1
|
Ourry V, Fajardo-Valdez A, Soucy JP, Poirier J, Breitner JCS, Villeneuve S. Amyloid and Tau Pathology in Cognitively Unimpaired Individuals With a Parental History of Alzheimer Disease: Role of Sex and Parent's Sex. Neurology 2025; 104:e213507. [PMID: 40203224 DOI: 10.1212/wnl.0000000000213507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/13/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Female sex and a parental history of Alzheimer disease (AD), especially maternal, confer increased risk of AD. Associations between sex, or affected AD parent's sex, and biomarkers of AD are less clear. We examined whether sex or affected AD parent's sex influences (1) β-amyloid (Aβ) and tau burden/accumulation, (2) the association between Aβ and tau burden, and (3) brain and cognitive resilience to Aβ and tau burden. METHODS The sample included 243 participants from the Presymptomatic Evaluation of Experimental or Novel Treatments for AD cohort in Canada. All participants with [18F]-NAV4694 and [18F]-AV1451 PET and MRI were included. We examined (1) sex or affected AD parent's sex differences on regional Aβ and tau burden/accumulation; (2) 2-way interactions between sex, or affected AD parent's sex, and Aβ on tau burden; and (3) 3-way interactions between time, sex or affected AD parent's sex, and Aβ or tau deposition on hippocampal volume (brain resilience) and cognition (cognitive resilience) over time. RESULTS Participants (69.4% female) were aged 68.3 ± 5.1 years at their first PET scans. All were cognitively unimpaired at baseline. Longitudinal cognitive data were available for 242 participants (follow-up, 6.72 ± 2.38 years), including 238 (6.53 ± 2.48 years of follow-up) with MRI follow-ups and 115 (4.4 ± 0.6 years of follow-up) with PET follow-ups, and 71 developed mild cognitive impairment. Women showed greater tau deposition (standardized β = 0.13 ± 0.3) and showed a stronger association between global Aβ and tau deposition than men (standardized β = 0.79 ± 0.1). Individuals with an affected AD father showed stronger association between global Aβ and tau deposition than those with an affected AD mother (standardized β = 0.65 ± 0.1). Women showed less Aβ-associated hippocampal atrophy over time (standardized β = 0.24 ± 0.1). DISCUSSION Women and, surprisingly, individuals with a paternal history of AD seemed more vulnerable to the Aβ-related spread of tau, whereas women showed greater brain resilience to Aβ. Understanding sex-specific risk and resilience could allow more clinical trial precision and personalization. A major limitation included the reduced sample for the affected AD parent's sex analyses.
Collapse
Affiliation(s)
- Valentin Ourry
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Alfonso Fajardo-Valdez
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; and
| | - Jean-Paul Soucy
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Judes Poirier
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - John C S Breitner
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Kaur V, Sunkaria A. Unlocking the therapeutic promise of miRNAs in promoting amyloid-β clearance for Alzheimer's disease. Behav Brain Res 2025; 484:115505. [PMID: 40010509 DOI: 10.1016/j.bbr.2025.115505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Alzheimer's disease (AD) is a neurological disorder that affects cognition and behavior, accounting for 60-70 % of dementia cases. Its mechanisms involve amyloid aggregates, hyperphosphorylated tau tangles, and loss of neural connections. Current treatments have limited efficacy due to a lack of specific targets. Recently, microRNAs (miRNAs) have emerged as key modulators in AD, regulating gene expression through interactions with mRNA. Dysregulation of specific miRNAs contributes to disease progression by disrupting clearance pathways. Antisense oligonucleotide (ASO)-based therapies show promise for AD treatment, particularly when combined with miRNA mimics or antagonists, targeting complex regulatory networks. However, miRNAs can interact with each other, complicating cellular processes and potentially leading to side effects. Our review emphasizes the role of miRNAs in regulating amyloid-beta (Aβ) clearance and highlights their potential as therapeutic targets and early biomarkers for AD, underscoring the need for further research to enhance their efficacy and safety.
Collapse
Affiliation(s)
- Vajinder Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Aditya Sunkaria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| |
Collapse
|
3
|
Gong C, Song W, Zhu Z, Yang D, Zhao X, Xu Y, Zhao H. APOE ε4 influences the dynamic functional connectivity variability and cognitive performance in Alzheimer's disease. J Alzheimers Dis 2025:13872877251322687. [PMID: 40151915 DOI: 10.1177/13872877251322687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
BackgroundApolipoprotein E (APOE) ε4 is the most significant genetic risk factor for sporadic Alzheimer's disease (AD). However, its impact on the dynamic changes in resting-state functional connectivity (FC), particularly concerning network formation, interaction, and dissolution over time, remains largely unexplored in AD.ObjectiveThis study aims to explore the effect of APOE ε4 on dynamic FC (dFC) variability and cognitive performance in AD.MethodsWe analyzed the dFC of AD patients, comparing APOE ε4 carriers (n = 33) with non-carriers (n = 41). The whole-brain dFC was assessed by calculating dynamic fractional amplitude of low-frequency fluctuations (dfALFF) and dynamic regional homogeneity (dReHo). To further explore the relationship between cognitive function and dFC in AD patients, we conducted a correlation analysis. Mediation analysis was also performed to determine whether dFC mediates the link between the APOE ε4 and cognitive decline in AD patients.ResultsAD patients carrying the APOE ε4 exhibited more severe cognitive impairment, along with reduced dReHo and dfALFF in both the left and right posterior cerebellar lobes. In these carriers, the dFC analysis showed lower dFC between the left posterior cerebellar lobe and the left middle temporal gyrus, which was positively correlated with executive function and information processing speed. Additionally, mediation analysis indicated that APOE ε4 influences dFC in this brain region, contributing to executive dysfunction in AD.ConclusionsThese findings offer preliminary evidence that APOE ε4 modulates fluctuating communication within the cerebellar lobe and the dFC between the cerebellar lobe and the temporal gyrus in AD.
