1
|
Umans BD, Gilad Y. Oxygen-induced stress reveals context-specific gene regulatory effects in human brain organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611030. [PMID: 39282424 PMCID: PMC11398411 DOI: 10.1101/2024.09.03.611030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The interaction between genetic variants and environmental stressors is key to understanding the mechanisms underlying neurological diseases. In this study, we used human brain organoids to explore how varying oxygen levels expose context-dependent gene regulatory effects. By subjecting a genetically diverse panel of 21 brain organoids to hypoxic and hyperoxic conditions, we identified thousands of gene regulatory changes that are undetectable under baseline conditions, with 1,745 trait-associated genes showing regulatory effects only in response to oxygen stress. To capture more nuanced transcriptional patterns, we employed topic modeling, which revealed context-specific gene regulation linked to dynamic cellular processes and environmental responses, offering a deeper understanding of how gene regulation is modulated in the brain. These findings underscore the importance of genotype-environment interactions in genetic studies of neurological disorders and provide new insights into the hidden regulatory mechanisms influenced by environmental factors in the brain.
Collapse
Affiliation(s)
- Benjamin D Umans
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Yoav Gilad
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL 60637, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Ogbu I, Menon T, Chahil V, Kahlon A, Devanand D, Kalra DK. Sleep Disordered Breathing and Neurocognitive Disorders. J Clin Med 2024; 13:5001. [PMID: 39274214 PMCID: PMC11396397 DOI: 10.3390/jcm13175001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Sleep-disordered breathing (SDB), which includes conditions such as obstructive sleep apnea (OSA) and central sleep apnea (CSA), is an independent risk factor for cerebral small vessel disease (CSVD), stroke, heart failure, arrhythmias, and other cardiovascular disorders. The influence of OSA on brain structure and cognitive function has become an essential focus in the heart-brain axis, given its potential role in developing neurocognitive abnormalities. In this review, we found that OSA plays a significant role in the cardio-neural pathway that leads to the development of cerebral small vessel disease and neurocognitive decline. Although data is still limited on this topic, understanding the critical role of OSA in the heart-brain axis could lead to the utilization of imaging modalities to simultaneously identify early signs of pathology in both organ systems based on the known OSA-driven pathological pathways that result in a disease state in both the cardiovascular and cerebrovascular systems. This narrative review aims to summarize the current link between OSA and neurocognitive disorders, cardio-neural pathophysiology, and the treatment options available for patients with OSA-related neurocognitive disorders.
Collapse
Affiliation(s)
- Ikechukwu Ogbu
- Department of Cardiology, University of Louisville, Louisville, KY 40202, USA
| | - Tushar Menon
- Department of Cardiology, University of Louisville, Louisville, KY 40202, USA
| | - Vipanpreet Chahil
- Department of Cardiology, University of Louisville, Louisville, KY 40202, USA
| | - Amrit Kahlon
- Department of Cardiology, University of Louisville, Louisville, KY 40202, USA
| | | | - Dinesh K Kalra
- Department of Cardiology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Xiao F, Liu M, Wang Y, Zhou L, Luo J, Chen C, Chen W. Altered Functional Connectivity of Temporoparietal Lobe in Obstructive Sleep Apnea: A Resting-State fNIRS Study. Bioengineering (Basel) 2024; 11:389. [PMID: 38671810 PMCID: PMC11048547 DOI: 10.3390/bioengineering11040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Obstructive Sleep Apnea (OSA), a sleep disorder with high prevalence, is normally accompanied by affective, autonomic, and cognitive abnormalities, and is deemed to be linked to functional brain alterations. To investigate alterations in brain functional connectivity properties in patients with OSA, a comparative analysis of global and local topological properties of brain networks was conducted between patients with OSA and healthy controls (HCs), utilizing functional near-infrared spectroscopy (fNIRS) imaging. A total of 148 patients with OSA and 150 healthy individuals were involved. Firstly, quantitative alterations in blood oxygen concentration, changes in functional connectivity, and variations in graph theory-based network topological characteristics were assessed. Then, with Mann-Whitney statistics, this study compared whether there are significant differences in the above characteristics between patients with OSA and HCs. Lastly, the study further examined the correlation between the altered characteristics and the apnea hypopnea index (AHI) using linear regression. Results revealed a higher mean and standard deviation of hemoglobin concentration in the superior temporal gyrus among patients with OSA compared to HCs. Resting-state functional connectivity (RSFC) exhibited a slight increase between the superior temporal gyrus and other specific areas in patients with OSA. Notably, neither patients with OSA nor HCs demonstrated significant small-world network properties. Patients with OSA displayed an elevated clustering coefficient (p < 0.05) and local efficiency (p < 0.05). Additionally, patients with OSA exhibited a tendency towards increased nodal betweenness centrality (p < 0.05) and degree centrality (p < 0.05) in the right supramarginal gyrus, as well as a trend towards higher betweenness centrality (p < 0.05) in the right precentral gyrus. The results of multiple linear regressions indicate that the influence of the AHI on RSFC between the right precentral gyrus and right superior temporal gyrus (p < 0.05), as well as between the right precentral gyrus and right supramarginal gyrus (p < 0.05), are statistically significant. These findings suggest that OSA may compromise functional brain connectivity and network topological properties in affected individuals, serving as a potential neurological mechanism underlying the observed abnormalities in brain function associated with OSA.
Collapse
Affiliation(s)
- Fang Xiao
- School of Information Science and Technology, Fudan University, Shanghai 200437, China; (F.X.); (M.L.); (L.Z.)
| | - Minghui Liu
- School of Information Science and Technology, Fudan University, Shanghai 200437, China; (F.X.); (M.L.); (L.Z.)
| | - Yalin Wang
- School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ligang Zhou
- School of Information Science and Technology, Fudan University, Shanghai 200437, China; (F.X.); (M.L.); (L.Z.)
| | - Jingchun Luo
- Human Phenome Institute, Fudan University, Shanghai 200437, China;
| | - Chen Chen
- Human Phenome Institute, Fudan University, Shanghai 200437, China;
| | - Wei Chen
- School of Information Science and Technology, Fudan University, Shanghai 200437, China; (F.X.); (M.L.); (L.Z.)
- Human Phenome Institute, Fudan University, Shanghai 200437, China;
| |
Collapse
|
4
|
Thomas RJ. A matter of fragmentation. Sleep 2024; 47:zsae030. [PMID: 38285604 DOI: 10.1093/sleep/zsae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 01/31/2024] Open
Affiliation(s)
- Robert Joseph Thomas
- Professor of Medicine, Harvard Medical School, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
5
|
Bachmann D, von Rickenbach B, Buchmann A, Hüllner M, Zuber I, Studer S, Saake A, Rauen K, Gruber E, Nitsch RM, Hock C, Treyer V, Gietl A. White matter hyperintensity patterns: associations with comorbidities, amyloid, and cognition. Alzheimers Res Ther 2024; 16:67. [PMID: 38561806 PMCID: PMC10983708 DOI: 10.1186/s13195-024-01435-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND White matter hyperintensities (WMHs) are often measured globally, but spatial patterns of WMHs could underlie different risk factors and neuropathological and clinical correlates. We investigated the spatial heterogeneity of WMHs and their association with comorbidities, Alzheimer's disease (AD) risk factors, and cognition. METHODS In this cross-sectional study, we studied 171 cognitively unimpaired (CU; median age: 65 years, range: 50 to 89) and 51 mildly cognitively impaired (MCI; median age: 72, range: 53 to 89) individuals with available amyloid (18F-flutementamol) PET and FLAIR-weighted images. Comorbidities were assessed using the Cumulative Illness Rating Scale (CIRS). Each participant's white matter was segmented into 38 parcels, and WMH volume was calculated in each parcel. Correlated principal component analysis was applied to the parceled WMH data to determine patterns of WMH covariation. Adjusted and unadjusted linear regression models were used to investigate associations of component scores with comorbidities and AD-related factors. Using multiple linear regression, we tested whether WMH component scores predicted cognitive performance. RESULTS Principal component analysis identified four WMH components that broadly describe FLAIR signal hyperintensities in posterior, periventricular, and deep white matter regions, as well as basal ganglia and thalamic structures. In CU individuals, hypertension was associated with all patterns except the periventricular component. MCI individuals showed more diverse associations. The posterior and deep components were associated with renal disorders, the periventricular component was associated with increased amyloid, and the subcortical gray matter structures was associated with sleep disorders, endocrine/metabolic disorders, and increased amyloid. In the combined sample (CU + MCI), the main effects of WMH components were not associated with cognition but predicted poorer episodic memory performance in the presence of increased amyloid. No interaction between hypertension and the number of comorbidities on component scores was observed. CONCLUSION Our study underscores the significance of understanding the regional distribution patterns of WMHs and the valuable insights that risk factors can offer regarding their underlying causes. Moreover, patterns of hyperintensities in periventricular regions and deep gray matter structures may have more pronounced cognitive implications, especially when amyloid pathology is also present.
