1
|
Hamidpour SK, Amiri M, Ketabforoush AHME, Saeedi S, Angaji A, Tavakol S. Unraveling Dysregulated Cell Signaling Pathways, Genetic and Epigenetic Mysteries of Parkinson's Disease. Mol Neurobiol 2024; 61:8928-8966. [PMID: 38573414 DOI: 10.1007/s12035-024-04128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Parkinson's disease (PD) is a prevalent and burdensome neurodegenerative disorder that has been extensively researched to understand its complex etiology, diagnosis, and treatment. The interplay between genetic and environmental factors in PD makes its pathophysiology difficult to comprehend, emphasizing the need for further investigation into genetic and epigenetic markers involved in the disease. Early diagnosis is crucial for optimal management of the disease, and the development of novel diagnostic biomarkers is ongoing. Although many efforts have been made in the field of recognition and interpretation of the mechanisms involved in the pathophysiology of the disease, the current knowledge about PD is just the tip of the iceberg. By scrutinizing genetic and epigenetic patterns underlying PD, new avenues can be opened for dissecting the pathology of the disorder, leading to more precise and efficient diagnostic and therapeutic approaches. This review emphasizes the importance of studying dysregulated cell signaling pathways and molecular processes associated with genes and epigenetic alterations in understanding PD, paving the way for the development of novel therapeutic strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shayesteh Kokabi Hamidpour
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mobina Amiri
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | | | - Saeedeh Saeedi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Abdolhamid Angaji
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
- Department of Research and Development, Tavakol BioMimetic Technologies Company, Tehran, Iran.
| |
Collapse
|
2
|
Towns C, Fang ZH, Tan MMX, Jasaityte S, Schmaderer TM, Stafford EJ, Pollard M, Tilney R, Hodgson M, Wu L, Labrum R, Hehir J, Polke J, Lange LM, Schapira AHV, Bhatia KP, Singleton AB, Blauwendraat C, Klein C, Houlden H, Wood NW, Jarman PR, Morris HR, Real R. Parkinson's families project: a UK-wide study of early onset and familial Parkinson's disease. NPJ Parkinsons Dis 2024; 10:188. [PMID: 39420034 PMCID: PMC11487259 DOI: 10.1038/s41531-024-00778-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/12/2024] [Indexed: 10/19/2024] Open
Abstract
The Parkinson's Families Project is a UK-wide study aimed at identifying genetic variation associated with familial and early-onset Parkinson's disease (PD). We recruited individuals with a clinical diagnosis of PD and age at motor symptom onset ≤45 years and/or a family history of PD in up to third-degree relatives. Where possible, we also recruited affected and unaffected relatives. We analysed DNA samples with a combination of single nucleotide polymorphism (SNP) array genotyping, multiplex ligation-dependent probe amplification (MLPA), and whole-genome sequencing (WGS). We investigated the association between identified pathogenic mutations and demographic and clinical factors such as age at motor symptom onset, family history, motor symptoms (MDS-UPDRS) and cognitive performance (MoCA). We performed baseline genetic analysis in 718 families, of which 205 had sporadic early-onset PD (sEOPD), 113 had familial early-onset PD (fEOPD), and 400 had late-onset familial PD (fLOPD). 69 (9.6%) of these families carried pathogenic variants in known monogenic PD-related genes. The rate of a molecular diagnosis increased to 28.1% in PD with motor onset ≤35 years. We identified pathogenic variants in LRRK2 in 4.2% of families, and biallelic pathogenic variants in PRKN in 3.6% of families. We also identified two families with SNCA duplications and three families with a pathogenic repeat expansion in ATXN2, as well as single families with pathogenic variants in VCP, PINK1, PNPLA6, PLA2G6, SPG7, GCH1, and RAB32. An additional 73 (10.2%) families were carriers of at least one pathogenic or risk GBA1 variant. Most early-onset and familial PD cases do not have a known genetic cause, indicating that there are likely to be further monogenic causes for PD.
Collapse
Affiliation(s)
- Clodagh Towns
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Zih-Hua Fang
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Manuela M X Tan
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Simona Jasaityte
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Theresa M Schmaderer
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Eleanor J Stafford
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Miriam Pollard
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Russel Tilney
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Megan Hodgson
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Lesley Wu
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Robyn Labrum
- Neurogenetics Laboratory, National Hospital for Neurology & Neurosurgery, Queen Square, London, UK
| | - Jason Hehir
- Neurogenetics Laboratory, National Hospital for Neurology & Neurosurgery, Queen Square, London, UK
| | - James Polke
- Neurogenetics Laboratory, National Hospital for Neurology & Neurosurgery, Queen Square, London, UK
| | - Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Paul R Jarman
- National Hospital for Neurology & Neurosurgery, Queen Square, London, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
- UCL Movement Disorders Centre, University College London, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
- UCL Movement Disorders Centre, University College London, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
3
|
Pauwels A, Phan ALG, Ding C, Phan TG, Kempster PA. Rate of motor progression in Parkinson's disease: a systematic review and meta-analysis. Front Neurol 2024; 15:1452741. [PMID: 39391167 PMCID: PMC11464440 DOI: 10.3389/fneur.2024.1452741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Background The search for neuroprotective treatments for Parkinson's disease (PD) still relies largely on motor disability scales. A limitation of these tools is the strong influence of symptomatic dopaminergic treatment effects. Drawing on a wealth of published information, we conducted a systematic review and meta-analysis of motor progression in PD and its relationships with dopaminergic therapy. Methods We searched Medline, Embase, and Central to identify 84 publications with adequate serial motor scores to calculate progression, expressed as an increase in the percentage of maximum disability. Results A random-effects model showed motor progression at 2.0% p.a. (95% CI 1.7-2.4%). There were no significant differences by baseline age, sample size, or observation period. However, untreated patients, in 8 publications, progressed at 4.5% p.a. compared to 1.6% p.a. in 76 studies containing individuals on dopaminergic drugs (p = 0.0004, q = 0.003). This was supported by research on phenoconversion in prodromal PD, where motor progression exceeded 5% p.a. in the 2 years before diagnosis. Starting levodopa improved pre-treatment disability by 40.3 ± 15.2%. Practically defined off state measurements increase faster than on scores by a modest degree (p = 0.05). Conclusion This survey suggests that accurate long-term measurements of motor progression to assess disease-modifying therapies can be conducted despite the sequential commencement of dopaminergic drugs and sample attrition over time. While study designs involving prodromal or untreated PD avoid confounding effects of symptomatic treatment, different assumptions about motor progression may be needed. A defined off state with the levodopa test dose method maximizes information about the medication cycle once dopaminergic therapy has begun.
Collapse
Affiliation(s)
- Ayla Pauwels
- Department of Neurology, Monash Health, Melbourne, VIC, Australia
- NEUR Research Group, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Albert L. G. Phan
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Catherine Ding
- Department of Neurology, Monash Health, Melbourne, VIC, Australia
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Thanh G. Phan
- Department of Neurology, Monash Health, Melbourne, VIC, Australia
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Peter A. Kempster
- Department of Neurology, Monash Health, Melbourne, VIC, Australia
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Zhang X, Wu H, Tang B, Guo J. Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson's disease. Transl Neurodegener 2024; 13:48. [PMID: 39267121 PMCID: PMC11391654 DOI: 10.1186/s40035-024-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The development of PD is closely linked to genetic and environmental factors, with GBA1 variants being the most common genetic risk. Mutations in the GBA1 gene lead to reduced activity of the coded enzyme, glucocerebrosidase, which mediates the development of PD by affecting lipid metabolism (especially sphingolipids), lysosomal autophagy, endoplasmic reticulum, as well as mitochondrial and other cellular functions. Clinically, PD with GBA1 mutations (GBA1-PD) is characterized by particular features regarding the progression of symptom severity. On the therapeutic side, the discovery of the relationship between GBA1 variants and PD offers an opportunity for targeted therapeutic interventions. In this review, we explore the genotypic and phenotypic correlations, etiologic mechanisms, biomarkers, and therapeutic approaches of GBA1-PD and summarize the current state of research and its challenges.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Heng Wu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, 421001, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
5
|
Vieira SRL, Mezabrovschi R, Toffoli M, Del Pozo SL, Menozzi E, Mullin S, Yalkic S, Limbachiya N, Koletsi S, Loefflad N, Lopez GJ, Gan-Or Z, Alcalay RN, Sidransky E, Schapira AHV. Consensus Guidance for Genetic Counseling in GBA1 Variants: A Focus on Parkinson's Disease. Mov Disord 2024. [PMID: 39258449 DOI: 10.1002/mds.30006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Glucocerebrosidase (GBA1) variants constitute numerically the most common known genetic risk factor for Parkinson's disease (PD) and are distributed worldwide. Access to GBA1 genotyping varies across the world and even regionally within countries. Guidelines for GBA1 variant counseling are evolving. We review the current knowledge of the link between GBA1 and PD, and discuss the practicalities of GBA1 testing. Lastly, we provide a consensus for an approach to counseling people with GBA1 variants, notably the communication of PD risk. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sophia R L Vieira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Roxana Mezabrovschi
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Sara Lucas Del Pozo
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Elisa Menozzi
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Stephen Mullin
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
- Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Selen Yalkic
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Naomi Limbachiya
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Sofia Koletsi
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Nadine Loefflad
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Grisel J Lopez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, The Neuro (Montreal Neurological Institute-Hospital), and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Roy N Alcalay
- Columbia University Irving Medical Center, New York, New York, USA
- Tel Aviv Sourasky Medical Center, Tel Aviv School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ellen Sidransky
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
6
|
Shiner T, Kavé G, Mirelman A, Regev K, Piura Y, Goldstein O, Gana Weisz M, Bar-Shira A, Gurevich T, Orr-Urtreger A, Alcalay RN, Giladi N, Bregman N. Effect of GBA1 Mutations and APOE Polymorphisms on Survival and Progression Among Ashkenazi Jews with Dementia with Lewy Bodies. Mov Disord 2024. [PMID: 39212252 DOI: 10.1002/mds.30003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Glucocerebrosidase 1 (GBA1) mutations are associated with reduced survival in Parkinson's disease but their effect on survival in dementia with Lewy bodies (DLB) is unclear. OBJECTIVE To assess the impact of GBA1 mutations on survival among Ashkenazi Jews with DLB, while controlling for APOE status. METHODS One hundred and forty participants from Tel Aviv Medical Center, Israel were genotyped for GBA1 mutations and APOE polymorphisms. Survival rates and follow-up cognitive screening scores were analyzed. RESULTS GBA1 mutation carriers had a two-fold increased risk of death (HR = 1.999), while APOE status did not independently affect survival. In a subset of patients with available clinical data (N = 63), carriers of the APOE ε4 allele showed faster cognitive deterioration, while GBA1 mutation carriers also declined more rapidly albeit not significantly. CONCLUSION Understanding the genetic effects on survival and progression is crucial for patient counseling and inclusion in clinical trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tamara Shiner
- Cognitive Neurology Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Gitit Kavé
- Department of Education and Psychology, The Open University, Raanana, Israel
| | - Anat Mirelman
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Keren Regev
- Neuroimmunology Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yoav Piura
- Cognitive Neurology Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Orly Goldstein
- Laboratory of Biomarkers and Genomic of Neurodegeneration, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mali Gana Weisz
- Laboratory of Biomarkers and Genomic of Neurodegeneration, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Bar-Shira
- Genetic Laboratory, Genetic Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tanya Gurevich
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Avi Orr-Urtreger
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Laboratory of Biomarkers and Genomic of Neurodegeneration, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Roy N Alcalay
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Laboratory of Biomarkers and Genomic of Neurodegeneration, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Nir Giladi
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Noa Bregman
- Cognitive Neurology Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Postuma RB, Weintraub D, Simuni T, Rodríguez‐Violante M, Leentjens AF, Hu MT, Espay AJ, Erro R, Dujardin K, Bohnen NI, Berg D, Mestre TA, Marras C. Anticipating Tomorrow: Tailoring Parkinson's Symptomatic Therapy Using Predictors of Outcome. Mov Disord Clin Pract 2024; 11:983-991. [PMID: 38817000 PMCID: PMC11329576 DOI: 10.1002/mdc3.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Although research into Parkinson's disease (PD) subtypes and outcome predictions has continued to advance, recommendations for using outcome prediction to guide current treatment decisions remain sparse. OBJECTIVES To provide expert opinion-based recommendations for individually tailored PD symptomatic treatment based on knowledge of risk prediction and subtypes. METHODS Using a modified Delphi approach, members of the Movement Disorders Society (MDS) Task Force on PD subtypes generated a series of general recommendations around the question: "Using what you know about genetic/biological/clinical subtypes (or any individual-level predictors of outcome), what advice would you give for selecting symptomatic treatments for an individual patient now, based on what their subtype or individual characteristics predict about their future disease course?" After four iterations and revisions, those recommendations with over 75% endorsement were adopted. RESULTS A total of 19 recommendations were endorsed by a group of 13 panelists. The recommendations primarily centered around two themes: (1) incorporating future risk of cognitive impairment into current treatment plans; and (2) identifying future symptom clusters that might be forestalled with a single medication. CONCLUSIONS These recommendations provide clinicians with a framework for integrating future outcomes into patient-specific treatment choices. They are not prescriptive guidelines, but adaptable suggestions, which should be tailored to each individual. They are to be considered as a first step of a process that will continue to evolve as additional stakeholders provide new insights and as new information becomes available. As individualized risk prediction advances, the path to better tailored treatment regimens will become clearer.