Collapse
Affiliation(s)
- ChengBing Gong
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - WenTing Song
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - ZhengYang Zhu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Xiang Zhao
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics, Nanjing, China
- Simcere Medical Laboratory Science, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
4
|
Zhong S, Xiao C, Li R, Lan Y, Gong C, Feng C, Qi H, Lin Y, Qin C. The global, regional, and national burdens of dementia in 204 countries and territories from 1990 to 2021: A trend analysis based on the Global Burden of Disease Study 2021. Medicine (Baltimore) 2025; 104:e41836. [PMID: 40101022 PMCID: PMC11922445 DOI: 10.1097/md.0000000000041836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
The global population is aging, and as a consequence, the prevalence of dementia is increasing rapidly. This study aims to analyze trends in the Global Burden of Disease (GBD) and health inequalities for dementia over the period 1990 to 2021. The incidence, prevalence, and disability-adjusted life year rates of dementia in the GBD 2021 database were analyzed at the global, national, and regional levels for the period 1990 to 2021 using Joinpoint 4.9.1.0 software. The trends over the period were assessed using a combination of age-standardized rates, average annual percentage changes (AAPCs), and a sociodemographic index. The analysis revealed that, from 1990 to 2021, the global AAPC in dementia incidence, prevalence, and disability-adjusted life years amounted to 0.06 (95% confidence interval [CI]: 0.05-0.09), 0.09 (95% CI: 0.08-0.10), and 0.03 (95% CI: 0.01-0.05), respectively. Conversely, the mean AAPC in age-standardized mortality rate remained stable at 0 (95% CI: -0.02 to 0.03). The age-standardized incidence rate and age-standardized prevalence rate of dementia exhibited a positive association with sociodemographic index during the study period. The 3 regions with the highest mean AAPC in age-standardized mortality rate among the 21 GBD regions were South Africa, Central Sub-Saharan Africa, and Eastern Sub-Saharan Africa. The findings of the study indicate that the burden of dementia increases with age and is projected to remain on an upward trend until 2040. The GBD has increased significantly from 1990 to 2021, and the prevention and control of dementia represents a long-term and formidable challenge.
Collapse
Affiliation(s)
- Songxin Zhong
- Department of Neurology, The First People's Hospital of Yulin Affiliated to Guangxi Medical University, Yulin, People's Republic of China
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Chao Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Rida Li
- Department of Neurology, The First People's Hospital of Yulin Affiliated to Guangxi Medical University, Yulin, People's Republic of China
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yining Lan
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Chi Gong
- Department of Neurology, The First People's Hospital of Yulin Affiliated to Guangxi Medical University, Yulin, People's Republic of China
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Changqiang Feng
- Department of Neurology, The First People's Hospital of Yulin Affiliated to Guangxi Medical University, Yulin, People's Republic of China
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hengchang Qi
- Department of Neurology, The First People's Hospital of Yulin Affiliated to Guangxi Medical University, Yulin, People's Republic of China
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yanni Lin
- Department of Neurology, The First People's Hospital of Yulin Affiliated to Guangxi Medical University, Yulin, People's Republic of China
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
5
|
Bonkhoff AK, Coughlan G, Perosa V, Alhadid K, Schirmer MD, Regenhardt RW, van Veluw S, Buckley R, Fox MD, Rost NS. Sex differences in age-associated neurological diseases-A roadmap for reliable and high-yield research. SCIENCE ADVANCES 2025; 11:eadt9243. [PMID: 40043111 PMCID: PMC11881909 DOI: 10.1126/sciadv.adt9243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/06/2025] [Indexed: 03/09/2025]
Abstract
Once taken into consideration, sex differences in neurological diseases emerge in abundance: (i) Stroke severity is significantly higher in females than in males, (ii) Alzheimer's disease (AD) pathology is more pronounced in females, and (iii) conspicuous links with hormonal cycles led to female-specific diagnoses, such as catamenial migraines and epilepsy. While these differences receive increasing attention in isolation, they likely link to similar processes in the brain. Hence, this review aims to present an overview of the influences of sex chromosomes, hormones, and aging on male and female brains across health and disease, with a particular focus on AD and stroke. The focus here on advancements across several fields holds promise to fuel future research and to lead to an enriched understanding of the brain and more effective personalized neurologic care for all.
Collapse
Affiliation(s)
- Anna K. Bonkhoff
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Gillian Coughlan
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Valentina Perosa
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Kenda Alhadid
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Markus D. Schirmer
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Robert W. Regenhardt
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Susanne van Veluw
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Rachel Buckley
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Michael D. Fox
- Department of Neurology, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA, USA
| | - Natalia S. Rost
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Ma YN, Xia Y, Karako K, Song P, Tang W, Hu X. Serum proteomics reveals early biomarkers of Alzheimer's disease: The dual role of APOE-ε4. Biosci Trends 2025; 19:1-9. [PMID: 39842814 DOI: 10.5582/bst.2024.01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Alzheimer's disease (AD), the leading cause of dementia, significantly impacts global public health, with cases expected to exceed 150 million by 2050. Late-onset Alzheimer's disease (LOAD), predominantly influenced by the APOE-ε4 allele, exhibits complex pathogenesis involving amyloid-β (Aβ) plaques, neurofibrillary tangles (NFTs), neuroinflammation, and blood-brain barrier (BBB) disruption. Proteomics has emerged as a pivotal technology in uncovering molecular mechanisms and identifying biomarkers for early diagnosis and intervention in AD. This paper reviews the genetic and molecular roles of APOE-ε4 in the pathology of AD, including its effects on Aβ aggregation, tau phosphorylation, neuroinflammation, and BBB integrity. Additionally, it highlights recent advances in serum proteomics, revealing APOE-ε4-dependent and independent protein signatures with potential as early biomarkers for AD. Despite technological progress, challenges such as population diversity, standardization, and distinguishing AD-specific biomarkers remain. Directions for future research emphasize multicenter longitudinal studies, multi-omics integration, and the clinical translation of proteomic findings to enable early detection of AD and personalized treatment strategies. Proteomics advances in AD research hold the promise of improving patient outcomes and reducing the global disease burden.