Collapse
Affiliation(s)
- Dario Bachmann
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland.
- Department of Health Sciences and Technology, ETH Zürich, 8093, Zurich, Switzerland.
| | | | - Andreas Buchmann
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
| | - Martin Hüllner
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Isabelle Zuber
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
| | - Sandro Studer
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
| | - Antje Saake
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
| | - Katrin Rauen
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
- Department of Geriatric Psychiatry, Psychiatric Hospital Zurich, 8032, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, 8057, Zurich, Switzerland
| | - Esmeralda Gruber
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
- Neurimmune AG, 8952, Zurich, Schlieren, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
- Neurimmune AG, 8952, Zurich, Schlieren, Switzerland
| | - Valerie Treyer
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Anton Gietl
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
- Department of Geriatric Psychiatry, Psychiatric Hospital Zurich, 8032, Zurich, Switzerland
| |
Collapse
|
6
|
Spitzer C, Weihs A, Ewert R, Stubbe B, Penzel T, Fietze I, Völzke H, Grabe HJ. Childhood maltreatment and sleep apnea: Findings from a cross-sectional general population study. J Psychosom Res 2024; 178:111600. [PMID: 38340571 DOI: 10.1016/j.jpsychores.2024.111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/11/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVE Cumulative evidence indicates that childhood maltreatment (CM) is associated with sleep disturbances possibly suggesting sleep apnea. However, the relation between CM and objective measures of sleep apnea as determined by polysomnography (PSG) has not yet been assessed. METHODS Using a cross-sectional design and based on PSG measurements from N = 962 subjects from the SHIP-Trend general population study, we used linear regression models to investigate the relationship between apnea-hypopnea (AHI) and oxygen desaturation index (ODI) and Epworth sleepiness scale (ESS) metrics and the Childhood Trauma Questionnaire (CTQ). All significant models were additionally adjusted for obesity, depression, metabolic syndrome, risky health behaviors, and socioeconomic factors. RESULTS While both AHI and ESS were positively associated with the CTQ sum score, ODI was not. Investigating the CTQ subscales, ESS was associated with emotional abuse and emotional neglect; AHI was associated with physical and sexual abuse as well as physical neglect. For both the sum score and the subscales of the CTQ, ESS effects were partially mediated by depressive symptoms, while AHI effects were mediated by obesity, risky health behaviors, and metabolic syndrome. CONCLUSION The findings of this general population study suggest an association between CM, particularly physical neglect, and objective as well as subjective indicators of sleep apnea, which were partially mediated by depressive symptoms and obesity.
Collapse
Affiliation(s)
- Carsten Spitzer
- Department of Psychosomatic Medicine and Psychotherapy, University Medicine Rostock, Rostock, Germany.
| | - Antoine Weihs
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
| | - Ralf Ewert
- Department of Internal Medicine B - Cardiology, Pulmonary Medicine, Infectious Diseases and Intensive Care Medicine, University Medicine Greifswald, Germany
| | - Beate Stubbe
- Department of Internal Medicine B - Cardiology, Pulmonary Medicine, Infectious Diseases and Intensive Care Medicine, University Medicine Greifswald, Germany
| | - Thomas Penzel
- Center of Sleep Medicine, University Hospital Charité Berlin, Berlin, Germany
| | - Ingo Fietze
- Center of Sleep Medicine, University Hospital Charité Berlin, Berlin, Germany
| | - Henry Völzke
- Department of Community Medicine, SHIP/Clinical Epidemiology Research, University Greifswald, Greifswald, Germany; German Centre for Diabetes Research, DZD, Partner Site Greifswald, Germany; German Centre for Cardiovascular Research, DZHK, Site Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany; German Center for Neurodegenerative Disease (DZNE), site Rostock/Greifswald, Germany
| |
Collapse
|
7
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 182] [Impact Index Per Article: 182.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
8
|
Oliver C, Li H, Biswas B, Woodstoke D, Blackman J, Butters A, Drew C, Gabb V, Harding S, Hoyos CM, Kendrick A, Rudd S, Turner N, Coulthard E. A systematic review on adherence to continuous positive airway pressure (CPAP) treatment for obstructive sleep apnoea (OSA) in individuals with mild cognitive impairment and Alzheimer's disease dementia. Sleep Med Rev 2024; 73:101869. [PMID: 37924680 DOI: 10.1016/j.smrv.2023.101869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023]
Abstract
Obstructive sleep apnoea (OSA) is highly prevalent in mild cognitive impairment (MCI) and Alzheimer's disease (AD). The gold standard treatment for OSA is continuous positive airway pressure (CPAP). Long-term, well-powered efficacy trials are required to understand whether CPAP could slow cognitive decline in individuals with MCI/AD, but its tolerability in this group remains uncertain. The present review investigates CPAP adherence among individuals with OSA and MCI/AD. Electronic searches were performed on 8 databases. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Six independent studies and four secondary analyses included 278 unique participants (mean age = 72.1 years). In five of the retained studies, around half of participants (45% N = 85 MCI, 56% N = 22 AD) were adherent to CPAP, where ≥4 h use per night was considered adherent. Three of the retained studies also reported average CPAP use to range between 3.2 and 6.3 h/night. CPAP adherence in individuals with MCI and AD is low, albeit similar to the general elderly population. Reporting adherence in future studies as both average duration as well as using a binary cut-off would improve our understanding of the optimum CPAP use in dementia clinical trials and care.
Collapse
Affiliation(s)
- Cerys Oliver
- Cardiff University, Cardiff, UK; University of Bristol, Bristol, UK
| | - Haoxuan Li
- University of Bristol, Bristol, UK; University Hospitals Bristol and Weston NHS Trust, Bristol, UK
| | | | | | - Jonathan Blackman
- University of Bristol, Bristol, UK; North Bristol NHS Trust, Bristol, UK
| | | | | | | | | | - Camilla M Hoyos
- Woolcock Institute of Medical Research, Macquarie University, Sydney, Australia
| | - Adrian Kendrick
- University of Bristol, Bristol, UK; University Hospitals Bristol and Weston NHS Trust, Bristol, UK; University of the West of England, Bristol, UK
| | | | | | | |
Collapse
|
9
|
Clocchiatti‐Tuozzo S, Rivier CA, Renedo D, Torres Lopez VM, Geer JH, Miner B, Yaggi HK, de Havenon A, Payabvash S, Sheth KN, Gill TM, Falcone GJ. Suboptimal Sleep Duration Is Associated With Poorer Neuroimaging Brain Health Profiles in Middle-Aged Individuals Without Stroke or Dementia. J Am Heart Assoc 2024; 13:e031514. [PMID: 38156552 PMCID: PMC10863828 DOI: 10.1161/jaha.123.031514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND The American Heart Association's Life's Simple 7, a public health construct capturing key determinants of cardiovascular health, became the Life's Essential 8 after the addition of sleep duration. The authors tested the hypothesis that suboptimal sleep duration is associated with poorer neuroimaging brain health profiles in asymptomatic middle-aged adults. METHODS AND RESULTS The authors conducted a prospective magnetic resonance neuroimaging study in middle-aged individuals without stroke or dementia enrolled in the UK Biobank. Self-reported sleep duration was categorized as short (<7 hours), optimal (7-<9 hours), or long (≥9 hours). Evaluated neuroimaging markers included the presence of white matter hyperintensities (WMHs), volume of WMH, and fractional anisotropy, with the latter evaluated as the average of 48 white matter tracts. Multivariable logistic and linear regression models were used to test for an association between sleep duration and these neuroimaging markers. The authors evaluated 39 771 middle-aged individuals. Of these, 28 912 (72.7%) had optimal, 8468 (21.3%) had short, and 2391 (6%) had long sleep duration. Compared with optimal sleep, short sleep was associated with higher risk of WMH presence (odds ratio, 1.11 [95% CI, 1.05-1.18]; P<0.001), larger WMH volume (beta=0.06 [95% CI, 0.04-0.08]; P<0.001), and worse fractional anisotropy profiles (beta=-0.04 [95% CI, -0.06 to -0.02]; P=0.001). Compared with optimal sleep, long sleep duration was associated with larger WMH volume (beta=0.04 [95% CI, 0.01-0.08]; P=0.02) and worse fractional anisotropy profiles (beta=-0.06 [95% CI, -0.1 to -0.02]; P=0.002), but not with WMH presence (P=0.6). CONCLUSIONS Among middle-aged adults without stroke or dementia, suboptimal sleep duration is associated with poorer neuroimaging brain health profiles. Because these neuroimaging markers precede stroke and dementia by several years, these findings are consistent with other findings evaluating early interventions to improve this modifiable risk factor.
