1
|
Jia X, Li J, Jiang Z. Association between thyroid disorders and extra-thyroidal cancers, a review. Clin Transl Oncol 2024; 26:2075-2083. [PMID: 38491294 DOI: 10.1007/s12094-024-03434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Thyroid hormone has been shown to have both tumor-promoting and tumor-suppressing actions, which has led to significant debate over its involvement in the development of cancer. Proliferation, apoptosis, invasiveness, and angiogenesis are all aspects of cancer that are affected by the thyroid hormones T3 and T4, according to research conducted in animal models and in vitro experiments. The effects of thyroid hormones on cancer cells are mediated by many non-genomic mechanisms, one of which involves the activation of the plasma membrane receptor integrin αvβ3. Typically, abnormal amounts of thyroid hormones are linked to a higher occurrence of cancer. Both benign and malignant thyroid disorders were found to be associated with an increased risk of extra-thyroidal malignancies, specifically colon, breast, prostate, melanoma, and lung cancers. The purpose of this review was to shed light on this link to define which types of cancer are sensitive to thyroid hormones and, as a result, are anticipated to respond favorably to treatment of the thyroid hormone axis.
Collapse
Affiliation(s)
- Xin Jia
- Department of Nursing, Zhengzhou Health Vocational College, Zhengzhou, 410005, China
| | - Jingru Li
- Department of Nursing, Zhengzhou Health Vocational College, Zhengzhou, 410005, China.
| | - Zongliang Jiang
- Department of Nursing, Zhengzhou Health Vocational College, Zhengzhou, 410005, China
| |
Collapse
|
2
|
Baptista Freitas M, Desmyter L, Badoer C, Smits G, Vandernoot I, T Kint de Roodenbeke D. POT1 tumour predisposition: a broader spectrum of associated malignancies and proposal for additional screening program. Eur J Hum Genet 2024; 32:980-986. [PMID: 38839987 PMCID: PMC11291874 DOI: 10.1038/s41431-024-01611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 06/07/2024] Open
Abstract
Protection of Telomeres Protein 1 (POT1) protein is an essential subunit of the shelterin telomere binding complex, regulating telomere length. Some POT1 gene pathogenic variants (PV) lead to telomere elongation, genomic instability and higher risk of cancer. POT1 tumour predisposition syndrome (POT1-TPD) has autosomal dominant inheritance and unknown penetrance. It is associated with increased risk of cutaneous melanoma, chronic lymphocytic leukaemia, angiosarcoma and gliomas. In this work, we aim to describe a broader cancer phenotype related to POT1-TPD, in three families (two with a four generation pedigree, one with a five generation pedigree). The three index cases were referred to our oncogenetic centre for genetic counselling due to their personal history of cancer. Two underwent clinical exome sequencing of 4,867 genes associated with Mendelian genetic diseases, and another underwent gene panel sequencing including POT1, which identified three different POT1 PV: NC_000007.14(NM_015450.2):c.349C>T; NC_000007.14(NM_015450.2):c.233T>C and NC_000007.14(NM_015450.2):c.818G>A; already described in the literature. Referenced relatives, did a target genetic test (according to the POT1 PV identified in the family). In total, 37 individuals were tested (51.4% females), median age of 46 (22-81) years, with POT1 PV detected in 22. POT1-TPD was observed, but also a higher incidence of other cancers (other sarcomas, papillary thyroid cancer, early onset prostate cancer and leukaemia). These findings contribute to an increase in our knowledge about POT1 PV, and it can play a role in the definition of future POT1 PV screening criteria, POT1 carrier surveillance protocols (possibly considering screening for all types of sarcomas) and in genetic counselling.
Collapse
Affiliation(s)
| | - Laurence Desmyter
- Center for Human Genetics, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Cindy Badoer
- Center for Human Genetics, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Guillaume Smits
- Department of Genetics, Hôpital Universitaire Des Enfants Reine Fabiola, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Vandernoot
- Center for Human Genetics, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
3
|
Ralli S, Vira T, Robles-Espinoza CD, Adams DJ, Brooks-Wilson AR. Variant ranking pipeline for complex familial disorders. Sci Rep 2024; 14:13599. [PMID: 38866901 PMCID: PMC11169219 DOI: 10.1038/s41598-024-64169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Identifying genetic susceptibility factors for complex disorders remains a challenging task. To analyze collections of small and large pedigrees where genetic heterogeneity is likely, but biological commonalities are plausible, we have developed a weights-based pipeline to prioritize variants and genes. The Weights-based vAriant Ranking in Pedigrees (WARP) pipeline prioritizes variants using 5 weights: disease incidence rate, number of cases in a family, genome fraction shared amongst cases in a family, allele frequency and variant deleteriousness. Weights, except for the population allele frequency weight, are normalized between 0 and 1. Weights are combined multiplicatively to produce family-specific-variant weights that are then averaged across all families in which the variant is observed to generate a multifamily weight. Sorting multifamily weights in descending order creates a ranked list of variants and genes for further investigation. WARP was validated using familial melanoma sequence data from the European Genome-phenome Archive. The pipeline identified variation in known germline melanoma genes POT1, MITF and BAP1 in 4 out of 13 families (31%). Analysis of the other 9 families identified several interesting genes, some of which might have a role in melanoma. WARP provides an approach to identify disease predisposing genes in studies with small and large pedigrees.
Collapse
Affiliation(s)
- Sneha Ralli
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Tariq Vira
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | | | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Angela R Brooks-Wilson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 1L3, Canada.
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
4
|
Abu Shtaya A, Kedar I, Bazak L, Basel-Salmon L, Barhom SF, Naftali M, Eskin-Schwartz M, Birk OS, Polager-Modan S, Keidar N, Reznick Levi G, Levi Z, Yablonski-Peretz T, Mahamid A, Segol O, Matar R, Bareli Y, Azoulay N, Goldberg Y. A POT1 Founder Variant Associated with Early Onset Recurrent Melanoma and Various Solid Malignancies. Genes (Basel) 2024; 15:355. [PMID: 38540414 PMCID: PMC10970179 DOI: 10.3390/genes15030355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024] Open
Abstract
POT1 (Protection of Telomeres 1) is a key component of the six-membered shelterin complex that plays a critical role in telomere protection and length regulation. Germline variants in the POT1 gene have been implicated in predisposition to cancer, primarily to melanoma and chronic lymphocytic leukemia (CLL). We report the identification of POT1 p.(I78T), previously ranked with conflicting interpretations of pathogenicity, as a founder pathogenic variant among Ashkenazi Jews (AJs) and describe its unique clinical landscape. A directed database search was conducted for individuals referred for genetic counselling from 2018 to 2023. Demographic, clinical, genetic, and pathological data were collected and analyzed. Eleven carriers, 25 to 67 years old, from ten apparently unrelated families were identified. Carriers had a total of 30 primary malignancies (range 1-6); nine carriers (82%) had recurrent melanoma between the ages of 25 and 63 years, three carriers (27%) had desmoid tumors, three (27%) had papillary thyroid cancer (PTC), and five women (63% of female carriers) had breast cancer between the ages of 44 and 67 years. Additional tumors included CLL; sarcomas; endocrine tumors; prostate, urinary, and colorectal cancers; and colonic polyps. A review of a local exome database yielded an allelic frequency of the variant of 0.06% among all ethnicities and of 0.25% in AJs. A shared haplotype was found in all carriers tested. POT1 p.(I78T) is a founder disease-causing variant associated with early-onset melanoma and additional various solid malignancies with a high tumor burden. We advocate testing for this variant in high-risk patients of AJ descent. The inclusion of POT1 in germline panels for various types of cancer is warranted.