Collapse
Affiliation(s)
- Ya-Nan Ma
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Kenji Karako
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Peipei Song
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Wei Tang
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Xiqi Hu
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| |
Collapse
|
7
|
Xu X, Kwon J, Yan R, Apio C, Song S, Heo G, Yang Q, Timsina J, Liu M, Budde J, Blennow K, Zetterberg H, Lleó A, Ruiz A, Molinuevo JL, Lee VMY, Deming Y, Heslegrave AJ, Hohman TJ, Pastor P, Peskind ER, Albert MS, Morris JC, Park T, Cruchaga C, Sung YJ. Sex Differences in Apolipoprotein E and Alzheimer Disease Pathology Across Ancestries. JAMA Netw Open 2025; 8:e250562. [PMID: 40067298 PMCID: PMC11897841 DOI: 10.1001/jamanetworkopen.2025.0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/05/2025] [Indexed: 03/15/2025] Open
Abstract
Importance Age, sex, and apolipoprotein E (APOE) are the strongest risk factors for late-onset Alzheimer disease (AD). The role of APOE in AD varies with sex and ancestry. While the association of APOE with AD biomarkers also varies across sex and ancestry, no study has systematically investigated both sex-specific and ancestry differences of APOE on cerebrospinal fluid (CSF) biomarkers together, resulting in limited insights and generalizability. Objective To systematically investigate the association of sex and APOE-ε4 with 3 core CSF biomarkers across ancestries. Design, Setting, and Participants This cohort study examined 3 CSF biomarkers (amyloid β1-42 [Aβ42], phosphorylated tau 181 [p-tau], and total tau, in participants from 20 cohorts from July 1, 1985, to March 31, 2020. These individuals were grouped into African, Asian, and European ancestries based on genetic data. Data analyses were conducted from June 1, 2023, to November 10, 2024. Exposure Sex (male or female) and APOE-ε4. Main Outcomes and Measures The associations of sex and APOE-ε4 with biomarker levels were assessed within each ancestry group, adjusting for age. Meta-analyses were performed to identify these associations across ancestries. Sensitivity analyses were conducted to exclude the potential influence of the APOE-ε2 allele. Results This cohort study included 4592 individuals (mean [SD] age, 70.8 [10.2] years; 2425 [52.8%] female; 119 [2.6%] African, 52 [1.1%] Asian, and 4421 [96.3%] European). Higher APOE-ε4 dosage scores were associated with lower Aβ42 values (β [SE], -0.58 [0.02], P < .001), indicating more severe pathology; these associations were seen in men and women separately and jointly. The association with APOE-ε4 was statistically greater in men (β [SE], -0.63 [0.03]; P < .001) vs women (β [SE], -0.52 [0.03]; P < .001) of European ancestry (P = .01 for interaction). Women had higher levels of p-tau, indicating more severe neurofibrillary pathology. The association between APOE-ε4 dosage and p-tau was in the expected direction (higher APOE-ε4 dosage for higher p-tau values) in both sexes, but the difference between sexes was significant only in those of African ancestry (β [SE], 0.10 [0.18]; P = .57 for men; β [SE], 0.66 [0.17]; P < .001 for women; P = .03 for interaction). Women also had higher levels of total tau, indicating more neuronal damage. The association between APOE-ε4 dosage and total tau was stronger in women than in men in the African cohort (β [SE], 0.20 [0.22]; P = .36 for men and β [SE], 0.65 [0.22], P = .004 for women [P = .16 for interaction]) and European cohort (β [SE], 0.36 [0.03]; P < .001 in women and β [SE], 0.27 [0.03], P < .001 in men [P = .053 for interaction]); no significant associations were found in the Asian cohort. Sensitivity analysis excluding APOE-ε2 carriers yielded similar results. Conclusions and Relevance In this cohort study, the association of the APOE-ε4 risk allele with tau accumulation was higher in women than in men. These findings underscore the importance of considering sex differences in APOE-ε4's association with AD biomarkers and tau pathology mechanisms in AD. Although this study provides robust evidence of complex interplay between sex and APOE-ε4 for European ancestry, further research is needed to fully understand other ancestry differences.