Collapse
Affiliation(s)
- Ronald B. Postuma
- Department of NeurologyMontreal Neurological Institute, McGill UniversityMontrealQuebecCanada
| | - Daniel Weintraub
- Departments of Psychiatry and Neurology, Perelman School of Medicine at the University of Pennsylvania; Parkinson's Disease Research, Education and Clinical Center (PADRECC)Philadelphia Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Tanya Simuni
- Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | | | - Albert F.G. Leentjens
- Department of PsychiatryMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Michele T. Hu
- Nuffield Department of Clinical Neurosciences, Neurology DepartmentOxford University and John Radcliffe HospitalOxfordUnited Kingdom
| | - Alberto J. Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of NeurologyUniversity of CincinnatiCincinnatiOhioUSA
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Neuroscience SectionUniversity of SalernoBaronissiItaly
| | - Kathy Dujardin
- Neurology and Movement Disorders DepartmentUniversity of Lille, Inserm, Lille Neurosciences and Cognition, CHU‐LilleLilleFrance
| | - Nicolaas I. Bohnen
- Departments of Radiology and NeurologyUniversity of Michigan, University of Michigan Udall Center, Ann Arbor VAMCAnn ArborMichiganUSA
| | - Daniela Berg
- Department of NeurologyChristian‐Albrechts‐UniversityKielGermany
| | - Tiago A. Mestre
- Division of Neurology, Department of MedicineUniversity of Ottawa, The University of Ottawa Brain and Research InstituteOttawaOntarioCanada
- Parkinson's Disease and Movement Disorders ClinicThe Ottawa Hospital, The Ottawa Hospital Research InstituteOttawaOntarioCanada
| | - Connie Marras
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders ClinicToronto Western Hospital, University Health NetworkTorontoOntarioCanada
| |
Collapse
|
8
|
Kweon SH, Ryu HG, Park H, Lee S, Kim N, Kwon SH, Ma SX, Kim S, Ko HS. Linking Gba1 E326K mutation to microglia activation and mild age-dependent dopaminergic Neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.14.557673. [PMID: 37745332 PMCID: PMC10515932 DOI: 10.1101/2023.09.14.557673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Mutations in the GBA1 gene have been identified as a prevalent genetic risk factor for Parkinson's disease (PD). GBA1 mutations impair enzymatic activity, leading to lysosomal dysfunction and elevated levels of α-synuclein (α-syn). While most research has primarily focused on GBA1's role in promoting synucleinopathy, emerging evidence suggests that neuroinflammation may be a key pathogenic alteration caused by GBA1 deficiency. To examine the molecular mechanism underlying GBA1 deficiency-mediated neuroinflammation, we generated Gba1 E326K knock-in (KI) mice using the CRISPR/Cas9 technology, which is linked to an increased risk of PD and dementia with Lewy bodies (DLB). In the ventral midbrain and hippocampus of 24-month-old Gba1 E326K KI mice, we found a moderate decline in GBA1 enzymatic activity, a buildup of glucosylceramide, and an increase in microglia density. Furthermore, we observed increased levels of pro-inflammatory cytokines and formation of reactive astrocytes in primary microglia and astrocytes, respectively, cultured from Gba1 E326K KI mice following treatment with pathologic α-syn preformed fibrils (PFF). Additionally, the gut inoculation of α-syn PFF in Gba1 E326K KI mice significantly enhanced the accumulation of Lewy bodies in the dentate gyrus of the hippocampus, accompanied by aggravated neuroinflammation and exacerbated non-motor symptoms. This research significantly enhances our understanding of the Gba1 E326K mutation's involvement in neuroinflammation and the cell-to-cell transmission of pathogenic α-syn in the brain, thereby opening new therapeutic avenues.
Collapse
|
9
|
Palmer N, Agnew C, Benn C, Buffham WJ, Castro JN, Chessari G, Clark M, Cons BD, Coyle JE, Dawson LA, Hamlett CCF, Hodson C, Holding F, Johnson CN, Liebeschuetz JW, Mahajan P, McCarthy JM, Murray CW, O'Reilly M, Peakman T, Price A, Rapti M, Reeks J, Schöpf P, St-Denis JD, Valenzano C, Wallis NG, Walser R, Weir H, Wilsher NE, Woodhead A, Bento CF, Tisi D. Fragment-Based Discovery of a Series of Allosteric-Binding Site Modulators of β-Glucocerebrosidase. J Med Chem 2024; 67:11168-11181. [PMID: 38932616 DOI: 10.1021/acs.jmedchem.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
β-Glucocerebrosidase (GBA/GCase) mutations leading to misfolded protein cause Gaucher's disease and are a major genetic risk factor for Parkinson's disease and dementia with Lewy bodies. The identification of small molecule pharmacological chaperones that can stabilize the misfolded protein and increase delivery of degradation-prone mutant GCase to the lysosome is a strategy under active investigation. Here, we describe the first use of fragment-based drug discovery (FBDD) to identify pharmacological chaperones of GCase. The fragment hits were identified by using X-ray crystallography and biophysical techniques. This work led to the discovery of a series of compounds that bind GCase with nM potency and positively modulate GCase activity in cells.
Collapse
Affiliation(s)
- Nick Palmer
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Christopher Agnew
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Caroline Benn
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - William J Buffham
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Joan N Castro
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Gianni Chessari
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Mellissa Clark
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Benjamin D Cons
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Joseph E Coyle
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Lee A Dawson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | | | - Charlotte Hodson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Finn Holding
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Christopher N Johnson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - John W Liebeschuetz
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Pravin Mahajan
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - James M McCarthy
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Christopher W Murray
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Marc O'Reilly
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Torren Peakman
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Amanda Price
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Magdalini Rapti
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Judith Reeks
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Patrick Schöpf
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Jeffrey D St-Denis
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Chiara Valenzano
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Nicola G Wallis
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Reto Walser
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Heather Weir
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Nicola E Wilsher
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Andrew Woodhead
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Carla F Bento
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Dominic Tisi
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| |
Collapse
|
10
|
Schumacher J, Ray N, Teipel S, Storch A. Associations of cholinergic system integrity with cognitive decline in GBA1 and LRRK2 mutation carriers. NPJ Parkinsons Dis 2024; 10:127. [PMID: 38951174 PMCID: PMC11217433 DOI: 10.1038/s41531-024-00743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
In Parkinson's disease (PD), GBA1- and LRRK2-mutations are associated with different clinical phenotypes which might be related to differential involvement of the cholinergic system. We investigated cholinergic integrity in 149 asymptomatic GBA1 and 169 asymptomatic LRRK2 mutation carriers, 112 LRRK2 and 60 GBA1 carriers with PD, 492 idiopathic PD, and 180 controls from the PPMI cohort. Basal forebrain volumes were extracted and white matter pathways from nucleus basalis of Meynert (NBM) to cortex and from pedunculopontine nucleus (PPN) to thalamus were assessed with a free water-corrected DTI model. Bayesian ANCOVAs were conducted for group comparisons and Bayesian linear mixed models to assess associations with cognitive decline. Basal forebrain volumes were increased in asymptomatic GBA1 (Bayes Factor against the null hypothesis (BF10) = 75.2) and asymptomatic LRRK2 (BF10 = 57.0) compared to controls. Basal forebrain volumes were increased in LRRK2- compared to GBA1-PD (BF10 = 14.5) and idiopathic PD (BF10 = 3.6*107), with no difference between idiopathic PD and PD-GBA1 (BF10 = 0.25). Mean diffusivity along the medial NBM pathway was decreased in asymptomatic GBA1 compared to controls (BF10 = 30.3). Over 5 years, idiopathic PD and PD-GBA1 declined across all cognitive domains whereas PD-LRRK2 patients only declined in processing speed. We found an interaction between basal forebrain volume and time in predicting multiple cognitive domains in idiopathic PD and PD-GBA1, but not in PD-LRRK2. While LRRK2 and GBA1 mutations are both associated with increased basal forebrain volume at asymptomatic stages, this increase persists at the symptomatic PD stage only in LRRK2 and might be related to slower cognitive decline in these patients.
Collapse
Affiliation(s)
- Julia Schumacher
- Department of Neurology, University Medical Center Rostock, 18147, Rostock, Germany.
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock-Greifswald, 18147, Rostock, Germany.
| | - Nicola Ray
- Health, Psychology and Communities Research Centre, Department of Psychology, Manchester Metropolitan University, Manchester, UK
| | - Stefan Teipel
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock-Greifswald, 18147, Rostock, Germany
- Department of Psychosomatic Medicine, University Medical Center Rostock, 18147, Rostock, Germany
| | - Alexander Storch
- Department of Neurology, University Medical Center Rostock, 18147, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock-Greifswald, 18147, Rostock, Germany
| |
Collapse
|
11
|
Gustavsson EK, Sethi S, Gao Y, Brenton JW, García-Ruiz S, Zhang D, Garza R, Reynolds RH, Evans JR, Chen Z, Grant-Peters M, Macpherson H, Montgomery K, Dore R, Wernick AI, Arber C, Wray S, Gandhi S, Esselborn J, Blauwendraat C, Douse CH, Adami A, Atacho DAM, Kouli A, Quaegebeur A, Barker RA, Englund E, Platt F, Jakobsson J, Wood NW, Houlden H, Saini H, Bento CF, Hardy J, Ryten M. The annotation of GBA1 has been concealed by its protein-coding pseudogene GBAP1. SCIENCE ADVANCES 2024; 10:eadk1296. [PMID: 38924406 PMCID: PMC11204300 DOI: 10.1126/sciadv.adk1296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Mutations in GBA1 cause Gaucher disease and are the most important genetic risk factor for Parkinson's disease. However, analysis of transcription at this locus is complicated by its highly homologous pseudogene, GBAP1. We show that >50% of short RNA-sequencing reads mapping to GBA1 also map to GBAP1. Thus, we used long-read RNA sequencing in the human brain, which allowed us to accurately quantify expression from both GBA1 and GBAP1. We discovered significant differences in expression compared to short-read data and identify currently unannotated transcripts of both GBA1 and GBAP1. These included protein-coding transcripts from both genes that were translated in human brain, but without the known lysosomal function-yet accounting for almost a third of transcription. Analyzing brain-specific cell types using long-read and single-nucleus RNA sequencing revealed region-specific variations in transcript expression. Overall, these findings suggest nonlysosomal roles for GBA1 and GBAP1 with implications for our understanding of the role of GBA1 in health and disease.
Collapse
Affiliation(s)
- Emil K. Gustavsson
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Siddharth Sethi
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK
| | - Yujing Gao
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK
| | - Jonathan W. Brenton
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sonia García-Ruiz
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - David Zhang
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund, Sweden
| | - Regina H. Reynolds
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - James R. Evans
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Zhongbo Chen
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Melissa Grant-Peters
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Hannah Macpherson
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kylie Montgomery
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rhys Dore
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Anna I. Wernick
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Charles Arber
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sonia Gandhi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Julian Esselborn
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher H. Douse
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anita Adami
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund, Sweden
| | - Diahann A. M. Atacho
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund, Sweden
| | - Antonina Kouli
- Wellcome-MRC Cambridge Stem Cell Institute and John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Annelies Quaegebeur
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Clinical Neurosciences, University of Cambridge, Clifford Albutt Building, Cambridge, UK
| | - Roger A. Barker
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Wellcome-MRC Cambridge Stem Cell Institute and John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Frances Platt
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Johan Jakobsson
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund, Sweden
| | - Nicholas W. Wood
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Harpreet Saini
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK
| | - Carla F. Bento
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK
| | - John Hardy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, UCL, London, UK
- UK Dementia Research Institute at UCL, UCL Queen Square Institute of Neurology, UCL, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Mina Ryten
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| |
Collapse
|
12
|
Skrahin A, Horowitz M, Istaiti M, Skrahina V, Lukas J, Yahalom G, Cohen ME, Revel-Vilk S, Goker-Alpan O, Becker-Cohen M, Hassin-Baer S, Svenningsson P, Rolfs A, Zimran A. GBA1-Associated Parkinson's Disease Is a Distinct Entity. Int J Mol Sci 2024; 25:7102. [PMID: 39000225 PMCID: PMC11241486 DOI: 10.3390/ijms25137102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
GBA1-associated Parkinson's disease (GBA1-PD) is increasingly recognized as a distinct entity within the spectrum of parkinsonian disorders. This review explores the unique pathophysiological features, clinical progression, and genetic underpinnings that differentiate GBA1-PD from idiopathic Parkinson's disease (iPD). GBA1-PD typically presents with earlier onset and more rapid progression, with a poor response to standard PD medications. It is marked by pronounced cognitive impairment and a higher burden of non-motor symptoms compared to iPD. Additionally, patients with GBA1-PD often exhibit a broader distribution of Lewy bodies within the brain, accentuating neurodegenerative processes. The pathogenesis of GBA1-PD is closely associated with mutations in the GBA1 gene, which encodes the lysosomal enzyme beta-glucocerebrosidase (GCase). In this review, we discuss two mechanisms by which GBA1 mutations contribute to disease development: 'haploinsufficiency,' where a single functional gene copy fails to produce a sufficient amount of GCase, and 'gain of function,' where the mutated GCase acquires harmful properties that directly impact cellular mechanisms for alpha-synuclein degradation, leading to alpha-synuclein aggregation and neuronal cell damage. Continued research is advancing our understanding of how these mechanisms contribute to the development and progression of GBA1-PD, with the 'gain of function' mechanism appearing to be the most plausible. This review also explores the implications of GBA1 mutations for therapeutic strategies, highlighting the need for early diagnosis and targeted interventions. Currently, small molecular chaperones have shown the most promising clinical results compared to other agents. This synthesis of clinical, pathological, and molecular aspects underscores the assertion that GBA1-PD is a distinct clinical and pathobiological PD phenotype, necessitating specific management and research approaches to better understand and treat this debilitating condition.
