Jiangnan University, Wuxi, China
| | - Xingyu Huo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Zou
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Hailin Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Nappi F. To Gain Insights into the Pathophysiological Mechanisms of the Thrombo-Inflammatory Process in the Atherosclerotic Plaque. Int J Mol Sci 2023; 25:47. [PMID: 38203218 PMCID: PMC10778759 DOI: 10.3390/ijms25010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Thromboinflammation, the interplay between thrombosis and inflammation, is a significant pathway that drives cardiovascular and autoimmune diseases, as well as COVID-19. SARS-CoV-2 causes inflammation and blood clotting issues. Innate immune cells have emerged as key modulators of this process. Neutrophils, the most predominant white blood cells in humans, are strategically positioned to promote thromboinflammation. By releasing decondensed chromatin structures called neutrophil extracellular traps (NETs), neutrophils can initiate an organised cell death pathway. These structures are adorned with histones, cytoplasmic and granular proteins, and have cytotoxic, immunogenic, and prothrombotic effects that can hasten disease progression. Protein arginine deiminase 4 (PAD4) catalyses the citrullination of histones and is involved in the release of extracellular DNA (NETosis). The neutrophil inflammasome is also required for this process. Understanding the link between the immunological function of neutrophils and the procoagulant and proinflammatory activities of monocytes and platelets is important in understanding thromboinflammation. This text discusses how vascular blockages occur in thromboinflammation due to the interaction between neutrophil extracellular traps and ultra-large VWF (von Willebrand Factor). The activity of PAD4 is important for understanding the processes that drive thromboinflammation by linking the immunological function of neutrophils with the procoagulant and proinflammatory activities of monocytes and platelets. This article reviews how vaso-occlusive events in thrombo-inflammation occur through the interaction of neutrophil extracellular traps with von Willebrand factor. It highlights the relevance of PAD4 in neutrophil inflammasome assembly and neutrophil extracellular traps in thrombo-inflammatory diseases such as atherosclerosis and cardiovascular disease. Interaction between platelets, VWF, NETs and inflammasomes is critical for the progression of thromboinflammation in several diseases and was recently shown to be active in COVID-19.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
8
|
Shafqat A, Omer MH, Albalkhi I, Alabdul Razzak G, Abdulkader H, Abdul Rab S, Sabbah BN, Alkattan K, Yaqinuddin A. Neutrophil extracellular traps and long COVID. Front Immunol 2023; 14:1254310. [PMID: 37828990 PMCID: PMC10565006 DOI: 10.3389/fimmu.2023.1254310] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Post-acute COVID-19 sequelae, commonly known as long COVID, encompasses a range of systemic symptoms experienced by a significant number of COVID-19 survivors. The underlying pathophysiology of long COVID has become a topic of intense research discussion. While chronic inflammation in long COVID has received considerable attention, the role of neutrophils, which are the most abundant of all immune cells and primary responders to inflammation, has been unfortunately overlooked, perhaps due to their short lifespan. In this review, we discuss the emerging role of neutrophil extracellular traps (NETs) in the persistent inflammatory response observed in long COVID patients. We present early evidence linking the persistence of NETs to pulmonary fibrosis, cardiovascular abnormalities, and neurological dysfunction in long COVID. Several uncertainties require investigation in future studies. These include the mechanisms by which SARS-CoV-2 brings about sustained neutrophil activation phenotypes after infection resolution; whether the heterogeneity of neutrophils seen in acute SARS-CoV-2 infection persists into the chronic phase; whether the presence of autoantibodies in long COVID can induce NETs and protect them from degradation; whether NETs exert differential, organ-specific effects; specifically which NET components contribute to organ-specific pathologies, such as pulmonary fibrosis; and whether senescent cells can drive NET formation through their pro-inflammatory secretome in long COVID. Answering these questions may pave the way for the development of clinically applicable strategies targeting NETs, providing relief for this emerging health crisis.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
9
|
Potere N, Garrad E, Kanthi Y, Di Nisio M, Kaplanski G, Bonaventura A, Connors JM, De Caterina R, Abbate A. NLRP3 inflammasome and interleukin-1 contributions to COVID-19-associated coagulopathy and immunothrombosis. Cardiovasc Res 2023; 119:2046-2060. [PMID: 37253117 PMCID: PMC10893977 DOI: 10.1093/cvr/cvad084] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 06/01/2023] Open
Abstract
Immunothrombosis-immune-mediated activation of coagulation-is protective against pathogens, but excessive immunothrombosis can result in pathological thrombosis and multiorgan damage, as in severe coronavirus disease 2019 (COVID-19). The NACHT-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome produces major proinflammatory cytokines of the interleukin (IL)-1 family, IL-1β and IL-18, and induces pyroptotic cell death. Activation of the NLRP3 inflammasome pathway also promotes immunothrombotic programs including release of neutrophil extracellular traps and tissue factor by leukocytes, and prothrombotic responses by platelets and the vascular endothelium. NLRP3 inflammasome activation occurs in patients with COVID-19 pneumonia. In preclinical models, NLRP3 inflammasome pathway blockade restrains COVID-19-like hyperinflammation and pathology. Anakinra, recombinant human IL-1 receptor antagonist, showed safety and efficacy and is approved for the treatment of hypoxaemic COVID-19 patients with early signs of hyperinflammation. The non-selective NLRP3 inhibitor colchicine reduced hospitalization and death in a subgroup of COVID-19 outpatients but is not approved for the treatment of COVID-19. Additional COVID-19 trials testing NLRP3 inflammasome pathway blockers are inconclusive or ongoing. We herein outline the contribution of immunothrombosis to COVID-19-associated coagulopathy, and review preclinical and clinical evidence suggesting an engagement of the NLRP3 inflammasome pathway in the immunothrombotic pathogenesis of COVID-19. We also summarize current efforts to target the NLRP3 inflammasome pathway in COVID-19, and discuss challenges, unmet gaps, and the therapeutic potential that inflammasome-targeted strategies may provide for inflammation-driven thrombotic disorders including COVID-19.
Collapse
Affiliation(s)
- Nicola Potere
- Department of Medicine and Ageing Sciences, ‘G. d’Annunzio’ University, Via Luigi Polacchi 11, Chieti 66100, Italy
| | - Evan Garrad
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- University of Missouri School of Medicine, Columbia, MO, USA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marcello Di Nisio
- Department of Medicine and Ageing Sciences, ‘G. d’Annunzio’ University, Via Luigi Polacchi 11, Chieti 66100, Italy
| | - Gilles Kaplanski
- Aix-Marseille Université, INSERM, INRAE, Marseille, France
- Division of Internal Medicine and Clinical Immunology, Assistance Publique - Hôpitaux de Marseille, Hôpital Conception, Aix-Marseille Université, Marseille, France
| | - Aldo Bonaventura
- Department of Internal Medicine, Medicina Generale 1, Medical Center, Ospedale di Circolo e Fondazione Macchi, ASST Sette Laghi, Varese, Italy
| | - Jean Marie Connors
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Raffaele De Caterina
- University Cardiology Division, Pisa University Hospital, Pisa, Italy
- Chair and Postgraduate School of Cardiology, University of Pisa, Pisa, Italy
- Fondazione Villa Serena per la Ricerca, Città Sant’Angelo, Pescara, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, 415 Lane Rd (MR5), PO Box 801394, Charlottesville, VA 22903, USA
| |
Collapse
|
10
|
Li Y, Hook JS, Ding Q, Xiao X, Chung SS, Mettlen M, Xu L, Moreland JG, Agathocleous M. Neutrophil metabolomics in severe COVID-19 reveal GAPDH as a suppressor of neutrophil extracellular trap formation. Nat Commun 2023; 14:2610. [PMID: 37147288 PMCID: PMC10162006 DOI: 10.1038/s41467-023-37567-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/20/2023] [Indexed: 05/07/2023] Open
Abstract
Severe COVID-19 is characterized by an increase in the number and changes in the function of innate immune cells including neutrophils. However, it is not known how the metabolome of immune cells changes in patients with COVID-19. To address these questions, we analyzed the metabolome of neutrophils from patients with severe or mild COVID-19 and healthy controls. We identified widespread dysregulation of neutrophil metabolism with disease progression including in amino acid, redox, and central carbon metabolism. Metabolic changes in neutrophils from patients with severe COVID-19 were consistent with reduced activity of the glycolytic enzyme GAPDH. Inhibition of GAPDH blocked glycolysis and promoted pentose phosphate pathway activity but blunted the neutrophil respiratory burst. Inhibition of GAPDH was sufficient to cause neutrophil extracellular trap (NET) formation which required neutrophil elastase activity. GAPDH inhibition increased neutrophil pH, and blocking this increase prevented cell death and NET formation. These findings indicate that neutrophils in severe COVID-19 have an aberrant metabolism which can contribute to their dysfunction. Our work also shows that NET formation, a pathogenic feature of many inflammatory diseases, is actively suppressed in neutrophils by a cell-intrinsic mechanism controlled by GAPDH.
Collapse
Affiliation(s)
- Yafeng Li
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jessica S Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Ding
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xue Xiao
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen S Chung
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marcel Mettlen
- Department of Cell Biology, Quantitative Light Microscopy Core, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jessica G Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michalis Agathocleous
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Laino ME, Ammirabile A, Motta F, De Santis M, Savevski V, Francone M, Chiti A, Mannelli L, Selmi C, Monti L. Advanced Imaging Supports the Mechanistic Role of Autoimmunity and Plaque Rupture in COVID-19 Heart Involvement. Clin Rev Allergy Immunol 2023; 64:75-89. [PMID: 35089505 PMCID: PMC8796606 DOI: 10.1007/s12016-022-08925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 01/26/2023]
Abstract
The cardiovascular system is frequently affected by coronavirus disease-19 (COVID-19), particularly in hospitalized cases, and these manifestations are associated with a worse prognosis. Most commonly, heart involvement is represented by myocarditis, myocardial infarction, and pulmonary embolism, while arrhythmias, heart valve damage, and pericarditis are less frequent. While the clinical suspicion is necessary for a prompt disease recognition, imaging allows the early detection of cardiovascular complications in patients with COVID-19. The combination of cardiothoracic approaches has been proposed for advanced imaging techniques, i.e., CT scan and MRI, for a simultaneous evaluation of cardiovascular structures, pulmonary arteries, and lung parenchyma. Several mechanisms have been proposed to explain the cardiovascular injury, and among these, it is established that the host immune system is responsible for the aberrant response characterizing severe COVID-19 and inducing organ-specific injury. We illustrate novel evidence to support the hypothesis that molecular mimicry may be the immunological mechanism for myocarditis in COVID-19. The present article provides a comprehensive review of the available evidence of the immune mechanisms of the COVID-19 cardiovascular injury and the imaging tools to be used in the diagnostic workup. As some of these techniques cannot be implemented for general screening of all cases, we critically discuss the need to maximize the sustainability and the specificity of the proposed tests while illustrating the findings of some paradigmatic cases.