Collapse
Affiliation(s)
- Xiaoyi Xu
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri
| | - Jiseon Kwon
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Ruiqi Yan
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri
| | - Catherine Apio
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
| | - Soomin Song
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Gyujin Heo
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Qijun Yang
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Jigyasha Timsina
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Menghan Liu
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - John Budde
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Alberto Lleó
- Sant Pau Memory Unit, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Agustin Ruiz
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - José Luis Molinuevo
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Virginia Man-Yee Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Yuetiva Deming
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison
| | - Amanda J. Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Tim J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Pau Pastor
- University Hospital Germans Trias i Pujol and The Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Elaine R. Peskind
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle
| | - Marilyn S. Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John C. Morris
- Department of Neurology, Washington University, St Louis, Missouri
- Knight Alzheimer’s Disease Research Center, Washington University, St Louis, Missouri
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
- Department of Statistics, Seoul National University, Seoul, Korea
| | - Carlos Cruchaga
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri
| | - Yun Ju Sung
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
8
|
Coughlan GT, Klinger HM, Boyle R, Betthauser TJ, Binette AP, Christenson L, Chadwick T, Hansson O, Harrison TM, Healy B, Jacobs HIL, Hanseeuw B, Jonaitis E, Jack CR, Johnson KA, Langhough RE, Properzi MJ, Rentz DM, Schultz AP, Smith R, Seto M, Johnson SC, Mielke MM, Shirzadi Z, Yau WYW, Manson JE, Sperling RA, Vemuri P, Buckley RF. Sex Differences in Longitudinal Tau-PET in Preclinical Alzheimer Disease: A Meta-Analysis. JAMA Neurol 2025:2830857. [PMID: 40029638 DOI: 10.1001/jamaneurol.2025.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Importance Alzheimer disease (AD) predominates in females at almost twice the rate relative to males. Mounting evidence in adults without AD indicates that females exhibit higher tau deposition than age-matched males, particularly in the setting of elevated β-amyloid (Aβ), but the evidence for sex differences in tau accumulation rates is inconclusive. Objective To examine whether female sex is associated with faster tau accumulation in the setting of high Aβ (as measured with positron emission tomography [PET]) and the moderating influence of sex on the association between APOEε4 carrier status and tau accumulation. Data Sources This meta-analysis used data from 6 longitudinal aging and AD studies, including the Alzheimer's Disease Neuroimaging Initiative, Berkeley Aging Cohort Study, BioFINDER 1, Harvard Aging Brain Study, Mayo Clinic Study of Aging, and Wisconsin Registry for Alzheimer Prevention. Longitudinal data were collected between November 2004 and May 2022. Study Selection Included studies required available longitudinal [18F]flortaucipir or [18F]-MK-6240 tau-PET scans, as well as baseline [11C] Pittsburgh Compound B, [18F]flutemetamol or [18F]florbetapir Aβ-PET scans. Recruitment criteria varied across studies. Analyses began on August 7, 2023, and were completed on February 5, 2024. Data Extraction and Synthesis In each study, primary analyses extracted estimates for the sex (female or male) and the sex by baseline Aβ-PET status (high or low) association with longitudinal tau-PET using a series of mixed-effects models. Secondary mixed-effects models extracted the interaction estimate for the association of sex by APOEε4 carrier status with longitudinal tau-PET. Study-specific estimates for each mixed-effects model were then pooled in a meta-analysis, and the global fixed effect (β) and total heterogeneity (I2) across studies were estimated. This study is reported following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. Main Outcomes and Measures Seven tau-PET outcomes that showed cross-sectional sex differences were examined across temporal, parietal, and occipital lobes. Results Among 6 studies assessed, there were 1376 participants (761 [55%] female; mean [range] age at first tau scan, 71.9 [46-93] years; 401 participants [29%] with high baseline Aβ; 412 APOEε4 carriers [30%]). Among individuals with high baseline Aβ, female sex was associated with faster tau accumulation localized to inferior temporal (β = -0.14; 95% CI, -0.22 to -0.06; P = .009) temporal fusiform (β = -0.13; 95% CI, -0.23 to -0.04; P = .02), and lateral occipital regions (β = -0.15; 95% CI, -0.24 to -0.06; P = .009) compared with male sex. Among APOEε4 carriers, female sex was associated with faster inferior-temporal tau accumulation (β = -0.10; 95% CI, -0.16 to -0.03; P = .01). Conclusions and Relevance These findings suggest that sex differences in the pathological progression of AD call for sex-specific timing considerations when administrating anti-Aβ and anti-tau treatments.
Collapse
Affiliation(s)
- Gillian T Coughlan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Hannah M Klinger
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Rory Boyle
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Tobey J Betthauser
- Department of Medicine, Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden and Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Luke Christenson
- Department of Radiology, Mayo Clinic Rochester, Rochester, Minnesota
| | - Trevor Chadwick
- Department of Neuroscience, University of California, Berkeley
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden and Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | - Brian Healy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Heidi I L Jacobs
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Bernard Hanseeuw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Neurology, Cliniques Universitaires Saint-Luc, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Erin Jonaitis
- Department of Medicine, Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic Rochester, Rochester, Minnesota
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Rebecca E Langhough
- Department of Medicine, Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison
| | - Michael J Properzi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Dorene M Rentz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden and Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Mabel Seto
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Sterling C Johnson
- Department of Medicine, Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison
| | - Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Zahra Shirzadi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Wai-Ying Wendy Yau
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and the Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic Rochester, Rochester, Minnesota
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
9
|
Lu P, Lin X, Liu X, Chen M, Li C, Yang H, Wang Y, Ding X. A mini review of transforming dementia care in China with data-driven insights: overcoming diagnostic and time-delayed barriers. Front Aging Neurosci 2025; 17:1554834. [PMID: 40099249 PMCID: PMC11911474 DOI: 10.3389/fnagi.2025.1554834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Inadequate primary care infrastructure and training in China and misconceptions about aging lead to high mis-/under-diagnoses and serious time delays for dementia patients, imposing significant burdens on family members and medical carers. Main body A flowchart integrating rural and urban areas of China dementia care pathway is proposed, especially spotting the obstacles of mis/under-diagnoses and time delays that can be alleviated by data-driven computational strategies. Artificial intelligence (AI) and machine learning models built on dementia data are succinctly reviewed in terms of the roadmap of dementia care from home, community to hospital settings. Challenges and corresponding recommendations to clinical transformation are then reported from the viewpoint of diverse dementia data integrity and accessibility, as well as models' interpretability, reliability, and transparency. Discussion Dementia cohort study along with developing a center-crossed dementia data platform in China should be strongly encouraged, also data should be publicly accessible where appropriate. Only be doing so can the challenges be overcome and can AI-enabled dementia research be enhanced, leading to an optimized pathway of dementia care in China. Future policy-guided cooperation between researchers and multi-stakeholders are urgently called for dementia 4E (early-screening, early-assessment, early-diagnosis, and early-intervention).