Collapse
Affiliation(s)
- Santiago Clocchiatti‐Tuozzo
- Department of NeurologyYale School of MedicineNew HavenCTUSA
- Department of Internal MedicineYale School of MedicineNew HavenCTUSA
| | | | - Daniela Renedo
- Department of NeurologyYale School of MedicineNew HavenCTUSA
| | | | | | - Brienne Miner
- Department of Internal MedicineYale School of MedicineNew HavenCTUSA
| | - Henry K. Yaggi
- Department of Internal MedicineYale School of MedicineNew HavenCTUSA
| | - Adam de Havenon
- Department of NeurologyYale School of MedicineNew HavenCTUSA
| | | | - Kevin N. Sheth
- Department of NeurologyYale School of MedicineNew HavenCTUSA
| | - Thomas M. Gill
- Department of Internal MedicineYale School of MedicineNew HavenCTUSA
| | | |
Collapse
|
10
|
González KA, Tarraf W, Stickel AM, Kaur S, Agudelo C, Redline S, Gallo LC, Isasi CR, Cai J, Daviglus ML, Testai FD, DeCarli C, González HM, Ramos AR. Sleep duration and brain MRI measures: Results from the SOL-INCA MRI study. Alzheimers Dement 2024; 20:641-651. [PMID: 37772658 PMCID: PMC10840814 DOI: 10.1002/alz.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023]
Abstract
INTRODUCTION Sleep duration has been associated with dementia and stroke. Few studies have evaluated sleep pattern-related outcomes of brain disease in diverse Hispanics/Latinos. METHODS The SOL-INCA (Study of Latinos-Investigation of Neurocognitive Aging) magnetic resonance imaging (MRI) study recruited diverse Hispanics/Latinos (35-85 years) who underwent neuroimaging. The main exposure was self-reported sleep duration. Our main outcomes were total and regional brain volumes. RESULTS The final analytic sample included n = 2334 participants. Increased sleep was associated with smaller brain volume (βtotal_brain = -0.05, p < 0.01) and consistently so in the 50+ subpopulation even after adjusting for mild cognitive impairment status. Sleeping >9 hours was associated with smaller gray (βcombined_gray = -0.17, p < 0.05) and occipital matter volumes (βoccipital_gray = -0.18, p < 0.05). DISCUSSION We found that longer sleep duration was associated with lower total brain and gray matter volume among diverse Hispanics/Latinos across sex and background. These results reinforce the importance of sleep on brain aging in this understudied population. HIGHLIGHTS Longer sleep was linked to smaller total brain and gray matter volumes. Longer sleep duration was linked to larger white matter hyperintensities (WMHs) and smaller hippocampal volume in an obstructive sleep apnea (OSA) risk group. These associations were consistent across sex and Hispanic/Latino heritage groups.
Collapse
Affiliation(s)
- Kevin A. González
- Department of Neurosciences and Shiley‐Marcos Alzheimer's Disease Research CenterUniversity of California San Diego School of MedicineSan DiegoCaliforniaUSA
| | - Wassim Tarraf
- Department of Healthcare Sciences and Institute of GerontologyWayne State UniversityDetroitMichiganUSA
| | - Ariana M. Stickel
- Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Sonya Kaur
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Christian Agudelo
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Susan Redline
- Department of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Linda C. Gallo
- Department of Psychology and South Bay Latino Research CenterSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Carmen R. Isasi
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Jianwen Cai
- Department of BiostatisticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Martha L. Daviglus
- Institute for Minority Health ResearchCollege of MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Fernando D. Testai
- Department of Neurology and RehabilitationUniversity of Illinois College of MedicineChicagoIllinoisUSA
| | - Charles DeCarli
- Department of NeurologyUniversity of California DavisSacramentoCaliforniaUSA
| | - Hector M. González
- Department of Neurosciences and Shiley‐Marcos Alzheimer's Disease Research CenterUniversity of California San Diego School of MedicineSan DiegoCaliforniaUSA
| | - Alberto R. Ramos
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
11
|
de Araujo Dantas AB, Gonçalves FM, Martins AA, Alves GÂ, Stechman-Neto J, Corrêa CDC, Santos RS, Nascimento WV, de Araujo CM, Taveira KVM. Worldwide prevalence and associated risk factors of obstructive sleep apnea: a meta-analysis and meta-regression. Sleep Breath 2023; 27:2083-2109. [PMID: 36971971 DOI: 10.1007/s11325-023-02810-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE This study aimed to identify the prevalence of obstructive sleep apnea (OSA) and associated risk factors globally. METHODS Six databases and registrations and three grey databases were explored for observational field research. Independently and impartially paired reviewers selected research, gathered data, and evaluated the methodological quality. Heterogeneity was investigated using subgroup analysis and meta-regression following the moderating variable in a meta-analysis of proportions with a random-effects model. The critical appraisal instrument developed by the Joanna Briggs Institute was used to evaluate the listed studies' methodology. The certainty of the evidence was evaluated using the GRADE tool. RESULTS A total of 8236 articles were collected during the database search, resulting in 99 articles included for qualitative synthesis, and 98 articles were included for the meta-analysis. The estimated combined prevalence of OSA was 54% [CI 95% = 46-62%; I2 = 100%]. Mean age, percentage of moderate-severe cases, and the sample's body mass index (BMI) did not affect the heterogeneity that was already present when meta-regressed (p > 0.05). Ninety-one studies were deemed to have a low risk of bias, while eight were deemed to have a moderate risk. For OSA prevalence outcomes, the GRADE criteria were considered very low. CONCLUSION Approximately half of the people worldwide have OSA. High BMI, increasing age, and male gender are described as risk factors in the literature, but these covariates do not affect pre-existing heterogeneity.
Collapse
Affiliation(s)
- Anna Beatriz de Araujo Dantas
- Department of Morphology - Center of Biosciences, Federal University of Rio Grande do Norte (UFRN), BR 101- Lagoa Nova, Natal, RN - 59072-970, Brazil
| | - Flávio Magno Gonçalves
- Tuiuti University of Paraná (UTP), Curitiba, Brazil
- Center for Advanced Studies in Systematic Review and Meta-Analysis (NARSM), Curitiba, Brazil
| | - Agnes Andrade Martins
- Department of Morphology - Center of Biosciences, Federal University of Rio Grande do Norte (UFRN), BR 101- Lagoa Nova, Natal, RN - 59072-970, Brazil
- Center for Advanced Studies in Systematic Review and Meta-Analysis (NARSM), Curitiba, Brazil
| | | | - José Stechman-Neto
- Tuiuti University of Paraná (UTP), Curitiba, Brazil
- Center for Advanced Studies in Systematic Review and Meta-Analysis (NARSM), Curitiba, Brazil
| | - Camila de Castro Corrêa
- Center for Advanced Studies in Systematic Review and Meta-Analysis (NARSM), Curitiba, Brazil
- Planalto University Center of the Federal District (UNIPLAN), Brasília, Brazil
| | - Rosane Sampaio Santos
- Tuiuti University of Paraná (UTP), Curitiba, Brazil
- Center for Advanced Studies in Systematic Review and Meta-Analysis (NARSM), Curitiba, Brazil
| | - Weslania Viviane Nascimento
- Center for Advanced Studies in Systematic Review and Meta-Analysis (NARSM), Curitiba, Brazil
- Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Cristiano Miranda de Araujo
- Tuiuti University of Paraná (UTP), Curitiba, Brazil
- Center for Advanced Studies in Systematic Review and Meta-Analysis (NARSM), Curitiba, Brazil
| | - Karinna Veríssimo Meira Taveira
- Department of Morphology - Center of Biosciences, Federal University of Rio Grande do Norte (UFRN), BR 101- Lagoa Nova, Natal, RN - 59072-970, Brazil.