Collapse
Affiliation(s)
- Aasem Abu Shtaya
- Recanati Genetics Institute, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.A.S.); (I.K.); (L.B.); (L.B.-S.); (S.F.B.); (R.M.); (Y.B.); (N.A.)
- Unit of Gastroenterology, Lady Davis Carmel Medical Center, Haifa 3436212, Israel;
| | - Inbal Kedar
- Recanati Genetics Institute, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.A.S.); (I.K.); (L.B.); (L.B.-S.); (S.F.B.); (R.M.); (Y.B.); (N.A.)
| | - Lily Bazak
- Recanati Genetics Institute, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.A.S.); (I.K.); (L.B.); (L.B.-S.); (S.F.B.); (R.M.); (Y.B.); (N.A.)
| | - Lina Basel-Salmon
- Recanati Genetics Institute, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.A.S.); (I.K.); (L.B.); (L.B.-S.); (S.F.B.); (R.M.); (Y.B.); (N.A.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Felsenstein Medical Research Center, Petach Tikva 4920235, Israel
- Pediatric Genetic Unit, Schneider Children’s Medical Center of Israel, Petch Tikva 4920235, Israel;
| | - Sarit Farage Barhom
- Recanati Genetics Institute, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.A.S.); (I.K.); (L.B.); (L.B.-S.); (S.F.B.); (R.M.); (Y.B.); (N.A.)
| | | | - Marina Eskin-Schwartz
- Genetics Institute, Soroka University Medical Center, Beer Sheva 8410101, Israel; (M.E.-S.); (O.S.B.)
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410101, Israel
| | - Ohad S. Birk
- Genetics Institute, Soroka University Medical Center, Beer Sheva 8410101, Israel; (M.E.-S.); (O.S.B.)
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410101, Israel
| | | | - Nitzan Keidar
- Pediatric Genetic Unit, Schneider Children’s Medical Center of Israel, Petch Tikva 4920235, Israel;
| | - Gili Reznick Levi
- Genetics Institute, Rambam Health Care Campus, Haifa 3525408, Israel;
| | - Zohar Levi
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Division of Gastroenterology, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel
| | - Tamar Yablonski-Peretz
- Oncology Institute, Hadassah Medical Center, Jerusalem 9112001, Israel;
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9190500, Israel
| | - Ahmad Mahamid
- Department of Surgery B, Carmel Medical Center, Haifa 3436212, Israel;
| | - Ori Segol
- Unit of Gastroenterology, Lady Davis Carmel Medical Center, Haifa 3436212, Israel;
| | - Reut Matar
- Recanati Genetics Institute, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.A.S.); (I.K.); (L.B.); (L.B.-S.); (S.F.B.); (R.M.); (Y.B.); (N.A.)
| | - Yifat Bareli
- Recanati Genetics Institute, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.A.S.); (I.K.); (L.B.); (L.B.-S.); (S.F.B.); (R.M.); (Y.B.); (N.A.)
| | - Noy Azoulay
- Recanati Genetics Institute, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.A.S.); (I.K.); (L.B.); (L.B.-S.); (S.F.B.); (R.M.); (Y.B.); (N.A.)
| | - Yael Goldberg
- Recanati Genetics Institute, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.A.S.); (I.K.); (L.B.); (L.B.-S.); (S.F.B.); (R.M.); (Y.B.); (N.A.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
5
|
Simonin-Wilmer I, Ossio R, Leddin EM, Harland M, Pooley KA, Martil de la Garza MG, Obolenski S, Hewinson J, Wong CC, Iyer V, Taylor JC, Newton-Bishop JA, Bishop DT, Cisneros GA, Iles MM, Adams DJ, Robles-Espinoza CD. Population-based analysis of POT1 variants in a cutaneous melanoma case-control cohort. J Med Genet 2023; 60:692-696. [PMID: 36539277 PMCID: PMC10279804 DOI: 10.1136/jmg-2022-108776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
Pathogenic germline variants in the protection of telomeres 1 gene (POT1) have been associated with predisposition to a range of tumour types, including melanoma, glioma, leukaemia and cardiac angiosarcoma. We sequenced all coding exons of the POT1 gene in 2928 European-descent melanoma cases and 3298 controls, identifying 43 protein-changing genetic variants. We performed POT1-telomere binding assays for all missense and stop-gained variants, finding nine variants that impair or disrupt protein-telomere complex formation, and we further define the role of variants in the regulation of telomere length and complex formation through molecular dynamics simulations. We determine that POT1 coding variants are a minor contributor to melanoma burden in the general population, with only about 0.5% of melanoma cases carrying germline pathogenic variants in this gene, but should be screened in individuals with a strong family history of melanoma and/or multiple malignancies.
Collapse
Affiliation(s)
- Irving Simonin-Wilmer
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro, Mexico
| | - Raul Ossio
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro, Mexico
| | - Emmett M Leddin
- Department of Chemistry, University of North Texas, Denton, Texas, USA
| | - Mark Harland
- Section of Epidemiolgy and Biostatistics, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK
| | - Karen A Pooley
- Centre for Cancer Genetic Epidemiology, Cambridge University, Cambridge, UK
| | | | | | - James Hewinson
- CASM, Wellcome Sanger Institute, Hinxton, UK
- CeGaT GmbH, Tübingen, Germany
| | - Chi C Wong
- CASM, Wellcome Sanger Institute, Hinxton, UK
| | - Vivek Iyer
- CASM, Wellcome Sanger Institute, Hinxton, UK
| | - John C Taylor
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Julia A Newton-Bishop
- Section of Epidemiolgy and Biostatistics, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK
| | - D Timothy Bishop
- Section of Epidemiology and Biostatistics, University of Leeds, Leeds, UK
| | - Gerardo Andrés Cisneros
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas, USA
- Department of Physics, The University of Texas at Dallas, Richardson, Texas, USA
| | - Mark M Iles
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | | | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro, Mexico
- CASM, Wellcome Sanger Institute, Hinxton, UK
| |
Collapse
|
6
|
DeBoy EA, Tassia MG, Schratz KE, Yan SM, Cosner ZL, McNally EJ, Gable DL, Xiang Z, Lombard DB, Antonarakis ES, Gocke CD, McCoy RC, Armanios M. Familial Clonal Hematopoiesis in a Long Telomere Syndrome. N Engl J Med 2023; 388:2422-2433. [PMID: 37140166 PMCID: PMC10501156 DOI: 10.1056/nejmoa2300503] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Telomere shortening is a well-characterized cellular aging mechanism, and short telomere syndromes cause age-related disease. However, whether long telomere length is advantageous is poorly understood. METHODS We examined the clinical and molecular features of aging and cancer in persons carrying heterozygous loss-of-function mutations in the telomere-related gene POT1 and noncarrier relatives. RESULTS A total of 17 POT1 mutation carriers and 21 noncarrier relatives were initially included in the study, and a validation cohort of 6 additional mutation carriers was subsequently recruited. A majority of the POT1 mutation carriers with telomere length evaluated (9 of 13) had long telomeres (>99th percentile). POT1 mutation carriers had a range of benign and malignant neoplasms involving epithelial, mesenchymal, and neuronal tissues in addition to B- and T-cell lymphoma and myeloid cancers. Five of 18 POT1 mutation carriers (28%) had T-cell clonality, and 8 of 12 (67%) had clonal hematopoiesis of indeterminate potential. A predisposition to clonal hematopoiesis had an autosomal dominant pattern of inheritance, as well as penetrance that increased with age; somatic DNMT3A and JAK2 hotspot mutations were common. These and other somatic driver mutations probably arose in the first decades of life, and their lineages secondarily accumulated a higher mutation burden characterized by a clocklike signature. Successive generations showed genetic anticipation (i.e., an increasingly early onset of disease). In contrast to noncarrier relatives, who had the typical telomere shortening with age, POT1 mutation carriers maintained telomere length over the course of 2 years. CONCLUSIONS POT1 mutations associated with long telomere length conferred a predisposition to a familial clonal hematopoiesis syndrome that was associated with a range of benign and malignant solid neoplasms. The risk of these phenotypes was mediated by extended cellular longevity and by the capacity to maintain telomeres over time. (Funded by the National Institutes of Health and others.).