Collapse
Affiliation(s)
- Aliaksandr Skrahin
- Rare Disease Consulting RCV GmbH, Leibnizstrasse 58, 10629 Berlin, Germany
| | - Mia Horowitz
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, 6997801 Ramat Aviv, Israel
| | - Majdolen Istaiti
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
| | | | - Jan Lukas
- Translational Neurodegeneration Section Albrecht Kossel, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Gilad Yahalom
- Department of Neurology and Movement Disorders Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Mikhal E. Cohen
- Department of Neurology and Movement Disorders Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Shoshana Revel-Vilk
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA 22030, USA
| | | | - Sharon Hassin-Baer
- Movement Disorders Institute, Department of Neurology, Chaim Sheba Medical Center, 5262101 Tel-Hashomer, Israel
- Department of Neurology and Neurosurgery, Faculty of Medical and Health Sciences, Tel Aviv University, 6997801 Tel-Aviv, Israel
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
- Department of Basal and Clinical Neuroscience, King’s College London, London SE5 9RT, UK
| | - Arndt Rolfs
- Rare Disease Consulting RCV GmbH, Leibnizstrasse 58, 10629 Berlin, Germany
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
- Medical Faculty, University of Rostock, 18055 Rostock, Germany
| | - Ari Zimran
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| |
Collapse
|
13
|
Siemeling O, Slingerland S, van der Zee S, van Laar T. Study protocol of the GRoningen early-PD Ambroxol treatment (GREAT) trial: a randomized, double-blind, placebo-controlled, single center trial with ambroxol in Parkinson patients with a GBA mutation. BMC Neurol 2024; 24:146. [PMID: 38693511 PMCID: PMC11061939 DOI: 10.1186/s12883-024-03629-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND To date, no disease modifying therapies are available for Parkinson's disease (PD). Since PD is the second most prevalent neurodegenerative disorder, there is a high demand for such therapies. Both environmental and genetic risk factors play an important role in the etiology and progression of PD. The most common genetic risk factor for PD is a mutation in the GBA1(GBA)-gene, encoding the lysosomal enzyme glucocerebrosidase (GCase). The mucolytic ambroxol is a repurposed drug, which has shown the property to upregulate GCase activity in-vitro and in-vivo. Ambroxol therefore has the potency to become a disease modifying therapy in PD, which was the reason to design this randomized controlled trial with ambroxol in PD patients. METHODS This trial is a single-center, double-blind, randomized, placebo-controlled study, including 80 PD patients with a GBA mutation, receiving either ambroxol 1800 mg/day or placebo for 48 weeks. The primary outcome measure is the Unified Parkinson's Disease Rating Scale motor subscore (part III) of the Movement Disorder Society (MDS-UPDRSIII) in the practically defined off-state at 60 weeks (after a 12-week washout period). Secondary outcomes include a 3,4-dihydroxy-6-18F-fluoro-I-phenylalanine ([18F]FDOPA) PET-scan of the brain, Magnetic Resonance Imaging (with resting state f-MRI and Diffusion Tensor Imaging), GCase activity, both intra- and extracellularly, sphingolipid profiles in plasma, Montreal Cognitive Assessment (MoCA), quality of life (QoL) measured by the Parkinson's Disease Questionnaire (PDQ-39) and the Non-Motor Symptom Scale (NMSS) questionnaire. DISCUSSION Ambroxol up to 1200 mg/day has shown effects on human cerebrospinal fluid endpoints, which supports at least passage of the blood-brain-barrier. The dose titration in this trial up to 1800 mg/day will reveal if this dose level is safe and also effective in modifying the course of the disease. TRIAL REGISTRATION NCT05830396. Registration date: March 20, 2023.
Collapse
Affiliation(s)
- O Siemeling
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands.
- Parkinson Expertise Center Groningen, Groningen, The Netherlands.
| | - S Slingerland
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
- Parkinson Expertise Center Groningen, Groningen, The Netherlands
| | - S van der Zee
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
- Parkinson Expertise Center Groningen, Groningen, The Netherlands
| | - T van Laar
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
- Parkinson Expertise Center Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Nam Y, Na J, Ma SX, Park H, Park H, Lee E, Kim H, Jang SM, Ko HS, Kim S. DJ-1 protects cell death from a mitochondrial oxidative stress due to GBA1 deficiency. Genes Genomics 2024; 46:519-529. [PMID: 38460098 DOI: 10.1007/s13258-024-01506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/13/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND GBA1 mutations are the most common genetic risk factor for development of Parkinson's disease (PD). The loss of catalytic activity in GBA1, as well as the reduction of the GBA1 protein in certain cellular compartment, may increase disease progression. However, the mechanisms underlying cellular dysfunction caused by GBA1 deficiency are still mostly unknown. OBJECTIVE In this study, we focus on the genetic interaction between GBA1 deficiency and PD-causing genes, such as DJ-1, in mitochondrial dysfunction. METHODS GBA1 knockout (KO) SH-SY5Y cells were used to assess DJ-1 functions against oxidative stress in vitro. The levels of cellular reactive oxygen species were monitored with MitoSOX reagent. The expression of the PARK7 gene was analyzed using the quantitative real-time PCR (qRT-PCR). To understand the mechanism underlying DJ-1 upregulation in GBA1 KO cells, we assess ROS levels, antioxidant protein, and cell viability in GBA1 KO cells with treatment of ROS inhibitor N-acetyl-cysteine or miglustat, which is an inhibitor of glucosylceramide synthase. Dopaminergic degeneration was assessed from Gba1 L444P heterozygous mice mated with Park7 knockout mice. RESULTS We find that DJ-1 is significantly upregulated in GBA1 KO cells. Elevated levels of DJ-1 are attributed to the transcriptional expression of PARK7 mRNA, but not the inhibition of DJ-1 protein degradation. Because DJ-1 expression is highly linked to oxidative stress, we observe cellular reactive oxygen species (ROS) in GBA1 KO cells. Moreover, several antioxidant gene expressions and protein levels are increased in GBA1 KO cells. To this end, GBA1 KO cells are more susceptible to H2O2-induced cell death. Importantly, there is a significant reduction in dopaminergic neurons in the midbrain from Gba1 L444P heterozygous mice mated with Park7 knockout mice, followed by mild motor dysfunction. CONCLUSION Taken together, our results suggest that DJ-1 upregulation due to GBA1 deficiency has a protective role against oxidative stress. It may be supposed that mutations or malfunctions in the DJ-1 protein may have disadvantages in the survival of dopaminergic neurons in the brains of patients harboring GBA1 mutations.
Collapse
Affiliation(s)
- Younwoo Nam
- Department of Biology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jiyeon Na
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Shi-Xun Ma
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Haeun Park
- Department of Biology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hyeonwoo Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Eunmin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hyerynn Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sang-Min Jang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Biochemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sangjune Kim
- Department of Biology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
15
|
Kamath SD, Holla VV, Phulpagar P, Kamble N, Yadav R, Muthusamy B, Pal PK. Clinicogenetic Characterization of Patients with PD and Heterozygous GBA1 Variants in an Indian Cohort. Mov Disord 2024; 39:628-630. [PMID: 38124431 DOI: 10.1002/mds.29699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Affiliation(s)
- Sneha D Kamath
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Prashant Phulpagar
- Institute of Bioinformatics, International Technology Park, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Babylakshmi Muthusamy
- Institute of Bioinformatics, International Technology Park, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
16
|
Slingerland S, van der Zee S, Carli G, Slomp AC, Boertien JM, d’Angremont E, Bohnen NI, Albin RL, van Laar T. Cholinergic innervation topography in GBA-associated de novo Parkinson's disease patients. Brain 2024; 147:900-910. [PMID: 37748026 PMCID: PMC10907081 DOI: 10.1093/brain/awad323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
The most common genetic risk factors for Parkinson's disease are GBA1 mutations, encoding the lysosomal enzyme glucocerebrosidase. Patients with GBA1 mutations (GBA-PD) exhibit earlier age of onset and faster disease progression with more severe cognitive impairments, postural instability and gait problems. These GBA-PD features suggest more severe cholinergic system pathologies. PET imaging with the vesicular acetylcholine transporter ligand 18F-F-fluoroethoxybenzovesamicol (18F-FEOBV PET) provides the opportunity to investigate cholinergic changes and their relationship to clinical features in GBA-PD. The study investigated 123 newly diagnosed, treatment-naïve Parkinson's disease subjects-with confirmed presynaptic dopaminergic deficits on PET imaging. Whole-gene GBA1 sequencing of saliva samples was performed to evaluate GBA1 variants. Patients underwent extensive neuropsychological assessment of all cognitive domains, motor evaluation with the Unified Parkinson's Disease Rating Scale, brain MRI, dopaminergic PET to measure striatal-to-occipital ratios of the putamen and 18F-FEOBV PET. We investigated differences in regional cholinergic innervation between GBA-PD carriers and non-GBA1 mutation carriers (non-GBA-PD), using voxel-wise and volume of interest-based approaches. The degree of overlap between t-maps from two-sample t-test models was quantified using the Dice similarity coefficient. Seventeen (13.8%) subjects had a GBA1 mutation. No significant differences were found in clinical features and dopaminergic ratios between GBA-PD and non-GBA-PD at diagnosis. Lower 18F-FEOBV binding was found in both the GBA-PD and non-GBA-PD groups compared to controls. Dice (P < 0.05, cluster size 100) showed good overlap (0.7326) between the GBA-PD and non-GBA-PD maps. GBA-PD patients showed more widespread reduction in 18F-FEOBV binding than non-GBA-PD when compared to controls in occipital, parietal, temporal and frontal cortices (P < 0.05, FDR-corrected). In volume of interest analyses (Bonferroni corrected), the left parahippocampal gyrus was more affected in GBA-PD. De novo GBA-PD show a distinct topography of regional cholinergic terminal ligand binding. Although the Parkinson's disease groups were not distinguishable clinically, in comparison to healthy controls, GBA-PD showed more extensive cholinergic denervation compared to non-GBA-PD. A larger group is needed to validate these findings. Our results suggest that de novo GBA-PD and non-GBA-PD show differential patterns of cholinergic system changes before clinical phenotypic differences between carriers versus non-carrier groups are observable.
Collapse
Affiliation(s)
- Sofie Slingerland
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Sygrid van der Zee
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Neurology, Division of Clinical Neuropsychology, University of Groningen, University Medical Center, 9713 GZ Groningen, The Netherlands
| | - Giulia Carli
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Anne C Slomp
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Neurology, Division of Clinical Neuropsychology, University of Groningen, University Medical Center, 9713 GZ Groningen, The Netherlands
| | - Jeffrey M Boertien
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Emile d’Angremont
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Nicolaas I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teus van Laar
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
17
|
Gonçalves A, Mendes A, Damásio J, Vila-Chã N, Boleixa D, Leal B, Cavaco S. DRD3 Predicts Cognitive Impairment and Anxiety in Parkinson's Disease: Susceptibility and Protective Effects. JOURNAL OF PARKINSON'S DISEASE 2024; 14:313-324. [PMID: 38363619 PMCID: PMC10977366 DOI: 10.3233/jpd-230292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Background A possible genetic contribution of dopamine D3 receptor (DRD3) to cognitive impairment in Parkinson's disease (PD) has yet to be investigated. Objective To explore the effects of rs6280 (Ser9Gly) genotype on PD patients' cognitive performance and to clarify possible interactions with psychopathology. Methods Two hundred and fifty-three consecutive PD patients underwent neurological and neuropsychological evaluations, which included: Unified Parkinson's Disease Rating Scale (UPDRS), Hoehn & Yahr scale (H&Y), Dementia Rating Scale-2 (DRS-2), and Hospital Anxiety and Depression Scale (HADS). rs6280 polymorphism was genotyped for all PD patients and for 270 ethnically matched healthy volunteers (HC). Non-parametric group comparisons and logistic regressions were used for data analyses. Results rs6280 genotype did not differ between PD and HC groups. PD patients with rs6280 CC genotype had more impaired cognitive performance (i.e., <1st percentile of demographically adjusted norms) on DRS-2 subscales Initiation/Perseveration and Construction than those with TT genotype. These associations remained statistically significant when other covariates (e.g., demographic features, disease duration, severity of motor symptoms in OFF and ON states, anti-parkinsonian medication, and psychopathology symptoms) were taken into consideration. PD patients with rs6280 TC had less anxiety (i.e., HADS Anxiety≥11) than those with TT (p = 0.012). This association was also independent of other covariates. Conclusions Study findings suggest that rs6280 CC genotype predisposes to executive dysfunction and visuoconstructional deficits, whereas the heterozygous genotype protects from anxiety in PD. These effects do not appear to be dependent of one another. rs6280 is not a genotypic susceptibility factor for PD.
Collapse
Affiliation(s)
- Alexandra Gonçalves
- Neuropsychology Service, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Alexandre Mendes
- Neurology Department, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- ITR – Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Joana Damásio
- Neurology Department, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Nuno Vila-Chã
- Neurology Department, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- ITR – Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Daniela Boleixa
- Departamento de Patologia e Imunologia Molecular, Immunogenetics Laboratory, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Bárbara Leal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- ITR – Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- Departamento de Patologia e Imunologia Molecular, Immunogenetics Laboratory, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Sara Cavaco
- Neuropsychology Service, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- ITR – Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| |
Collapse
|
18
|
Brown EG, Goldman SM, Coffey CS, Siderowf A, Simuni T, Meng C, Brumm MC, Caspell-Garcia C, Marek K, Tanner CM. Occupational Pesticide Exposure in Parkinson's Disease Related to GBA and LRRK2 Variants. JOURNAL OF PARKINSON'S DISEASE 2024; 14:737-746. [PMID: 38820021 PMCID: PMC11191498 DOI: 10.3233/jpd-240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Background The penetrance of common genetic risk variants for Parkinson's disease (PD) is low. Pesticide exposure increases PD risk, but how exposure affects penetrance is not well understood. Objective To determine the relationship between occupational pesticide exposure and PD in people with LRRK2 and GBA risk variants. Methods Participants of the Parkinson's Progression Markers Initiative (PPMI) with a LRRK2-G2019 S or GBA risk variant provided information about occupational pesticide exposure. We compared exposure in carriers with and without PD. Among carriers with PD, we used Cox proportional hazard models to compare time-to impairment in balance, cognition, and activities of daily living (ADLs) between participants with and without prior occupational pesticide exposure. Results 378 participants with a risk variant provided exposure information; 176 with LRRK2-G2019 S (54 with and 122 without PD) and 202 with GBA variants (47 with and 155 without PD). Twenty-six participants reported pesticide exposure. People with a GBA variant and occupational pesticide exposure had much higher odds of PD (aOR: 5.4, 95% CI 1.7-18.5, p < 0.01). People with a LRRK2 variant and a history of occupational pesticide exposure had non-significantly elevated odds of PD (aOR 1.3, 95% CI 0.4-4.6, p = 0.7). Among those with PD, pesticide exposure was associated with a higher risk of balance problems and cognitive impairment in LRRK2-PD and functional impairment in GBA-PD, although associations were not statistically significant. Conclusions Occupational pesticide exposure may increase penetrance of GBA-PD and may be associated with faster symptom progression. Further studies in larger cohorts are necessary.
Collapse
Affiliation(s)
- Ethan G. Brown
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Samuel M. Goldman
- Division of Occupational, Environmental, and Climate Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Andrew Siderowf
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Tanya Simuni
- Department of Neurology, Northwestern University, Evanston, IL, USA
| | - Cheryl Meng
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Michael C. Brumm
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | | | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Caroline M. Tanner
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - The Parkinson’s Progression Markers Initiative
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Division of Occupational, Environmental, and Climate Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Northwestern University, Evanston, IL, USA
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| |
Collapse
|
19
|
Yamanaka T, Matsui H. Modeling familial and sporadic Parkinson's disease in small fishes. Dev Growth Differ 2024; 66:4-20. [PMID: 37991125 DOI: 10.1111/dgd.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
The establishment of animal models for Parkinson's disease (PD) has been challenging. Nevertheless, once established, they will serve as valuable tools for elucidating the causes and pathogenesis of PD, as well as for developing new strategies for its treatment. Following the recent discovery of a series of PD causative genes in familial cases, teleost fishes, including zebrafish and medaka, have often been used to establish genetic PD models because of their ease of breeding and gene manipulation, as well as the high conservation of gene orthologs. Some of the fish lines can recapitulate PD phenotypes, which are often more pronounced than those in rodent genetic models. In addition, a new experimental teleost fish, turquoise killifish, can be used as a sporadic PD model, because it spontaneously manifests age-dependent PD phenotypes. Several PD fish models have already made significant contributions to the discovery of novel PD pathological features, such as cytosolic leakage of mitochondrial DNA and pathogenic phosphorylation in α-synuclein. Therefore, utilizing various PD fish models with distinct degenerative phenotypes will be an effective strategy for identifying emerging facets of PD pathogenesis and therapeutic modalities.