Collapse
Affiliation(s)
- Maria Elena Laino
- grid.417728.f0000 0004 1756 8807Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Angela Ammirabile
- grid.417728.f0000 0004 1756 8807Department of Radiology and Nuclear Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan Italy ,grid.452490.eDepartment of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Francesca Motta
- grid.452490.eDepartment of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy ,grid.417728.f0000 0004 1756 8807Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan Italy
| | - Maria De Santis
- grid.452490.eDepartment of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy ,grid.417728.f0000 0004 1756 8807Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan Italy
| | - Victor Savevski
- grid.417728.f0000 0004 1756 8807Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marco Francone
- grid.417728.f0000 0004 1756 8807Department of Radiology and Nuclear Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan Italy ,grid.452490.eDepartment of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Arturo Chiti
- grid.417728.f0000 0004 1756 8807Department of Radiology and Nuclear Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan Italy ,grid.452490.eDepartment of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Carlo Selmi
- grid.452490.eDepartment of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy ,grid.417728.f0000 0004 1756 8807Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan Italy
| | - Lorenzo Monti
- grid.417728.f0000 0004 1756 8807Department of Radiology and Nuclear Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan Italy ,grid.452490.eDepartment of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
12
|
Peng F, Yi Q, Zhang Q, Deng J, Li C, Xu M, Wu C, Zhong Y, Wu S. Performance of D-dimer to lymphocyte ratio in predicting the mortality of COVID-19 patients. Front Cell Infect Microbiol 2022; 12:1053039. [PMID: 36590587 PMCID: PMC9797859 DOI: 10.3389/fcimb.2022.1053039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Nowadays, there is still no effective treatment developed for COVID-19, and early identification and supportive therapies are essential in reducing the morbidity and mortality of COVID-19. This is the first study to evaluate D-dimer to lymphocyte ratio (DLR) as a prognostic utility in patients with COVID-19. Methods We retrospectively analyzed 611 patients and separated them into groups of survivors and non-survivors. The area under the curve (AUC) of various predictors integrated into the prognosis of COVID-19 was compared using the receiver operating characteristic (ROC) curve. In order to ascertain the interaction between DLR and survival in COVID-19 patients, the Kaplan-Meier (KM) curve was chosen. Results Age (OR = 1.053; 95% CI, 1.022-1.086; P = 0.001), NLR (OR = 1.045; 95% CI, 1.001-1.091; P = 0.046), CRP (OR = 1.010; 95% CI, 1.005-1.016; P < 0.001), PT (OR = 1.184; 95% CI, 1.018-1.377; P = 0.029), and DLR (OR = 1.048; 95% CI, 1.018-1.078; P = 0.001) were the independent risk factors related with the mortality of COVID-19. DLR had the highest predictive value for COVID-19 mortality with the AUC of 0.924. Patients' survival was lower when compared to those with lower DLR (Log Rank P <0.001). Conclusion DLR might indicate a risk factor in the mortality of patients with COVID-19.
Collapse
Affiliation(s)
- Fei Peng
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiong Yi
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Quan Zhang
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiayi Deng
- Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Li
- Department of respiratory medicine, Hunan Provincial People’s Hospital, Changsha, China
| | - Min Xu
- Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chenfang Wu
- Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanjun Zhong
- Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China,*Correspondence: Yanjun Zhong, ; Shangjie Wu,
| | - Shangjie Wu
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China,*Correspondence: Yanjun Zhong, ; Shangjie Wu,
| |
Collapse
|
13
|
A Pleomorphic Puzzle: Heterogeneous Pulmonary Vascular Occlusions in Patients with COVID-19. Int J Mol Sci 2022; 23:ijms232315126. [PMID: 36499449 PMCID: PMC9739020 DOI: 10.3390/ijms232315126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Vascular occlusions in patients with coronavirus diseases 2019 (COVID-19) have been frequently reported in severe outcomes mainly due to a dysregulation of neutrophils mediating neutrophil extracellular trap (NET) formation. Lung specimens from patients with COVID-19 have previously shown a dynamic morphology, categorized into three types of pleomorphic occurrence based on histological findings in this study. These vascular occlusions in lung specimens were also detected using native endogenous fluorescence or NEF in a label-free method. The three types of vascular occlusions exhibit morphology of DNA rich neutrophil elastase (NE) poor (type I), NE rich DNA poor (type II), and DNA and NE rich (type III) cohort of eleven patients with six males and five females. Age and gender have been presented in this study as influencing variables linking the occurrence of several occlusions with pleomorphic contents within a patient specimen and amongst them. This study reports the categorization of pleomorphic occlusions in patients with COVID-19 and the detection of these occlusions in a label-free method utilizing NEF.
Collapse
|
14
|
Monsuez JJ. [Acute coronary syndromes and COVID-19: An informative imbalance]. ARCHIVES DES MALADIES DU COEUR ET DES VAISSEAUX. PRATIQUE 2022; 2022:16-18. [PMID: 36186510 PMCID: PMC9513325 DOI: 10.1016/j.amcp.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- J-J Monsuez
- Service de cardiologie, hôpitaux universitaires de Paris Seine-Saint-Denis, hôpital René-Muret, 52, avenue du Docteur-Schaeffner, 93270 Sevran, France
| |
Collapse
|
15
|
LaSalle TJ, Gonye ALK, Freeman SS, Kaplonek P, Gushterova I, Kays KR, Manakongtreecheep K, Tantivit J, Rojas-Lopez M, Russo BC, Sharma N, Thomas MF, Lavin-Parsons KM, Lilly BM, Mckaig BN, Charland NC, Khanna HK, Lodenstein CL, Margolin JD, Blaum EM, Lirofonis PB, Revach OY, Mehta A, Sonny A, Bhattacharyya RP, Parry BA, Goldberg MB, Alter G, Filbin MR, Villani AC, Hacohen N, Sade-Feldman M. Longitudinal characterization of circulating neutrophils uncovers phenotypes associated with severity in hospitalized COVID-19 patients. Cell Rep Med 2022; 3:100779. [PMID: 36208629 PMCID: PMC9510054 DOI: 10.1016/j.xcrm.2022.100779] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/02/2022] [Accepted: 09/21/2022] [Indexed: 01/21/2023]
Abstract
Mechanisms of neutrophil involvement in severe coronavirus disease 2019 (COVID-19) remain incompletely understood. Here, we collect longitudinal blood samples from 306 hospitalized COVID-19+ patients and 86 controls and perform bulk RNA sequencing of enriched neutrophils, plasma proteomics, and high-throughput antibody profiling to investigate relationships between neutrophil states and disease severity. We identify dynamic switches between six distinct neutrophil subtypes. At days 3 and 7 post-hospitalization, patients with severe disease display a granulocytic myeloid-derived suppressor cell-like gene expression signature, while patients with resolving disease show a neutrophil progenitor-like signature. Humoral responses are identified as potential drivers of neutrophil effector functions, with elevated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immunoglobulin G1 (IgG1)-to-IgA1 ratios in plasma of severe patients who survived. In vitro experiments confirm that while patient-derived IgG antibodies induce phagocytosis in healthy donor neutrophils, IgA antibodies predominantly induce neutrophil cell death. Overall, our study demonstrates a dysregulated myelopoietic response in severe COVID-19 and a potential role for IgA-dominant responses contributing to mortality.
Collapse
Affiliation(s)
- Thomas J LaSalle
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Health Sciences and Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA.
| | - Anna L K Gonye
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuel S Freeman
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Irena Gushterova
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyle R Kays
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kasidet Manakongtreecheep
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jessica Tantivit
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Maricarmen Rojas-Lopez
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Brian C Russo
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Nihaarika Sharma
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Molly F Thomas
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Brendan M Lilly
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Brenna N Mckaig
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nicole C Charland
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hargun K Khanna
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Carl L Lodenstein
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Justin D Margolin
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Emily M Blaum
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paola B Lirofonis
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Or-Yam Revach
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Arnav Mehta
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Abraham Sonny
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Roby P Bhattacharyya
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Blair Alden Parry
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marcia B Goldberg
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA; Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Michael R Filbin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nir Hacohen
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Moshe Sade-Feldman
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Ligi D, Giglio RV, Henry BM, Lippi G, Ciaccio M, Plebani M, Mannello F. What is the impact of circulating histones in COVID-19: a systematic review. Clin Chem Lab Med 2022; 60:1506-1517. [PMID: 35852070 DOI: 10.1515/cclm-2022-0574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/08/2022] [Indexed: 08/16/2024]
Abstract
The infectious respiratory condition COVID-19 manifests a clinical course ranging from mild/moderate up-to critical systemic dysfunction and death linked to thromboinflammation. During COVID-19 infection, neutrophil extracellular traps participating in cytokine storm and coagulation dysfunction have emerged as diagnostic/prognostic markers. The characterization of NET identified that mainly histones, have the potential to initiate and propagate inflammatory storm and thrombosis, leading to increased disease severity and decreased patient survival. Baseline assessment and serial monitoring of blood histone concentration may be conceivably useful in COVID-19. We performed a literature review to explore the association among increased circulating levels of histones, disease severity/mortality in COVID-19 patients, and comparison of histone values between COVID-19 and non-COVID-19 patients. We carried out an electronic search in Medline and Scopus, using the keywords "COVID-19" OR "SARS-CoV-2" AND "histone" OR "citrullinated histones" OR "hyperhistonemia", between 2019 and present time (i.e., June 07th, 2022), which allowed to select 17 studies, totaling 1,846 subjects. We found that substantially elevated histone values were consistently present in all COVID-19 patients who developed unfavorable clinical outcomes. These findings suggest that blood histone monitoring upon admission and throughout hospitalization may be useful for early identification of higher risk of unfavorable COVID-19 progression. Therapeutic decisions in patients with SARS-CoV-2 based on the use of histone cut-off values may be driven by drugs engaging histones, finally leading to the limitation of cytotoxic, inflammatory, and thrombotic effects of circulating histones in viral sepsis.
Collapse
Affiliation(s)
- Daniela Ligi
- Department of Biomolecular Sciences-DISB, Section of Biochemistry and Biotechnology, University of Urbino Carlo Bo, Urbino, Italy
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics - BiND, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Brandon M Henry
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Ohio, OH, USA
- IFCC Working Group on SARS-CoV-2 Variants, Milan, Italy
| | - Giuseppe Lippi
- Department of Neuroscience, Biomedicine and Movement, Section of Clinical Biochemistry, University Hospital of Verona, Verona, Italy
- IFCC Task Force on COVID-19, Verona, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics - BiND, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Mario Plebani
- IFCC Working Group on SARS-CoV-2 Variants, Milan, Italy
- Department of Laboratory Medicine, University Hospital of Padova, Padova, Italy
| | - Ferdinando Mannello
- Department of Biomolecular Sciences-DISB, Section of Biochemistry and Biotechnology, Unit of Clinical Biochemistry, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
17
|
Thromboembolic Disease and Cardiac Thrombotic Complication in COVID-19: A Systematic Review. Metabolites 2022; 12:metabo12100889. [PMID: 36295791 PMCID: PMC9611930 DOI: 10.3390/metabo12100889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus 2019 pandemic has affected many healthcare systems worldwide. While acute respiratory distress syndrome (ARDS) has been well-documented in COVID-19, there are several cardiovascular complications, such as myocardial infarction, ischaemic stroke, and pulmonary embolism, leading to disability and death. The link between COVID-19 and increasing thrombogenicity potentially occurs due to numerous different metabolic mechanisms, ranging from endothelial damage for direct virus infection, associated excessive formation of neutrophil extracellular traps (NETs), pathogenic activation of the renin-angiotensin-aldosterone system (RAAS), direct myocardial injury, and ischemia induced by respiratory failure, all of which have measurable biomarkers. A search was performed by interrogating three databases (MEDLINE; MEDLINE In-Process and Other Non-Indexed Citations, and EMBASE). Evidence from randomized controlled trials (RCT), prospective series, meta-analyses, and unmatched observational studies were evaluated for the processing of the algorithm and treatment of thromboembolic disease and cardiac thrombotic complications related to COVID-19 during SARS-CoV-2 infection. Studies out with the SARS-Cov-2 infection period and case reports were excluded. A total of 58 studies were included in this analysis. The role of the acute inflammatory response in the propagation of the systemic inflammatory sequelae of the disease plays a major part in determining thromboembolic disease and cardiac thrombotic complication in COVID-19. Some of the mechanisms of activation of these pathways, alongside the involved biomarkers noted in previous studies, are highlighted. Inflammatory response led to thromboembolic disease and cardiac thrombotic complications in COVID-19. NETs play a pivotal role in the pathogenesis of the inflammatory response. Despite moving into the endemic phase of the disease in most countries, thromboembolic complications in COVID-19 remain an entity that substantially impacts the health care system, with long-term effects that remain uncertain. Continuous monitoring and research are required.