Collapse
Affiliation(s)
- Pinya Lu
- Fujian Provincial Engineering Research Centre for Public Service Big Data Mining and Application, Fujian Provincial University Engineering Research Center for Big Data Analysis and Application, Fujian Normal University, Fuzhou, China
| | - Xiaolu Lin
- Fujian Provincial Engineering Research Centre for Public Service Big Data Mining and Application, Fujian Provincial University Engineering Research Center for Big Data Analysis and Application, Fujian Normal University, Fuzhou, China
| | - Xiaofeng Liu
- Department of Radiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Mingfeng Chen
- Department of Neurology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Caiyan Li
- Department of Neurology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Hongqin Yang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Yuhua Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Xuemei Ding
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
| |
Collapse
|
10
|
Mansel C, Mazzotti DR, Townley R, Sardiu ME, Swerdlow RH, Honea RA, Veatch OJ. Distinct medical and substance use histories associate with cognitive decline in Alzheimer's disease. Alzheimers Dement 2025; 21:e70017. [PMID: 40110639 PMCID: PMC11923574 DOI: 10.1002/alz.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/10/2025] [Accepted: 01/26/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION Phenotype clustering reduces patient heterogeneity and could be useful when designing precision clinical trials. We hypothesized that the onset of early cognitive decline in patients would exhibit variance predicated on the clinical history documented prior to an Alzheimer's disease (AD) diagnosis. METHODS Self-reported medical and substance use history (i.e., problem history) was used to cluster participants from the National Alzheimer's Coordinating Center (NACC) into distinct subtypes. Linear mixed effects modeling was used to determine the effect of problem history subtype on cognitive decline over 2 years. RESULTS Two thousand seven hundred fifty-four individuals were partitioned into three subtypes: minimal (n = 1380), substance use (n = 1038), and cardiovascular (n = 336). The cardiovascular problem history subtype had significantly worse cognitive decline over a 2 year follow-up period (p = 0.013). DISCUSSION Our study highlights the need to account for problem history to reduce heterogeneity of outcomes in AD clinical trials. HIGHLIGHTS Clinical data were used to identify subtypes of patients with Alzheimer's disease (AD) in the National Alzheimer's Coordinating Center dataset. Three problem history subtypes were found: minimal, substance use, and cardiovascular. The mean change in Clinical Dementia Rating Sum of Boxes (CDR-SB) was assessed over a 2 year follow-up. The cardiovascular subtype was associated with the worst cognitive decline. The magnitude of change in CDR-SB was similar to recent AD clinical trials.
Collapse
Affiliation(s)
- Clayton Mansel
- Department of Cell Biology and PhysiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Diego R. Mazzotti
- Department of Internal MedicineDivision of Medical InformaticsDivision of Pulmonary Critical Care and Sleep MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Ryan Townley
- Alzheimer's Disease Research CenterUniversity of Kansas Medical CenterFairwayKansasUSA
| | - Mihaela E. Sardiu
- Department of Biostatistics and Data ScienceUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Russell H. Swerdlow
- Alzheimer's Disease Research CenterUniversity of Kansas Medical CenterFairwayKansasUSA
| | - Robyn A. Honea
- Alzheimer's Disease Research CenterUniversity of Kansas Medical CenterFairwayKansasUSA
| | - Olivia J. Veatch
- Department of Cell Biology and PhysiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
11
|
Zuo W, Yang X. A predictive model of cognitive impairment risk in older adults with hypertension. J Clin Neurosci 2025; 133:111032. [PMID: 39818118 DOI: 10.1016/j.jocn.2025.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Hypertension is one of the most common diseases in the world, impacting global life expectancy and associated with an increased risk of cognitive impairment. OBJECTIVE This study aimed to develop a nomogram that accurately predicts the risk of cognitive impairment in hypertensive patients using the National Health and Nutrition Examination Study (NHANES). METHODS A total of 1517 hypertensive patients from NHANES 2011-2014 were included in this study. The population was divided into two groups: 1065 cases (70 %) in the train set and 452 cases (30 %) in the test set. Lasso regression model and multivariate logistic regression analyses identified predictors significantly associated with cognitive impairment, and the nomogram was constructed using these predictors. The performance of the model was assessed using metrics such as area under the curve (AUC) of receiver operating characteristic (ROC), calibration curves, and decision curve analysis (DCA). RESULTS The nomogram identified seven predictors, including sex, age, education, poverty income ratio (PIR), depression, vigorous work activity, and creatinine. A web-based dynamic nomogram (https://cognitive-impairment-in-hypertension.shinyapps.io/DynNomapp/) was constructed based on these factors. The AUC of the train set was 0.802 and the AUC of the test set was 0.756, indicating that the model had excellent discriminative ability. The calibration curve showed that the model was well-calibrated. The DCA indicated that early intervention for those at risk would result in a net benefit. CONCLUSION The model performed well and was clinically predictive, making it easy for clinicians to use and screen for possible cognitive impairment in elderly hypertensive patients.