Collapse
Affiliation(s)
- Emily A DeBoy
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Michael G Tassia
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Kristen E Schratz
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Stephanie M Yan
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Zoe L Cosner
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Emily J McNally
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Dustin L Gable
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Zhimin Xiang
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - David B Lombard
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Emmanuel S Antonarakis
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Christopher D Gocke
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Rajiv C McCoy
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Mary Armanios
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| |
Collapse
|
7
|
Cararo Lopes E, Sawant A, Moore D, Ke H, Shi F, Laddha S, Chen Y, Sharma A, Naumann J, Guo JY, Gomez M, Ibrahim M, Smith TL, Riedlinger GM, Lattime EC, Trooskin S, Ganesan S, Su X, Pasqualini R, Arap W, De S, Chan CS, White E. Integrated metabolic and genetic analysis reveals distinct features of human differentiated thyroid cancer. Clin Transl Med 2023; 13:e1298. [PMID: 37317665 PMCID: PMC10267429 DOI: 10.1002/ctm2.1298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Differentiated thyroid cancer (DTC) affects thousands of lives worldwide each year. Typically, DTC is a treatable disease with a good prognosis. Yet, some patients are subjected to partial or total thyroidectomy and radioiodine therapy to prevent local disease recurrence and metastasis. Unfortunately, thyroidectomy and/or radioiodine therapy often worsen(s) quality of life and might be unnecessary in indolent DTC cases. On the other hand, the lack of biomarkers indicating a potential metastatic thyroid cancer imposes an additional challenge to managing and treating patients with this disease. AIM The presented clinical setting highlights the unmet need for a precise molecular diagnosis of DTC and potential metastatic disease, which should dictate appropriate therapy. MATERIALS AND METHODS In this article, we present a differential multi-omics model approach, including metabolomics, genomics, and bioinformatic models, to distinguish normal glands from thyroid tumours. Additionally, we are proposing biomarkers that could indicate potential metastatic diseases in papillary thyroid cancer (PTC), a sub-class of DTC. RESULTS Normal and tumour thyroid tissue from DTC patients had a distinct yet well-defined metabolic profile with high levels of anabolic metabolites and/or other metabolites associated with the energy maintenance of tumour cells. The consistency of the DTC metabolic profile allowed us to build a bioinformatic classification model capable of clearly distinguishing normal from tumor thyroid tissues, which might help diagnose thyroid cancer. Moreover, based on PTC patient samples, our data suggest that elevated nuclear and mitochondrial DNA mutational burden, intra-tumour heterogeneity, shortened telomere length, and altered metabolic profile reflect the potential for metastatic disease. DISCUSSION Altogether, this work indicates that a differential and integrated multi-omics approach might improve DTC management, perhaps preventing unnecessary thyroid gland removal and/or radioiodine therapy. CONCLUSIONS Well-designed, prospective translational clinical trials will ultimately show the value of this integrated multi-omics approach and early diagnosis of DTC and potential metastatic PTC.
Collapse
Affiliation(s)
- Eduardo Cararo Lopes
- Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
- Department of Molecular Biology and BiochemistryRutgers UniversityPiscatawayNew JerseyUSA
| | - Akshada Sawant
- Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
| | - Dirk Moore
- Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
- Department of Biostatistics and EpidemiologyRutgers School of Public HealthPiscatawayNew JerseyUSA
| | - Hua Ke
- Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
| | - Fuqian Shi
- Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
| | - Saurabh Laddha
- Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
| | - Ying Chen
- Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
| | - Anchal Sharma
- Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
| | - Jake Naumann
- Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
- Department of MedicineRobert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
- Department of Chemical BiologyRutgers Ernest Mario School of PharmacyPiscatawayNew JerseyUSA
| | - Maria Gomez
- Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
| | - Maria Ibrahim
- Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
| | - Tracey L. Smith
- Rutgers Cancer Institute of New JerseyNewarkNew JerseyUSA
- Division of Cancer BiologyDepartment of Radiation OncologyRutgers New Jersey Medical SchoolNewarkNew JerseyUSA
| | | | - Edmund C. Lattime
- Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
- Department of Surgery, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
| | - Stanley Trooskin
- Department of Surgery, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
- Department of MedicineRobert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
| | - Xiaoyang Su
- Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
- Department of MedicineRobert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New JerseyNewarkNew JerseyUSA
- Division of Cancer BiologyDepartment of Radiation OncologyRutgers New Jersey Medical SchoolNewarkNew JerseyUSA
| | - Wadih Arap
- Rutgers Cancer Institute of New JerseyNewarkNew JerseyUSA
- Division of Hematology/OncologyDepartment of MedicineRutgers New Jersey Medical SchoolNewarkNew JerseyUSA
| | - Subhajyoti De
- Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
| | - Chang S. Chan
- Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
- Department of MedicineRobert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
| | - Eileen White
- Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
- Department of Molecular Biology and BiochemistryRutgers UniversityPiscatawayNew JerseyUSA
- Ludwig Princeton Branch, Ludwig Institute for Cancer ResearchPrinceton UniversityPrincetonNew JerseyUSA
| |
Collapse
|
8
|
Zade NH, Khattar E. POT1 mutations cause differential effects on telomere length leading to opposing disease phenotypes. J Cell Physiol 2023; 238:1237-1255. [PMID: 37183325 DOI: 10.1002/jcp.31034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023]
Abstract
The protection of telomere protein (POT1) is a telomere-binding protein and is an essential component of the six-membered shelterin complex, which is associated with the telomeres. POT1 directly binds to the 3' single-stranded telomeric overhang and prevents the activation of DNA damage response at telomeres thus preventing the telomere-telomere fusions and genomic instability. POT1 also plays a pivotal role in maintaining telomere length by regulating telomerase-mediated telomere elongation. Mutations in POT1 proteins result in three different telomere phenotypes, which include long, short, or aberrant telomere length. Long telomeres predispose individuals to cancer, while short or aberrant telomere phenotypes result in pro-aging diseases referred to as telomeropathies. Here, we review the function of POT1 proteins in telomere length hemostasis and how the spectrum of mutations reported in POT1 can be segregated toward developing very distinct disease phenotypes of cancer and telomeropathies.
Collapse
Affiliation(s)
- Nikita Harish Zade
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| |
Collapse
|
9
|
Oh KS, Mahalingam M. Melanoma and Glioblastoma-Not a Serendipitous Association. Adv Anat Pathol 2023; 30:00125480-990000000-00051. [PMID: 36624550 DOI: 10.1097/pap.0000000000000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recently, we came across a patient with malignant melanoma and primary glioblastoma. Given this, we parsed the literature to ascertain the relationship, if any, between these 2 malignancies. We begin with a brief overview of melanoma and glioma in isolation followed by a chronologic overview of case reports and epidemiologic studies documenting both neoplasms. This is followed by studies detailing genetic abnormalities common to both malignancies with a view to identifying unifying genetic targets for therapeutic strategies as well as to explore the possibility of a putative association and an inherited cancer susceptibility trait. From a scientific perspective, we believe we have provided evidence favoring an association between melanoma and glioma. Future studies that include documentation of additional cases, as well as a detailed molecular analyses, will lend credence to our hypothesis that the co-occurrence of these 2 conditions is likely not serendipitous.