Collapse
Affiliation(s)
- Tomoyuki Yamanaka
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
20
|
Pal G, Corcos DM, Metman LV, Israel Z, Bergman H, Arkadir D. Cognitive Effects of Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease with GBA1 Pathogenic Variants. Mov Disord 2023; 38:2155-2162. [PMID: 37916476 PMCID: PMC10990226 DOI: 10.1002/mds.29647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Genetic subtyping of patients with Parkinson's disease (PD) may assist in predicting the cognitive and motor outcomes of subthalamic deep brain stimulation (STN-DBS). Practical questions were recently raised with the emergence of new data regarding suboptimal cognitive outcomes after STN-DBS in individuals with PD associated with pathogenic variants in glucocerebrosidase gene (GBA1-PD). However, a variety of gaps and controversies remain. (1) Does STN-DBS truly accelerate cognitive deterioration in GBA1-PD? If so, what is the clinical significance of this acceleration? (2) How should the overall risk-to-benefit ratio of STN-DBS in GBA1-PD be established? (3) If STN-DBS has a negative effect on cognition in GBA1-PD, how can this effect be minimized? (4) Should PD patients be genetically tested before STN-DBS? (5) How should GBA1-PD patients considering STN-DBS be counseled? We aim to summarize the currently available relevant data and detail the gaps and controversies that exist pertaining to these questions. In the absence of evidence-based data, all authors strongly agree that clinicians should not categorically deny DBS to PD patients based solely on genotype (GBA1 status). We suggest that PD patients considering DBS may be offered genetic testing for GBA1, where available and feasible, so the potential risks and benefits of STN-DBS can be properly weighed by both the patient and clinician. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gian Pal
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, United States
| | - Leo Verhagen Metman
- Parkinson’s Disease and Movement Disorders Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zvi Israel
- Faculty of Medicine, The Hebrew University and Hadassah, Jerusalem, Jerusalem, Israel
- Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - Hagai Bergman
- Faculty of Medicine, The Hebrew University and Hadassah, Jerusalem, Jerusalem, Israel
- Department of Medical Neurobiology, Institute of Medical Research Israel–Canada (IMRIC), The Hebrew University–Hadassah Medical School, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - David Arkadir
- Faculty of Medicine, The Hebrew University and Hadassah, Jerusalem, Jerusalem, Israel
- Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
21
|
Vijiaratnam N, Foltynie T. How should we be using biomarkers in trials of disease modification in Parkinson's disease? Brain 2023; 146:4845-4869. [PMID: 37536279 PMCID: PMC10690028 DOI: 10.1093/brain/awad265] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
The recent validation of the α-synuclein seed amplification assay as a biomarker with high sensitivity and specificity for the diagnosis of Parkinson's disease has formed the backbone for a proposed staging system for incorporation in Parkinson's disease clinical studies and trials. The routine use of this biomarker should greatly aid in the accuracy of diagnosis during recruitment of Parkinson's disease patients into trials (as distinct from patients with non-Parkinson's disease parkinsonism or non-Parkinson's disease tremors). There remain, however, further challenges in the pursuit of biomarkers for clinical trials of disease modifying agents in Parkinson's disease, namely: optimizing the distinction between different α-synucleinopathies; the selection of subgroups most likely to benefit from a candidate disease modifying agent; a sensitive means of confirming target engagement; and the early prediction of longer-term clinical benefit. For example, levels of CSF proteins such as the lysosomal enzyme β-glucocerebrosidase may assist in prognostication or allow enrichment of appropriate patients into disease modifying trials of agents with this enzyme as the target; the presence of coexisting Alzheimer's disease-like pathology (detectable through CSF levels of amyloid-β42 and tau) can predict subsequent cognitive decline; imaging techniques such as free-water or neuromelanin MRI may objectively track decline in Parkinson's disease even in its later stages. The exploitation of additional biomarkers to the α-synuclein seed amplification assay will, therefore, greatly add to our ability to plan trials and assess the disease modifying properties of interventions. The choice of which biomarker(s) to use in the context of disease modifying clinical trials will depend on the intervention, the stage (at risk, premotor, motor, complex) of the population recruited and the aims of the trial. The progress already made lends hope that panels of fluid biomarkers in tandem with structural or functional imaging may provide sensitive and objective methods of confirming that an intervention is modifying a key pathophysiological process of Parkinson's disease. However, correlation with clinical progression does not necessarily equate to causation, and the ongoing validation of quantitative biomarkers will depend on insightful clinical-genetic-pathophysiological comparisons incorporating longitudinal biomarker changes from those at genetic risk with evidence of onset of the pathophysiology and those at each stage of manifest clinical Parkinson's disease.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
22
|
Pachchek S, Landoulsi Z, Pavelka L, Schulte C, Buena-Atienza E, Gross C, Hauser AK, Reddy Bobbili D, Casadei N, May P, Krüger R. Accurate long-read sequencing identified GBA1 as major risk factor in the Luxembourgish Parkinson's study. NPJ Parkinsons Dis 2023; 9:156. [PMID: 37996455 PMCID: PMC10667262 DOI: 10.1038/s41531-023-00595-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Heterozygous variants in the glucocerebrosidase GBA1 gene are an increasingly recognized risk factor for Parkinson's disease (PD). Due to the GBAP1 pseudogene, which shares 96% sequence homology with the GBA1 coding region, accurate variant calling by array-based or short-read sequencing methods remains a major challenge in understanding the genetic landscape of GBA1-associated PD. We analyzed 660 patients with PD, 100 patients with Parkinsonism and 808 healthy controls from the Luxembourg Parkinson's study, sequenced using amplicon-based long-read DNA sequencing technology. We found that 12.1% (77/637) of PD patients carried GBA1 variants, with 10.5% (67/637) of them carrying known pathogenic variants (including severe, mild, risk variants). In comparison, 5% (34/675) of the healthy controls carried GBA1 variants, and among them, 4.3% (29/675) were identified as pathogenic variant carriers. We found four GBA1 variants in patients with atypical parkinsonism. Pathogenic GBA1 variants were 2.6-fold more frequently observed in PD patients compared to controls (OR = 2.6; CI = [1.6,4.1]). Three novel variants of unknown significance (VUS) were identified. Using a structure-based approach, we defined a potential risk prediction method for VUS. This study describes the full landscape of GBA1-related parkinsonism in Luxembourg, showing a high prevalence of GBA1 variants as the major genetic risk for PD. Although the long-read DNA sequencing technique used in our study may be limited in its effectiveness to detect potential structural variants, our approach provides an important advancement for highly accurate GBA1 variant calling, which is essential for providing access to emerging causative therapies for GBA1 carriers.
Collapse
Grants
- FNR/NCER13/BM/11264123 Fonds National de la Recherche Luxembourg (National Research Fund)
- funded by the Luxembourg National Research (FNR/NCER13/BM/11264123), the PEARL program (FNR/P13/6682797 to RK), MotaSYN (12719684 to RK), MAMaSyn (to RK), MiRisk‐PD (C17/BM/11676395 to RK, PM), the FNR/DFG Core INTER (ProtectMove, FNR11250962 to PM), and the PARK-QC DTU (PRIDE17/12244779/PARK-QC to RK, SP)
- Luxembourg National Research Fund (FNR/NCER13/BM/11264123), the PEARL program (FNR/P13/6682797), MotaSYN (12719684), MAMaSyn, MiRisk‐PD (C17/BM/11676395), and the PARK-QC DTU (PRIDE17/12244779/PARK-QC)
Collapse
Affiliation(s)
- Sinthuja Pachchek
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg.
| | - Zied Landoulsi
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Lukas Pavelka
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Claudia Schulte
- Department of Neurodegeneration, Center of Neurology, Hertie Institute for Clinical Brain Research, German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Elena Buena-Atienza
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - Caspar Gross
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - Ann-Kathrin Hauser
- Department of Neurodegeneration, Center of Neurology, Hertie Institute for Clinical Brain Research, German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Dheeraj Reddy Bobbili
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - Patrick May
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg.
| | - Rejko Krüger
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg.
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg.
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg.
| |
Collapse
|
23
|
Toffoli M, Chohan H, Mullin S, Jesuthasan A, Yalkic S, Koletsi S, Menozzi E, Rahall S, Limbachiya N, Loefflad N, Higgins A, Bestwick J, Lucas-Del-Pozo S, Fierli F, Farbos A, Mezabrovschi R, Lee-Yin C, Schrag A, Moreno-Martinez D, Hughes D, Noyce A, Colclough K, Jeffries AR, Proukakis C, Schapira AHV. Phenotypic effect of GBA1 variants in individuals with and without Parkinson's disease: The RAPSODI study. Neurobiol Dis 2023; 188:106343. [PMID: 37926171 DOI: 10.1016/j.nbd.2023.106343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/08/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Variants in the GBA1 gene cause the lysosomal storage disorder Gaucher disease (GD). They are also risk factors for Parkinson's disease (PD), and modify the expression of the PD phenotype. The penetrance of GBA1 variants in PD is incomplete, and the ability to determine who among GBA1 variant carriers are at higher risk of developing PD, would represent an advantage for prognostic and trial design purposes. OBJECTIVES To compare the motor and non-motor phenotype of GBA1 carriers and non-carriers. METHODS We present the cross-sectional results of the baseline assessment from the RAPSODI study, an online assessment tool for PD patients and GBA1 variant carriers. The assessment includes clinically validated questionnaires, a tap-test, the University of Pennsyllvania Smell Identification Test and cognitive tests. Additional, homogeneous data from the PREDICT-PD cohort were included. RESULTS A total of 379 participants completed all parts of the RAPSODI assessment (89 GBA1-negative controls, 169 GBA1-negative PD, 47 GBA1-positive PD, 47 non-affected GBA1 carriers, 27 GD). Eighty-six participants were recruited through PREDICT-PD (43 non-affected GBA1 carriers and 43 GBA1-negative controls). GBA1-positive PD patients showed worse performance in visual cognitive tasks and olfaction compared to GBA1-negative PD patients. No differences were detected between non-affected GBA1 carriers carriers and GBA1-negative controls. No phenotypic differences were observed between any of the non-PD groups. CONCLUSIONS Our results support previous evidence that GBA1-positive PD has a specific phenotype with more severe non-motor symptoms. However, we did not reproduce previous findings of more frequent prodromal PD signs in non-affected GBA1 carriers.
Collapse
Affiliation(s)
- Marco Toffoli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Harneek Chohan
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, UK
| | - Stephen Mullin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| | | | - Selen Yalkic
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Sofia Koletsi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Soraya Rahall
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Naomi Limbachiya
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Nadine Loefflad
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Abigail Higgins
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Jonathan Bestwick
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, UK
| | - Sara Lucas-Del-Pozo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Federico Fierli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Audrey Farbos
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Roxana Mezabrovschi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Chiao Lee-Yin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Anette Schrag
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - David Moreno-Martinez
- Lysosomal Storage Disorders Unit, Royal Free Hospital NHS Foundation Trust and University College London, London, UK
| | - Derralynn Hughes
- Lysosomal Storage Disorders Unit, Royal Free Hospital NHS Foundation Trust and University College London, London, UK
| | - Alastair Noyce
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, UK
| | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Trust, Exeter, UK
| | - Aaron R Jeffries
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
24
|
Jeong EH, Lee JY, Han SK, Song YS. Motor subtypes and clinical characteristics in sporadic and genetic Parkinson's disease groups: analysis of the PPMI cohort. Front Neurol 2023; 14:1276251. [PMID: 37954645 PMCID: PMC10634614 DOI: 10.3389/fneur.2023.1276251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/25/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction The extensive clinical variations observed in Parkinson's disease (PD) pose challenges in early diagnosis and treatment initiation. However, genetic research in PD has significantly transformed the clinical approach to its treatment. Moreover, researchers have adopted a subtyping strategy based on homogeneous clinical symptoms to improve clinical diagnosis and treatment approaches. We conducted a study to explore clinical characteristics in genetic PD groups with motor symptom subtyping. Methods Data was driven from the Parkinson's Progression Markers Initiative (PPMI) database. The sporadic PD (sPD) group and the genetic PD group including patients with leucine-rich kinase 2 (LRRK2) or glucosylceramidase β (GBA) mutations were analyzed. Motor subtyping was performed using Movement Disorder Society-Unified Parkinson's disease rating scale (MDS-UPDRS) scores. I-123 FP-CIT SPECT scans were used to calculate specific binding ratios (SBRs) in the caudate and putamen. Clinical symptoms of each group were also compared. Results MDS-UPDRS III scores were lower in the LRRK2 group, compared with the GBA and sPD group (P < 0.001), but no significant differences in striatal SBRs. The putaminal SBR value of the LRRK2 group was higher than the sPD group (P < 0.05). Within the GBA group, we observed lower SBR values in the postural instability/gait difficulty (PIGD) subtype GBA group compared to the tremor-dominant (TD) subtype GBA group (P < 0.05). The TD subtype GBA group exhibited superior putaminal SBRs compared to the TD subtype sPD group (P < 0.05). The TD subtype LRRK2 group had better putaminal SBR values (P < 0.001) and MDS-UPDRS Part III scores (P < 0.05) compared to the TD sPD group. Discussions Our subtyping approach offers valuable insights into the clinical characteristics and progression of different genetic PD subtypes. To further validate and expand these findings, future research with larger groups and long-term follow-up data is needed. The subtyping strategy based on motor symptoms holds promise in enhancing the diagnosis and treatment of genetic PD.