- Center for Advanced Studies in Systematic Review and Meta-Analysis (NARSM), Curitiba, Brazil.
| |
Collapse
|
12
|
Li X, Chen J, Du H, Zhang Y, Hua J, Cheng Y, Li X, Chen X. Association between Obstructive Sleep Apnea and Intracranial Artery Calcification Stratified by Gender and Body Mass Index: A Hospital-Based Observational Study. Neuroepidemiology 2023; 57:391-399. [PMID: 37660685 DOI: 10.1159/000533843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/05/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Obstructive sleep apnea (OSA) is an independent risk factor for stroke. Furthermore, intracranial arterial calcification (IAC) has been validated as a marker for subclinical cerebrovascular disease. However, the relationship between OSA with IAC was less studied compared with its established association with coronary artery calcification. In this study, we aimed to investigate the association between the severity of OSA and the degree of IAC in hospitalized patients without preexisting cardiovascular disease. METHODS This hospital-based observational study was conducted from June 1, 2017, to May 1, 2019. In total, 901 consecutive patients who underwent head computed tomography scans and portable sleep monitoring were included. On the basis of the apnea-hypopnea index (AHI), patients were divided into four OSA severity groups (normal: AHI <5/h; mild: 5≤ AHI <15/h; moderate: 15≤ AHI <30/h; severe: AHI ≥30/h). Associations of OSA with IAC scores were assessed by using multivariate logistic regression analysis. RESULTS Of the 901 patients, 484 (53.7%) were men; the mean (SD) age was 66.1 (10.0) years. The non-OSA group included 207 (23.0%) patients; mild OSA, 209 (23.2%); moderate OSA, 235 (26.1%); and severe OSA, 169 (18.8%). Mean IAC scores were higher in the severe OSA group compared with non-, mild, and moderate OSA groups (4.79 vs. 2.58; 4.79 vs. 2.94; 4.79 vs. 3.39; p < 0.001). Multivariate analysis adjusted for confounding factors revealed that only severe OSA was associated with a higher IAC score (odds ratio [OR]: 1.65; 95% confidence interval [CI]: 1.43-1.91; p < 0.001). In stratified analyses by BMI, among participants with a BMI <25 kg/m2, the positive association between AHI values and IAC scores was found in the moderate OSA group (OR: 1.23; 95% CI: 1.05, 1.43; p = 0.01) and the severe OSA group (OR: 1.96; 95% CI: 1.55, 2.48; p < 0.001). When stratified by gender, in women, the positive association was found in the moderate OSA group (adjusted OR: 1.21; 95% CI: 1.02-1.51; p = 0.016) and the severe OSA group (adjusted OR: 1.76; 95% CI: 1.36-2.25; p < 0.001). For the men group, a positive association between IAC scores and AHI was only observed in the severe OSA group. DISCUSSION These findings suggest that OSA, in particular severe OSA (AHI ≥30), is independently associated with higher IAC scores. Women and no-obesity individuals appeared more susceptible to adverse OSA-related subclinical cerebrovascular disease as measured by IAC scores.
Collapse
Affiliation(s)
- Xuelong Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, Hong Kong, China,
| | - Junru Chen
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Heng Du
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, Hong Kong, China
| | - Yujing Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiewei Hua
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yangyang Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, Hong Kong, China
| | - Xianliang Li
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangyan Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Wu B, Liu F, Sun G, Wang S. Correlation between obstructive sleep apnea and cerebral small vessel disease: a mendelian randomization study. Genes Genomics 2023; 45:1179-1186. [PMID: 37300787 DOI: 10.1007/s13258-023-01402-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Whether obstructive sleep apnea (OSA) is causally associated with an increased risk of cerebral small vessel disease (CSVD) remains controversial. We conducted a two-sample Mendelian randomization (MR) study to clarify the causal relationship between OSA and CSVD risk. METHODS Single-nucleotide polymorphisms associated with OSA at the genome-wide significance level (P < 5 × 10- 8) in the FinnGen consortium were selected as instrumental variables. Summary-level data for white matter hyperintensities (WMHs), lacunar infarctions (LIs), cerebral microbleeds (CMBs), fractional anisotropy (FA), and mean diffusivity (MD) were obtained from three meta-analyses of genome-wide association studies (GWASs). The random-effects inverse-variance weighted (IVW) method was selected for the major analysis. Weighted-median, MR-Egger, MR pleiotropy residual sum and outlier (MR-PRESSO), and leave-one-out analysis methods were implemented for the sensitivity analyses. RESULTS Genetically predicted OSA was not associated with LIs (odds ratio [OR] = 1.10, 95% confidence interval [CI] = 0.86-1.40), WMHs (OR = 0.94, 95% CI = 0.83-1.07), FA (OR = 1.33, 95% CI = 0.75-2.33), MD (OR = 0.93, 95% CI = 0.58-1.47), CMBs (OR = 1.29, 95% CI = 0.86-1.94), mixed CMBs (OR = 1.17, 95% CI = 0.63-2.17), and lobar CMBs (OR = 1.15, 95% CI = 0.75-1.76) in IVW method. The results of the sensitivity analyses were generally consistent with the major analyses. CONCLUSIONS This MR study does not support causal associations between OSA and the risk of CSVD in individuals of European ancestry. These findings need to be further validated in randomized controlled trials, larger cohort studies, and MR studies based on larger GWASs.
Collapse
Affiliation(s)
- Bing Wu
- Department of Neurology, Army 78th Military Group Hospital, 1 Tian Qing Street, Ai Min District, Mudanjiang, 157000, China
| | - Fang Liu
- Department of Neurology, Army 78th Military Group Hospital, 1 Tian Qing Street, Ai Min District, Mudanjiang, 157000, China
| | - Guiyan Sun
- Department of Neurology, Army 78th Military Group Hospital, 1 Tian Qing Street, Ai Min District, Mudanjiang, 157000, China
| | - Shuang Wang
- Department of Neurology, Army 78th Military Group Hospital, 1 Tian Qing Street, Ai Min District, Mudanjiang, 157000, China.
| |
Collapse
|
14
|
Carvalho DZ, McCarter SJ, St Louis EK, Przybelski SA, Johnson Sparrman KL, Somers VK, Boeve BF, Petersen RC, Jack CR, Graff-Radford J, Vemuri P. Association of Polysomnographic Sleep Parameters With Neuroimaging Biomarkers of Cerebrovascular Disease in Older Adults With Sleep Apnea. Neurology 2023; 101:e125-e136. [PMID: 37164654 PMCID: PMC10351545 DOI: 10.1212/wnl.0000000000207392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/23/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Our objective was to determine whether polysomnographic (PSG) sleep parameters are associated with neuroimaging biomarkers of cerebrovascular disease (CVD) related to white matter (WM) integrity in older adults with obstructive sleep apnea (OSA). METHODS From the population-based Mayo Clinic Study of Aging, we identified participants without dementia who underwent at least 1 brain MRI and PSG. We quantified 2 CVD biomarkers: WM hyperintensities (WMHs) from fluid-attenuated inversion recovery (FLAIR)-MRI, and fractional anisotropy of the genu of the corpus callosum (genu FA) from diffusion MRI. For this cross-sectional analysis, we fit linear models to assess associations between PSG parameters (NREM stage 1 percentage, NREM stage 3 percentage [slow-wave sleep], mean oxyhemoglobin saturation, and log of apnea-hypopnea index [AHI]) and CVD biomarkers (log of WMH and log of genu FA), respectively, while adjusting for age (at MRI), sex, APOE ε4 status, composite cardiovascular and metabolic conditions (CMC) score, REM stage percentage, sleep duration, and interval between MRI and PSG. RESULTS We included 140 participants with FLAIR-MRI (of which 103 had additional diffusion MRI). The mean ± SD age was 72.7 ± 9.6 years at MRI with nearly 60% being men. The absolute median (interquartile range [IQR]) interval between MRI and PSG was 1.74 (0.9-3.2) years. 90.7% were cognitively unimpaired (CU) during both assessments. For every 10-point decrease in N3%, there was a 0.058 (95% CI 0.006-0.111, p = 0.030) increase in the log of WMH and 0.006 decrease (95% CI -0.012 to -0.0002, p = 0.042) in the log of genu FA. After matching for age, sex, and N3%, participants with severe OSA had higher WMH (median [IQR] 0.007 [0.005-0.015] vs 0.006 [0.003-0.009], p = 0.042) and lower genu FA (median [IQR] 0.57 [0.55-0.63] vs 0.63 [0.58-0.65], p = 0.007), when compared with those with mild/moderate OSA. DISCUSSION We found that reduced slow-wave sleep and severe OSA were associated with higher burden of WM abnormalities in predominantly CU older adults, which may contribute to greater risk of cognitive impairment, dementia, and stroke. Our study supports the association between sleep depth/fragmentation and intermittent hypoxia and CVD biomarkers. Longitudinal studies are required to assess causation.