Collapse
|
18
|
Zahid KR, Raza U, Tumbath S, Jiang L, Xu W, Huang X. Neutrophils: Musketeers against immunotherapy. Front Oncol 2022; 12:975981. [PMID: 36091114 PMCID: PMC9453237 DOI: 10.3389/fonc.2022.975981] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Neutrophils, the most copious leukocytes in human blood, play a critical role in tumorigenesis, cancer progression, and immune suppression. Recently, neutrophils have attracted the attention of researchers, immunologists, and oncologists because of their potential role in orchestrating immune evasion in human diseases including cancer, which has led to a hot debate redefining the contribution of neutrophils in tumor progression and immunity. To make this debate fruitful, this review seeks to provide a recent update about the contribution of neutrophils in immune suppression and tumor progression. Here, we first described the molecular pathways through which neutrophils aid in cancer progression and orchestrate immune suppression/evasion. Later, we summarized the underlying molecular mechanisms of neutrophil-mediated therapy resistance and highlighted various approaches through which neutrophil antagonism may heighten the efficacy of the immune checkpoint blockade therapy. Finally, we have highlighted several unsolved questions and hope that answering these questions will provide a new avenue toward immunotherapy revolution.
Collapse
Affiliation(s)
- Kashif Rafiq Zahid
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Umar Raza
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Soumya Tumbath
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lingxiang Jiang
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wenjuan Xu
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiumei Huang
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Xiumei Huang,
| |
Collapse
|
19
|
Han T, Tang H, Lin C, Shen Y, Yan D, Tang X, Guo D. Extracellular traps and the role in thrombosis. Front Cardiovasc Med 2022; 9:951670. [PMID: 36093130 PMCID: PMC9452724 DOI: 10.3389/fcvm.2022.951670] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombotic complications pose serious health risks worldwide. A significant change in our understanding of the pathophysiology of thrombosis has occurred since the discovery of extracellular traps (ETs) and their prothrombotic properties. As a result of immune cells decondensing chromatin into extracellular fibers, ETs promote thrombus formation by acting as a scaffold that activates platelets and coagulates them. The involvement of ETs in thrombosis has been reported in various thrombotic conditions including deep vein thrombosis (DVT), pulmonary emboli, acute myocardial infarction, aucte ischemic stroke, and abdominal aortic aneurysms. This review summarizes the existing evidence of ETs in human and animal model thrombi. The authors described studies showing the existence of ETs in venous or arterial thrombi. In addition, we studied potential novel therapeutic opportunities related to the resolution or prevention of thrombosis by targeting ETs.
Collapse
|
20
|
Elevated Myl9 reflects the Myl9-containing microthrombi in SARS-CoV-2-induced lung exudative vasculitis and predicts COVID-19 severity. Proc Natl Acad Sci U S A 2022; 119:e2203437119. [PMID: 35895716 PMCID: PMC9388124 DOI: 10.1073/pnas.2203437119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Elucidation of the pathology triggered by SARS-CoV-2 infection is essential to control the pandemic. We found that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) accumulates in the pulmonary vessels, causing exudative vasculitis accompanied by the emergence of noncanonical monocytes that specifically produce a platelet activating factor, thrombospondin-1, and the formation of myosin light chain 9 (Myl9)–containing microthrombi in the lungs of coronavirus disease 2019 (COVID-19) patients with fatal disease. More interestingly, we demonstrate that SARS-CoV-2–induced platelet activation causes an increase in the plasma Myl9 level, which is closely correlated with clinical severity. The measurement of plasma Myl9 with other markers allowed us to diagnose the severity of the disease more accurately, which is crucial for providing appropriate medical care for COVID-19 patients. The mortality of coronavirus disease 2019 (COVID-19) is strongly correlated with pulmonary vascular pathology accompanied by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection–triggered immune dysregulation and aberrant activation of platelets. We combined histological analyses using field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy analyses of the lungs from autopsy samples and single-cell RNA sequencing of peripheral blood mononuclear cells to investigate the pathogenesis of vasculitis and immunothrombosis in COVID-19. We found that SARS-CoV-2 accumulated in the pulmonary vessels, causing exudative vasculitis accompanied by the emergence of thrombospondin-1–expressing noncanonical monocytes and the formation of myosin light chain 9 (Myl9)–containing microthrombi in the lung of COVID-19 patients with fatal disease. The amount of plasma Myl9 in COVID-19 was correlated with the clinical severity, and measuring plasma Myl9 together with other markers allowed us to predict the severity of the disease more accurately. This study provides detailed insight into the pathogenesis of vasculitis and immunothrombosis, which may lead to optimal medical treatment for COVID-19.
Collapse
|
21
|
Neutrophils and Neutrophil Extracellular Traps in Cardiovascular Disease: An Overview and Potential Therapeutic Approaches. Biomedicines 2022; 10:biomedicines10081850. [PMID: 36009397 PMCID: PMC9405087 DOI: 10.3390/biomedicines10081850] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Recent advances in pharmacotherapy have markedly improved the prognosis of cardiovascular disease (CVD) but have not completely conquered it. Therapies targeting the NOD-like receptor family pyrin domain containing 3 inflammasome and its downstream cytokines have proven effective in the secondary prevention of cardiovascular events, suggesting that inflammation is a target for treating residual risk in CVD. Neutrophil-induced inflammation has long been recognized as important in the pathogenesis of CVD. Circadian rhythm-related and disease-specific microenvironment changes give rise to neutrophil diversity. Neutrophils are primed by various stimuli, such as chemokines, cytokines, and damage-related molecular patterns, and the activated neutrophils contribute to the inflammatory response in CVD through degranulation, phagocytosis, reactive oxygen species generation, and the release of neutrophil extracellular traps (NETs). In particular, NETs promote immunothrombosis through the interaction with vascular endothelial cells and platelets and are implicated in the development of various types of CVD, such as acute coronary syndrome, deep vein thrombosis, and heart failure. NETs are promising candidates for anti-inflammatory therapy in CVD, and their efficacy has already been demonstrated in various animal models of the disease; however, they have yet to be clinically applied in humans. This narrative review discusses the diversity and complexity of neutrophils in the trajectory of CVD, the therapeutic potential of targeting NETs, and the related clinical issues.
Collapse
|
22
|
Ventura-Santana E, Ninan JR, Snyder CM, Okeke EB. Neutrophil Extracellular Traps, Sepsis and COVID-19 - A Tripod Stand. Front Immunol 2022; 13:902206. [PMID: 35757734 PMCID: PMC9226304 DOI: 10.3389/fimmu.2022.902206] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current coronavirus disease 2019 (COVID-19) pandemic. Majority of COVID-19 patients have mild disease but about 20% of COVID-19 patients progress to severe disease. These patients end up in the intensive care unit (ICU) with clinical manifestations of acute respiratory distress syndrome (ARDS) and sepsis. The formation of neutrophil extracellular traps (NETs) has also been associated with severe COVID-19. Understanding of the immunopathology of COVID-19 is critical for the development of effective therapeutics. In this article, we discuss evidence indicating that severe COVID-19 has clinical presentations consistent with the definitions of viral sepsis. We highlight the role of neutrophils and NETs formation in the pathogenesis of severe COVID-19. Finally, we highlight the potential of therapies inhibiting NETs formation for the treatment of COVID-19.
Collapse
Affiliation(s)
- Esmeiry Ventura-Santana
- Department of Biology, State University of New York at Fredonia, Fredonia, NY, United States
| | - Joshua R Ninan
- Department of Biology, State University of New York at Fredonia, Fredonia, NY, United States
| | - Caitlin M Snyder
- Department of Biology, State University of New York at Fredonia, Fredonia, NY, United States
| | - Emeka B Okeke
- Department of Biology, State University of New York at Fredonia, Fredonia, NY, United States
| |
Collapse
|
23
|
McKenna E, Wubben R, Isaza-Correa JM, Melo AM, Mhaonaigh AU, Conlon N, O'Donnell JS, Ní Cheallaigh C, Hurley T, Stevenson NJ, Little MA, Molloy EJ. Neutrophils in COVID-19: Not Innocent Bystanders. Front Immunol 2022; 13:864387. [PMID: 35720378 PMCID: PMC9199383 DOI: 10.3389/fimmu.2022.864387] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/29/2022] [Indexed: 12/18/2022] Open
Abstract
Unusually for a viral infection, the immunological phenotype of severe COVID-19 is characterised by a depleted lymphocyte and elevated neutrophil count, with the neutrophil-to-lymphocyte ratio correlating with disease severity. Neutrophils are the most abundant immune cell in the bloodstream and comprise different subpopulations with pleiotropic actions that are vital for host immunity. Unique neutrophil subpopulations vary in their capacity to mount antimicrobial responses, including NETosis (the generation of neutrophil extracellular traps), degranulation and de novo production of cytokines and chemokines. These processes play a role in antiviral immunity, but may also contribute to the local and systemic tissue damage seen in acute SARS-CoV-2 infection. Neutrophils also contribute to complications of COVID-19 such as thrombosis, acute respiratory distress syndrome and multisystem inflammatory disease in children. In this Progress review, we discuss the anti-viral and pathological roles of neutrophils in SARS-CoV-2 infection, and potential therapeutic strategies for COVID-19 that target neutrophil-mediated inflammatory responses.