Collapse
Affiliation(s)
- Eun Hye Jeong
- Department of Neurology, Bundang Jesaeng General Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jae Yong Lee
- Department of Neurology, Bundang Jesaeng General Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Sun-Ku Han
- Department of Neurology, Bundang Jesaeng General Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Yoo Sung Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
- College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Hajianfar G, Kalayinia S, Hosseinzadeh M, Samanian S, Maleki M, Sossi V, Rahmim A, Salmanpour MR. Prediction of Parkinson's disease pathogenic variants using hybrid Machine learning systems and radiomic features. Phys Med 2023; 113:102647. [PMID: 37579523 DOI: 10.1016/j.ejmp.2023.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 05/08/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023] Open
Abstract
PURPOSE In Parkinson's disease (PD), 5-10% of cases are of genetic origin with mutations identified in several genes such as leucine-rich repeat kinase 2 (LRRK2) and glucocerebrosidase (GBA). We aim to predict these two gene mutations using hybrid machine learning systems (HMLS), via imaging and non-imaging data, with the long-term goal to predict conversion to active disease. METHODS We studied 264 and 129 patients with known LRRK2 and GBA mutations status from PPMI database. Each dataset includes 513 features such as clinical features (CFs), conventional imaging features (CIFs) and radiomic features (RFs) extracted from DAT-SPECT images. Features, normalized by Z-score, were univariately analyzed for statistical significance by the t-test and chi-square test, adjusted by Benjamini-Hochberg correction. Multiple HMLSs, including 11 features extraction (FEA) or 10 features selection algorithms (FSA) linked with 21 classifiers were utilized. We also employed Ensemble Voting (EV) to classify the genes. RESULTS For prediction of LRRK2 mutation status, a number of HMLSs resulted in accuracies of 0.98 ± 0.02 and 1.00 in 5-fold cross-validation (80% out of total data points) and external testing (remaining 20%), respectively. For predicting GBA mutation status, multiple HMLSs resulted in high accuracies of 0.90 ± 0.08 and 0.96 in 5-fold cross-validation and external testing, respectively. We additionally showed that SPECT-based RFs added value to the specific prediction of of GBA mutation status. CONCLUSION We demonstrated that combining medical information with SPECT-based imaging features, and optimal utilization of HMLS can produce excellent prediction of the mutations status in PD patients.
Collapse
Affiliation(s)
- Ghasem Hajianfar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran; Technological Virtual Collaboration (TECVICO Corp.), Vancouver BC, Canada
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Hosseinzadeh
- Technological Virtual Collaboration (TECVICO Corp.), Vancouver BC, Canada; Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
| | - Sara Samanian
- Firoozgar Hospital Medical Genetics Laboratory, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Arman Rahmim
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Mohammad R Salmanpour
- Technological Virtual Collaboration (TECVICO Corp.), Vancouver BC, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
26
|
Huh YE, Usnich T, Scherzer CR, Klein C, Chung SJ. GBA1 Variants and Parkinson's Disease: Paving the Way for Targeted Therapy. J Mov Disord 2023; 16:261-278. [PMID: 37302978 PMCID: PMC10548077 DOI: 10.14802/jmd.23023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023] Open
Abstract
Glucosylceramidase beta 1 (GBA1) variants have attracted enormous attention as the most promising and important genetic candidates for precision medicine in Parkinson's disease (PD). A substantial correlation between GBA1 genotypes and PD phenotypes could inform the prediction of disease progression and promote the development of a preventive intervention for individuals at a higher risk of a worse disease prognosis. Moreover, the GBA1-regulated pathway provides new perspectives on the pathogenesis of PD, such as dysregulated sphingolipid metabolism, impaired protein quality control, and disrupted endoplasmic reticulum-Golgi trafficking. These perspectives have led to the development of novel disease-modifying therapies for PD targeting the GBA1-regulated pathway by repositioning treatment strategies for Gaucher's disease. This review summarizes the current hypotheses on a mechanistic link between GBA1 variants and PD and possible therapeutic options for modulating GBA1-regulated pathways in PD patients.
Collapse
Affiliation(s)
- Young Eun Huh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Tatiana Usnich
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Clemens R. Scherzer
- Advanced Center for Parkinson’s Disease Research, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Zhou Y, Wang Y, Wan J, Zhao Y, Pan H, Zeng Q, Zhou X, He R, Zhou X, Xiang Y, Zhou Z, Chen B, Sun Q, Xu Q, Tan J, Shen L, Jiang H, Yan X, Li J, Guo J, Tang B, Wu H, Liu Z. Mutational spectrum and clinical features of GBA1 variants in a Chinese cohort with Parkinson's disease. NPJ Parkinsons Dis 2023; 9:129. [PMID: 37658046 PMCID: PMC10474275 DOI: 10.1038/s41531-023-00571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
GBA1 variants are important risk factors for Parkinson's disease (PD). Most studies assessing GBA1-related PD risk have been performed in European-derived populations. Although the coding region of the GBA1 gene in the Chinese population has been analyzed, the sample sizes were not adequate. In this study, we aimed to investigate GBA1 variants in a large Chinese cohort of patients with PD and healthy control and explore the associated clinical characteristics. GBA1 variants in 4034 patients and 2931 control participants were investigated using whole-exome and whole-genome sequencing. The clinical features of patients were evaluated using several scales. Regression analysis, chi-square, and Fisher exact tests were used to analyze GBA1 variants and the clinical symptoms of different groups. We identified 104 variants, including 8 novel variants, expanding the spectrum of GBA1 variants. The frequency of GBA1 variants in patients with PD was 7.46%, higher than that in the control (1.81%) (P < 0.001, odds ratio [OR] = 4.38, 95% confidence interval [CI]: 3.26-5.89). Among patients, 176 (4.36%) had severe variants, 34 (0.84%) carried mild variants, three (0.07%) had risk variants, and 88 (2.18%) carried unknown variants. Our study, for the first time, found that p.G241R (P = 0.007, OR = 15.3, 95% CI: 1.25-261.1) and p.S310G (P = 0.005, OR = 4.86, 95% CI: 1.52-28.04) variants increased the risk of PD. Patients with GBA1 variants exhibited an earlier onset age and higher risk of probable rapid-eye-movement sleep behavior disorder, olfactory dysfunction, depression, and autonomic dysfunction than patients without GBA1 variants.
Collapse
Affiliation(s)
- Yangjie Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Wan
- Department of Neurology, & Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xun Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Runcheng He
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhou Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
- Bioinformatics Center & National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Bioinformatics Center & National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurology, & Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
- Bioinformatics Center & National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heng Wu
- Department of Neurology, & Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China.
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, Hunan, China.
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China.
- Bioinformatics Center & National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
28
|
Berson E, Gajera CR, Phongpreecha T, Perna A, Bukhari SA, Becker M, Chang AL, De Francesco D, Espinosa C, Ravindra NG, Postupna N, Latimer CS, Shively CA, Register TC, Craft S, Montine KS, Fox EJ, Keene CD, Bendall SC, Aghaeepour N, Montine TJ. Cross-species comparative analysis of single presynapses. Sci Rep 2023; 13:13849. [PMID: 37620363 PMCID: PMC10449792 DOI: 10.1038/s41598-023-40683-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Comparing brain structure across species and regions enables key functional insights. Leveraging publicly available data from a novel mass cytometry-based method, synaptometry by time of flight (SynTOF), we applied an unsupervised machine learning approach to conduct a comparative study of presynapse molecular abundance across three species and three brain regions. We used neural networks and their attractive properties to model complex relationships among high dimensional data to develop a unified, unsupervised framework for comparing the profile of more than 4.5 million single presynapses among normal human, macaque, and mouse samples. An extensive validation showed the feasibility of performing cross-species comparison using SynTOF profiling. Integrative analysis of the abundance of 20 presynaptic proteins revealed near-complete separation between primates and mice involving synaptic pruning, cellular energy, lipid metabolism, and neurotransmission. In addition, our analysis revealed a strong overlap between the presynaptic composition of human and macaque in the cerebral cortex and neostriatum. Our unique approach illuminates species- and region-specific variation in presynapse molecular composition.
Collapse
Affiliation(s)
- Eloïse Berson
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94304, USA
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Chandresh R Gajera
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94304, USA
| | - Thanaphong Phongpreecha
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94304, USA
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Amalia Perna
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94304, USA
| | - Syed A Bukhari
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94304, USA
| | - Martin Becker
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Alan L Chang
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Davide De Francesco
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Camilo Espinosa
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Neal G Ravindra
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Nadia Postupna
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Carol A Shively
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thomas C Register
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Suzanne Craft
- Department of Internal Medicine-Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kathleen S Montine
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94304, USA
| | - Edward J Fox
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94304, USA
| | - C Dirk Keene
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Sean C Bendall
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94304, USA.
| |
Collapse
|
29
|
Gan-Or Z. Lessons and future directions for GBA1-targeting therapies. Lancet Neurol 2023; 22:644-645. [PMID: 37479362 DOI: 10.1016/s1474-4422(23)00217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/23/2023]
Affiliation(s)
- Ziv Gan-Or
- Department of Neurology and Neurosurgery, The Neuro (Montreal Neurological Institute-Hospital), and Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
30
|
Chatterjee D, Krainc D. Mechanisms of Glucocerebrosidase Dysfunction in Parkinson's Disease. J Mol Biol 2023; 435:168023. [PMID: 36828270 PMCID: PMC10247409 DOI: 10.1016/j.jmb.2023.168023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Beta-glucocerebrosidase is a lysosomal hydrolase, encoded by GBA1 that represents the most common risk gene associated with Parkinson's disease (PD) and Lewy Body Dementia. Glucocerebrosidase dysfunction has been also observed in the absence of GBA1 mutations across different genetic and sporadic forms of PD and related disorders, suggesting a broader role of glucocerebrosidase in neurodegeneration. In this review, we highlight recent advances in mechanistic characterization of glucocerebrosidase function as the foundation for development of novel therapeutics targeting glucocerebrosidase in PD and related disorders.
Collapse
Affiliation(s)
- Diptaman Chatterjee
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA. https://twitter.com/NeilChatterBox
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA; Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
31
|
Jagota P, Lim S, Pal PK, Lee J, Kukkle PL, Fujioka S, Shang H, Phokaewvarangkul O, Bhidayasiri R, Mohamed Ibrahim N, Ugawa Y, Aldaajani Z, Jeon B, Diesta C, Shambetova C, Lin C. Genetic Movement Disorders Commonly Seen in Asians. Mov Disord Clin Pract 2023; 10:878-895. [PMID: 37332644 PMCID: PMC10272919 DOI: 10.1002/mdc3.13737] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 11/21/2023] Open
Abstract
The increasing availability of molecular genetic testing has changed the landscape of both genetic research and clinical practice. Not only is the pace of discovery of novel disease-causing genes accelerating but also the phenotypic spectra associated with previously known genes are expanding. These advancements lead to the awareness that some genetic movement disorders may cluster in certain ethnic populations and genetic pleiotropy may result in unique clinical presentations in specific ethnic groups. Thus, the characteristics, genetics and risk factors of movement disorders may differ between populations. Recognition of a particular clinical phenotype, combined with information about the ethnic origin of patients could lead to early and correct diagnosis and assist the development of future personalized medicine for patients with these disorders. Here, the Movement Disorders in Asia Task Force sought to review genetic movement disorders that are commonly seen in Asia, including Wilson's disease, spinocerebellar ataxias (SCA) types 12, 31, and 36, Gerstmann-Sträussler-Scheinker disease, PLA2G6-related parkinsonism, adult-onset neuronal intranuclear inclusion disease (NIID), and paroxysmal kinesigenic dyskinesia. We also review common disorders seen worldwide with specific mutations or presentations that occur frequently in Asians.