Collapse
Affiliation(s)
- Kei Shing Oh
- Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL
| | - Meera Mahalingam
- Dermatopathology Section, Department of Pathology and Laboratory Medicine, VA-Integrated-Service-Network-1 (VISN1), West Roxbury, MA
| |
Collapse
|
10
|
Ulisse S, Baldini E, Pironi D, Gagliardi F, Tripodi D, Lauro A, Carbotta S, Tarroni D, D’Armiento M, Morrone A, Forte F, Frattaroli F, Persechino S, Odorisio T, D’Andrea V, Lori E, Sorrenti S. Is Melanoma Progression Affected by Thyroid Diseases? Int J Mol Sci 2022; 23:ijms231710036. [PMID: 36077430 PMCID: PMC9456309 DOI: 10.3390/ijms231710036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical and epidemiological evidence indicate a relationship between thyroid diseases and melanoma. In particular, the hypothyroidism condition appears to promote melanoma spread, which suggests a protective role of thyroid hormones against disease progression. In addition, experimental data suggest that, in addition to thyroid hormones, other hormonal players of the hypothalamic–pituitary–thyroid (HPT) axis, namely the thyrotropin releasing hormone and the thyrotropin, are likely to affect melanoma cells behavior. This information warrants further clinical and experimental studies in order to build a precise pattern of action of the HPT hormones on melanoma cells. An improved knowledge of the involved molecular mechanism(s) could lead to a better and possibly personalized clinical management of these patients.
Collapse
Affiliation(s)
- Salvatore Ulisse
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
- Correspondence:
| | - Enke Baldini
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Daniele Pironi
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Federica Gagliardi
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Domenico Tripodi
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Augusto Lauro
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Sabino Carbotta
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Danilo Tarroni
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Matteo D’Armiento
- Scientific Direction, IRCCS San Gallicano Dermatological Institute, 00144 Rome, Italy
| | - Aldo Morrone
- Scientific Direction, IRCCS San Gallicano Dermatological Institute, 00144 Rome, Italy
| | - Flavio Forte
- Urology Department, M.G. Vannini Hospital, 00177 Rome, Italy
| | - Flaminia Frattaroli
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Severino Persechino
- Department of Neurosciences, Mental Health and Sensory Organs, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Teresa Odorisio
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Vito D’Andrea
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Eleonora Lori
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Salvatore Sorrenti
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| |
Collapse
|
11
|
Abstract
Telomere biology was first studied in maize, ciliates, yeast, and mice, and in recent decades, it has informed understanding of common disease mechanisms with broad implications for patient care. Short telomere syndromes are the most prevalent premature aging disorders, with prominent phenotypes affecting the lung and hematopoietic system. Less understood are a newly recognized group of cancer-prone syndromes that are associated with mutations that lengthen telomeres. A large body of new data from Mendelian genetics and epidemiology now provides an opportunity to reconsider paradigms related to the role of telomeres in human aging and cancer, and in some cases, the findings diverge from what was interpreted from model systems. For example, short telomeres have been considered potent drivers of genome instability, but age-associated solid tumors are rare in individuals with short telomere syndromes, and T cell immunodeficiency explains their spectrum. More commonly, short telomeres promote clonal hematopoiesis, including somatic reversion, providing a new leukemogenesis paradigm that is independent of genome instability. Long telomeres, on the other hand, which extend the cellular life span in vitro, are now appreciated to be the most common shared germline risk factor for cancer in population studies. Through this contemporary lens, I revisit here the role of telomeres in human aging, focusing on how short and long telomeres drive cancer evolution but through distinct mechanisms.
Collapse
Affiliation(s)
- Mary Armanios
- Departments of Oncology, Genetic Medicine, Pathology, and Molecular Biology and Genetics; Telomere Center at Johns Hopkins; and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
12
|
Martínez P, Sánchez-Vázquez R, Ferrara-Romeo I, Serrano R, Flores JM, Blasco MA. A mouse model for Li-Fraumeni-Like Syndrome with cardiac angiosarcomas associated to POT1 mutations. PLoS Genet 2022; 18:e1010260. [PMID: 35727838 PMCID: PMC9212151 DOI: 10.1371/journal.pgen.1010260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
The shelterin protein POT1 has been found mutated in many different familial and sporadic cancers, however, no mouse models to understand the pathobiology of these mutations have been developed so far. To address the molecular mechanisms underlying the tumorigenic effects of POT1 mutant proteins in humans, we have generated a mouse model for the human POT1R117C mutation found in Li-Fraumeni-Like families with cases of cardiac angiosarcoma by introducing this mutation in the Pot1a endogenous locus, knock-in for Pot1aR117C. We find here that both mouse embryonic fibroblasts (MEFs) and tissues from Pot1a+/ki mice show longer telomeres than wild-type controls. Longer telomeres in Pot1a+/ki MEFs are dependent on telomerase activity as they are not found in double mutant Pot1a+/kiTert-/- telomerase-deficient MEFs. By using complementation assays we further show that POT1a pR117C exerts dominant-negative effects at telomeres. As in human Li-Fraumeni patients, heterozygous Pot1a+/ki mice spontaneously develop a high incidence of angiosarcomas, including cardiac angiosarcomas, and this is associated to the presence of abnormally long telomeres in endothelial cells as well as in the tumors. The Pot1a+/R117C mouse model constitutes a useful tool to understand human cancers initiated by POT1 mutations. We have generated a mouse model for the human POT1R117C mutation found in Li-Fraumeni-Like (LFL) families with cases of cardiac angiosarcoma by introducing this mutation in the Pot1a endogenous locus, knock-in for Pot1aR117C. The Pot1a+/ki mice show longer telomeres than wild-type controls. Longer telomeres in mutant mice are dependent on telomerase activity as they are not found in a telomerase deficient background. As in human Li-Fraumeni patients, heterozygous Pot1a+/ki mice spontaneously develop a high incidence of angiosarcomas, including cardiac angiosarcomas, and this is associated to the presence of abnormally long telomeres in endothelial cells as well as in the tumors. The ki-Pot1aR117C mouse constitutes a potential pre-clinical mouse model for LFL syndrome presenting with high angiosarcoma incidence that could provide in the future a very useful tool for the study of treatments for these tumors.
Collapse
Affiliation(s)
- Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Raúl Sánchez-Vázquez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Iole Ferrara-Romeo
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Rosa Serrano
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Juana M. Flores
- Animal Surgery and Medicine Department, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
- * E-mail:
| |
Collapse
|
13
|
Constitutional variants in POT1, TERF2IP, and ACD genes in patients with melanoma in the Polish population. Eur J Cancer Prev 2021; 29:511-519. [PMID: 32976206 DOI: 10.1097/cej.0000000000000633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Evaluation of the prevalence of POT1, ACD, and TERF2IP mutations among Polish melanoma patients. A cohort of 60 patients from melanoma-prone families, 1500 unselected cases and 1500 controls were genotyped. Methodology included Sanger sequencing, in-silico software predilection, and TaqMan assays. We identified three nonsynonymous variants: POT1 c.903 G>T; TERF2IP c.970 A>G; and ACD c.1544 T>C and a splice site variant ACD c.645 G>A. The c.903 G>T was predicted to be pathogenic according to PolyPhen-2, benign according to Mutation Taster, PROVEAN, AGVGD, and SIFT. The c.645 G>A was defined as disease caused by Mutation Taster and Human Splicing Finder and as variant of unknown significance by ClinVar. The other detected variants were described as benign. The c.903 G>T variant was present in two unselected cases and one control [P = 0.57, odds ratio (OR) = 2.00]; the c.645 G>A variant was not detected among the unselected cases and the controls; the c.970 A>G variant was present in 110 cases and 133 controls (P = 0.14, OR = 0.81); the c.1544 T>C variant was present in 687 cases and 642 controls (P = 0.11, OR = 1.07). We found no loss of heterozygosity of the c.903 G>T, c.970 A>G, and c.645 G>A variants. C.645 G>A variant had no effect on splicing or expression. The changes in POT1 c.903 G>T and ACD c.645 G>A can be classified as rare variants of unknown significance, the other variants appear to be polymorphisms. Germline mutations in POT1, ACD, and TERF2IP are infrequent among Polish melanoma patients.