Collapse
Affiliation(s)
- Ellen McKenna
- Discipline of Paediatrics, Dublin Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland
| | - Richard Wubben
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Johana M Isaza-Correa
- Discipline of Paediatrics, Dublin Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland
| | - Ashanty M Melo
- Discipline of Paediatrics, Dublin Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland
| | - Aisling Ui Mhaonaigh
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
| | - Niall Conlon
- Department of Immunology, St James' Hospital, Trinity College Dublin, Dublin, Ireland
| | | | - Clíona Ní Cheallaigh
- Department of Clinical Medicine, Trinity Centre for Health Science, Trinity College Dublin, Dublin, Ireland.,Department of Infectious Diseases, St James's Hospital, Dublin, Ireland
| | - Tim Hurley
- Discipline of Paediatrics, Dublin Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland.,National Children's Research Centre, Children's Hospital Ireland (CHI) at Crumlin, Dublin, Ireland
| | - Nigel J Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland.,Viral Immunology Group, Royal College of Surgeons in Ireland - Medical College of Bahrain, Al Muharraq, Bahrain
| | - Mark A Little
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland.,Irish Centre for Vascular Biology, Dublin, Ireland
| | - Eleanor J Molloy
- Discipline of Paediatrics, Dublin Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland.,National Children's Research Centre, Children's Hospital Ireland (CHI) at Crumlin, Dublin, Ireland.,Neonatology, Children's Hospital Ireland (CHI) at Crumlin, Dublin, Ireland.,Paediatrics, Children's Hospital Ireland (CHI) at Tallaght, Tallaght University Hospital, Dublin, Ireland
| |
Collapse
|
24
|
Li D, Shao J, Cao B, Zhao R, Li H, Gao W, Chen P, Jin L, Cao L, Ji S, Dong G. The Significance of Neutrophil Extracellular Traps in Colorectal Cancer and Beyond: From Bench to Bedside. Front Oncol 2022; 12:848594. [PMID: 35747797 PMCID: PMC9209713 DOI: 10.3389/fonc.2022.848594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/09/2022] [Indexed: 12/30/2022] Open
Abstract
Neutrophil extracellular traps (NETs), products of neutrophil death when exposed to certain stimuli, were first proposed as a type of response to bacterial infection in infectious diseases. Since then, extensive studies have discovered its involvement in other non-infectious inflammatory diseases including thromboembolism, autoimmune diseases, and cancer. Colorectal cancer (CRC) is one of the most common malignancies in the world. NET formation is closely associated with tumorigenesis, progression, and metastasis in CRC. Therefore, the application of NETs in clinical practice as diagnostic biomarkers, therapeutic targets, and prognostic predictors has a promising prospect. In addition, therapeutics targeting NETs are significantly efficient in halting tumor progression in preclinical cancer models, which further indicates its potential clinical utility in cancer treatment. This review focuses on the stimuli of NETosis, its pro-tumorigenic activity, and prospective clinical utility primarily in but not limited to CRC.
Collapse
Affiliation(s)
- Dingchang Li
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | | | - Bo Cao
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Ruiyang Zhao
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Hanghang Li
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Wenxing Gao
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Peng Chen
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Lujia Jin
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Li Cao
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Shuaifei Ji
- Medical School of Chinese PLA, Beijing, China
- *Correspondence: Shuaifei Ji, ; Guanglong Dong,
| | - Guanglong Dong
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Shuaifei Ji, ; Guanglong Dong,
| |
Collapse
|
25
|
Zhang Y, Wang Q, Mackay CR, Ng LG, Kwok I. Neutrophil subsets and their differential roles in viral respiratory diseases. J Leukoc Biol 2022; 111:1159-1173. [PMID: 35040189 PMCID: PMC9015493 DOI: 10.1002/jlb.1mr1221-345r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
Neutrophils play significant roles in immune homeostasis and as neutralizers of microbial infections. Recent evidence further suggests heterogeneity of neutrophil developmental and activation states that exert specialized effector functions during inflammatory disease conditions. Neutrophils can play multiple roles during viral infections, secreting inflammatory mediators and cytokines that contribute significantly to host defense and pathogenicity. However, their roles in viral immunity are not well understood. In this review, we present an overview of neutrophil heterogeneity and its impact on the course and severity of viral respiratory infectious diseases. We focus on the evidence demonstrating the crucial roles neutrophils play in the immune response toward respiratory infections, using influenza as a model. We further extend the understanding of neutrophil function with the studies pertaining to COVID-19 disease and its neutrophil-associated pathologies. Finally, we discuss the relevance of these results for future therapeutic options through targeting and regulating neutrophil-specific responses.
Collapse
Affiliation(s)
- Yuning Zhang
- Department of ResearchNational Skin CentreSingaporeSingapore
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Charles R Mackay
- School of Pharmaceutical Sciences, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanChina
- Department of Microbiology, Infection and Immunity ProgramBiomedicine Discovery Institute, Monash UniversityMelbourneAustralia
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN)A*STAR (Agency for Science, Technology and Research)BiopolisSingapore
- State Key Laboratory of Experimental HematologyInstitute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Department of Microbiology and ImmunologyImmunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of SingaporeSingaporeSingapore
- National Cancer Centre SingaporeSingaporeSingapore
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN)A*STAR (Agency for Science, Technology and Research)BiopolisSingapore
| |
Collapse
|
26
|
Liana P, Liberty IA, Murti K, Hafy Z, Salim EM, Zulkarnain M, Umar TP. A systematic review on neutrophil extracellular traps and its prognostication role in COVID-19 patients. Immunol Res 2022; 70:449-460. [PMID: 35604493 PMCID: PMC9125547 DOI: 10.1007/s12026-022-09293-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
Neutrophil extracellular traps (NETs) are extracellular webs composed of neutrophil granular and nuclear elements. Because of the potentially dangerous amplification circuit between inflammation and tissue damage, NETs are becoming one of the investigated components in the current Coronavirus Disease 2019 (COVID-19) pandemic. The purpose of this systematic review is to summarize studies on the role of NETs in determining the prognosis of COVID-19 patients. The study used six databases: PubMed, Science Direct, EBSCOHost, Europe PMC, ProQuest, and Scopus. This literature search was implemented until October 31, 2021. The search terms were determined specifically for each databases, generally included the Neutrophil Extracellular Traps, COVID-19, and prognosis. The Newcastle Ottawa Scale (NOS) was then used to assess the risk of bias. Ten studies with a total of 810 participants were chosen based on the attainment of the prerequisite. Two were of high quality, seven were of moderate quality, and the rest were of low quality. The majority of studies compared COVID-19 to healthy control. Thrombosis was observed in three studies, while four studies recorded the need for mechanical ventilation. In COVID-19 patients, the early NETs concentration or the evolving NETs degradations can predict patient mortality. Based on their interactions with inflammatory and organ dysfunction markers, it is concluded that NETs play a significant role in navigating the severity of COVID-19 patients and thus impacting their prognosis.
Collapse
Affiliation(s)
- Phey Liana
- Department of Clinical Pathology, Faculty of Medicine, Universitas Sriwijaya/Dr Mohammad Hoesin General Hospital, Palembang, Indonesia
- Biomedicine Doctoral Program, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Iche Andriyani Liberty
- Department of Public Health and Community Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Krisna Murti
- Department of Anatomic Pathology, Faculty of Medicine, Universitas Sriwijaya, Dr. Moh. Ali Street RSMH complex, Palembang, South Sumatera Indonesia
| | - Zen Hafy
- Biomedical Department, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Eddy Mart Salim
- Division of Allergy and Immunology, Department of Internal Medicine, Faculty of Medicine, Universitas Sriwijaya/Dr, Mohammad Hoesin General Hospital, Palembang, Indonesia
| | - Mohammad Zulkarnain
- Department of Public Health and Community Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Tungki Pratama Umar
- Medical Profession Program, Faculty of Medicine, Sriwijaya University, Palembang, Indonesia
| |
Collapse
|
27
|
Gu SX, Dayal S. Redox Mechanisms of Platelet Activation in Aging. Antioxidants (Basel) 2022; 11:995. [PMID: 35624860 PMCID: PMC9137594 DOI: 10.3390/antiox11050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is intrinsically linked with physiologic decline and is a major risk factor for a broad range of diseases. The deleterious effects of advancing age on the vascular system are evidenced by the high incidence and prevalence of cardiovascular disease in the elderly. Reactive oxygen species are critical mediators of normal vascular physiology and have been shown to gradually increase in the vasculature with age. There is a growing appreciation for the complexity of oxidant and antioxidant systems at the cellular and molecular levels, and accumulating evidence indicates a causal association between oxidative stress and age-related vascular disease. Herein, we review the current understanding of mechanistic links between oxidative stress and thrombotic vascular disease and the changes that occur with aging. While several vascular cells are key contributors, we focus on oxidative changes that occur in platelets and their mediation in disease progression. Additionally, we discuss the impact of comorbid conditions (i.e., diabetes, atherosclerosis, obesity, cancer, etc.) that have been associated with platelet redox dysregulation and vascular disease pathogenesis. As we continue to unravel the fundamental redox mechanisms of the vascular system, we will be able to develop more targeted therapeutic strategies for the prevention and management of age-associated vascular disease.
Collapse
Affiliation(s)
- Sean X. Gu
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06511, USA;
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa City VA Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
28
|
Welty FK, Rajai N, Amangurbanova M. Comprehensive Review of Cardiovascular Complications of Coronavirus Disease 2019 and Beneficial Treatments. Cardiol Rev 2022; 30:145-157. [PMID: 35384908 PMCID: PMC8983616 DOI: 10.1097/crd.0000000000000422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 and was first reported in December 2019 in Wuhan, China. Since then, it caused a global pandemic with 212,324,054 confirmed cases and 4,440,840 deaths worldwide as of August 22, 2021. The disease spectrum of COVID-19 ranges from asymptomatic subclinical infection to clinical manifestations predominantly affecting the respiratory system. However, it is now evident that COVID-19 is a multiorgan disease with a broad spectrum of manifestations leading to multiple organ injuries including the cardiovascular system. We review studies that have shown that the relationship between cardiovascular diseases and COVID-19 is indeed bidirectional, implicating that preexisting cardiovascular comorbidities increase the morbidity and mortality of COVID-19, and newly emerging cardiac injuries occur in the settings of acute COVID-19 in patients with no preexisting cardiovascular disease. We present the most up-to-date literature summary to explore the incidence of new-onset cardiac complications of coronavirus and their role in predicting the severity of COVID-19. We review the association of elevated troponin with the severity of COVID-19 disease, which includes mild compared to severe disease, in nonintensive care unit compared to intensive care unit patients and in those discharged from the hospital compared to those who die. The role of serum troponin levels in predicting prognosis are compared in survivors and non-survivors. The association between COVID-19 disease and myocarditis, heart failure and coagulopathy are reviewed. Finally, an update on beneficial treatments is discussed.
Collapse
Affiliation(s)
- Francine K. Welty
- From the Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Nazanin Rajai
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maral Amangurbanova
- From the Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
29
|
Insights into the Role of Neutrophils and Neutrophil Extracellular Traps in Causing Cardiovascular Complications in Patients with COVID-19: A Systematic Review. J Clin Med 2022; 11:jcm11092460. [PMID: 35566589 PMCID: PMC9104617 DOI: 10.3390/jcm11092460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023] Open
Abstract
Background: The coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 virus has resulted in significant mortality and burdening of healthcare resources. While initially noted as a pulmonary pathology, subsequent studies later identified cardiovascular involvement with high mortalities reported in specific cohorts of patients. While cardiovascular comorbidities were identified early on, the exact manifestation and etiopathology of the infection remained elusive. This systematic review aims to investigate the role of inflammatory pathways, highlighting several culprits including neutrophil extracellular traps (NETs) which have since been extensively investigated. Method: A search was conducted using three databases (MEDLINE; MEDLINE In-Process & Other Non-Indexed Citations and EMBASE). Data from randomized controlled trials (RCT), prospective series, meta-analyses, and unmatched observational studies were considered for the processing of the algorithm and treatment of inflammatory response during SARS-CoV-2 infection. Studies without the SARS-CoV-2 Infection period and case reports were excluded. Results: A total of 47 studies were included in this study. The role of the acute inflammatory response in the propagation of the systemic inflammatory sequelae of the disease plays a major part in determining outcomes. Some of the mechanisms of activation of these pathways have been highlighted in previous studies and are highlighted. Conclusion: NETs play a pivotal role in the pathogenesis of the inflammatory response. Despite moving into the endemic phase of the disease in most countries, COVID-19 remains an entity that has not been fully understood with long-term effects remaining uncertain and requiring ongoing monitoring and research.