Collapse
Affiliation(s)
- Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Shen‐Yang Lim
- Division of Neurology, Department of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Pramod Kumar Pal
- Department of NeurologyNational Institute of Mental Health & Neurosciences (NIMHANS)BengaluruIndia
| | - Jee‐Young Lee
- Department of NeurologySeoul Metropolitan Government‐Seoul National University Boramae Medical Center & Seoul National University College of MedicineSeoulRepublic of Korea
| | - Prashanth Lingappa Kukkle
- Center for Parkinson's Disease and Movement DisordersManipal HospitalBangaloreIndia
- Parkinson's Disease and Movement Disorders ClinicBangaloreIndia
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Faculty of MedicineFukuokaJapan
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
- The Academy of Science, The Royal Society of ThailandBangkokThailand
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Yoshikazu Ugawa
- Deprtment of Human Neurophysiology, Faculty of MedicineFukushima Medical UniversityFukushimaJapan
| | - Zakiyah Aldaajani
- Neurology Unit, King Fahad Military Medical ComplexDhahranSaudi Arabia
| | - Beomseok Jeon
- Department of NeurologySeoul National University College of MedicineSeoulRepublic of Korea
- Movement Disorder CenterSeoul National University HospitalSeoulRepublic of Korea
| | - Cid Diesta
- Section of Neurology, Department of NeuroscienceMakati Medical Center, NCRMakatiPhilippines
| | | | - Chin‐Hsien Lin
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
32
|
den Heijer JM, Kruithof AC, Moerland M, Walker M, Dudgeon L, Justman C, Solomini I, Splitalny L, Leymarie N, Khatri K, Cullen VC, Hilt DC, Groeneveld GJ, Lansbury P. A Phase 1B Trial in GBA1-Associated Parkinson's Disease of BIA-28-6156, a Glucocerebrosidase Activator. Mov Disord 2023. [PMID: 37195859 DOI: 10.1002/mds.29346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Loss-of-function mutations in the GBA1 gene are one of the most common genetic risk factors for onset of Parkinson's disease and subsequent progression (GBA-PD). GBA1 encodes the lysosomal enzyme glucocerebrosidase (GCase), a promising target for a possible first disease-modifying therapy. LTI-291 is an allosteric activator of GCase, which increases the activity of normal and mutant forms of GCase. OBJECTIVES This first-in-patient study evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics of 28 daily doses of LTI-291 in GBA-PD. METHODS This was a randomized, double-blind, placebo-controlled trial in 40 GBA-PD participants. Twenty-eight consecutive daily doses of 10, 30, or 60 mg of LTI-291 or placebo were administered (n = 10 per treatment allocation). Glycosphingolipid (glucosylceramide and lactosylceramide) levels were measured in peripheral blood mononuclear cells (PBMCs), plasma, and cerebrospinal fluid (CSF), and a test battery of neurocognitive tasks, the Movement Disorder Society-Unified Parkinson's Disease Rating Scale and the Mini-Mental State Exam, were performed. RESULTS LTI-291 was generally well tolerated, no deaths or treatment-related serious adverse events occurred, and no participants withdrew due to adverse events. Cmax , and AUC0-6 of LTI-291 increased in a dose-proportional manner, with free CSF concentrations equal to the free fraction in plasma. A treatment-related transient increase in intracellular glucosylceramide (GluCer) in PBMCs was measured. CONCLUSION These first-in-patient studies demonstrated that LTI-291 was well tolerated when administered orally for 28 consecutive days to patients with GBA-PD. Plasma and CSF concentrations that are considered pharmacologically active were reached (ie, sufficient to at least double GCase activity). Intracellular GluCer elevations were detected. Clinical benefit will be assessed in a larger long-term trial in GBA-PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jonas M den Heijer
- Department of Neurology, Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Annelieke C Kruithof
- Department of Neurology, Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Matthijs Moerland
- Department of Neurology, Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | | | | | - Craig Justman
- Lysosomal Therapeutics Inc., Cambridge, Massachusetts, USA
| | | | | | - Nancy Leymarie
- Lysosomal Therapeutics Inc., Cambridge, Massachusetts, USA
| | - Kshitij Khatri
- Lysosomal Therapeutics Inc., Cambridge, Massachusetts, USA
| | | | - Dana C Hilt
- Lysosomal Therapeutics Inc., Cambridge, Massachusetts, USA
| | - Geert Jan Groeneveld
- Department of Neurology, Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Peter Lansbury
- Lysosomal Therapeutics Inc., Cambridge, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Morris R, Martini DN, Kelly VE, Smulders K, Ramsey K, Hiller A, Chung KA, Hu SC, Zabetian CP, Poston KL, Mata IF, Edwards KL, Lapidus J, Cholerton B, Montine TJ, Quinn JF, Horak F. Gait and balance in apolipoprotein Ɛ4 allele carriers in older adults and Parkinson's disease. Clin Park Relat Disord 2023; 9:100201. [PMID: 37252677 PMCID: PMC10209874 DOI: 10.1016/j.prdoa.2023.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/09/2023] [Accepted: 05/14/2023] [Indexed: 05/31/2023] Open
Abstract
Background Gait and balance impairments are among the most troublesome and heterogeneous in Parkinson's disease (PD). This heterogeneity may, in part, reflect genetic variation. The apolipoprotein E (APOE) gene has three major allelic variants (ε2, ε3 and ε4). Previous work has demonstrated that older adult (OA) APOE ε4 carriers demonstrate gait deficits. This study compared gait and balance measures between APOE ε4 carriers and non-carriers in both OA and PD. Methods 334 people with PD (81 APOE ε4 carriers and 253 non-carriers) and 144 OA (41 carriers and 103 non-carriers) were recruited. Gait and balance were assessed using body-worn inertial sensors. Two-way analyses of covariance (ANCOVA) compared gait and balance characteristics between APOE ε4 carriers and non-carriers in people with PD and OA, controlling for age, gender, and testing site. Results Gait and balance were worse in people with PD compared to OA. However, there were no differences between APOE ε4 carriers and non-carriers in either the OA or PD group. In addition, there were no significant group (OA/PD) by APOE ε4 status (carrier/non-carrier) interaction effects for any measures of gait or balance. Conclusions Although we found expected impairments in gait and balance in PD compared to OA, gait and balance characteristics did not differ between APOE ε4 carriers and non-carriers in either group. While APOE status did not impact gait and balance in this cross-sectional study, future work is needed to determine whether progression of gait and balance deficits is faster in PD APOE Ɛ4 carriers.
Collapse
Affiliation(s)
- Rosie Morris
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK
| | - Douglas N. Martini
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Valerie E. Kelly
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Katrijn Smulders
- Sint Maartenskliniek Research Department, Nijmegen, the Netherlands
| | - Katrina Ramsey
- School of Public Health, Oregon Health and Science University, Portland, OR, USA
| | - Amie Hiller
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Kathryn A. Chung
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Shu-Ching Hu
- Sint Maartenskliniek Research Department, Nijmegen, the Netherlands
- Portland Veterans Affairs Health Care System, Portland, OR, USA
| | - Cyrus P. Zabetian
- Sint Maartenskliniek Research Department, Nijmegen, the Netherlands
- Portland Veterans Affairs Health Care System, Portland, OR, USA
| | - Kathleen L. Poston
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ignacio F. Mata
- Sint Maartenskliniek Research Department, Nijmegen, the Netherlands
- Portland Veterans Affairs Health Care System, Portland, OR, USA
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Karen L. Edwards
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, CA, US
| | - Jodi Lapidus
- School of Public Health, Oregon Health and Science University, Portland, OR, USA
| | - Brenna Cholerton
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Thomas J. Montine
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Fay Horak
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
34
|
Blauwendraat C, Tayebi N, Woo EG, Lopez G, Fierro L, Toffoli M, Limbachiya N, Hughes D, Pitz V, Patel D, Vitale D, Koretsky MJ, Hernandez D, Real R, Alcalay RN, Nalls MA, Morris HR, Schapira AHV, Balwani M, Sidransky E. Polygenic Parkinson's Disease Genetic Risk Score as Risk Modifier of Parkinsonism in Gaucher Disease. Mov Disord 2023; 38:899-903. [PMID: 36869417 PMCID: PMC10271962 DOI: 10.1002/mds.29342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Biallelic pathogenic variants in GBA1 are the cause of Gaucher disease (GD) type 1 (GD1), a lysosomal storage disorder resulting from deficient glucocerebrosidase. Heterozygous GBA1 variants are also a common genetic risk factor for Parkinson's disease (PD). GD manifests with considerable clinical heterogeneity and is also associated with an increased risk for PD. OBJECTIVE The objective of this study was to investigate the contribution of PD risk variants to risk for PD in patients with GD1. METHODS We studied 225 patients with GD1, including 199 without PD and 26 with PD. All cases were genotyped, and the genetic data were imputed using common pipelines. RESULTS On average, patients with GD1 with PD have a significantly higher PD genetic risk score than those without PD (P = 0.021). CONCLUSIONS Our results indicate that variants included in the PD genetic risk score were more frequent in patients with GD1 who developed PD, suggesting that common risk variants may affect underlying biological pathways. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Cornelis Blauwendraat
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nahid Tayebi
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Geena Woo
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grisel Lopez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luca Fierro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Naomi Limbachiya
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Derralynn Hughes
- Lysosomal Storage Diseases Unit, Royal Free London Hospital NHS Foundation Trust, and Department of Hematology , UCL, London, UK
| | - Vanessa Pitz
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Dhairya Patel
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Dan Vitale
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Mathew J. Koretsky
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dena Hernandez
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Roy N. Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mike A Nalls
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Anthony H. V. Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
35
|
Baden P, Perez MJ, Raji H, Bertoli F, Kalb S, Illescas M, Spanos F, Giuliano C, Calogero AM, Oldrati M, Hebestreit H, Cappelletti G, Brockmann K, Gasser T, Schapira AHV, Ugalde C, Deleidi M. Glucocerebrosidase is imported into mitochondria and preserves complex I integrity and energy metabolism. Nat Commun 2023; 14:1930. [PMID: 37024507 PMCID: PMC10079970 DOI: 10.1038/s41467-023-37454-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Mutations in GBA1, the gene encoding the lysosomal enzyme β-glucocerebrosidase (GCase), which cause Gaucher's disease, are the most frequent genetic risk factor for Parkinson's disease (PD). Here, we employ global proteomic and single-cell genomic approaches in stable cell lines as well as induced pluripotent stem cell (iPSC)-derived neurons and midbrain organoids to dissect the mechanisms underlying GCase-related neurodegeneration. We demonstrate that GCase can be imported from the cytosol into the mitochondria via recognition of internal mitochondrial targeting sequence-like signals. In mitochondria, GCase promotes the maintenance of mitochondrial complex I (CI) integrity and function. Furthermore, GCase interacts with the mitochondrial quality control proteins HSP60 and LONP1. Disease-associated mutations impair CI stability and function and enhance the interaction with the mitochondrial quality control machinery. These findings reveal a mitochondrial role of GCase and suggest that defective CI activity and energy metabolism may drive the pathogenesis of GCase-linked neurodegeneration.
Collapse
Affiliation(s)
- Pascale Baden
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Maria Jose Perez
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Hariam Raji
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Federico Bertoli
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Stefanie Kalb
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - María Illescas
- Instituto de Investigación Hospital 12 de Octubre (i + 12), Madrid, 28041, Spain
| | - Fokion Spanos
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Claudio Giuliano
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Unit of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - Alessandra Maria Calogero
- Department of Biosciences, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| | - Marvin Oldrati
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Hannah Hebestreit
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Graziella Cappelletti
- Department of Biosciences, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| | - Kathrin Brockmann
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Thomas Gasser
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anthony H V Schapira
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK
| | - Cristina Ugalde
- Instituto de Investigación Hospital 12 de Octubre (i + 12), Madrid, 28041, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid, Spain
| | - Michela Deleidi
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Institut Imagine, INSERM UMR1163 Paris Cite' University, 24 boulevard du Montparnasse, 75015, Paris, France.
| |
Collapse
|
36
|
den Heijer JM, Cullen VC, Pereira DR, Yavuz Y, de Kam ML, Grievink HW, Moerland M, Leymarie N, Khatri K, Sollomoni I, Spitalny L, Dungeon L, Hilt DC, Justman C, Lansbury P, Groeneveld GJ. A Biomarker Study in Patients with GBA1-Parkinson's Disease and Healthy Controls. Mov Disord 2023. [PMID: 36916660 DOI: 10.1002/mds.29360] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/05/2023] [Accepted: 02/03/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Molecules related to glucocerebrosidase (GCase) are potential biomarkers for development of compounds targeting GBA1-associated Parkinson's disease (GBA-PD). OBJECTIVES Assessing variability of various glycosphingolipids (GSLs) in plasma, peripheral blood mononuclear cells (PBMCs), and cerebrospinal fluid (CSF) across GBA-PD, idiopathic PD (iPD), and healthy volunteers (HVs). METHODS Data from five studies were combined. Variability was assessed of glucosylceramide (various isoforms), lactosylceramide (various isoforms), glucosylsphingosine, galactosylsphingosine, GCase activity (using fluorescent 4-methylumbeliferryl-β-glucoside), and GCase protein (using enzyme-linked immunosorbent assay) in plasma, PBMCs, and CSF if available, in GBA-PD, iPD, and HVs. GSLs in leukocyte subtypes were compared in HVs. Principal component analysis was used to explore global patterns in GSLs, clinical characteristics (Movement Disorder Society - Unified Parkinson's Disease Rating Scale Part 3 [MDS-UPDRS-3], Mini-Mental State Examination [MMSE], GBA1 mutation type), and participant status (GBA-PD, iPD, HVs). RESULTS Within-subject between-day variability ranged from 5.8% to 44.5% and was generally lower in plasma than in PBMCs. Extracellular glucosylceramide levels (plasma) were slightly higher in GBA-PD compared with both iPD and HVs, while intracellular levels were comparable. GSLs in the different matrices (plasma, PBMCs, CSF) did not correlate. Both lactosylceramide and glucosylsphingosine were more abundant in granulocytes compared with monocytes and lymphocytes. Absolute levels of GSL isoforms differed greatly. GBA1 mutation types could not be differentiated based on GSL data. CONCLUSIONS Glucosylceramide can stably be measured over days in both plasma and PBMCs and may be used as a biomarker in clinical trials targeting GBA-PD. Glucosylsphingosine and lactosylceramide are stable in plasma but are strongly affected by leukocyte subtypes in PBMCs. GBA-PD could be differentiated from iPD and HVs, primarily based on glucosylceramide levels in plasma. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jonas M den Heijer
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Yalcin Yavuz
- Centre for Human Drug Research, Leiden, The Netherlands
| | | | | | - Matthijs Moerland
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| | - Nancy Leymarie
- Lysosomal Therapeutics Inc., Cambridge, Massachusetts, USA
| | - Kshitij Khatri
- Lysosomal Therapeutics Inc., Cambridge, Massachusetts, USA
| | | | | | | | - Dana C Hilt
- Lysosomal Therapeutics Inc., Cambridge, Massachusetts, USA
| | - Craig Justman
- Lysosomal Therapeutics Inc., Cambridge, Massachusetts, USA
| | - Peter Lansbury
- Lysosomal Therapeutics Inc., Cambridge, Massachusetts, USA
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
37
|
Parlar SC, Grenn FP, Kim JJ, Baluwendraat C, Gan-Or Z. Classification of GBA1 Variants in Parkinson's Disease: The GBA1-PD Browser. Mov Disord 2023; 38:489-495. [PMID: 36598340 PMCID: PMC10033371 DOI: 10.1002/mds.29314] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/14/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND GBA1 variants are among the most common genetic risk factors for Parkinson's disease (PD). GBA1 variants can be classified into three categories based on their role in Gaucher's disease (GD) or PD: severe, mild, and risk variant (for PD). OBJECTIVE This review aims to generate and share a comprehensive database for GBA1 variants reported in PD to support future research and clinical trials. METHODS We performed a literature search for all GBA1 variants that have been reported in PD. The data have been standardized and complemented with variant classification, odds ratio if available, and other data. RESULTS We found 371 GBA1 variants reported in PD: 22 mild, 84 severe, 3 risk variants, and 262 of unknown status. We created a browser containing up-to-date information on these variants (https://pdgenetics.shinyapps.io/GBA1Browser/). CONCLUSIONS The classification and browser presented in this work should inform and support basic, translational, and clinical research on GBA1-PD. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sitki Cem Parlar
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Francis P. Grenn
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Jonggeol Jeffrey Kim
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Preventive Neurology Unit, Centre for Prevention Diagnosis and Detection, Wolfson Institute of Population Health, Queen Mary University of London, UK
| | - Cornelis Baluwendraat
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institutes of Health, Bethesda, MD, USA
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| |
Collapse
|
38
|
Senkevich K, Rudakou U, Gan-Or Z. Genetic mechanism vs genetic subtypes: The example of GBA. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:155-170. [PMID: 36803808 DOI: 10.1016/b978-0-323-85555-6.00016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Genetic variants in GBA, encoding the lysosomal enzyme glucocerebrosidase (GCase), are common risk factors for Parkinson's disease (PD). Genotype-phenotype studies have demonstrated that different types of GBA variants have differential effects on the phenotype. Variants could be classified as mild or severe depending on the type of Gaucher disease they cause in the biallelic state. It was shown that severe GBA variants, as compared to mild variants, are associated with higher risk of PD, earlier age at onset, and faster progression of motor and nonmotor symptoms. The observed difference in phenotype might be caused by a diversity of cellular mechanisms related to the particular variants. The lysosomal function of GCase is thought to play a significant role in the development of GBA-associated PD, and other mechanisms such as endoplasmic reticulum retention, mitochondrial dysfunction, and neuroinflammation have also been suggested. Moreover, genetic modifiers such as LRRK2, TMEM175, SNCA, and CTSB can either affect GCase activity or modulate risk and age at onset of GBA-associated PD. To achieve ideal outcomes with precision medicine, therapies will have to be tailored to individuals with specific variants, potentially in combination with known modifiers.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Uladzislau Rudakou
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
39
|
Smith LJ, Bolsinger MM, Chau KY, Gegg ME, Schapira AHV. The GBA variant E326K is associated with alpha-synuclein aggregation and lipid droplet accumulation in human cell lines. Hum Mol Genet 2023; 32:773-789. [PMID: 36130205 PMCID: PMC9941838 DOI: 10.1093/hmg/ddac233] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 11/14/2022] Open
Abstract
Sequence variants or mutations in the GBA gene are numerically the most important risk factor for Parkinson disease (PD). The GBA gene encodes for the lysosomal hydrolase enzyme, glucocerebrosidase (GCase). GBA mutations often reduce GCase activity and lead to the impairment of the autophagy-lysosomal pathway, which is important in the turnover of alpha-synuclein, accumulation of which is a key pathological hallmark of PD. Although the E326K variant is one of the most common GBA variants associated with PD, there is limited understanding of its biochemical effects. We have characterized homozygous and heterozygous E326K variants in human fibroblasts. We found that E326K variants did not cause a significant loss of GCase protein or activity, endoplasmic reticulum (ER) retention or ER stress, in contrast to the L444P GBA mutation. This was confirmed in human dopaminergic SH-SY5Y neuroblastoma cell lines overexpressing GCase with either E326K or L444P protein. Despite no loss of the GCase activity, a significant increase in insoluble alpha-synuclein aggregates in E326K and L444P mutants was observed. Notably, SH-SY5Y overexpressing E326K demonstrated a significant increase in the lipid droplet number under basal conditions, which was exacerbated following treatment with the fatty acid oleic acid. Similarly, a significant increase in lipid droplet formation following lipid loading was observed in heterozygous and homozygous E326K fibroblasts. In conclusion, the work presented here demonstrates that the E326K mutation behaves differently to the common loss of function GBA mutations; however, lipid dyshomeostasis and alpha-synuclein pathology are still evident.