Collapse
|
14
|
Akincilar SC, Chan CHT, Ng QF, Fidan K, Tergaonkar V. Non-canonical roles of canonical telomere binding proteins in cancers. Cell Mol Life Sci 2021; 78:4235-4257. [PMID: 33599797 PMCID: PMC8164586 DOI: 10.1007/s00018-021-03783-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Reactivation of telomerase is a major hallmark observed in 90% of all cancers. Yet paradoxically, enhanced telomerase activity does not correlate with telomere length and cancers often possess short telomeres; suggestive of supplementary non-canonical roles that telomerase might play in the development of cancer. Moreover, studies have shown that aberrant expression of shelterin proteins coupled with their release from shortening telomeres can further promote cancer by mechanisms independent of their telomeric role. While targeting telomerase activity appears to be an attractive therapeutic option, this approach has failed in clinical trials due to undesirable cytotoxic effects on stem cells. To circumvent this concern, an alternative strategy could be to target the molecules involved in the non-canonical functions of telomeric proteins. In this review, we will focus on emerging evidence that has demonstrated the non-canonical roles of telomeric proteins and their impact on tumorigenesis. Furthermore, we aim to address current knowledge gaps in telomeric protein functions and propose future research approaches that can be undertaken to achieve this.
Collapse
Affiliation(s)
- Semih Can Akincilar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Claire Hian Tzer Chan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Qin Feng Ng
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Kerem Fidan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
15
|
Henslee G, Williams CL, Liu P, Bertuch AA. Identification and characterization of novel ACD variants: modulation of TPP1 protein level offsets the impact of germline loss-of-function variants on telomere length. Cold Spring Harb Mol Case Stud 2021; 7:a005454. [PMID: 33446513 PMCID: PMC7903889 DOI: 10.1101/mcs.a005454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Telomere biology disorders, largely characterized by telomere lengths below the first centile for age, are caused by variants in genes associated with telomere replication, structure, or function. One of these genes, ACD, which encodes the shelterin protein TPP1, is associated with both autosomal dominantly and autosomal recessively inherited telomere biology disorders. TPP1 recruits telomerase to telomeres and stimulates telomerase processivity. Several studies probing the effect of various synthetic or patient-derived variants have mapped specific residues and regions of TPP1 that are important for interaction with TERT, the catalytic component of telomerase. However, these studies have come to differing conclusions regarding ACD haploinsufficiency. Here, we report a proband with compound heterozygous novel variants in ACD (NM_001082486.1)-c.505_507delGAG, p.(Glu169del); and c.619delG, p.(Asp207Thrfs*22)-and a second proband with a heterozygous chromosomal deletion encompassing ACD: arr[hg19] 16q22.1(67,628,846-67,813,408)x1. Clinical data, including symptoms and telomere length within the pedigrees, suggested that loss of one ACD allele was insufficient to induce telomere shortening or confer clinical features. Further analyses of lymphoblastoid cell lines showed decreased nascent ACD RNA and steady-state mRNA, but normal TPP1 protein levels, in cells containing heterozygous ACD c.619delG, p.(Asp207Thrfs*22), or the ACD-encompassing chromosomal deletion compared to controls. Based on our results, we conclude that cells are able to compensate for loss of one ACD allele by activating a mechanism to maintain TPP1 protein levels, thus maintaining normal telomere length.
Collapse
Affiliation(s)
- Gabrielle Henslee
- Baylor College of Medicine, Integrated Molecular and Biomedical Sciences Graduate Program, Houston, Texas 77030, USA
- Baylor College of Medicine, Department of Pediatrics, Hematology/Oncology, Houston, Texas 77030, USA
- Texas Children's Hospital, Cancer and Hematology Centers, Houston, Texas 77030, USA
| | - Christopher L Williams
- Baylor College of Medicine, Department of Pediatrics, Hematology/Oncology, Houston, Texas 77030, USA
- Texas Children's Hospital, Cancer and Hematology Centers, Houston, Texas 77030, USA
| | - Pengfei Liu
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - Alison A Bertuch
- Baylor College of Medicine, Integrated Molecular and Biomedical Sciences Graduate Program, Houston, Texas 77030, USA
- Baylor College of Medicine, Department of Pediatrics, Hematology/Oncology, Houston, Texas 77030, USA
- Texas Children's Hospital, Cancer and Hematology Centers, Houston, Texas 77030, USA
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, Texas 77030, USA
| |
Collapse
|
16
|
Wu Y, Poulos RC, Reddel RR. Role of POT1 in Human Cancer. Cancers (Basel) 2020; 12:cancers12102739. [PMID: 32987645 PMCID: PMC7598640 DOI: 10.3390/cancers12102739] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The segmentation of eukaryotic genomes into discrete linear chromosomes requires processes to solve several major biological problems, including prevention of the chromosome ends being recognized as DNA breaks and compensation for the shortening that occurs when linear DNA is replicated. A specialized set of six proteins, collectively referred to as shelterin, is involved in both of these processes, and mutations in several of these are now known to be involved in cancer. Here, we focus on Protection of Telomeres 1 (POT1), the shelterin protein that appears to be most commonly involved in cancer, and consider the clinical significance of findings about its biological functions and the prevalence of inherited and acquired mutations in the POT1 gene. Abstract Telomere abnormalities facilitate cancer development by contributing to genomic instability and cellular immortalization. The Protection of Telomeres 1 (POT1) protein is an essential subunit of the shelterin telomere binding complex. It directly binds to single-stranded telomeric DNA, protecting chromosomal ends from an inappropriate DNA damage response, and plays a role in telomere length regulation. Alterations of POT1 have been detected in a range of cancers. Here, we review the biological functions of POT1, the prevalence of POT1 germline and somatic mutations across cancer predisposition syndromes and tumor types, and the dysregulation of POT1 expression in cancers. We propose a framework for understanding how POT1 abnormalities may contribute to oncogenesis in different cell types. Finally, we summarize the clinical implications of POT1 alterations in the germline and in cancer, and possible approaches for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Yangxiu Wu
- Cancer Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead NSW 2145, Australia;
- ProCan® Cancer Data Science Group, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead NSW 2145, Australia;
| | - Rebecca C. Poulos
- ProCan® Cancer Data Science Group, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead NSW 2145, Australia;
| | - Roger R. Reddel
- Cancer Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead NSW 2145, Australia;
- Correspondence: ; Tel.: +61-2-8865-2901
| |
Collapse
|
17
|
Belhadj S, Terradas M, Munoz-Torres PM, Aiza G, Navarro M, Capellá G, Valle L. Candidate genes for hereditary colorectal cancer: Mutational screening and systematic review. Hum Mutat 2020; 41:1563-1576. [PMID: 32449991 DOI: 10.1002/humu.24057] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/30/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
Genome-wide approaches applied for the identification of new hereditary colorectal cancer (CRC) genes, identified several potential causal genes, including RPS20, IL12RB1, LIMK2, POLE2, MRE11, POT1, FAN1, WIF1, HNRNPA0, SEMA4A, FOCAD, PTPN12, LRP6, POLQ, BLM, MCM9, and the epigenetic inactivation of PTPRJ. Here we attempted to validate the association between variants in these genes and nonpolyposis CRC by performing a mutational screening of the genes and PTPRJ promoter methylation analysis in 473 familial/early-onset CRC cases, a systematic review of the published cases, and assessment of allele frequencies in control population. In the studied cohort, 24 (5%) carriers of (predicted) deleterious variants in the studied genes and no constitutional PTPRJ epimutations were identified. Assessment of allele frequencies in controls compared with familial/early-onset patients with CRC showed association with increased nonpolyposis CRC risk of disruptive variants in RPS20, IL12RB1, POLE2, MRE11 and POT1, and of FAN1 c.149T>G (p.Met50Arg). Lack of association was demonstrated for LIMK2, PTPN12, LRP6, PTPRJ, POLQ, BLM, MCM9 and FOCAD variants. Additional studies are required to provide conclusive evidence for SEMA4A, WIF1, HNRNPA0 c.-110G>C, and FOCAD large deletions.