Collapse
|
30
|
Madani M, Goldstein D, Stefanescu R, Woodman SE, Rojas-Hernandez CM. Characterization of coagulopathy and outcomes in cancer patients with severe COVID -19 illness: Longitudinal changes in hospitalized cancer patients. Cancer Med 2022; 11:3771-3785. [PMID: 35470980 PMCID: PMC9110904 DOI: 10.1002/cam4.4753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
There is a lack of data focused on the specific coagulopathic derangements in COVID‐19 versus non‐COVID‐19 acutely ill cancer patients. Our objective was to characterize features of coagulopathy in cancer patients with active COVID‐19 illness who required hospitalization at MD Anderson in the Texas Medical Center and to correlate those features with thrombotic complications, critical illness, and mortality within the first 30 days after hospital admission for COVID‐19 illness. COVID‐19 and non‐COVID‐19 hospitalized cancer patients, with at least five consecutive measures of PT, PTT, d‐dimer, and CBC during the same period, were matched 1:1 to perform a retrospective analysis. We reviewed complete blood cell counts with differential, PT, PTT, fibrinogen, D‐Dimer, serum ferritin, IL‐6, CRP, and peripheral blood smears. Clinical outcomes were thrombosis, mechanical ventilation, critical illness, and death. Compared with matched hospitalized cancer patients without COVID‐19, we found elevated neutrophil and lower lymphocyte counts in those with critical illness ( p = 0.00) or death ( p = 0.00); only neutrophils correlated with thrombosis. COVID‐19 cancer patients with a platelet count decline during the hospital stay had more frequent critical illness ( p = 0.00) and fatal outcomes ( p = 0.00). Of the inflammatory markers, interleukin‐6 showed consistently higher levels in the COVID‐19 patients with poor outcomes. The findings of unique platelet changes and coagulopathy during severe COVID‐19 illness in the cancer population are of interest to explore disease mechanisms and future risk stratification strategies to help with the management of cancer patients with COVID‐19.
Collapse
Affiliation(s)
- Mahsa Madani
- The University of Texas, McGovern Medical School of Medicine, Houston, Texas, USA
| | - Drew Goldstein
- Syntropy Technologies LLC, Cambridge, Massachusetts, USA
| | | | - Scott E Woodman
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
31
|
López-Cortés A, Guerrero S, Ortiz-Prado E, Yumiceba V, Vera-Guapi A, León Cáceres Á, Simbaña-Rivera K, Gómez-Jaramillo AM, Echeverría-Garcés G, García-Cárdenas JM, Guevara-Ramírez P, Cabrera-Andrade A, Puig San Andrés L, Cevallos-Robalino D, Bautista J, Armendáriz-Castillo I, Pérez-Villa A, Abad-Sojos A, Ramos-Medina MJ, León-Sosa A, Abarca E, Pérez-Meza ÁA, Nieto-Jaramillo K, Jácome AV, Morillo A, Arias-Erazo F, Fuenmayor-González L, Quiñones LA, Kyriakidis NC. Pulmonary Inflammatory Response in Lethal COVID-19 Reveals Potential Therapeutic Targets and Drugs in Phases III/IV Clinical Trials. Front Pharmacol 2022; 13:833174. [PMID: 35422702 PMCID: PMC9002106 DOI: 10.3389/fphar.2022.833174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/07/2022] [Indexed: 12/26/2022] Open
Abstract
Background: It is imperative to identify drugs that allow treating symptoms of severe COVID-19. Respiratory failure is the main cause of death in severe COVID-19 patients, and the host inflammatory response at the lungs remains poorly understood. Methods: Therefore, we retrieved data from post-mortem lungs from COVID-19 patients and performed in-depth in silico analyses of single-nucleus RNA sequencing data, inflammatory protein interactome network, and shortest pathways to physiological phenotypes to reveal potential therapeutic targets and drugs in advanced-stage COVID-19 clinical trials. Results: Herein, we analyzed transcriptomics data of 719 inflammatory response genes across 19 cell types (116,313 nuclei) from lung autopsies. The functional enrichment analysis of the 233 significantly expressed genes showed that the most relevant biological annotations were inflammatory response, innate immune response, cytokine production, interferon production, macrophage activation, blood coagulation, NLRP3 inflammasome complex, and the TLR, JAK-STAT, NF-κB, TNF, oncostatin M signaling pathways. Subsequently, we identified 34 essential inflammatory proteins with both high-confidence protein interactions and shortest pathways to inflammation, cell death, glycolysis, and angiogenesis. Conclusion: We propose three small molecules (baricitinib, eritoran, and montelukast) that can be considered for treating severe COVID-19 symptoms after being thoroughly evaluated in COVID-19 clinical trials.
Collapse
Affiliation(s)
- Andrés López-Cortés
- Programa de Investigación en Salud Global, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito, Ecuador.,Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Santiago Guerrero
- Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Esteban Ortiz-Prado
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Verónica Yumiceba
- Institut für Humangenetik Lübeck, Universität zu Lübeck, Lübeck, Germany
| | - Antonella Vera-Guapi
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Ángela León Cáceres
- Heidelberg Institute of Global Health, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Katherine Simbaña-Rivera
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador.,Latin American Network for Cancer Research (LAN-CANCER), Lima, Peru
| | - Ana María Gómez-Jaramillo
- Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Gabriela Echeverría-Garcés
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Jennyfer M García-Cárdenas
- Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Patricia Guevara-Ramírez
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | | | | | | | | | - Isaac Armendáriz-Castillo
- Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain.,Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Andy Pérez-Villa
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | | | | | | | | | - Álvaro A Pérez-Meza
- Biotechnology Engineering Career, Faculty of Life Sciences, Universidad Regional Amazónica Ikiam, Tena, Ecuador
| | | | - Andrea V Jácome
- Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | | | | | - Luis Abel Quiñones
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain.,Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nikolaos C Kyriakidis
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
32
|
Desilles JP, Solo Nomenjanahary M, Consoli A, Ollivier V, Faille D, Bourrienne MC, Hamdani M, Dupont S, Di Meglio L, Escalard S, Maier B, Blanc R, Piotin M, Lapergue B, Ajzenberg N, Vasse M, Mazighi M, Ho-Tin-Noé B, Désilles JP, Mazighi M, Piotin M, Blanc R, Redjem H, Smajda S, Seners P, Escalard S, Delvoye F, Maier B, Hebert S, Ben Maacha M, Hamdani M, Sabben C, Obadia M, Deschildre C, Lapergue B, Consoli A, Rodesch G, Maria F, Coskun O, Lopez D, Bourcier R, Detraz L, Desal H, Roy M, Clavier D, Marnat G, Gariel F, Lucas L, Sibon I, Eugene F, Vannier S, Ferre JC, LeBras A, Raoult H, Paya C, Gauvrit JY, Richard S, Gory B, Barbier C, Vivien D, Touze E, Gauberti M, Blaizot G, Ifergan H, Herbreteau D, Bibi R, Janot K, Charron V, Boulouis G. Impact of COVID-19 on thrombus composition and response to thrombolysis: Insights from a monocentric cohort population of COVID-19 patients with acute ischemic stroke. J Thromb Haemost 2022; 20:919-928. [PMID: 35032088 PMCID: PMC9906142 DOI: 10.1111/jth.15646] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Resistance to fibrinolysis, levels of procoagulant/antifibrinolytic neutrophil extracellular traps (NETs), and the severity of acute ischemic stroke (AIS) are increased by COVID-19. Whether NETs are components of AIS thrombi from COVID-19 patients and whether COVID-19 impacts the susceptibility of these thrombi to thrombolytic treatments remain unknown, however. OBJECTIVES We aimed to characterize AIS thrombi from COVID-19 patients by immunohistology and to compare their response to thrombolysis to that of AIS thrombi from non-COVID-19 patients. PATIENTS/METHODS For this monocentric cohort study, 14 thrombi from COVID-19 AIS patients and 16 thrombi from non-COVID-19 patients, all recovered by endovascular therapy, were analyzed by immunohistology or subjected to ex vivo thrombolysis by tissue-type plasminogen (tPA)/plasminogen. RESULTS COVID-19 AIS thrombi were rich in neutrophils and contained NETs, but not spike protein. Thrombolysis assays revealed a mean resistance profile to tPA/plasminogen of COVID-19 AIS thrombi similar to that of non-COVID-19 AIS thrombi. The addition of DNase 1 successfully improved thrombolysis by potentiating fibrinolysis irrespective of COVID-19 status. Levels of neutrophil, NETs, and platelet markers in lysis supernatants were comparable between AIS thrombi from non-COVID-19 and COVID-19 patients. CONCLUSIONS These results show that COVID-19 does not impact NETs content or worsen fibrinolysis resistance of AIS thrombi, a therapeutic hurdle that could be overcome by DNase 1 even in the context of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jean-Philippe Desilles
- Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France; Interventional Neuroradiology Department, Biological Resource Center, Rothschild Foundation Hospital, Paris, France
| | | | - Arturo Consoli
- Department of Stroke Centre and Diagnostic and Interventional Neuroradiology, University of Versailles and Saint Quentin en Yvelines, Foch Hospital, Suresnes, France
| | - Véronique Ollivier
- Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
| | - Dorothée Faille
- Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
| | | | - Mylène Hamdani
- Interventional Neuroradiology Department, Biological Resource Center, Rothschild Foundation Hospital, Paris, France
| | - Sébastien Dupont
- Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
| | - Lucas Di Meglio
- Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
| | - Simon Escalard
- Interventional Neuroradiology Department, Biological Resource Center, Rothschild Foundation Hospital, Paris, France
| | - Benjamin Maier
- Interventional Neuroradiology Department, Biological Resource Center, Rothschild Foundation Hospital, Paris, France
| | - Raphael Blanc
- Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France; Interventional Neuroradiology Department, Biological Resource Center, Rothschild Foundation Hospital, Paris, France
| | - Michel Piotin
- Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France; Interventional Neuroradiology Department, Biological Resource Center, Rothschild Foundation Hospital, Paris, France
| | - Bertrand Lapergue
- Department of Stroke Centre and Diagnostic and Interventional Neuroradiology, University of Versailles and Saint Quentin en Yvelines, Foch Hospital, Suresnes, France
| | - Nadine Ajzenberg
- Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
| | - Marc Vasse
- Biology Department, UMR-S 1176, Foch Hospital, Suresnes, France
| | - Mikael Mazighi
- Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France; Interventional Neuroradiology Department, Biological Resource Center, Rothschild Foundation Hospital, Paris, France
| | - Benoît Ho-Tin-Noé
- Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shafqat A, Shafqat S, Salameh SA, Kashir J, Alkattan K, Yaqinuddin A. Mechanistic Insights Into the Immune Pathophysiology of COVID-19; An In-Depth Review. Front Immunol 2022; 13:835104. [PMID: 35401519 PMCID: PMC8989408 DOI: 10.3389/fimmu.2022.835104] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which causes coronavirus-19 (COVID-19), has caused significant morbidity and mortality globally. In addition to the respiratory manifestations seen in severe cases, multi-organ pathologies also occur, making management a much-debated issue. In addition, the emergence of new variants can potentially render vaccines with a relatively limited utility. Many investigators have attempted to elucidate the precise pathophysiological mechanisms causing COVID-19 respiratory and systemic disease. Spillover of lung-derived cytokines causing a cytokine storm is considered the cause of systemic disease. However, recent studies have provided contradictory evidence, whereby the extent of cytokine storm is insufficient to cause severe illness. These issues are highly relevant, as management approaches considering COVID-19 a classic form of acute respiratory distress syndrome with a cytokine storm could translate to unfounded clinical decisions, detrimental to patient trajectory. Additionally, the precise immune cell signatures that characterize disease of varying severity remain contentious. We provide an up-to-date review on the immune dysregulation caused by COVID-19 and highlight pertinent discussions in the scientific community. The response from the scientific community has been unprecedented regarding the development of highly effective vaccines and cutting-edge research on novel therapies. We hope that this review furthers the conversations held by scientists and informs the aims of future research projects, which will potentially further our understanding of COVID-19 and its immune pathogenesis.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | | | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Center of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
34
|
Ligi D, Maniscalco R, Plebani M, Lippi G, Mannello F. Do Circulating Histones Represent the Missing Link among COVID-19 Infection and Multiorgan Injuries, Microvascular Coagulopathy and Systemic Hyperinflammation? J Clin Med 2022; 11:jcm11071800. [PMID: 35407410 PMCID: PMC8999947 DOI: 10.3390/jcm11071800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
Several studies shed light on the interplay among inflammation, thrombosis, multi-organ failures and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Increasing levels of both free and/or circulating histones have been associated to coronavirus disease 2019 (COVID-19), enhancing the risk of heart attack and stroke with coagulopathy and systemic hyperinflammation. In this view, by considering both the biological and clinical rationale, circulating histones may be relevant as diagnostic biomarkers for stratifying COVID-19 patients at higher risk for viral sepsis, and as predictive laboratory medicine tool for targeted therapies.