Collapse
Affiliation(s)
- Laura J Smith
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Magdalena M Bolsinger
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Division of Medicine, Friedrich-Alexander University Erlangen-Nurnberg, Schloßplatz 4, 91054 Erlangen, Germany
| | - Kai-Yin Chau
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Matthew E Gegg
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
40
|
Yang N, Sang S, Peng T, Hu W, Wang J, Bai R, Lu H. Impact of GBA variants on longitudinal freezing of gait progression in early Parkinson's disease. J Neurol 2023; 270:2756-2764. [PMID: 36790548 DOI: 10.1007/s00415-023-11612-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Freezing of gait (FOG) is a common disabling gait disturbance among patients with Parkinson's disease (PD), but the influence of genetic variants on the incidence of FOG has been poorly studied to date. OBJECTIVES We aimed to evaluate the association of GBA variants with the risk of FOG development in a large early PD cohort. METHODS This study included 371 early PD patients from the Parkinson's Progression Markers Initiative (PPMI) who were divided into a GBA variant carrier group (GBA-PD group, n = 44) and an idiopathic PD group without GBA variants (iPD group, n = 327). They were followed up for up to 5 years to examine the progression of FOG. The cumulative incidence of FOG and risk factors for FOG were assessed using Kaplan‒Meier and Cox regression analyses. RESULTS At baseline, the GBA-PD group had lower CSF β-amyloid 1-42 (Aβ42) levels and more severe motor and nonmotor symptoms than the iPD group. During the 5-year follow-up, the GBA-PD group had a higher incidence of FOG than the iPD group, and the FOG progression rate was related to GBA variant severity. In the multivariable Cox model without CSF Aβ42, GBA variants were significant predictors of future FOG, and the association remained significant after adding CSF Aβ42 to the model. In the subgroup analyses, the effect of GBA variants was not observed in the "low-level" group. However, in the "high-level" group, GBA variants independently increased the risk of FOG, and this association was stronger than the association with CSF Aβ42. CONCLUSION GBA variants are novel genetic risk factors for future FOG development in early PD patients. This association seemed to be mediated by both Aβ-dependent pathways and Aβ-independent pathways.
Collapse
Affiliation(s)
- Nannan Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Shushan Sang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tao Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wentao Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingtao Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Rong Bai
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
41
|
Ren J, Zhou G, Wang Y, Zhang R, Guo Z, Zhou H, Zheng H, Sun Y, Ma C, Lu M, Liu W. Association of GBA genotype with motor and cognitive decline in Chinese Parkinson's disease patients. Front Aging Neurosci 2023; 15:1091919. [PMID: 36845659 PMCID: PMC9950580 DOI: 10.3389/fnagi.2023.1091919] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
Objective Variants in the glucocerebrosidase (GBA) gene are the most common and significant risk factor for Parkinson's disease (PD). However, the impact of GBA variants on PD disease progression in the Chinese population remains unclear. This study aimed to explore the significance of GBA status on motor and cognitive impairment in a longitudinal cohort of Chinese patients with PD. Methods The entire GBA gene was screened by long-range polymerase chain reaction (LR-PCR) and next generation sequencing (NGS). A total of 43 GBA-related PD (GBA-PD) and 246 non-GBA-mutated PD (NM-PD) patients with complete clinical data at baseline and at least one follow-up were recruited for this study. The associations of GBA genotype with rate of motor and cognitive decline, as measured by Unified PD Rating Scale (UPDRS) motor and Montreal Cognitive Assessment (MoCA), were assessed by linear mixed-effect models. Results The estimated (standard error, SE) UPDRS motor [2.25 (0.38) points/year] and MoCA [-0.53 (0.11) points/year] progression rates in the GBA-PD group were significantly faster than those in the NM-PD group [1.35 (0.19); -0.29 (0.04) points/year; respectively]. In addition, the GBA-PD group showed significantly faster estimated (SE) bradykinesia [1.04 (0.18) points/year], axial impairment [0.38 (0.07) points/year], and visuospatial/executive [-0.15 (0.03) points/year] progression rates than the NM-PD group [0.62 (0.10); 0.17 (0.04); -0.07 (0.01) points/year; respectively]. Conclusion GBA-PD is associated with faster motor and cognitive decline, specifically greater disability in terms of bradykinesia, axial impairment, and visuospatial/executive function. Better understanding of GBA-PD progression may help predict prognosis and improve clinical trial design.
Collapse
Affiliation(s)
- Jingru Ren
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Gaiyan Zhou
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yajie Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ronggui Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiying Guo
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Zhou
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Huifen Zheng
- Department of Neurology, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Sun
- International Laboratory for Children’s Medical Imaging Research, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Changyan Ma
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Weiguo Liu,
| |
Collapse
|
42
|
Vo A, Schindlbeck KA, Nguyen N, Rommal A, Spetsieris PG, Tang CC, Choi YY, Niethammer M, Dhawan V, Eidelberg D. Adaptive and pathological connectivity responses in Parkinson's disease brain networks. Cereb Cortex 2023; 33:917-932. [PMID: 35325051 PMCID: PMC9930629 DOI: 10.1093/cercor/bhac110] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/12/2022] Open
Abstract
Functional imaging has been used extensively to identify and validate disease-specific networks as biomarkers in neurodegenerative disorders. It is not known, however, whether the connectivity patterns in these networks differ with disease progression compared to the beneficial adaptations that may also occur over time. To distinguish the 2 responses, we focused on assortativity, the tendency for network connections to link nodes with similar properties. High assortativity is associated with unstable, inefficient flow through the network. Low assortativity, by contrast, involves more diverse connections that are also more robust and efficient. We found that in Parkinson's disease (PD), network assortativity increased over time. Assoratitivty was high in clinically aggressive genetic variants but was low for genes associated with slow progression. Dopaminergic treatment increased assortativity despite improving motor symptoms, but subthalamic gene therapy, which remodels PD networks, reduced this measure compared to sham surgery. Stereotyped changes in connectivity patterns underlie disease progression and treatment responses in PD networks.
Collapse
Affiliation(s)
| | | | - Nha Nguyen
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Andrea Rommal
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Phoebe G Spetsieris
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Chris C Tang
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Yoon Young Choi
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Martin Niethammer
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Vijay Dhawan
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - David Eidelberg
- Corresponding author: Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA.
| |
Collapse
|
43
|
SNCA Gene Methylation in Parkinson's Disease and Multiple System Atrophy. EPIGENOMES 2023; 7:epigenomes7010005. [PMID: 36810559 PMCID: PMC9944792 DOI: 10.3390/epigenomes7010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
In recent years, epigenetic mechanisms have been implicated in the development of multifactorial diseases including neurodegenerative disorders. In Parkinson's disease (PD), as a synucleinopathy, most studies focused on DNA methylation of SNCA gene coding alpha-synuclein but obtained results were rather contradictory. In another neurodegenerative synucleinopathy, multiple system atrophy (MSA), very few studies investigated the epigenetic regulation. This study included patients with PD (n = 82), patients with MSA (n = 24), and a control group (n = 50). In three groups, methylation levels of CpG and non-CpG sites in regulatory regions of the SNCA gene were analyzed. We revealed hypomethylation of CpG sites in the SNCA intron 1 in PD and hypermethylation of predominantly non-CpG sites in the SNCA promoter region in MSA. In PD patients, hypomethylation in the intron 1 was associated with earlier age at the disease onset. In MSA patients, hypermethylation in the promotor was associated with shorter disease duration (before examination). These results showed different patterns of the epigenetic regulation in two synucleinopathies-PD and MSA.
Collapse
|
44
|
Usnich T, Olmedillas M, Schell N, Paul JJ, Curado F, Skobalj S, Csoti I, Ertan S, Gruber D, Zittel S, Sammler E, Isaacson SH, Kühn AA, Pedrosa DJ, Reetz K, Kasten M, Rolfs A, Bauer P, Skrahina V, Klein C, Brüggemann N. Frequency of non-motor symptoms in Parkinson's disease patients carrying the E326K and T369M GBA risk variants. Parkinsonism Relat Disord 2023; 107:105248. [PMID: 36565535 DOI: 10.1016/j.parkreldis.2022.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Tatiana Usnich
- Institute of Neurogenetics, University of Lübeck, Germany
| | | | - Nathalie Schell
- Institute of Neurogenetics, University of Lübeck, Germany; Department of Pediatrics, Universitätsmedizin Essen, Germany
| | | | | | | | - Ilona Csoti
- Gertrudis Clinic Biskirchen, Parkinson-Center, Leun, Germany
| | - Sibel Ertan
- Department of Neurology, Koç University School of Medicine, Istanbul, Turkey
| | - Doreen Gruber
- Movement Disorders Clinic, Beelitz-Heilstätten, Germany
| | - Simone Zittel
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Stuart H Isaacson
- Parkinson's Disease and Movement Disorder Center of Boca Raton, Boca Raton, USA
| | - Andrea A Kühn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - David J Pedrosa
- Department of Neurology, University Hospital Marburg, Marburg, Germany
| | - Kathrin Reetz
- Department of Neurology, University Hospital Aachen, Aachen, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Germany; Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| | - Arndt Rolfs
- CENTOGENE GmbH, Rostock, Germany; University of Rostock, Albrecht Kossel Institute, Rostock, Germany; Arcensus GmbH, Rostock, Germany
| | | | - Volha Skrahina
- CENTOGENE GmbH, Rostock, Germany; Arcensus GmbH, Rostock, Germany
| | | | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Germany; Department of Neurology, University of Luebeck, Luebeck, Germany.
| |
Collapse
|
45
|
Ma J, Dong L, Chang Q, Chen S, Zheng J, Li D, Wu S, Yang H, Li X. CXCR4 knockout induces neuropathological changes in the MPTP-lesioned model of Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166597. [PMID: 36368650 DOI: 10.1016/j.bbadis.2022.166597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
C-X-C chemokine receptor type 4 (CXCR4) is highly expressed in Parkinson's disease (PD) mice's brains and is related to astrocyte signaling and microglial activation. This makes CXCR4 related to neuroinflammation and also makes CXCR4 considered to be the PD development mechanism and possible therapeutic targets. Therefore, it is worth studying the effect of CXCR4 on neuropathological changes and its potential therapeutic value for PD. This study aimed to investigate the effect of CXCR4 knockout on neuropathological changes in the mouse model of PD and its mechanism. In this study, CXCR4-WT and CXCR4+/- C57BL mice were used to make Parkinson's model. Behavioral experiments, dopaminergic neuron markers, neuroinflammation, and blood-brain barrier damage were detected to verify the effect of CXCR4 knockout on neuropathological changes. CXCR4 knockout improved the behavioral results and tyrosine hydroxylase (TH) expression of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mice. In the substantia nigra (SN) area of the brain of PD mouse model, the number of Iba1-positive (p = 0.0004) and GFAP-positive cells (p = 0.0349) was significantly lower in CXCR4 knockout group than CXCR4-WT group. CXCR4 knockout reduced MPTP-induced infiltration of peripheral immune cells and the expression of pro-inflammatory cytokines. CXCR4 knockout also protected blood-brain barrier (BBB) from MPTP-induced damage. In conclusion, CXCR4 knockout inhibits the degeneration of dopamine neurons, microglial and astrocyte activation, neuroinflammation, and BBB damages in the MPTP-lesioned PD mice.