Collapse
Affiliation(s)
- Sami Belhadj
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Pau M Munoz-Torres
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Gemma Aiza
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| |
Collapse
|
18
|
Abstract
The incidence of cutaneous melanoma continues to increase in pale skinned peoples in Europe and elsewhere. Epidemiological studies identified genetically determined phenotypes such as pale skin, freckles and red hair, and sunburn as risk factors for this cancer. The development of many melanocytic naevi is also genetically determined and a strong melanoma risk phenotype. Not surprisingly then, genome wide association studies have identified pigmentation genes as common risk genes, and to a lesser extent, genes associated with melanocytic naevi. More unexpectedly, genes associated with telomere length have also been identified as risk genes. Higher risk susceptibility genes have been identified, particularly CDKN2A as the most common cause, and very rarely genes such as CDK4, POT1, TERT and other genes in coding for proteins in the shelterin complex are found to be mutated. Familial melanoma genes are associated with an increased number of melanocytic naevi but not invariably and the atypical naevus phenotype is therefore an imperfect marker of gene carrier status. At a somatic level, the most common driver mutation is BRAF, second most common NRAS, third NF1 and increasing numbers of additional rarer mutations are being identified such as in TP53. It is of note that the BRAF and NRAS mutations are not C>T accepted as characteristic of ultraviolet light induced mutations.
Collapse
|
19
|
Srivastava A, Miao B, Skopelitou D, Kumar V, Kumar A, Paramasivam N, Bonora E, Hemminki K, Försti A, Bandapalli OR. A Germline Mutation in the POT1 Gene Is a Candidate for Familial Non-Medullary Thyroid Cancer. Cancers (Basel) 2020; 12:cancers12061441. [PMID: 32492864 PMCID: PMC7352431 DOI: 10.3390/cancers12061441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Non-medullary thyroid cancer (NMTC) is a common endocrine malignancy with a genetic basis that has yet to be unequivocally established. In a recent whole-genome sequencing study of five families with occurrence of NMTCs, we shortlisted promising variants with the help of bioinformatics tools. Here, we report in silico analyses and in vitro experiments on a novel germline variant (p.V29L) in the highly conserved oligonucleotide/oligosaccharide binding domain of the Protection of Telomeres 1 (POT1) gene in one of the families. The results showed a reduction in telomere-bound POT1 levels in the mutant protein as compared to its wild-type counterpart. HEK293T cells carrying POT1 p.V29L showed increased telomere length in comparison to wild-type cells, suggesting that the mutation causes telomere dysfunction and may play a role in predisposition to NMTC in this family. While one germline mutation in POT1 has already been reported in a melanoma-prone family with prevalence of thyroid cancers, we report the first of such mutations in a family affected solely by NMTCs, thus expanding current knowledge on shelterin complex-associated cancers.
Collapse
Affiliation(s)
- Aayushi Srivastava
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.S.); (D.S.); (A.K.); (K.H.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Beiping Miao
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Diamanto Skopelitou
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.S.); (D.S.); (A.K.); (K.H.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Varun Kumar
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, 69120 Heidelberg, Germany;
| | - Abhishek Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.S.); (D.S.); (A.K.); (K.H.); (A.F.)
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
| | - Elena Bonora
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S.Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy;
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.S.); (D.S.); (A.K.); (K.H.); (A.F.)
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.S.); (D.S.); (A.K.); (K.H.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.S.); (D.S.); (A.K.); (K.H.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
20
|
Orois A, Badenas C, Reverter JL, López V, Potrony M, Mora M, Halperin I, Oriola J. Lack of Mutations in POT1 Gene in Selected Families with Familial Non-Medullary Thyroid Cancer. Discov Oncol 2020; 11:111-116. [PMID: 32172474 DOI: 10.1007/s12672-020-00383-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/04/2020] [Indexed: 12/16/2022] Open
Abstract
To date, the genes involved in familial non-medullary thyroid cancer (FNMTC) remain poorly understood, with the exception of syndromic cases of FNMTC. It has been proposed that germline mutations in telomere-related genes, such as POT1, described in familial melanoma might also predispose individuals to thyroid cancer, requiring further research. We aimed to identify germline mutations in POT1 in selected FNMTC families (with at least three affected members) without a history of other cancers or other features, and to describe the clinical characteristics of these families. Sequencing of the 5'UTR and coding regions of POT1 was performed in seven affected people (index cases) from seven families with FNMTC. In addition, we performed whole-exome sequencing (WES) of DNA from 10 affected individuals belonging to four of these families. We did not find germline variants of interest in POT1 by Sanger sequencing or WES. We neither found putative causative mutations in genes previously described as candidate genes for FNMTC in the 4 families studied by WES. In our study, no germline potentially pathogenic mutations were detected in POT1, minimizing the possibilities that this gene could be substantially involved in non-syndromic FNMTC.
Collapse
Affiliation(s)
- Aida Orois
- Department of Endocrinology and Nutrition, ICMDM, Hospital Clinic de Barcelona, C/Villarroel 170, 08036, Barcelona, Spain. .,Department of Endocrinology and Nutrition, Hospital Universitari Mútua de Terrassa, 08221, Terrassa, Spain.
| | - Celia Badenas
- Department of Biochemistry and Molecular Genetics, CDB, Hospital Clínic de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Jordi L Reverter
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Health Science Research Institute and Hospital, Universitat Autònoma de Barcelona, 08196, Badalona, Spain
| | - Verónica López
- Department of Biochemistry and Molecular Genetics, CDB, Hospital Clínic de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Miriam Potrony
- Department of Biochemistry and Molecular Genetics, CDB, Hospital Clínic de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Mireia Mora
- Department of Endocrinology and Nutrition, ICMDM, Hospital Clinic de Barcelona, C/Villarroel 170, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Faculty of Medicine, University of Barcelona, 08007, Barcelona, Spain.,Centro de Investigación Biomédica en Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Irene Halperin
- Department of Endocrinology and Nutrition, ICMDM, Hospital Clinic de Barcelona, C/Villarroel 170, 08036, Barcelona, Spain
| | - Josep Oriola
- Department of Biochemistry and Molecular Genetics, CDB, Hospital Clínic de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Faculty of Medicine, University of Barcelona, 08007, Barcelona, Spain
| |
Collapse
|
21
|
Gong Y, Stock AJ, Liu Y. The enigma of excessively long telomeres in cancer: lessons learned from rare human POT1 variants. Curr Opin Genet Dev 2020; 60:48-55. [PMID: 32155570 DOI: 10.1016/j.gde.2020.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/17/2020] [Accepted: 02/02/2020] [Indexed: 01/10/2023]
Abstract
The discovery that rare POT1 variants are associated with extremely long telomeres and increased cancer predisposition has provided a framework to revisit the relationship between telomere length and cancer development. Telomere shortening is linked with increased risk for cancer. However, over the past decade, there is increasing evidence to show that extremely long telomeres caused by mutations in shelterin components (POT1, TPP1, and RAP1) also display an increased risk of cancer. Here, we will review current knowledge on germline mutations of POT1 identified from cancer-prone families. In particular, we will discuss some common features presented by the mutations through structure-function studies. We will further provide an overview of how POT1 mutations affect telomere length regulation and tumorigenesis.