Collapse
Affiliation(s)
- Daniela Ligi
- Unit of Clinical Biochemistry, Department of Biomolecular Sciences-DISB, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Rosanna Maniscalco
- Unit of Clinical Biochemistry, Department of Biomolecular Sciences-DISB, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Mario Plebani
- Department of Medicine-DIMED, University of Padua, 35128 Padua, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University Hospital of Verona, 37134 Verona, Italy
| | - Ferdinando Mannello
- Unit of Clinical Biochemistry, Department of Biomolecular Sciences-DISB, University of Urbino Carlo Bo, 61029 Urbino, Italy
| |
Collapse
|
35
|
Association between COVID-19 Diagnosis and Coronary Artery Thrombosis: A Narrative Review. Biomedicines 2022; 10:biomedicines10030702. [PMID: 35327504 PMCID: PMC8945192 DOI: 10.3390/biomedicines10030702] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 is characterized by its severe respiratory effects. Data early on indicated an increased risk of mortality in patients with cardiovascular comorbidities. Early reports highlighted the multisystem inflammatory syndrome, cytokine storm, and thromboembolic events as part of the disease processes. The aim of this review is to assess the association between COVID-19 and its thrombotic complications, specifically related to the cardiovascular system. The role of neutrophil extracellular traps (NETs) is explored in the pathogenesis of the disease. The structure and anatomy of the virus are pivotal to its virulence in comparison to other α and β Coronaviridae (HCoV-229E, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1). In particular, the host interaction and response may explain the variability of severity in patients. Angio tensin-converting enzyme 2 (ACE2) activation may be implicated in the cardiovascular and throm bogenic potential of the disease. The virus may also have direct effects on the endothelial lining affecting hemostasis and resulting in thrombosis through several mechanisms. Dipyridamole may have a therapeutic benefit in NET suppression. Therapeutic avenues should be concentrated on the different pathophysiological steps involving the virus and the host.
Collapse
|
36
|
Wang Y, Kang L, Chien CW, Xu J, You P, Xing S, Tung TH. Comparison of the Characteristics, Management, and Outcomes of STEMI Patients Presenting With vs. Those of Patients Presenting Without COVID-19 Infection: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2022; 9:831143. [PMID: 35360030 PMCID: PMC8964144 DOI: 10.3389/fcvm.2022.831143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/07/2022] [Indexed: 12/30/2022] Open
Abstract
Objectives This study aimed to investigate the differences in the characteristics, management, and clinical outcomes of patients with and that of those without coronavirus disease 2019 (COVID-19) infection who had ST-segment elevation myocardial infarction (STEMI). Methods Databases including Web of Science, PubMed, Cochrane Library, and Embase were searched up to July 2021. Observational studies that reported on the characteristics, management, or clinical outcomes and those published as full-text articles were included. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of all included studies. Results A total of 27,742 patients from 13 studies were included in this meta-analysis. Significant delay in symptom onset to first medical contact (SO-to-FMC) time (mean difference = 23.42 min; 95% CI: 5.85–40.99 min; p = 0.009) and door-to-balloon (D2B) time (mean difference = 12.27 min; 95% CI: 5.77–18.78 min; p = 0.0002) was observed in COVID-19 patients. Compared to COVID-19 negative patients, those who are positive patients had significantly higher levels of C-reactive protein, D-dimer, and thrombus grade (p < 0.05) and showed more frequent use of thrombus aspiration and glycoprotein IIbIIIa (Gp2b3a) inhibitor (p < 0.05). COVID-19 positive patients also had higher rates of in-hospital mortality (OR = 5.98, 95% CI: 4.78–7.48, p < 0.0001), cardiogenic shock (OR = 2.75, 95% CI: 2.02–3.76, p < 0.0001), and stent thrombosis (OR = 5.65, 95% CI: 2.41–13.23, p < 0.0001). They were also more likely to be admitted to the intensive care unit (ICU) (OR = 4.26, 95% CI: 2.51–7.22, p < 0.0001) and had a longer length of stay (mean difference = 4.63 days; 95% CI: 2.56–6.69 days; p < 0.0001). Conclusions This study revealed that COVID-19 infection had an impact on the time of initial medical intervention for patients with STEMI after symptom onset and showed that COVID-19 patients with STEMI were more likely to have thrombosis and had poorer outcomes.
Collapse
Affiliation(s)
- Yanjiao Wang
- Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Shenzhen, China
- Institute for Hospital Management, Tsing Hua University, Shenzhen, China
| | - Linlin Kang
- Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Shenzhen, China
- Institute for Hospital Management, Tsing Hua University, Shenzhen, China
| | - Ching-Wen Chien
- Institute for Hospital Management, Tsing Hua University, Shenzhen, China
| | - Jiawen Xu
- Institute for Hospital Management, Tsing Hua University, Shenzhen, China
| | - Peng You
- Institute for Hospital Management, Tsing Hua University, Shenzhen, China
| | - Sizhong Xing
- Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Shenzhen, China
- Sizhong Xing
| | - Tao-Hsin Tung
- Evidence-Based Medicine Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Tao-Hsin Tung
| |
Collapse
|
37
|
Alkattan W, Yaqinuddin A, Shafqat A, Kashir J. NET-Mediated Pathogenesis of COVID-19: The Role of NETs in Hepatic Manifestations. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2022. [DOI: 10.1055/s-0041-1741418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractSome coronavirus disease-2019 (COVID-19) patients exhibit multi-organ failure, which often includes the liver. Indeed, liver disease appears to be an emerging feature of COVID-19 infections. However, the exact mechanism behind this remains unknown. Neutrophil extracellular traps (NETs) have increasingly been attributed as major contributors to various liver pathologies, including sepsis, ischemic-reperfusion (I/R) injury, and portal hypertension in the setting of chronic liver disease. Although vital in normal immunity, excessive NET formation can drive inflammation, particularly of the endothelium. Collectively, we propose that NETs observed to be elevated in severe COVID-19 infection play principal roles in liver injury in addition to acute lung injury. Herein, we discuss the potential mechanisms underlying COVID-induced liver injury including cytopathic effects from direct liver infection, systemic inflammatory response syndrome, and hypoxic injury, encompassing I/R injury and coagulopathy. Further research is required to further elucidate the role of NETs in COVID. This holds potential therapeutic significance, as inhibition of NETosis could alleviate the symptoms of acute respiratory distress syndrome and liver injury, as well as other organs.
Collapse
Affiliation(s)
- Wael Alkattan
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
38
|
Sakai E, Fujinami T, Yamaguchi A, Sato K, Taomoto Y, Adachi T, Shibui T, Hata A. Transcatheter aspiration of a thrombus and percutaneous transluminal coronary recanalization for ST-segment elevation myocardial infarction related to coronavirus disease 2019. J Cardiol Cases 2022; 25:373-376. [PMID: 35035630 PMCID: PMC8752290 DOI: 10.1016/j.jccase.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 12/04/2022] Open
Abstract
Although the novel coronavirus disease 2019 (COVID-19) causes severe viral pneumonia, it has also been reported, in some cases, to co-exist with ST-segment elevation myocardial infarction. Here, we describe the case of a patient with COVID-19 and coronary risk factors for hypertension, including smoking and obesity, who developed acute myocardial infarction due to primary coronary artery thrombosis and was treated with transcatheter thrombus aspiration and percutaneous transluminal coronary recanalization (PTCR) with intracoronary urokinase administration. A large volume of thrombus was collected and thrombolysis in myocardial infarction flow grade 3 was obtained after the procedures. PTCR with or without transcatheter thrombus aspiration may be a useful treatment option. <Learning objective: ST-segment elevation myocardial infarction is a critical complication in patients with novel coronavirus disease 2019. Patients need emergent recanalization to prevent development of fatal cardiac events.>
Collapse
Affiliation(s)
- Eiko Sakai
- Department of Cardiology, Tokyo Metropolitan Health and Hospitals Corporation Toshima Hospital, Tokyo, Japan.,Department of Cardiology, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Tatsuya Fujinami
- Department of Cardiology, Tokyo Metropolitan Health and Hospitals Corporation Toshima Hospital, Tokyo, Japan.,Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Aya Yamaguchi
- Department of Cardiology, Tokyo Metropolitan Health and Hospitals Corporation Toshima Hospital, Tokyo, Japan
| | - Kuniyoshi Sato
- Department of Cardiology, Tokyo Metropolitan Health and Hospitals Corporation Toshima Hospital, Tokyo, Japan
| | - Yuta Taomoto
- Department of Cardiology, Tokyo Metropolitan Health and Hospitals Corporation Toshima Hospital, Tokyo, Japan
| | - Takuya Adachi
- Department of Infectious Diseases, Tokyo Metropolitan Health and Hospitals Corporation Toshima Hospital, Tokyo, Japan
| | - Takashi Shibui
- Department of Cardiology, Tokyo Metropolitan Health and Hospitals Corporation Toshima Hospital, Tokyo, Japan
| | - Akihiro Hata
- Department of Cardiology, Tokyo Metropolitan Health and Hospitals Corporation Toshima Hospital, Tokyo, Japan
| |
Collapse
|
39
|
Johnson JE, McGuone D, Xu ML, Jane-Wit D, Mitchell RN, Libby P, Pober JS. Coronavirus Disease 2019 (COVID-19) Coronary Vascular Thrombosis: Correlation with Neutrophil but Not Endothelial Activation. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:112-120. [PMID: 34599881 PMCID: PMC8479934 DOI: 10.1016/j.ajpath.2021.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022]
Abstract
Severe coronavirus disease 2019 (COVID-19) increases the risk of myocardial injury that contributes to mortality. This study used multiparameter immunofluorescence to extensively examine heart autopsy tissue of 7 patients who died of COVID-19 compared to 12 control specimens, with or without cardiovascular disease. Consistent with prior reports, no evidence of viral infection or lymphocytic infiltration indicative of myocarditis was found. However, frequent and extensive thrombosis was observed in large and small vessels in the hearts of the COVID-19 cohort, findings that were infrequent in controls. The endothelial lining of thrombosed vessels typically lacked evidence of cytokine-mediated endothelial activation, assessed as nuclear expression of transcription factors p65 (RelA), pSTAT1, or pSTAT3, or evidence of inflammatory activation assessed by expression of intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), tissue factor, or von Willebrand factor (VWF). Intimal EC lining was also generally preserved with little evidence of cell death or desquamation. In contrast, there were frequent markers of neutrophil activation within myocardial thrombi in patients with COVID-19, including neutrophil-platelet aggregates, neutrophil-rich clusters within macrothrombi, and evidence of neutrophil extracellular trap (NET) formation. These findings point to alterations in circulating neutrophils rather than in the endothelium as contributors to the increased thrombotic diathesis in the hearts of COVID-19 patients.