Collapse
Affiliation(s)
- Wenwei Zuo
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xuelian Yang
- Department of Neurology, Gongli Hospital of Shanghai Pudong New Area, No. 219 Miaopu Road, Pudong New Area, Shanghai 200135, China.
| |
Collapse
|
12
|
Shibata K, Chen C, Tai XY, Manohar SG, Husain M. Impact of APOE, Klotho, and sex on cognitive decline with aging. Proc Natl Acad Sci U S A 2025; 122:e2416042122. [PMID: 39903109 PMCID: PMC11831164 DOI: 10.1073/pnas.2416042122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/28/2024] [Indexed: 02/06/2025] Open
Abstract
The effects of apolipoprotein E (APOE) and Klotho genes, both implicated in aging, on human cognition as a function of sex and age are yet to be definitively established. Here, we showed in the largest cohort studied to date (N = 320,861) that APOE homozygous ε4 carriers had a greater decline in cognition with aging compared to ε3 carriers (ε3/ε4 and ε3/ε3) as well as smaller hippocampi and amygdala (N = 29,510). Critically, sex and age differentially affected the decline in cognition. Younger (40 to 50 y) female homozygous ε4 carriers showed a cognitive advantage over female ε3 carriers, but this advantage was not present in males. By contrast, Klotho-VS heterozygosity did not affect cognition or brain volume, regardless of APOE genotype, sex, or age. These cognitive trajectories with aging demonstrate clear sex-dependent antagonistic pleiotropy effects of APOE ε4, but no effects of Klotho genotype on cognition and brain volume.
Collapse
Affiliation(s)
- Kengo Shibata
- Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Cheng Chen
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
| | - Xin You Tai
- Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, OxfordOX3 9DU, United Kingdom
| | - Sanjay G. Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, OxfordOX3 9DU, United Kingdom
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, OxfordOX3 9DU, United Kingdom
| |
Collapse
|
13
|
Karagas N, Young JE, Blue EE, Jayadev S. The Spectrum of Genetic Risk in Alzheimer Disease. Neurol Genet 2025; 11:e200224. [PMID: 39885961 PMCID: PMC11781270 DOI: 10.1212/nxg.0000000000200224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/13/2024] [Indexed: 02/01/2025]
Abstract
Alzheimer disease (AD), the most common dementing syndrome in the United States, is currently established by the presence of amyloid-β and tau protein biomarkers in the setting of clinical cognitive impairment. These straightforward diagnostic parameters belie an immense complexity of genetic architecture underlying risk and presentation in AD. In this review, we provide a focused overview of the current state of AD genetics. We discuss the discovery of familial autosomal dominant genes, the identification of candidate genes associated with AD, and genetic variants conferring higher risk of developing AD compared with the general population. In particular, we discuss important features of AD risk due to the APOE ε4 allele. In addition to risk, we describe how the field has made headway understanding genetic factors that may protect from AD. The biological implications and practical limitations of information gleaned from genome-wide association studies in AD over the years are also discussed. The readers will have an up-to-date understanding of where we are in our efforts to understand the layers of genetic complexity in AD.
Collapse
Affiliation(s)
- Nicholas Karagas
- Department of Neurology, Adjunct Medicine, Division Medical Genetics, University of Washington, Seattle
| | - Jessica E Young
- Department of Lab Medicine and Pathology, University of Washington, Seattle; and
| | - Elizabeth E Blue
- Division Medical Genetics, Department of Medicine, University of Washington, Seattle
| | - Suman Jayadev
- Department of Neurology, Adjunct Medicine, Division Medical Genetics, University of Washington, Seattle
| |
Collapse
|
14
|
Khan H, Farhana F, Mostafa F, Rafiq A, Nizia EW, Zabin Z, Atique R, Dauenhauer M, Omotara O, Mujtaba A, Palle K, Reddy PH. Gender differences in cognitive impairment among the elderly in rural West Texas counties. J Alzheimers Dis 2025; 103:687-705. [PMID: 39865007 DOI: 10.1177/13872877241305772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
BACKGROUND The prevalence of Alzheimer's disease or dementia in the elderly population has been increasing both nationally and globally. Males and females are impacted differently when it comes to cognitive health, and this can be influenced by various risk factors. OBJECTIVE This study highlights the sociodemographic, chronic disease, and genetic biomarker risk factors associated with gender differences and cognitive impairments in the elderly population living in Cochran, Parmer, and Bailey counties of rural West Texas. METHODS Cross tabulation, Pearson's chi-squared, two sample proportions, binary logistic regression, and multinomial logistic regression were utilized to analyze data. SPSS software was used to detect significant risk factors. RESULTS Using a bivariate logistic regression, the age group 70 and above of males and females for the Cochran and Parmer counties was found significantly associated with cognitive impairment. Anxiety, depression, diabetes, and cardiovascular disease were found to be significantly associated with an increased risk of cognitive impairment in females in Parmer County. Gender differences were observed in Cochran County for smoking but females in Bailey County were found to be more tobacco-dependent compared to other counties. However, in Cochran County the prevalence of cognitive impairment with rates of 66% for males and 70% for females was observed to be significantly lower in hypertensive group who consumed modified diet. CONCLUSIONS Gender-based disparities in cognitive impairment are essential for gaining more insights into Alzheimer's disease or dementia prevention and advancement of healthcare and medical approaches in the underserved rural communities of West Texas.