Collapse
Affiliation(s)
- Yi Gong
- Biomedical Research Center, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, USA.
| | - Amanda J Stock
- Biomedical Research Center, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, USA
| | - Yie Liu
- Biomedical Research Center, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, USA.
| |
Collapse
|
22
|
Srivastava A, Giangiobbe S, Kumar A, Paramasivam N, Dymerska D, Behnisch W, Witzens-Harig M, Lubinski J, Hemminki K, Försti A, Bandapalli OR. Identification of Familial Hodgkin Lymphoma Predisposing Genes Using Whole Genome Sequencing. Front Bioeng Biotechnol 2020; 8:179. [PMID: 32211398 PMCID: PMC7067901 DOI: 10.3389/fbioe.2020.00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Hodgkin lymphoma (HL) is a lymphoproliferative malignancy of B-cell origin that accounts for 10% of all lymphomas. Despite evidence suggesting strong familial clustering of HL, there is no clear understanding of the contribution of genes predisposing to HL. In this study, whole genome sequencing (WGS) was performed on 7 affected and 9 unaffected family members from three HL-prone families and variants were prioritized using our Familial Cancer Variant Prioritization Pipeline (FCVPPv2). WGS identified a total of 98,564, 170,550, and 113,654 variants which were reduced by pedigree-based filtering to 18,158, 465, and 26,465 in families I, II, and III, respectively. In addition to variants affecting amino acid sequences, variants in promoters, enhancers, transcription factors binding sites, and microRNA seed sequences were identified from upstream, downstream, 5′ and 3′ untranslated regions. A panel of 565 cancer predisposing and other cancer-related genes and of 2,383 potential candidate HL genes were also screened in these families to aid further prioritization. Pathway analysis of segregating genes with Combined Annotation Dependent Depletion Tool (CADD) scores >20 was performed using Ingenuity Pathway Analysis software which implicated several candidate genes in pathways involved in B-cell activation and proliferation and in the network of “Cancer, Hematological disease and Immunological Disease.” We used the FCVPPv2 for further in silico analyses and prioritized 45 coding and 79 non-coding variants from the three families. Further literature-based analysis allowed us to constrict this list to one rare germline variant each in families I and II and two in family III. Functional studies were conducted on the candidate from family I in a previous study, resulting in the identification and functional validation of a novel heterozygous missense variant in the tumor suppressor gene DICER1 as potential HL predisposition factor. We aim to identify the individual genes responsible for predisposition in the remaining two families and will functionally validate these in further studies.
Collapse
Affiliation(s)
- Aayushi Srivastava
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Sara Giangiobbe
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Abhishek Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Dagmara Dymerska
- Department of Genetics and Pathology, International Hereditary Cancer Centre, Pomeranian Medical University, Szczecin, Poland
| | - Wolfgang Behnisch
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | | | - Jan Lubinski
- Department of Genetics and Pathology, International Hereditary Cancer Centre, Pomeranian Medical University, Szczecin, Poland
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Pilsen, Czechia
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
23
|
Richard MA, Lupo PJ, Morton LM, Yasui YA, Sapkota YA, Arnold MA, Aubert G, Neglia JP, Turcotte LM, Leisenring WM, Sampson JN, Chanock SJ, Hudson MM, Armstrong GT, Robison LL, Bhatia S, Gramatges MM. Genetic variation in POT1 and risk of thyroid subsequent malignant neoplasm: A report from the Childhood Cancer Survivor Study. PLoS One 2020; 15:e0228887. [PMID: 32040538 PMCID: PMC7010302 DOI: 10.1371/journal.pone.0228887] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/24/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Telomere length is associated with risk for thyroid subsequent malignant neoplasm in survivors of childhood cancer. Here, we investigated associations between thyroid subsequent malignant neoplasm and inherited variation in telomere maintenance genes. METHODS We used RegulomeDB to annotate the functional impact of variants mapping to 14 telomere maintenance genes among 5,066 five-or-more year survivors who participate in the Childhood Cancer Survivor Study (CCSS) and who are longitudinally followed for incidence of subsequent cancers. Hazard ratios for thyroid subsequent malignant neoplasm were calculated for 60 putatively functional variants with minor allele frequency ≥1% in or near telomere maintenance genes. Functional impact was further assessed by measuring telomere length in leukocyte subsets. RESULTS The minor allele at Protection of Telomeres-1 (POT1) rs58722976 was associated with increased risk for thyroid subsequent malignant neoplasm (adjusted HR = 6.1, 95% CI: 2.4, 15.5, P = 0.0001; Fisher's exact P = 0.001). This imputed SNP was present in three out of 110 survivors who developed thyroid cancer vs. 14 out of 4,956 survivors who did not develop thyroid cancer. In a subset of 83 survivors with leukocyte telomere length data available, this variant was associated with longer telomeres in B lymphocytes (P = 0.004). CONCLUSIONS Using a functional variant approach, we identified and confirmed an association between a low frequency intronic regulatory POT1 variant and thyroid subsequent malignant neoplasm in survivors of childhood cancer. These results suggest that intronic variation in POT1 may affect key protein binding interactions that impact telomere maintenance and genomic integrity.
Collapse
Affiliation(s)
- Melissa A. Richard
- Department of Pediatrics, Baylor College of Medicine and Dan L. Duncan Cancer Center, Houston, TX, United States of America
| | - Philip J. Lupo
- Department of Pediatrics, Baylor College of Medicine and Dan L. Duncan Cancer Center, Houston, TX, United States of America
| | - Lindsay M. Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States of America
| | - Yutaka A. Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Yadav A. Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Michael A. Arnold
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Joseph P. Neglia
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
| | - Lucie M. Turcotte
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
| | - Wendy M. Leisenring
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Joshua N. Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States of America
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States of America
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Melissa M. Hudson
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Gregory T. Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, England
| | - Maria Monica Gramatges
- Department of Pediatrics, Baylor College of Medicine and Dan L. Duncan Cancer Center, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
24
|
Structural Features of Nucleoprotein CST/Shelterin Complex Involved in the Telomere Maintenance and Its Association with Disease Mutations. Cells 2020; 9:cells9020359. [PMID: 32033110 PMCID: PMC7072152 DOI: 10.3390/cells9020359] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/29/2022] Open
Abstract
Telomere comprises the ends of eukaryotic linear chromosomes and is composed of G-rich (TTAGGG) tandem repeats which play an important role in maintaining genome stability, premature aging and onsets of many diseases. Majority of the telomere are replicated by conventional DNA replication, and only the last bit of the lagging strand is synthesized by telomerase (a reverse transcriptase). In addition to replication, telomere maintenance is principally carried out by two key complexes known as shelterin (TRF1, TRF2, TIN2, RAP1, POT1, and TPP1) and CST (CDC13/CTC1, STN1, and TEN1). Shelterin protects the telomere from DNA damage response (DDR) and regulates telomere length by telomerase; while, CST govern the extension of telomere by telomerase and C strand fill-in synthesis. We have investigated both structural and biochemical features of shelterin and CST complexes to get a clear understanding of their importance in the telomere maintenance. Further, we have analyzed ~115 clinically important mutations in both of the complexes. Association of such mutations with specific cellular fault unveils the importance of shelterin and CST complexes in the maintenance of genome stability. A possibility of targeting shelterin and CST by small molecule inhibitors is further investigated towards the therapeutic management of associated diseases. Overall, this review provides a possible direction to understand the mechanisms of telomere borne diseases, and their therapeutic intervention.