Collapse
Affiliation(s)
- Justin E Johnson
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| | - Declan McGuone
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Mina L Xu
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Dan Jane-Wit
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut; Department of Cardiology, West Haven VA Medical Center, West Haven, Connecticut
| | - Richard N Mitchell
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jordan S Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
40
|
Abstract
Mechanical stress from haemodynamic perturbations or interventional manipulation of epicardial coronary atherosclerotic plaques with inflammatory destabilization can release particulate debris, thrombotic material and soluble substances into the coronary circulation. The physical material obstructs the coronary microcirculation, whereas the soluble substances induce endothelial dysfunction and facilitate vasoconstriction. Coronary microvascular obstruction and dysfunction result in patchy microinfarcts accompanied by an inflammatory reaction, both of which contribute to progressive myocardial contractile dysfunction. In clinical studies, the benefit of protection devices to retrieve atherothrombotic debris during percutaneous coronary interventions has been modest, and the treatment of microembolization has mostly relied on antiplatelet and vasodilator agents. The past 25 years have witnessed a relative proportional increase in non-ST-segment elevation myocardial infarction in the presentation of acute coronary syndromes. An associated increase in the incidence of plaque erosion rather than rupture has also been recognized as a key mechanism in the past decade. We propose that coronary microembolization is a decisive link between plaque erosion at the culprit lesion and the manifestation of non-ST-segment elevation myocardial infarction. In this Review, we characterize the features and mechanisms of coronary microembolization and discuss the clinical trials of drugs and devices for prevention and treatment.
Collapse
Affiliation(s)
- Petra Kleinbongard
- grid.5718.b0000 0001 2187 5445Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Gerd Heusch
- grid.5718.b0000 0001 2187 5445Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| |
Collapse
|
41
|
Zaid Y, Guessous F. The ongoing enigma of SARS-CoV-2 and platelet interaction. Res Pract Thromb Haemost 2022; 6:e12642. [PMID: 35106430 PMCID: PMC8787413 DOI: 10.1002/rth2.12642] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/28/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Since the onset of the global pandemic of coronavirus disease 2019 (COVID-19), there is an urgent need to understand the pathogenesis of the common inflammatory and thrombotic complications associated with this illness leading to multiorgan failure and mortality. It is well established that platelets are hyperactivated during COVID-19. Data from independent studies reported an angiotensin-converting enzyme (ACE2)-dependent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) platelet interaction, raising the concern whether ACE2 receptor is the "key receptor" in this process, while other platelet research groups demonstrated that thrombotic events occur via ACE2-independent mechanisms, where the virus probably uses alternative pathways. In this study, we discuss the conflicting results and highlight the ongoing controversy related to SARS-CoV-2-platelet interaction.
Collapse
Affiliation(s)
- Younes Zaid
- Botany LaboratoryDepartment of BiologyFaculty of SciencesMohammed V UniversityRabatMorocco
- Research Center of AbulcasisUniversity of Health SciencesCheikh Zaïd HospitalRabatMorocco
| | - Fadila Guessous
- Microbiology, Immunology and Cancer BiologySchool of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Biological SciencesMohammed VI University of Health Sciences (UM6SS)CasablancaMorocco
| |
Collapse
|
42
|
Caillon A, Trimaille A, Favre J, Jesel L, Morel O, Kauffenstein G. Role of neutrophils, platelets, and extracellular vesicles and their interactions in COVID-19-associated thrombopathy. J Thromb Haemost 2022; 20:17-31. [PMID: 34672094 PMCID: PMC8646423 DOI: 10.1111/jth.15566] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022]
Abstract
The COVID-19 pandemic extended all around the world causing millions of deaths. In addition to acute respiratory distress syndrome, many patients with severe COVID-19 develop thromboembolic complications associated to multiorgan failure and death. Here, we review evidence for the contribution of neutrophils, platelets, and extracellular vesicles (EVs) to the thromboinflammatory process in COVID-19. We discuss how the immune system, influenced by pro-inflammatory molecules, EVs, and neutrophil extracellular traps (NETs), can be caught out in patients with severe outcomes. We highlight how the deficient regulation of the innate immune system favors platelet activation and induces a vicious cycle amplifying an immunothrombogenic environment associated with platelet/NET interactions. In light of these considerations, we discuss potential therapeutic strategies underlining the modulation of purinergic signaling as an interesting target.
Collapse
Affiliation(s)
- Antoine Caillon
- Lady Davis Institute for Medical Research, McGill University, Montréal, Quebec, Canada
| | - Antonin Trimaille
- UMR INSERM 1260, CRBS, Strasbourg University, Strasbourg, France
- Division of Cardiovascular Medicine, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | - Julie Favre
- INSERM, UMR S 1121, Biomaterials and Bioengineering, CRBS, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Laurence Jesel
- UMR INSERM 1260, CRBS, Strasbourg University, Strasbourg, France
- Division of Cardiovascular Medicine, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | - Olivier Morel
- UMR INSERM 1260, CRBS, Strasbourg University, Strasbourg, France
- Division of Cardiovascular Medicine, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | | |
Collapse
|
43
|
Blanch-Ruiz MA, Ortega-Luna R, Gómez-García G, Martínez-Cuesta MÁ, Álvarez Á. Role of Neutrophil Extracellular Traps in COVID-19 Progression: An Insight for Effective Treatment. Biomedicines 2021; 10:31. [PMID: 35052711 PMCID: PMC8772933 DOI: 10.3390/biomedicines10010031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has resulted in a pandemic with over 270 million confirmed cases and 5.3 million deaths worldwide. In some cases, the infection leads to acute respiratory distress syndrome (ARDS), which is triggered by a cytokine storm and multiple organ failure. Clinical hematological, biochemical, coagulation, and inflammatory markers, such as interleukins, are associated with COVID-19 disease progression. In this regard, neutrophilia, neutrophil-to-lymphocyte ratio (NLR), and neutrophil-to-albumin ratio (NAR), have emerged as promising biomarkers of disease severity and progression. In the pathophysiology of ARDS, the inflammatory environment induces neutrophil influx and activation in the lungs, promoting the release of cytokines, proteases, reactive oxygen species (ROS), and, eventually, neutrophil extracellular traps (NETs). NETs components, such as DNA, histones, myeloperoxidase, and elastase, may exert cytotoxic activity and alveolar damage. Thus, NETs have also been described as potential biomarkers of COVID-19 prognosis. Several studies have demonstrated that NETs are induced in COVID-19 patients, and that the highest levels of NETs are found in critical ones, therefore highlighting a correlation between NETs and severity of the disease. Knowledge of NETs signaling pathways, and the targeting of points of NETs release, could help to develop an effective treatment for COVID-19, and specifically for severe cases, which would help to manage the pandemic.
Collapse
Affiliation(s)
- María Amparo Blanch-Ruiz
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (G.G.-G.)
| | - Raquel Ortega-Luna
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (G.G.-G.)
| | - Guillermo Gómez-García
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (G.G.-G.)
| | - Maria Ángeles Martínez-Cuesta
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (G.G.-G.)
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), 46010 Valencia, Spain
| | - Ángeles Álvarez
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (G.G.-G.)
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), 46010 Valencia, Spain
| |
Collapse
|
44
|
Zhou Y, Tao W, Shen F, Du W, Xu Z, Liu Z. The Emerging Role of Neutrophil Extracellular Traps in Arterial, Venous and Cancer-Associated Thrombosis. Front Cardiovasc Med 2021; 8:786387. [PMID: 34926629 PMCID: PMC8674622 DOI: 10.3389/fcvm.2021.786387] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils play a vital role in the formation of arterial, venous and cancer-related thrombosis. Recent studies have shown that in a process known as NETosis, neutrophils release proteins and enzymes complexed to DNA fibers, collectively called neutrophil extracellular traps (NETs). Although NETs were originally described as a way for the host to capture and kill bacteria, current knowledge indicates that NETs also play an important role in thrombosis. According to recent studies, the destruction of vascular microenvironmental homeostasis and excessive NET formation lead to pathological thrombosis. In vitro experiments have found that NETs provide skeletal support for platelets, red blood cells and procoagulant molecules to promote thrombosis. The protein components contained in NETs activate the endogenous coagulation pathway to promote thrombosis. Therefore, NETs play an important role in the formation of arterial thrombosis, venous thrombosis and cancer-related thrombosis. This review will systematically summarize and explain the study of NETs in thrombosis in animal models and in vivo experiments to provide new targets for thrombosis prevention and treatment.