Collapse
Affiliation(s)
- Jianjun Ma
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China.
| | - Linrui Dong
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China
| | - Qingqing Chang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China
| | - Siyuan Chen
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Jinhua Zheng
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Dongsheng Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Shaopu Wu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Hongqi Yang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Xue Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China
| |
Collapse
|
46
|
Perovnik M, Rus T, Schindlbeck KA, Eidelberg D. Functional brain networks in the evaluation of patients with neurodegenerative disorders. Nat Rev Neurol 2023; 19:73-90. [PMID: 36539533 DOI: 10.1038/s41582-022-00753-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Network analytical tools are increasingly being applied to brain imaging maps of resting metabolic activity (PET) or blood oxygenation-dependent signals (functional MRI) to characterize the abnormal neural circuitry that underlies brain diseases. This approach is particularly valuable for the study of neurodegenerative disorders, which are characterized by stereotyped spread of pathology along discrete neural pathways. Identification and validation of disease-specific brain networks facilitate the quantitative assessment of pathway changes over time and during the course of treatment. Network abnormalities can often be identified before symptom onset and can be used to track disease progression even in the preclinical period. Likewise, network activity can be modulated by treatment and might therefore be used as a marker of efficacy in clinical trials. Finally, early differential diagnosis can be achieved by simultaneously measuring the activity levels of multiple disease networks in an individual patient's scans. Although these techniques were originally developed for PET, over the past several years analogous methods have been introduced for functional MRI, a more accessible non-invasive imaging modality. This advance is expected to broaden the application of network tools to large and diverse patient populations.
Collapse
Affiliation(s)
- Matej Perovnik
- Department of Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaž Rus
- Department of Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
47
|
Oftedal L, Maple-Grødem J, Dalen I, Tysnes OB, Pedersen KF, Alves G, Lange J. Association of CSF Glucocerebrosidase Activity With the Risk of Incident Dementia in Patients With Parkinson Disease. Neurology 2023; 100:e388-e395. [PMID: 36253102 PMCID: PMC9897053 DOI: 10.1212/wnl.0000000000201418] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/31/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Variations in the glucocerebrosidase gene (GBA) are common risk factors for Parkinson disease (PD) and dementia in PD (PDD) and cause a reduction in the activity of the lysosomal enzyme glucocerebrosidase (GCase). It is anticipated that GCase dysfunction might contribute to a more malignant disease course and predict cognitive impairment in PD, although evidence is lacking. We aimed to discover whether CSF GCase activity is altered in newly diagnosed patients with PD and associated with future development of dementia. METHODS Patients with PD were participants of the ongoing population-based longitudinal ParkWest study in Southwestern Norway and were followed prospectively for up to 10 years. CSF was collected at diagnosis, and GBA carrier status was obtained. Control samples were from persons without neurodegenerative disorders. GCase activity was measured using a validated assay. PD dementia diagnosis was set according to the Movement Disorder Society criteria, and parametric accelerated failure time models were applied to analyze the association of GCase activity with dementia-free survival. RESULTS This study enrolled 117 patients with PD (mean age 67.2 years, including 12 GBA non-synonymous variant carriers) and 50 control participants (mean age 64 years). At the time of diagnosis, GCase activity was reduced in patients with PD with (mean ± SD, 0.92 ± 0.40 mU/mg, n = 12) or without GBA variations (1.00 ± 0.37 mU/mg, n = 105) compared with controls (1.20 ± 0.35, n = 50). GCase activity at the time of diagnosis was lower in patients with PD who developed dementia within 10 years (0.85 ± 0.27 mU/mg, n = 41) than in those who did not (1.07 ± 0.40 mU/mg, n = 76, p = 0.001). A 0.1-unit reduction in baseline GCase activity was associated with a faster development of PDD (hazard ratio 1.15, 95% CI 1.03-1.28, p = 0.014). DISCUSSION The association of early CSF GCase activity with long-term progression to PD dementia will have important implications for the design of clinical trials for GCase targeting therapies and patient management. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that reduced CSF GCase activity at the time of PD diagnosis is associated with an increased risk for later development of PDD.
Collapse
Affiliation(s)
- Linn Oftedal
- From the The Norwegian Centre for Movement Disorders (L.O., J.M.-G., K.F.P., G.A., J.L.), Stavanger University Hospital, Norway; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A., J.L.), University of Stavanger, Norway; Department of Research (I.D.), Section of Biostatistics, Stavanger University Hospital, Norway; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; and Department of Neurology (K.F.P., G.A.), Stavanger University Hospital
| | - Jodi Maple-Grødem
- From the The Norwegian Centre for Movement Disorders (L.O., J.M.-G., K.F.P., G.A., J.L.), Stavanger University Hospital, Norway; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A., J.L.), University of Stavanger, Norway; Department of Research (I.D.), Section of Biostatistics, Stavanger University Hospital, Norway; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; and Department of Neurology (K.F.P., G.A.), Stavanger University Hospital
| | - Ingvild Dalen
- From the The Norwegian Centre for Movement Disorders (L.O., J.M.-G., K.F.P., G.A., J.L.), Stavanger University Hospital, Norway; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A., J.L.), University of Stavanger, Norway; Department of Research (I.D.), Section of Biostatistics, Stavanger University Hospital, Norway; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; and Department of Neurology (K.F.P., G.A.), Stavanger University Hospital
| | - Ole-Bjørn Tysnes
- From the The Norwegian Centre for Movement Disorders (L.O., J.M.-G., K.F.P., G.A., J.L.), Stavanger University Hospital, Norway; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A., J.L.), University of Stavanger, Norway; Department of Research (I.D.), Section of Biostatistics, Stavanger University Hospital, Norway; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; and Department of Neurology (K.F.P., G.A.), Stavanger University Hospital
| | - Kenn Freddy Pedersen
- From the The Norwegian Centre for Movement Disorders (L.O., J.M.-G., K.F.P., G.A., J.L.), Stavanger University Hospital, Norway; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A., J.L.), University of Stavanger, Norway; Department of Research (I.D.), Section of Biostatistics, Stavanger University Hospital, Norway; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; and Department of Neurology (K.F.P., G.A.), Stavanger University Hospital
| | - Guido Alves
- From the The Norwegian Centre for Movement Disorders (L.O., J.M.-G., K.F.P., G.A., J.L.), Stavanger University Hospital, Norway; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A., J.L.), University of Stavanger, Norway; Department of Research (I.D.), Section of Biostatistics, Stavanger University Hospital, Norway; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; and Department of Neurology (K.F.P., G.A.), Stavanger University Hospital
| | - Johannes Lange
- From the The Norwegian Centre for Movement Disorders (L.O., J.M.-G., K.F.P., G.A., J.L.), Stavanger University Hospital, Norway; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A., J.L.), University of Stavanger, Norway; Department of Research (I.D.), Section of Biostatistics, Stavanger University Hospital, Norway; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; and Department of Neurology (K.F.P., G.A.), Stavanger University Hospital.
| |
Collapse
|
48
|
Mozafar M, Kazemian S, Hoseini E, Mohammadi M, Alimoghadam R, Shafie M, Mayeli M. The glucocerebrosidase mutations and uric acid levels in Parkinson's disease: A 3-years investigation of a potential biomarker". Clin Park Relat Disord 2022; 8:100177. [PMID: 36590455 PMCID: PMC9798165 DOI: 10.1016/j.prdoa.2022.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/16/2022] [Accepted: 11/13/2022] [Indexed: 12/23/2022] Open
Abstract
Background Blood uric acid level indicates an emerging biomarker in Parkinson's disease (PD). This study aimed to evaluate longitudinal uric acid levels among different kinds of glucocerebrosidase (GBA) mutations and to compare it among sporadic PD, genetic cohort Parkinson's disease (GENPD), genetic cohort unaffected (GENUN), and healthy control (HC) patients. Methods We conducted a study on 654 individuals from the Parkinson's progression markers initiative (PPMI) database. Baseline characteristics, uric acid levels, movement disorder society unified Parkinson's disease rating scale III (MDS-UPDRS III), Hoehn and Yahr Parkinson stage (H&Y stage), and DaT scan specific binding ratio (SBR) data were obtained. Different GBA mutations were collected and categorized into three groups. Longitudinal measurements of uric acid and MDS-UPDRS III score were evaluated during 3-years of follow-up. Result GENPD cohort exhibited a greater MDS-UPDRS III score, H&Y stage, and lower SBR in the right caudate, left caudate, and right putamen compared to sporadic PD. Baseline uric acid level was similar among all groups and different GBA variants. After adjustment for age, sex, and body mass index, the uric acid level was significantly lower in the GENPD group than in HC during year 2 (P-value: 0.009). No significant longitudinal differences were detected for the MDS-UPDRS III score and three groups of GBA mutations. Conclusion This is the first study to assess uric acid levels and MDS-UPDRS III scores among different GBA mutation variants within 3 years of follow-up. We found similar clinical characteristics among different subtypes of GBA mutations.
Collapse
Affiliation(s)
- Mehrdad Mozafar
- NeuroTRACT Association, Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Kazemian
- NeuroTRACT Association, Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran,Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Hoseini
- NeuroTRACT Association, Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran,Medical Imaging Department, AMT School, Isfahan Medical Sciences University, Isfahan, Iran
| | - Mohammad Mohammadi
- NeuroTRACT Association, Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rojina Alimoghadam
- NeuroTRACT Association, Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahan Shafie
- NeuroTRACT Association, Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mayeli
- NeuroTRACT Association, Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran,Iranian Center of Neurological Research, Imam Khomeini Hospital Complex, Tehran, Iran,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author.
| | | |
Collapse
|
49
|
Zafar S, Noor A, Younas N, Shafiq M, Schmitz M, Wurster I, Brockmann K, Gasser T, Zerr I. SWATH Mass Spectrometry-Based CSF Proteome Profile of GBA-Linked Parkinson's Disease Patients. Int J Mol Sci 2022; 23:ijms232214166. [PMID: 36430645 PMCID: PMC9699576 DOI: 10.3390/ijms232214166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
β-glucocerebrosidase (GBA)-associated mutations are a significant risk factor for Parkinson's disease (PD) that aggravate the disease pathology by upregulating the deposition of α-Synuclein (α-Syn). The resultant clinical profile varies for PD patients without GBA mutations. The current study aimed to identify the proteomic targets involved in the pathogenic pathways leading to the differential clinical presentation of GBA-associated PD. CSF samples (n = 32) were obtained from PD patients with GBA mutations (n = 22), PD patients without GBA mutations (n = 7), and healthy controls that were carriers of GBA mutations (n = 3). All samples were subjected to in-gel tryptic digestion followed by the construction of the spectral library and quantitative SWATH-based analysis. CSF α-Syn levels were reduced in both PDIdiopathic and PDGBA cases. Our SWATH-based mass spectrometric analysis detected 363 proteins involved in immune response, stress response, and cell signaling in various groups. Intergroup analysis showed that 52 proteins were significantly up- or downregulated in various groups. Of these 52 targets, 20 proteins were significantly altered in PDGBA cases only while 2 showed different levels in PDIdiopathic patients. Our results show that the levels of several pathologically relevant proteins, including Contactin-1, Selenium-binding protein 1, Adhesion G Protein-Coupled Receptor, and Apolipoprotein E are significantly different among the sporadic and genetic variants of PD and hint at aggravated synaptic damage, oxidative stress, neuronal loss, and aggregation of α-Syn in PDGBA cases.
Collapse
Affiliation(s)
- Saima Zafar
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075 Göttingen, Germany
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, H-12, Islamabad 44000, Pakistan
- Correspondence: ; Tel.: +49-551-39-65398
| | - Aneeqa Noor
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075 Göttingen, Germany
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, H-12, Islamabad 44000, Pakistan
| | - Neelam Younas
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Matthias Schmitz
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Isabel Wurster
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- German Center for Neurodegenerative Disease (DZNE), 72076 Tübingen, Germany
| | - Kathrin Brockmann
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- German Center for Neurodegenerative Disease (DZNE), 72076 Tübingen, Germany
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- German Center for Neurodegenerative Disease (DZNE), 72076 Tübingen, Germany
| | - Inga Zerr
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075 Göttingen, Germany
| |
Collapse
|
50
|
Real R, Martinez-Carrasco A, Reynolds RH, Lawton MA, Tan MMX, Shoai M, Corvol JC, Ryten M, Bresner C, Hubbard L, Brice A, Lesage S, Faouzi J, Elbaz A, Artaud F, Williams N, Hu MTM, Ben-Shlomo Y, Grosset DG, Hardy J, Morris HR. Association between the LRP1B and APOE loci in the development of Parkinson's disease dementia. Brain 2022; 146:1873-1887. [PMID: 36348503 PMCID: PMC10151192 DOI: 10.1093/brain/awac414] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022] Open
Abstract
Parkinson's disease is one of the most common age-related neurodegenerative disorders. Although predominantly a motor disorder, cognitive impairment and dementia are important features of Parkinson's disease, particularly in the later stages of the disease. However, the rate of cognitive decline varies among Parkinson's disease patients, and the genetic basis for this heterogeneity is incompletely understood. To explore the genetic factors associated with rate of progression to Parkinson's disease dementia, we performed a genome-wide survival meta-analysis of 3,923 clinically diagnosed Parkinson's disease cases of European ancestry from four longitudinal cohorts. In total, 6.7% of individuals with Parkinson's disease developed dementia during study follow-up, on average 4.4 ± 2.4 years from disease diagnosis. We have identified the APOE ε4 allele as a major risk factor for the conversion to Parkinson's disease dementia [hazards ratio = 2.41 (1.94-3.00), P = 2.32 × 10-15], as well as a new locus within the ApoE and APP receptor LRP1B gene [hazards ratio = 3.23 (2.17-4.81), P = 7.07 × 10-09]. In a candidate gene analysis, GBA variants were also identified to be associated with higher risk of progression to dementia [hazards ratio = 2.02 (1.21-3.32), P = 0.007]. CSF biomarker analysis also implicated the amyloid pathway in Parkinson's disease dementia, with significantly reduced levels of amyloid β42 (P = 0.0012) in Parkinson's disease dementia compared to Parkinson's disease without dementia. These results identify a new candidate gene associated with faster conversion to dementia in Parkinson's disease and suggest that amyloid-targeting therapy may have a role in preventing Parkinson's disease dementia.
Collapse
Affiliation(s)
- Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alejandro Martinez-Carrasco
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Regina H Reynolds
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Michael A Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Manuela M X Tan
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - Maryam Shoai
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Jean-Christophe Corvol
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Mina Ryten
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Catherine Bresner
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Leon Hubbard
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Suzanne Lesage
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Johann Faouzi
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Centre Inria de Paris, 75012 Paris, France
| | - Alexis Elbaz
- Centre for Research in Epidemiology and Population Health, INSERM U1018, Team "Exposome, heredity, cancer, and health", 94807 Villejuif, France
| | - Fanny Artaud
- Centre for Research in Epidemiology and Population Health, INSERM U1018, Team "Exposome, heredity, cancer, and health", 94807 Villejuif, France
| | - Nigel Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Michele T M Hu
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford OX1 3QU, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Donald G Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow G51 4TF, UK
| | - John Hardy
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|