Collapse
Affiliation(s)
- Diego Z Carvalho
- From the Department of Neurology (D.Z.C., S.J.M., E.K.S.L., B.F.B., R.C.P., J.G.-R.), Center for Sleep Medicine (D.Z.C., S.J.M., E.K.S.L., B.F.B.), Division of Pulmonary and Critical Care, Department of Internal Medicine, Department of Quantitative Health Sciences (S.A.P., R.C.P.), Department of Radiology (K.L.J.S., C.R.J., P.V.), and Department of Cardiovascular Medicine (V.K.S.), Mayo Clinic, Rochester, MN.
| | - Stuart J McCarter
- From the Department of Neurology (D.Z.C., S.J.M., E.K.S.L., B.F.B., R.C.P., J.G.-R.), Center for Sleep Medicine (D.Z.C., S.J.M., E.K.S.L., B.F.B.), Division of Pulmonary and Critical Care, Department of Internal Medicine, Department of Quantitative Health Sciences (S.A.P., R.C.P.), Department of Radiology (K.L.J.S., C.R.J., P.V.), and Department of Cardiovascular Medicine (V.K.S.), Mayo Clinic, Rochester, MN
| | - Erik K St Louis
- From the Department of Neurology (D.Z.C., S.J.M., E.K.S.L., B.F.B., R.C.P., J.G.-R.), Center for Sleep Medicine (D.Z.C., S.J.M., E.K.S.L., B.F.B.), Division of Pulmonary and Critical Care, Department of Internal Medicine, Department of Quantitative Health Sciences (S.A.P., R.C.P.), Department of Radiology (K.L.J.S., C.R.J., P.V.), and Department of Cardiovascular Medicine (V.K.S.), Mayo Clinic, Rochester, MN
| | - Scott A Przybelski
- From the Department of Neurology (D.Z.C., S.J.M., E.K.S.L., B.F.B., R.C.P., J.G.-R.), Center for Sleep Medicine (D.Z.C., S.J.M., E.K.S.L., B.F.B.), Division of Pulmonary and Critical Care, Department of Internal Medicine, Department of Quantitative Health Sciences (S.A.P., R.C.P.), Department of Radiology (K.L.J.S., C.R.J., P.V.), and Department of Cardiovascular Medicine (V.K.S.), Mayo Clinic, Rochester, MN
| | - Kohl L Johnson Sparrman
- From the Department of Neurology (D.Z.C., S.J.M., E.K.S.L., B.F.B., R.C.P., J.G.-R.), Center for Sleep Medicine (D.Z.C., S.J.M., E.K.S.L., B.F.B.), Division of Pulmonary and Critical Care, Department of Internal Medicine, Department of Quantitative Health Sciences (S.A.P., R.C.P.), Department of Radiology (K.L.J.S., C.R.J., P.V.), and Department of Cardiovascular Medicine (V.K.S.), Mayo Clinic, Rochester, MN
| | - Virend K Somers
- From the Department of Neurology (D.Z.C., S.J.M., E.K.S.L., B.F.B., R.C.P., J.G.-R.), Center for Sleep Medicine (D.Z.C., S.J.M., E.K.S.L., B.F.B.), Division of Pulmonary and Critical Care, Department of Internal Medicine, Department of Quantitative Health Sciences (S.A.P., R.C.P.), Department of Radiology (K.L.J.S., C.R.J., P.V.), and Department of Cardiovascular Medicine (V.K.S.), Mayo Clinic, Rochester, MN
| | - Bradley F Boeve
- From the Department of Neurology (D.Z.C., S.J.M., E.K.S.L., B.F.B., R.C.P., J.G.-R.), Center for Sleep Medicine (D.Z.C., S.J.M., E.K.S.L., B.F.B.), Division of Pulmonary and Critical Care, Department of Internal Medicine, Department of Quantitative Health Sciences (S.A.P., R.C.P.), Department of Radiology (K.L.J.S., C.R.J., P.V.), and Department of Cardiovascular Medicine (V.K.S.), Mayo Clinic, Rochester, MN
| | - Ronald C Petersen
- From the Department of Neurology (D.Z.C., S.J.M., E.K.S.L., B.F.B., R.C.P., J.G.-R.), Center for Sleep Medicine (D.Z.C., S.J.M., E.K.S.L., B.F.B.), Division of Pulmonary and Critical Care, Department of Internal Medicine, Department of Quantitative Health Sciences (S.A.P., R.C.P.), Department of Radiology (K.L.J.S., C.R.J., P.V.), and Department of Cardiovascular Medicine (V.K.S.), Mayo Clinic, Rochester, MN
| | - Clifford R Jack
- From the Department of Neurology (D.Z.C., S.J.M., E.K.S.L., B.F.B., R.C.P., J.G.-R.), Center for Sleep Medicine (D.Z.C., S.J.M., E.K.S.L., B.F.B.), Division of Pulmonary and Critical Care, Department of Internal Medicine, Department of Quantitative Health Sciences (S.A.P., R.C.P.), Department of Radiology (K.L.J.S., C.R.J., P.V.), and Department of Cardiovascular Medicine (V.K.S.), Mayo Clinic, Rochester, MN
| | - Jonathan Graff-Radford
- From the Department of Neurology (D.Z.C., S.J.M., E.K.S.L., B.F.B., R.C.P., J.G.-R.), Center for Sleep Medicine (D.Z.C., S.J.M., E.K.S.L., B.F.B.), Division of Pulmonary and Critical Care, Department of Internal Medicine, Department of Quantitative Health Sciences (S.A.P., R.C.P.), Department of Radiology (K.L.J.S., C.R.J., P.V.), and Department of Cardiovascular Medicine (V.K.S.), Mayo Clinic, Rochester, MN
| | - Prashanthi Vemuri
- From the Department of Neurology (D.Z.C., S.J.M., E.K.S.L., B.F.B., R.C.P., J.G.-R.), Center for Sleep Medicine (D.Z.C., S.J.M., E.K.S.L., B.F.B.), Division of Pulmonary and Critical Care, Department of Internal Medicine, Department of Quantitative Health Sciences (S.A.P., R.C.P.), Department of Radiology (K.L.J.S., C.R.J., P.V.), and Department of Cardiovascular Medicine (V.K.S.), Mayo Clinic, Rochester, MN
| |
Collapse
|
15
|
Yu J, Morys F, Dagher A, Lajoie A, Gomes T, Ock EY, Kimoff RJ, Kaminska M. Associations between sleep-related symptoms, obesity, cardiometabolic conditions, brain structural alterations and cognition in the UK biobank. Sleep Med 2023; 103:41-50. [PMID: 36758346 DOI: 10.1016/j.sleep.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/12/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Sleep disturbances are increasingly recognized as adversely affecting brain health in aging. Our aim was to investigate interrelations between subjective sleep-related symptoms, obesity, cardiometabolic disorders, brain structure and cognitive decline in a population-based aging sample. METHODS Data were extracted from the UK Biobank for anthropometric and demographic information, self-reported sleep behaviours, cardiometabolic measures, structural brain magnetic resonance imaging and cognitive test scores. "Sleep-related symptoms" (SRS) were measured using four questionnaire items: loud snoring, daytime sleepiness, likelihood to nap and difficulty getting up in the morning. Associations were tested using a structural equation model (SEM), adjusted for confounders. Further, multiple regression analysis was used to test for direct relationships between SRS and specific cognitive domains. RESULTS Among 36,468 participants with an average age of 63.6 (SD 7.5) years and 46.7% male, we found that SRS were associated with obesity and several pre-existing cardiometabolic disturbances. In turn, cardiometabolic disorders were associated with increased white matter hyperintensities and cortical thinning, which were related to cognitive dysfunction. SRS were also directly related to several structural brain changes and to cognitive dysfunction. Regression analyses showed that SRS were directly associated with slower reaction times, and lower scores in fluid intelligence, working memory and executive function. CONCLUSIONS Self-reported sleep-related symptoms were associated with cognitive dysfunction directly and through pre-existing cardiometabolic disorders and brain structural alterations. These findings provide evidence that symptoms of sleep disturbances, here defined primarily by hypersomnolence and snoring, are important risk factors or markers for cognitive dysfunction in an aging population.