Collapse
Affiliation(s)
- Hafiz Khan
- Department of Public Health, Julia Jones Matthews School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Fardous Farhana
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX, USA
| | - Fahad Mostafa
- Biostatistics and Analytics Core, School of Medicine, University of Colorado Anschutz Med Campus, Aurora, CO, USA
| | - Aamrin Rafiq
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Effat W Nizia
- Monroe University, King Graduate School, New Rochelle, NY, USA
| | - Zawah Zabin
- Department of Public Health, Julia Jones Matthews School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Rumana Atique
- Department of Public Health, Julia Jones Matthews School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Megan Dauenhauer
- Department of Public Health, Julia Jones Matthews School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Opemipo Omotara
- Department of Public Health, Julia Jones Matthews School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Atqa Mujtaba
- Department of Public Health, Julia Jones Matthews School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Komaraiah Palle
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
15
|
Xiong LY, Wood Alexander M, Wong YY, Wu CY, Ruthirakuhan M, Edwards JD, Lanctôt KL, Black SE, Rabin JS, Cogo-Moreira H, Swardfager W. Latent profiles of modifiable dementia risk factors in later midlife: relationships with incident dementia, cognition, and neuroimaging outcomes. Mol Psychiatry 2025; 30:450-460. [PMID: 39103532 DOI: 10.1038/s41380-024-02685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
In 2020, the Lancet Commission identified 12 modifiable factors that increase population-level dementia risk. It is unclear if these risk factors co-occur among individuals in a clinically meaningful way. Using latent class analysis, we identified profiles of modifiable dementia risk factors in dementia-free adults aged 60-64 years from the UK Biobank. We then estimated associations between these profiles with incident dementia, cognition, and neuroimaging outcomes, and explored the differences across profiles in the effects of a polygenic risk score for Alzheimer's disease on outcomes. In 55,333 males and 63,063 females, three sex-specific latent profiles were identified: cardiometabolic risk, substance use-related risk, and low risk. The cardiometabolic risk profile in both males and females was associated with greater incidence of all-cause dementia (male: OR [95% CI] = 2.33 [2.03, 2.66]; female: OR [95% CI] = 1.44 [1.24, 1.68]), poorer cognitive performance, greater brain atrophy, and greater white matter hyperintensity volume compared to the low risk profile. The substance use-related risk profile in males was associated with poorer cognitive performance and greater white matter hyperintensities compared to the low risk profile, but no difference in all-cause dementia incidence was observed (OR [95% CI] = 1.00 [0.95, 1.06]). In females, the substance use-related risk profile demonstrated increased dementia incidence (OR [95% CI] = 1.58 [1.57, 1.58]) and greater brain atrophy but smaller white matter hyperintensity volume compared to the low risk profile. The polygenic risk score had larger effects among females, and differentially influenced outcomes across profiles; for instance, there were larger effects of the polygenic risk score on atrophy in the cardiometabolic profile vs. the low risk profile among males, and larger effects of the polygenic risk score on loss of white matter integrity in the cardiometabolic profile vs. the low risk profile among females. These results reveal three modifiable dementia risk profiles, their unique cognitive/neuroimaging outcomes, and their interactions with genetic risk for Alzheimer's disease. These differences highlight the need to consider population heterogeneity in risk prediction tools and in planning personalized prevention strategies.
Collapse
Affiliation(s)
- Lisa Y Xiong
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Madeline Wood Alexander
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Yuen Yan Wong
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Che-Yuan Wu
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Myuri Ruthirakuhan
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jodi D Edwards
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- ICES, Ottawa, ON, Canada
| | - Krista L Lanctôt
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sandra E Black
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Department of Neurology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jennifer S Rabin
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Hugo Cogo-Moreira
- Department of Education, ICT and Learning, Østfold University College, Halden, Norway
| | - Walter Swardfager
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
16
|
Small SL. Precision neurology. Ageing Res Rev 2025; 104:102632. [PMID: 39657848 DOI: 10.1016/j.arr.2024.102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/23/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Over the past several decades, high-resolution brain imaging, blood and cerebrospinal fluid analyses, and other advanced technologies have changed diagnosis from an exercise depending primarily on the history and physical examination to a computer- and online resource-aided process that relies on larger and larger quantities of data. In addition, randomized controlled trials (RCT) at a population level have led to many new drugs and devices to treat neurological disease, including disease-modifying therapies. We are now at a crossroads. Combinatorially profound increases in data about individuals has led to an alternative to population-based RCTs. Genotyping and comprehensive "deep" phenotyping can sort individuals into smaller groups, enabling precise medical decisions at a personal level. In neurology, precision medicine that includes prediction, prevention and personalization requires that genomic and phenomic information further incorporate imaging and behavioral data. In this article, we review the genomic, phenomic, and computational aspects of precision medicine for neurology. After defining biological markers, we discuss some applications of these "-omic" and neuroimaging measures, and then outline the role of computation and ultimately brain simulation. We conclude the article with a discussion of the relation between precision medicine and value-based care.
Collapse
Affiliation(s)
- Steven L Small
- Department of Neuroscience, University of Texas at Dallas, Dallas, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurology, The University of Chicago, Chicago, IL, USA; Department of Neurology, University of California, Irvine, Orange, CA, USA.
| |
Collapse
|
17
|
Zheng Q, Wang X. Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025; 16:83-120. [PMID: 38733347 PMCID: PMC11786724 DOI: 10.1093/procel/pwae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle, and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xin Wang
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
18
|
Wang X, Cao Y. A Narrative Review: Relationship Between Glycemic Variability and Emerging Complications of Diabetes Mellitus. Biomolecules 2025; 15:188. [PMID: 40001491 PMCID: PMC11853042 DOI: 10.3390/biom15020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
A growing body of evidence emphasizes the role of glycemic variability (GV) in the development of conventional diabetes-related complications. Furthermore, advancements in diabetes management and increased life expectancy have led to the emergence of new complications, such as cancer, liver disease, fractures, infections, and cognitive dysfunction. GV is considered to exacerbate oxidative stress and inflammation, acting as a major mechanism underlying these complications. However, few reviews have synthesized the association between GV and these emerging complications or examined their underlying mechanisms. Hence, this narrative review provides a comprehensive discussion of the burden, risks, and mechanisms of GV in these complications, offering further evidence supporting GV as a potential therapeutic target for diabetes management.