Collapse
|
25
|
Shen E, Xiu J, Lopez GY, Bentley R, Jalali A, Heimberger AB, Bainbridge MN, Bondy ML, Walsh KM. POT1 mutation spectrum in tumour types commonly diagnosed among POT1-associated hereditary cancer syndrome families. J Med Genet 2020; 57:664-670. [PMID: 31937561 DOI: 10.1136/jmedgenet-2019-106657] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The shelterin complex is composed of six proteins that protect and regulate telomere length, including protection of telomeres 1 (POT1). Germline POT1 mutations are associated with an autosomal dominant familial cancer syndrome presenting with diverse malignancies, including glioma, angiosarcoma, colorectal cancer and melanoma. Although somatic POT1 mutations promote telomere elongation and genome instability in chronic lymphocytic leukaemia, the contribution of POT1 mutations to development of other sporadic cancers is largely unexplored. METHODS We performed logistic regression, adjusted for tumour mutational burden, to identify associations between POT1 mutation frequency and tumour type in 62 368 tumours undergoing next-generation sequencing. RESULTS A total of 1834 tumours harboured a non-benign mutation of POT1 (2.94%), of which 128 harboured a mutation previously reported to confer familial cancer risk in the setting of germline POT1 deficiency. Angiosarcoma was 11 times more likely than other tumours to harbour a POT1 mutation (p=1.4×10-20), and 65% of POT1-mutated angiosarcoma had >1 mutations in POT1. Malignant gliomas were 1.7 times less likely to harbour a POT1 mutation (p=1.2×10-3) than other tumour types. Colorectal cancer was 1.2 times less likely to harbour a POT1 mutation (p=0.012), while melanoma showed no differences in POT1 mutation frequency versus other tumours (p=0.67). CONCLUSIONS These results confirm a role for shelterin dysfunction in angiosarcoma development but suggest that gliomas arising in the context of germline POT1 deficiency activate a telomere-lengthening mechanism that is uncommon in gliomagenesis.
Collapse
Affiliation(s)
- Erica Shen
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joanne Xiu
- Medical Affairs, Caris Life Sciences Inc, Phoenix, Arizona, USA
| | - Giselle Y Lopez
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rex Bentley
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Amy B Heimberger
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Melissa L Bondy
- Epidemiology and Population Health, Stanford University School of Medicine, Palo Alto, California, USA
| | - Kyle M Walsh
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA .,Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
26
|
Whole Genome Sequencing of Familial Non-Medullary Thyroid Cancer Identifies Germline Alterations in MAPK/ERK and PI3K/AKT Signaling Pathways. Biomolecules 2019; 9:biom9100605. [PMID: 31614935 PMCID: PMC6843654 DOI: 10.3390/biom9100605] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022] Open
Abstract
Evidence of familial inheritance in non-medullary thyroid cancer (NMTC) has accumulated over the last few decades. However, known variants account for a very small percentage of the genetic burden. Here, we focused on the identification of common pathways and networks enriched in NMTC families to better understand its pathogenesis with the final aim of identifying one novel high/moderate-penetrance germline predisposition variant segregating with the disease in each studied family. We performed whole genome sequencing on 23 affected and 3 unaffected family members from five NMTC-prone families and prioritized the identified variants using our Familial Cancer Variant Prioritization Pipeline (FCVPPv2). In total, 31 coding variants and 39 variants located in upstream, downstream, 5′ or 3′ untranslated regions passed FCVPPv2 filtering. Altogether, 210 genes affected by variants that passed the first three steps of the FCVPPv2 were analyzed using Ingenuity Pathway Analysis software. These genes were enriched in tumorigenic signaling pathways mediated by receptor tyrosine kinases and G-protein coupled receptors, implicating a central role of PI3K/AKT and MAPK/ERK signaling in familial NMTC. Our approach can facilitate the identification and functional validation of causal variants in each family as well as the screening and genetic counseling of other individuals at risk of developing NMTC.
Collapse
|
27
|
McNally EJ, Luncsford PJ, Armanios M. Long telomeres and cancer risk: the price of cellular immortality. J Clin Invest 2019; 129:3474-3481. [PMID: 31380804 PMCID: PMC6715353 DOI: 10.1172/jci120851] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The distribution of telomere length in humans is broad, but it has finite upper and lower boundaries. Growing evidence shows that there are disease processes that are caused by both short and long telomere length extremes. The genetic basis of these short and long telomere syndromes may be linked to mutations in the same genes, such as the telomerase reverse transcriptase (TERT), but through differential effects on telomere length. Short telomere syndromes have a predominant degenerative phenotype marked by organ failure that most commonly manifests as pulmonary fibrosis and are associated with a relatively low cancer incidence. In contrast, insights from studies of cancer-prone families as well as genome-wide association studies (GWAS) have identified both rare and common variants that lengthen telomeres as being strongly associated with cancer risk. We have hypothesized that these cancers represent a long telomere syndrome that is associated with a high penetrance of cutaneous melanoma and chronic lymphocytic leukemia. In this Review, we will synthesize the clinical and human genetic observations with data from mouse models to define the role of telomeres in cancer etiology and biology.
Collapse
Affiliation(s)
| | | | - Mary Armanios
- Department of Oncology
- Telomere Center
- Sidney Kimmel Comprehensive Cancer Center, and
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Potrony M, Puig-Butille J, Ribera-Sola M, Iyer V, Robles-Espinoza C, Aguilera P, Carrera C, Malvehy J, Badenas C, Landi M, Adams D, Puig S. POT1 germline mutations but not TERT promoter mutations are implicated in melanoma susceptibility in a large cohort of Spanish melanoma families. Br J Dermatol 2019; 181:105-113. [PMID: 30451293 PMCID: PMC6526091 DOI: 10.1111/bjd.17443] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Germline mutations in telomere-related genes such as POT1 and TERT predispose individuals to familial melanoma. OBJECTIVES To evaluate the prevalence of germline mutations in POT1 and TERT in a large cohort of Spanish melanoma-prone families (at least two affected first- or second-degree relatives). METHODS Overall, 228 CDKN2A wild-type melanoma-prone families were included in the study. Screening of POT1 was performed in one affected person from each family and TERT was sequenced in one affected patient from 202 families (26 families were excluded owing to DNA exhaustion/degradation). TERT promoter sequencing was extended to an additional 30 families with CDKN2A mutation and 70 patients with sporadic multiple primary melanoma (MPM) with a family history of other cancers. RESULTS We identified four families with potentially pathogenic POT1 germline mutations: a missense variant c.233T>C (p.Ile78Thr); a nonsense variant c.1030G>T (p.Glu344*); and two other variants, c.255G>A (r.125_255del) and c.1792G>A (r.1791_1792insAGTA, p.Asp598Serfs*22), which we confirmed disrupted POT1 mRNA splicing. A TERT promoter variant of unknown significance (c.-125C>A) was detected in a patient with MPM, but no germline mutations were detected in TERT promoter in cases of familial melanoma. CONCLUSIONS Overall, 1·7% of our CDKN2A/CDK4-wild type Spanish melanoma-prone families carry probably damaging mutations in POT1. The frequency of TERT promoter germline mutations in families with melanoma in our population is extremely rare.
Collapse
Affiliation(s)
- Miriam Potrony
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - J.A. Puig-Butille
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
- Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - M. Ribera-Sola
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - V. Iyer
- Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - C.D. Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Santiago de Querétaro, Mexico
- Experimental Cancer Genetics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - P. Aguilera
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Cristina Carrera
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - J. Malvehy
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - C. Badenas
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
- Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - M.T. Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - D.J. Adams
- Experimental Cancer Genetics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Susana Puig
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|