Collapse
Affiliation(s)
- Jessica Yu
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Filip Morys
- Montréal Neurological Institute-Hospital, McGill University Health Centre, McGill University, Montréal, Québec, Canada
| | - Alain Dagher
- Montréal Neurological Institute-Hospital, McGill University Health Centre, McGill University, Montréal, Québec, Canada
| | - Annie Lajoie
- Department of Respirology and Thoracic Surgery, University Institute of Cardiology and Respirology of Quebec, University of Laval, Québec, Québec, Canada
| | - Teresa Gomes
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Elena Younhye Ock
- Montréal Neurological Institute-Hospital, McGill University Health Centre, McGill University, Montréal, Québec, Canada
| | - R John Kimoff
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Respiratory Division, Sleep Laboratory, McGill University Health Centre, Montréal, Québec, Canada
| | - Marta Kaminska
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Respiratory Division, Sleep Laboratory, McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
16
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 1550] [Impact Index Per Article: 1550.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
17
|
Yang Y, Shen T, Li M, Leng B, Yao R, Gao Y, Sun H, Li Z, Zhang J. Elevated complement component 8 gamma levels in astrocyte-derived exosomes are associated with cognitive impairment in obstructive sleep apnea patients without dementia. Neurosci Lett 2023; 794:137010. [PMID: 36509166 DOI: 10.1016/j.neulet.2022.137010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
The complement system plays a crucial role in cognitive impairment in obstructive sleep apnea (OSA). The present study aimed to investigate the connections between complement component 8 gamma (C8G) levels in astrocyte-derived exosomes (ADEs) and cognitive impairment in OSA patients without dementia. This cross-sectional cohort study recruited 274 participants without dementia, including 124 OSA patients with mild cognitive impairment (MCI), 100 OSA patients without MCI, and 50 healthy control subjects. Enrolled participants underwent polysomnography (PSG) evaluation, neuropsychological scale assessment, magnetic resonance imaging scanning, and collection of peripheral blood samples for quantification of complement proteins in ADEs. The findings showed higher C8G concentrations in ADEs from OSA patients with MCI than in the controls and OSA without MCI group. Logistic regression analysis suggested that C8G levels in ADEs were independently associated with MCI in OSA patients. Multivariable linear regression analysis demonstrated that C8G levels in ADEs were significantly correlated with global cognitive scores and all cognitive subdomain scores after adjusting for demographic factors (age, sex, education), vascular risk factors (Body mass index, history of hypertension, diabetes, dyslipidemia), depressive symptoms measures, and apnea-hypopnea index (AHI) values. The levels of C8G were linearly positively related to the white matter hyperintensity (WMH) volumes in Pearson's correlation analysis. Our research confirmed that C8G levels are significantly associated with cognitive impairment in OSA patients, which paves the way for novel therapeutic targets for neurocognitive dysfunction progression in OSA patients in the future.
Collapse
Affiliation(s)
- Yanyan Yang
- Weifang Medical University, Weifang, Shandong, China; Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, China
| | - Tengqun Shen
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, China
| | - Mengfan Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, China
| | - Bing Leng
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, China
| | - Ran Yao
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, China
| | - Yanling Gao
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, China
| | - Hairong Sun
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, China
| | - Zhenguang Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, China
| | - Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, China.
| |
Collapse
|
18
|
Weihs A, Frenzel S, Garvert L, Kühn L, Wittfeld K, Ewert R, Fietze I, Penzel T, Stubbe B, Szentkirályi A, Wulms N, Völzke H, Grabe HJ. The relationship between Alzheimer's-related brain atrophy patterns and sleep macro-architecture. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12371. [PMID: 36381559 PMCID: PMC9652484 DOI: 10.1002/dad2.12371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022]
Abstract
Introduction Sleep is increasingly recognized as a major risk factor for neurodegenerative disorders such as Alzheimer's disease (AD). Methods Using an magnetic resonance imaging (MRI)-based AD score based on clinical data from the Alzheimer's Disease Neuroimaging Initiative 1 (ADNI1) case-control cohort, we investigated the associations between polysomnography-based sleep macro-architecture and AD-related brain atrophy patterns in 712 pre-symptomatic, healthy subjects from the population-based Study of Health in Pomerania. Results We identified a robust inverse association between slow-wave sleep and the AD marker (estimate: -0.019; 95% confidence interval: -0.03 to -0.0076; false discovery rate [FDR] = 0.0041), as well as with gray matter (GM) thicknesses in typical individual cortical AD-signature regions. No effects were identified regarding rapid eye movement or non-rapid eye movement (NREM) stage 2 sleep, and NREM stage 1 was positively associated with GM thickness, mainly in the prefrontal cortical regions. Discussion There is a cross-sectional relationship between AD-related neurodegenerative patterns and the proportion of sleep spent in slow-wave sleep.
Collapse
Affiliation(s)
- Antoine Weihs
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldMecklenburg‐VorpommernGermany
| | - Stefan Frenzel
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldMecklenburg‐VorpommernGermany
| | - Linda Garvert
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldMecklenburg‐VorpommernGermany
| | - Luise Kühn
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldMecklenburg‐VorpommernGermany
| | - Katharina Wittfeld
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldMecklenburg‐VorpommernGermany
- German Centre for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldMecklenburg‐VorpommernGermany
| | - Ralf Ewert
- Department of Internal Medicine B–CardiologyPneumology, Infectious DiseasesIntensive Care MedicineUniversity Medicine GreifswaldGreifswaldMecklenburg‐VorpommernGermany
| | - Ingo Fietze
- Interdisciplinary Centre of Sleep MedicineCC 12University Hospital Charité BerlinBerlinGermany
- The Fourth People's hospital of GuangyuanGuangyuan CitySichuanChina
| | - Thomas Penzel
- Interdisciplinary Centre of Sleep MedicineCC 12University Hospital Charité BerlinBerlinGermany
| | - Beate Stubbe
- Department of Internal Medicine B–CardiologyPneumology, Infectious DiseasesIntensive Care MedicineUniversity Medicine GreifswaldGreifswaldMecklenburg‐VorpommernGermany
| | - András Szentkirályi
- Institute of Epidemiology and Social MedicineUniversity of MuensterMuensterNordrhein‐WestfalenGermany
| | - Niklas Wulms
- Institute of Epidemiology and Social MedicineUniversity of MuensterMuensterNordrhein‐WestfalenGermany
| | - Henry Völzke
- Institute for Community MedicineDepartment SHIP/Clinical Epidemiological ResearchUniversity Medicine GreifswaldGreifswaldMecklenburg‐VorpommernGermany
- German Centre for Cardiovascular Research (DZHK)Partner Site GreifswaldGreifswaldMecklenburg‐VorpommernGermany
| | - Hans J. Grabe
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldMecklenburg‐VorpommernGermany
- German Centre for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldMecklenburg‐VorpommernGermany
| |
Collapse
|
19
|
Niotis K, Akiyoshi K, Carlton C, Isaacson R. Dementia Prevention in Clinical Practice. Semin Neurol 2022; 42:525-548. [PMID: 36442814 DOI: 10.1055/s-0042-1759580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over 55 million people globally are living with dementia and, by 2050, this number is projected to increase to 131 million. This poses immeasurable challenges for patients and their families and a significant threat to domestic and global economies. Given this public health crisis and disappointing results from disease-modifying trials, there has been a recent shift in focus toward primary and secondary prevention strategies. Approximately 40% of Alzheimer's disease (AD) cases, which is the most common form of dementia, may be prevented or at least delayed. Success of risk reduction studies through addressing modifiable risk factors, in addition to the failure of most drug trials, lends support for personalized multidomain interventions rather than a "one-size-fits-all" approach. Evolving evidence supports early intervention in at-risk patients using individualized interventions directed at modifiable risk factors. Comprehensive risk stratification can be informed by emerging principals of precision medicine, and include expanded clinical and family history, anthropometric measurements, blood biomarkers, neurocognitive evaluation, and genetic information. Risk stratification is key in differentiating subtypes of dementia and identifies targetable areas for intervention. This article reviews a clinical approach toward dementia risk stratification and evidence-based prevention strategies, with a primary focus on AD.