Collapse
Affiliation(s)
- Yilu Zhou
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weimin Tao
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fuyi Shen
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weijia Du
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhendong Xu
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiqiang Liu
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
45
|
Sofi F, Dinu M, Reboldi G, Stracci F, Pedretti RFE, Valente S, Gensini G, Gibson CM, Ambrosio G. Worldwide differences of hospitalization for ST-segment elevation myocardial infarction during COVID-19: A systematic review and meta-analysis. Int J Cardiol 2021; 347:89-96. [PMID: 34740717 PMCID: PMC8561779 DOI: 10.1016/j.ijcard.2021.10.156] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022]
Abstract
Background Discrepant data were reported about hospital admissions for ST-segment elevation myocardial infarction (STEMI) during COVID-19 pandemic. We reviewed studies reporting STEMI hospitalizations during COVID-19 pandemic, investigating whether differences in COVID-19 epidemiology or public health-related factors could explain discrepant findings in different countries. Methods Search through MedLine, Embase, Scopus, Web-of-Science, Cochrane Register of Controlled Trials, of studies comparing STEMI admissions during COVID-19 pandemic with a reference period, without language restrictions, as registered in PROSPERO International Prospective Register of Systematic Reviews. Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines were followed. Data independently extracted by multiple investigators were pooled using a random-effects model. Health-related metrics were from publicly-available sources. Results We included 79 articles (111,557 STEMI cases, from 57 countries). During peak COVID-19 pandemic, overall incidence rate-ratio (IRR) of STEMI hospitalizations over reference period decreased (0.80; 95% CI 0.76–0.84; p < 0.05). Although wide variations and significant heterogeneity were detected among studies (I2 = 89%; p < 0.0001), no significant differences were observed by report methodology (survey vs registry), or observation/reference period. However, large differences emerged at country level not explained by COVID-related epidemiological data, nor by public health strategies. Instead, IRRs for STEMI admissions were inversely related to hospital bed availability in each country (p < 0.05). Conclusions During COVID-19 pandemic hospitalization for STEMI significantly decreased, although to a smaller extent than initially reported. Large variability emerged across countries, unrelated to COVID-related epidemiology or social containment measures. Disparities in healthcare organization likely contributed, indicating that proper organization of emergency medicine should be preserved during pandemics.
Collapse
Affiliation(s)
- Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - GianPaolo Reboldi
- Department of Medicine, University of Perugia School of Medicine, Perugia, Italy; Center for Clinical and Translational Research-CERICLET, University of Perugia School of Medicine, Perugia, Italy
| | - Fabrizio Stracci
- Department of Medicine, University of Perugia School of Medicine, Perugia, Italy
| | | | | | | | - C Michael Gibson
- Baim Institute for Clinical Research, Harvard Medical School, Boston, MS, United States of America
| | - Giuseppe Ambrosio
- Center for Clinical and Translational Research-CERICLET, University of Perugia School of Medicine, Perugia, Italy; Division of Cardiology, University of Perugia School of Medicine, Perugia, Italy.
| |
Collapse
|
46
|
Lippi G, Sanchis-Gomar F, Henry BM, Lavie CJ. Cardiac Biomarkers in COVID-19: A Narrative Review. EJIFCC 2021; 32:337-346. [PMID: 34819823 PMCID: PMC8592630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diagnosis and risk stratification of coronavirus disease 2019 (COVID-19) is primarily based on discretionary use of laboratory resources. Several lines of evidence now attest that cardiovascular disease not only is a frequent complication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but its pre-existence may increase the risk of morbidity, disability, and death in patients with COVID-19. To this end, routine assessment of biomarkers of cardiac injury (i.e., cardiac troponin I or T) and dysfunction (e.g., natriuretic peptides) has emerged as an almost essential practice in patients with moderate, severe, and critical COVID-19 illness. Therefore, this narrative review aims to provide an overview of cardiac involvement in patients with SARS-CoV-2 infection as well as the clinical background for including cardiac biomarkers within specific panels of laboratory tests for managing COVID-19 patients.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy,Corresponding author: Prof. Giuseppe Lippi Section of Clinical Biochemistry University Hospital of Verona Piazzale L.A. Scuro, 10 37134 Verona Italy Phone: 0039-045-8122970 Fax: 0039-045-8124308
| | - Fabian Sanchis-Gomar
- University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Brandon Michael Henry
- The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A.
| | - Carl J. Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School - The University of Queensland School of Medicine, New Orleans, Louisiana, U.S.A.
| |
Collapse
|
47
|
LaSalle TJ, Gonye ALK, Freeman SS, Kaplonek P, Gushterova I, Kays KR, Manakongtreecheep K, Tantivit J, Rojas-Lopez M, Russo BC, Sharma N, Thomas MF, Lavin-Parsons KM, Lilly BM, Mckaig BN, Charland NC, Khanna HK, Lodenstein CL, Margolin JD, Blaum EM, Lirofonis PB, Sonny A, Bhattacharyya RP, Parry BA, Goldberg MB, Alter G, Filbin MR, Villani AC, Hacohen N, Sade-Feldman M. Longitudinal characterization of circulating neutrophils uncovers distinct phenotypes associated with disease severity in hospitalized COVID-19 patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34642692 DOI: 10.1101/2021.10.04.463121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multiple studies have identified an association between neutrophils and COVID-19 disease severity; however, the mechanistic basis of this association remains incompletely understood. Here we collected 781 longitudinal blood samples from 306 hospitalized COVID-19 + patients, 78 COVID-19 âˆ' acute respiratory distress syndrome patients, and 8 healthy controls, and performed bulk RNA-sequencing of enriched neutrophils, plasma proteomics, cfDNA measurements and high throughput antibody profiling assays to investigate the relationship between neutrophil states and disease severity or death. We identified dynamic switches between six distinct neutrophil subtypes using non-negative matrix factorization (NMF) clustering. At days 3 and 7 post-hospitalization, patients with severe disease had an enrichment of a granulocytic myeloid derived suppressor cell-like state gene expression signature, while non-severe patients with resolved disease were enriched for a progenitor-like immature neutrophil state signature. Severe disease was associated with gene sets related to neutrophil degranulation, neutrophil extracellular trap (NET) signatures, distinct metabolic signatures, and enhanced neutrophil activation and generation of reactive oxygen species (ROS). We found that the majority of patients had a transient interferon-stimulated gene signature upon presentation to the emergency department (ED) defined here as Day 0, regardless of disease severity, which persisted only in patients who subsequently died. Humoral responses were identified as potential drivers of neutrophil effector functions, as enhanced antibody-dependent neutrophil phagocytosis and reduced NETosis was associated with elevated SARS-CoV-2-specific IgG1-to-IgA1 ratios in plasma of severe patients who survived. In vitro experiments confirmed that while patient-derived IgG antibodies mostly drove neutrophil phagocytosis and ROS production in healthy donor neutrophils, patient-derived IgA antibodies induced a predominant NETosis response. Overall, our study demonstrates neutrophil dysregulation in severe COVID-19 and a potential role for IgA-dominant responses in driving neutrophil effector functions in severe disease and mortality.
Collapse
|
48
|
Medina-Quero K, Barreto-Rodriguez O, Mendez-Rodriguez V, Sanchez-Moncivais A, Buendia-Roldan I, Chavez-Galan L. SARS-CoV-2 infection: Understanding the immune system abnormalities to get an adequate diagnosis. Bosn J Basic Med Sci 2021; 21:503-514. [PMID: 33596401 PMCID: PMC8381208 DOI: 10.17305/bjbms.2020.5400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/12/2021] [Indexed: 12/02/2022] Open
Abstract
COVID-19 is the current pandemic caused by the novel coronavirus, SARS-CoV-2, that emerged from China at the end of December 2019. The scientific community is making extraordinary efforts to understand the virus structure and the pathophysiology and immunological processes activated in the host, in order to identify biomarkers, diagnostic tools, treatments, and vaccines to decrease COVID-19 incidence and mortality. Various abnormalities have been noted during SARS-CoV-2 infection both in lymphoid and myeloid cells. Such abnormalities may disturb the immune system function and cause a massive inflammatory response that impairs tissue function. This review discusses the close relationship between the immune system abnormalities and the broad spectrum of clinical manifestations, including fibrosis, in the context of COVID-19 disease. Moreover, we described the current strategies for COVID-19 diagnosis, and we provide a summary of the most useful clinical laboratory parameters to identify severe COVID-19 patients.
Collapse
Affiliation(s)
- Karen Medina-Quero
- Laboratory of Immunology, Escuela Militar de Graduados de Sanidad, Mexico City, Mexico
| | - Omar Barreto-Rodriguez
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | | | | | - Ivette Buendia-Roldan
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Leslie Chavez-Galan
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| |
Collapse
|
49
|
Simka M. Is digital necrosis in COVID-19 caused by neutrophil extracellular traps: Potential therapeutic strategies. Med Hypotheses 2021; 156:110684. [PMID: 34583310 PMCID: PMC8452345 DOI: 10.1016/j.mehy.2021.110684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/14/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022]
Abstract
Some of the COVID-19 patients present with ischemic lesions of their finger and toes. Standard anticoagulant therapy is usually unsuccessful for the treatment of this unique presentation of COVID-19. In this review current evidence is presented, which supports the hypothesis that these necrotic lesions are primarily related to the formation of neutrophil extracellular traps is blood vessels. Also, currently available and potential pharmacological methods of the management of this unique thrombotic complication are discussed. Drugs that possibly could be used in COVID-19 patients suffering from acute ischemia of distal parts of the extremities particularly comprise DNase I and DNase1L3, which could directly dissolve these extracellular webs that are mostly composed of DNA. However, at the moment, none of these enzymes are registered for an intravascular administration in humans. Lactoferrin and dipyridamole are other pharmaceutical agents that could potentially be used for the treatment of neutrophil extracellular traps-evoked digital ischemia. These agents exhibit prophylactic activity against excessive formation of these extracellular structures. Such an experimental treatment should probably be accompanied by standard antithrombotic management with heparin. Open-label and then randomized trials are needed to confirm feasibility, safety and efficacy of the above-suggested management of critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Marian Simka
- Institute of Medical Sciences, University of Opole, ul. Oleska 48, 45-052 Opole, Poland.
| |
Collapse
|
50
|
Labarrere CA, Kassab GS. Pattern Recognition Proteins: First Line of Defense Against Coronaviruses. Front Immunol 2021; 12:652252. [PMID: 34630377 PMCID: PMC8494786 DOI: 10.3389/fimmu.2021.652252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
The rapid outbreak of COVID-19 caused by the novel coronavirus SARS-CoV-2 in Wuhan, China, has become a worldwide pandemic affecting almost 204 million people and causing more than 4.3 million deaths as of August 11 2021. This pandemic has placed a substantial burden on the global healthcare system and the global economy. Availability of novel prophylactic and therapeutic approaches are crucially needed to prevent development of severe disease leading to major complications both acutely and chronically. The success in fighting this virus results from three main achievements: (a) Direct killing of the SARS-CoV-2 virus; (b) Development of a specific vaccine, and (c) Enhancement of the host's immune system. A fundamental necessity to win the battle against the virus involves a better understanding of the host's innate and adaptive immune response to the virus. Although the role of the adaptive immune response is directly involved in the generation of a vaccine, the role of innate immunity on RNA viruses in general, and coronaviruses in particular, is mostly unknown. In this review, we will consider the structure of RNA viruses, mainly coronaviruses, and their capacity to affect the lungs and the cardiovascular system. We will also consider the effects of the pattern recognition protein (PRP) trident composed by (a) Surfactant proteins A and D, mannose-binding lectin (MBL) and complement component 1q (C1q), (b) C-reactive protein, and (c) Innate and adaptive IgM antibodies, upon clearance of viral particles and apoptotic cells in lungs and atherosclerotic lesions. We emphasize on the role of pattern recognition protein immune therapies as a combination treatment to prevent development of severe respiratory syndrome and to reduce pulmonary and cardiovascular complications in patients with SARS-CoV-2 and summarize the need of a combined therapeutic approach that takes into account all aspects of immunity against SARS-CoV-2 virus and COVID-19 disease to allow mankind to beat this pandemic killer.
Collapse
Affiliation(s)
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|