Collapse
Affiliation(s)
- Kellyann Niotis
- Department of Neurology, Weill Cornell Medicine and New York - Presbyterian, New York, New York
| | - Kiarra Akiyoshi
- Department of Neurology, Weill Cornell Medicine and New York - Presbyterian, New York, New York
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine and New York - Presbyterian, New York, New York
| | - Richard Isaacson
- Department of Neurology, Weill Cornell Medicine and New York - Presbyterian, New York, New York.,Department of Neurology, Florida Atlantic University, Charles E. Schmidt College of Medicine, Boca Raton, Florida
| |
Collapse
|
20
|
Sun Y, Yang SX, Xie M, Zou K, Tang X. Aberrant amplitude of low-frequency fluctuations in different frequency bands and changes after one-night positive airway pressure treatment in severe obstructive sleep apnea. Front Neurol 2022; 13:985321. [PMID: 36071907 PMCID: PMC9441702 DOI: 10.3389/fneur.2022.985321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThis study was aimed to investigate the characteristics of the amplitude of low-frequency fluctuation (ALFF) at specific frequencies in severe obstructive sleep apnea (OSA) patients. A comparison was made between pre-CPAP treatment and one night after continuous positive airway pressure (CPAP) treatment.Methods30 severe OSA patients and 19 healthy controls (HC) were recruited. The ALFF method was used to assess the local features of spontaneous brain activity and calculated at different bands (slow-5 and slow-4). A correlation analysis was performed to evaluate the relationship between the changes of the ALFF and polysomnography data.ResultsCompared with HC, in slow-5 frequency band, OSA patients showed significantly decreased ALFF in the left inferior temporal gyrus, and significantly increased ALFF in the left middle frontal gyrus, left inferior frontal gyrus, triangular part, right superior frontal gyrus, dorsolateral and right middle temporal gyrus. In slow-4 frequency, there was significantly decreased ALFF in the right inferior temporal gyrus, and significantly increased ALFF in the left precuneus, right posterior cingulate gyrus and right median cingulate besides the slow-5 difference band showed. Compared with pre-CPAP, we found that after CPAP treatment, ALFF signals in the left insula in slow-5 and left caudate in slow-4 increased, but the calcarine in slow-4 significantly reduced. Correlation analysis showed that the left angular slow-4 band change was positively correlated with the slow wave sleep change (r = 0.4933, p = 0.0056). The left cerebellum 6 slow-5 band change was positively correlated with the duration of the REM sleep change (r = 0.4563, p = 0.0113), and the left cerebellum 6 slow-4 band change was also positively correlated with the mean blood oxygen change in the REM (r = 0.4591, p = 0.0107) and NREM sleep (r = 0.4492, p = 0.0128).ConclusionWe found that the use of slow-4 was more specific in OSA studies. These results suggested that the severe OSA patients have frequency-related abnormal spontaneous neural activity, which may contribute to a better understanding of the pathological basis of OSA-related diseases and provide a potential therapeutic target for OSA patients.
Collapse
Affiliation(s)
- Yuanfeng Sun
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Sophine Xin Yang
- Business Administration of Business School, Sichuan University, Chengdu, China
| | - Min Xie
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Zou
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ke Zou
| | - Xiangdong Tang
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Xiangdong Tang
| |
Collapse
|
21
|
Del Brutto OH, Mera RM, Costa AF, Recalde BY, Rumbea DA, Sedler MJ. Arterial stiffness and progression of white matter hyperintensities of presumed vascular origin in community-dwelling older adults of Amerindian ancestry: The Atahualpa Project Cohort. Clin Neurol Neurosurg 2022; 221:107411. [PMID: 35987043 DOI: 10.1016/j.clineuro.2022.107411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Arterial stiffness - as measured by the aortic pulse wave velocity (aPWV) - has been associated with biomarkers of cerebral small vessel disease (cSVD), in particular with white matter hyperintensities (WMH) of presumed vascular origin. Most studies have been conducted in White and Asian populations, and information on this relationship in other ethnic groups is limited. We designed a longitudinal prospective study to assess the impact of aPWV on WMH progression in individuals of Amerindian ancestry. PATIENTS AND METHODS Participants of the Atahualpa Project Cohort were assessed at baseline with aPWV determinations, clinical interviews and brain MRIs. At the end of the study, brain MRIs were repeated in order to ascertain WMH progression. Poisson regression models adjusted for demographics and cardiovascular risk factors were fitted to assess WMH progression incidence rate by baseline levels of aPWV. RESULTS The study included 260 individuals aged ≥60 years (mean age: 65.6 ± 6.1 years; 57 % women). The mean aPWV was 9.9 ± 1.5 m/s. Follow-up MRIs revealed WMH progression in 102 (39 %) individuals after a mean follow-up of 6.5 ± 1.4 years. Unadjusted analysis showed a higher baseline aPWV among subjects that developed WMH progression compared with those who did not (p < 0.001). Multivariate Poisson regression models showed an increased WMH progression rate among individuals in the second (IRR: 2.06; 95 % C.I.: 1.09-3.88) and third (IRR: 2.75; 95 % C.I.: 1.29-5.87) tertiles of aPWV compared with those in the first tertile. CONCLUSIONS aPWV is associated with WMH progression, suggesting a link between atherosclerosis and cSVD in the study population.
Collapse
Affiliation(s)
- Oscar H Del Brutto
- School of Medicine and Research Center, Universidad Espíritu Santo - Ecuador, Samborondón, Ecuador.
| | - Robertino M Mera
- Biostatistics/Epidemiology, Freenome, Inc., South San Francisco, CA, USA
| | - Aldo F Costa
- Department of Neurology, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Bettsy Y Recalde
- School of Medicine and Research Center, Universidad Espíritu Santo - Ecuador, Samborondón, Ecuador
| | - Denisse A Rumbea
- School of Medicine and Research Center, Universidad Espíritu Santo - Ecuador, Samborondón, Ecuador
| | - Mark J Sedler
- Renaissance School of Medicine, Stony Brook University, New York, NY, USA
| |
Collapse
|
22
|
Carvalho DZ, St. Louis EK, Przybelski SA, Morgenthaler TI, Machulda MM, Boeve BF, Petersen RC, Jack CR, Graff-Radford J, Vemuri P, Mielke MM. Sleepiness in Cognitively Unimpaired Older Adults Is Associated With CSF Biomarkers of Inflammation and Axonal Integrity. Front Aging Neurosci 2022; 14:930315. [PMID: 35898322 PMCID: PMC9309557 DOI: 10.3389/fnagi.2022.930315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Sleepiness has been associated with cognitive decline and dementia in the elderly. Older adults with excessive daytime sleepiness appear to be more vulnerable to longitudinal amyloid PET accumulation before the onset of the dementia. However, it remains unclear whether sleepiness is similarly associated with other biomarkers of Alzheimer's disease (AD), axonal integrity, and inflammation, which may also contribute to neurodegeneration and cognitive decline. Methods In this cross-sectional analysis, we identified 260 cognitively unimpaired adults (>60 years) from the Mayo Clinic Study of Aging, a population-based cohort from Olmsted County (MN), who underwent CSF quantification of AD biomarkers (Aβ42, p-tau, p-tau/Aβ42) in addition to at least one of the following biomarkers [neurofilament light chain (NfL) interleukin-6 (IL-6), IL-10, and tumor necrosis factor-α (TNF-α)]. We fit linear regression models to assess associations between sleepiness, as measured by the Epworth Sleepiness Scale (ESS), and CSF biomarkers, controlling for age, sex, APOε4 status, body mass index, hypertension, dyslipidemia, and prior diagnosis of obstructive sleep apnea. Results Higher ESS scores were associated with higher CSF IL-6 and NfL, but not with the other CSF biomarkers. For every ESS score point increase, there was a 0.009 ([95% CI 0.001-0.016], p = 0.033) increase in the log of IL-6 and 0.01 ([95% CI 0.002-0.018], p = 0.016) increase in the log of NfL. A sensitivity analysis showed an association between ESS scores and log of p-tau/Aβ42 only in participants with an abnormal ratio (>0.023), highly predictive of amyloid positivity. For every ESS score point increase, there was a 0.006 ([95% CI 0.001-0.012], p = 0.021) increase in the log of CSF p-tau/Aβ42. Conclusion Sleepiness was associated with greater CSF IL-6 and NfL levels, which could contribute to neurodegeneration or alternatively cause sleepiness. Higher NfL levels may result from sleep disruption and/or contribute to sleepiness via disturbed connectivity or damage to wake-promoting centers. Associations between sleepiness and p-tau/Aβ42 in participants with abnormal ratio suggest that amyloid positivity contributes to vulnerability to sleep disturbance, which may further amyloid accumulation in a feed-forward loop process. Prospective studies of these markers are needed to determine cause-effect relationships between these associations.
Collapse
Affiliation(s)
- Diego Z. Carvalho
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Sleep Medicine, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Erik K. St. Louis
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Sleep Medicine, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Scott A. Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Timothy I. Morgenthaler
- Center for Sleep Medicine, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Mary M. Machulda
- Department of Psychology, Mayo Clinic, Rochester, MN, United States
| | - Bradley F. Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Sleep Medicine, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ronald C. Petersen
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Clifford R. Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | | | | | - Michelle M. Mielke
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
23
|
Affiliation(s)
- Larry Z Lockerman
- Education Section Editor, CRANIO, Clinical Instructor Orofacial Pain, Department of Oral Pathology, Oral Medicine, Maxillofacial Imaging, Tel Aviv University School of Dental Medicine, Israel,
| |
Collapse
|
24
|
Schammel NC, VandeWater T, Self S, Wilson C, Schammel CMG, Cowley R, Gault DB, Madeline LA. Obstructive sleep apnea and white matter hyperintensities: correlation or causation? Brain Imaging Behav 2022; 16:1671-1683. [PMID: 35218506 DOI: 10.1007/s11682-022-00642-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
Obstructive sleep apnea (apnea) is thought to cause small vessel ischemic episodes in the brain from hypoxic events, postulated as white matter hyperintensities (hyperintensities) identified on MRI which are implicated in cognitive decline. This study sought to evaluate these correlations. A retrospective evaluation of adults who underwent polysomnography (4/1/2016 to 4/30/2017) and a brain MRI prior to apnea diagnosis or within a year post-diagnosis was completed. MRI visual evaluation of hyperintensities using Fazekas scores were collected blind to clinical data. Collated clinical/MRI data were stratified and analyzed using chi-square, fishers t-tests, ANOVA/ANCOVA and linear regression. Stratification by apnea category revealed no significant differences in any variables including hyperintensity measures (Fazekas p=0.1584; periventricular p=0.3238; deep p=0.4618; deep total p=0.1770). Stratification by Fazekas category, periventricular and deep hyperintensities revealed increasing prevalence with age (p=0.0001); however, apnea categories were not significantly associated (Fazekas p=0.1479; periventricular p=0.3188; deep p=0.4503), nor were any individual apnea indicators. Continuous apnea measurements werre not associated with any hyperintensity factor; total deep hyperintensities were not associated with any apnea factors. Continuous BMI was not found to be associated with any apnea or hyperintensity factors. Only hypertension was noted to be associated with Fazekas (p=0.0045), deep (p=0.0010) and total deep (p=0.0021) hyperintensities; however, hypertension was not associated with apnea category (p=0.3038) or any associated factors. These data suggest apneas alone from OSA are insufficient to cause WMH, but other factors appear to contribute to the complex development of small vessel ischemic injury associated with age and cognitive decline.
Collapse
Affiliation(s)
- Noah C Schammel
- University of South Carolina School of Medicine-Greenville, Greenville, SC, USA
| | - Trevor VandeWater
- University of South Carolina School of Medicine-Greenville, Greenville, SC, USA
| | - Stella Self
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Greenville, SC, USA
| | - Christopher Wilson
- Department of Mathematics and Statistics, Clemson University, Clemson, SC, United States
| | - Christine M G Schammel
- Department of Pathology, Pathology Associates, 8 Memorial Medical Ct., Greenville, SC, 29605, USA.
| | - Ronald Cowley
- University of South Carolina School of Medicine-Greenville, Greenville, SC, USA.,Department of Radiology, Prisma Health-Upstate, Greenville, SC, USA
| | - Dominic B Gault
- Division of Pediatric Sleep Medicine, Prisma Health-Upstate, Greenville, SC, USA
| | - Lee A Madeline
- Department of Radiology, Prisma Health-Upstate, Greenville, SC, USA
| |
Collapse
|
25
|
Hosten N, Bülow R, Völzke H, Domin M, Schmidt CO, Teumer A, Ittermann T, Nauck M, Felix S, Dörr M, Markus MRP, Völker U, Daboul A, Schwahn C, Holtfreter B, Mundt T, Krey KF, Kindler S, Mksoud M, Samietz S, Biffar R, Hoffmann W, Kocher T, Chenot JF, Stahl A, Tost F, Friedrich N, Zylla S, Hannemann A, Lotze M, Kühn JP, Hegenscheid K, Rosenberg C, Wassilew G, Frenzel S, Wittfeld K, Grabe HJ, Kromrey ML. SHIP-MR and Radiology: 12 Years of Whole-Body Magnetic Resonance Imaging in a Single Center. Healthcare (Basel) 2021; 10:33. [PMID: 35052197 PMCID: PMC8775435 DOI: 10.3390/healthcare10010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
The Study of Health in Pomerania (SHIP), a population-based study from a rural state in northeastern Germany with a relatively poor life expectancy, supplemented its comprehensive examination program in 2008 with whole-body MR imaging at 1.5 T (SHIP-MR). We reviewed more than 100 publications that used the SHIP-MR data and analyzed which sequences already produced fruitful scientific outputs and which manuscripts have been referenced frequently. Upon reviewing the publications about imaging sequences, those that used T1-weighted structured imaging of the brain and a gradient-echo sequence for R2* mapping obtained the highest scientific output; regarding specific body parts examined, most scientific publications focused on MR sequences involving the brain and the (upper) abdomen. We conclude that population-based MR imaging in cohort studies should define more precise goals when allocating imaging time. In addition, quality control measures might include recording the number and impact of published work, preferably on a bi-annual basis and starting 2 years after initiation of the study. Structured teaching courses may enhance the desired output in areas that appear underrepresented.
Collapse
Affiliation(s)
- Norbert Hosten
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
| | - Martin Domin
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
| | - Carsten Oliver Schmidt
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
| | - Till Ittermann
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stephan Felix
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Department of Internal Medicine B, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Marcus Dörr
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Department of Internal Medicine B, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Marcello Ricardo Paulista Markus
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Department of Internal Medicine B, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Amro Daboul
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, 17475 Greifswald, Germany; (A.D.); (C.S.); (T.M.); (S.S.); (R.B.)
| | - Christian Schwahn
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, 17475 Greifswald, Germany; (A.D.); (C.S.); (T.M.); (S.S.); (R.B.)
| | - Birte Holtfreter
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, 17475 Greifswald, Germany; (B.H.); (T.K.)
| | - Torsten Mundt
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, 17475 Greifswald, Germany; (A.D.); (C.S.); (T.M.); (S.S.); (R.B.)
| | - Karl-Friedrich Krey
- Department of Orthodontics, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Stefan Kindler
- Department of Oral and Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, 17475 Greifswald, Germany; (S.K.); (M.M.)
| | - Maria Mksoud
- Department of Oral and Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, 17475 Greifswald, Germany; (S.K.); (M.M.)
| | - Stefanie Samietz
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, 17475 Greifswald, Germany; (A.D.); (C.S.); (T.M.); (S.S.); (R.B.)
| | - Reiner Biffar
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, 17475 Greifswald, Germany; (A.D.); (C.S.); (T.M.); (S.S.); (R.B.)
| | - Wolfgang Hoffmann
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- German Centre for Neurodegenerative Diseases (DZNE), Partner Site Rostock/Greifswald, 17489 Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, 17475 Greifswald, Germany; (B.H.); (T.K.)
| | - Jean-Francois Chenot
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
| | - Andreas Stahl
- Clinic of Ophthalmology, University Medicine Greifswald, 17475 Greifswald, Germany; (A.S.); (F.T.)
| | - Frank Tost
- Clinic of Ophthalmology, University Medicine Greifswald, 17475 Greifswald, Germany; (A.S.); (F.T.)
| | - Nele Friedrich
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stephanie Zylla
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Anke Hannemann
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Martin Lotze
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Jens-Peter Kühn
- Institute and Policlinic of Diagnostic and Interventional Radiology, Medical University, Carl-Gustav Carus, 01307 Dresden, Germany;
| | - Katrin Hegenscheid
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
| | - Christian Rosenberg
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
| | - Georgi Wassilew
- Clinic of Orthopedics, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; (S.F.); (K.W.); (H.J.G.)
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; (S.F.); (K.W.); (H.J.G.)
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Site Greifswald, 17489 Greifswald, Germany
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; (S.F.); (K.W.); (H.J.G.)
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Site Greifswald, 17489 Greifswald, Germany
| | - Marie-Luise Kromrey
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
- Correspondence:
| |
Collapse
|