Collapse
Affiliation(s)
| | - Yanli Cao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, China;
| |
Collapse
|
19
|
Elhefnawy ME, Patson N, Mouksassi S, Pillai G, Shcherbinin S, Chigutsa E, Gueorguieva I. Quantifying natural amyloid plaque accumulation in the continuum of Alzheimer's disease using ADNI. J Pharmacokinet Pharmacodyn 2025; 52:15. [PMID: 39862333 DOI: 10.1007/s10928-024-09959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025]
Abstract
Brain amyloid beta neuritic plaque accumulation is associated with an increased risk of progression to Alzheimer's disease (AD) [Pfeil, J., et al. in Neurobiol Aging 106: 119-129, 2021]. Several studies estimate rates of change in amyloid plaque over time in clinically heterogeneous cohorts with different factors impacting amyloid plaque accumulation from ADNI and AIBL [Laccarino, L., et al. in Annals Clin and Trans Neurol 6: 1113 1120, 2019, Vos, S.J., et al. in Brain 138: 1327-1338, 2015, Lim, Y.Y., et al. in Alzheimer's Dementia 9: 538-545, 2013], but there are no reports using non-linear mixed effect model for amyloid plaque progression over time similar to that existing of disease-modifying biomarkers for other diseases [Cook, S.F. and R.R. Bies in Current Pharmacol Rep 2: 221-230, 2016, Gueorguieva, I., et al. in Alzheimer's Dementia 19: 2253-2264, 2023]. This study describes the natural progression of amyloid accumulation with population mean and between-participant variability for baseline and intrinsic progression rates quantified across the AD spectrum. 1340 ADNI participants were followed over a 10-year period with 18F-florbetapir PET scans used for amyloid plaque detection. Non-linear mixed effect with stepwise covariate modelling (scm) was used. Change in natural amyloid plaque levels over 10 year period followed an exponential growth model with an intrinsic rate of approx. 3 centiloid units/year. Age, gender, APOE4 genotype and disease stage were important factors on the baseline in the natural amyloid model. In APOE4 homozygous carriers mean baseline amyloid was increased compared to APOE4 non carriers. These results demonstrate natural progression of amyloid plaque in the continuum of AD.
Collapse
Affiliation(s)
- Marwa E Elhefnawy
- Applied Pharmacometrics Training-Africa Program, c/o Pharmacometrics Africa NPC, Cape Town, South Africa
- Pumas-AI, Inc, Dover, Delaware, USA
| | - Noel Patson
- Applied Pharmacometrics Training-Africa Program, c/o Pharmacometrics Africa NPC, Cape Town, South Africa
- School of Global and Public Health, Kamuzu University of Health Sciences, Chichiri BT3, Blantyre, Malawi
| | - Samer Mouksassi
- Applied Pharmacometrics Training-Africa Program, c/o Pharmacometrics Africa NPC, Cape Town, South Africa
- Integrated Drug Development, Certara, 100 Overlook Ctr Site 101, Princeton, NJ, USA
| | - Goonaseelan Pillai
- Applied Pharmacometrics Training-Africa Program, c/o Pharmacometrics Africa NPC, Cape Town, South Africa
- Division of Clinical Pharmacology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Sergey Shcherbinin
- Eli Lilly and Company, 16 893 South Delaware Street, Indianapolis, IN, USA
| | - Emmanuel Chigutsa
- Eli Lilly and Company, 16 893 South Delaware Street, Indianapolis, IN, USA
| | - Ivelina Gueorguieva
- Global PK/PD/PMx, Eli Lilly and Company, 8 Arlington Square West, Downshire Way, Bracknell, Berkshire, RG12 1PU, UK.
| |
Collapse
|
20
|
Stoccoro A. Epigenetic Mechanisms Underlying Sex Differences in Neurodegenerative Diseases. BIOLOGY 2025; 14:98. [PMID: 39857328 PMCID: PMC11761232 DOI: 10.3390/biology14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Neurodegenerative diseases are characterized by profound differences between females and males in terms of incidence, clinical presentation, and disease progression. Furthermore, there is evidence suggesting that differences in sensitivity to medical treatments may exist between the two sexes. Although the role of sex hormones and sex chromosomes in driving differential susceptibility to these diseases is well-established, the molecular alterations underlying these differences remain poorly understood. Epigenetic mechanisms, including DNA methylation, histone tail modifications, and the activity of non-coding RNAs, are strongly implicated in the pathogenesis of neurodegenerative diseases. While it is known that epigenetic mechanisms play a crucial role in sexual differentiation and that distinct epigenetic patterns characterize females and males, sex-specific epigenetic patterns have been largely overlooked in studies aiming to identify epigenetic alterations associated with neurodegenerative diseases. This review aims to provide an overview of sex differences in epigenetic mechanisms, the role of sex-specific epigenetic processes in the central nervous system, and the main evidence of sex-specific epigenetic alterations in three neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Understanding the sex-related differences of these diseases is essential for developing personalized treatments and interventions that account for the unique epigenetic landscapes of each sex.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
21
|
Flynn CM, Omoluabi T, Janes AM, Rodgers EJ, Torraville SE, Negandhi BL, Nobel TE, Mayengbam S, Yuan Q. Targeting early tau pathology: probiotic diet enhances cognitive function and reduces inflammation in a preclinical Alzheimer's model. Alzheimers Res Ther 2025; 17:24. [PMID: 39827356 PMCID: PMC11742226 DOI: 10.1186/s13195-025-01674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) remains incurable, yet its long prodromal phase offers a crucial window for early intervention. Pretangle tau, a precursor to neurofibrillary tangles, plays a key role in early AD pathogenesis. Intervening in pretangle tau pathology could significantly delay the progression of AD. The gut-brain axis, increasingly recognized as a contributor to AD, represents a promising therapeutic target due to its role in regulating neuroinflammation and neurodegeneration. While probiotics have shown cognitive benefits in amyloid-centered AD models, their effect on pretangle tau pathology remains elusive. METHODS This study evaluates the effects of probiotics in a rat model of preclinical AD, specifically targeting hyperphosphorylated pretangle tau in the locus coeruleus. TH-CRE rats (N = 47; 24 females and 23 males) received either AAV carrying pseudophosphorylated human tau (htauE14) or a control virus at 3 months of age. Probiotic or control diets were administered at 9-12 months, with blood and fecal samples collected for ELISA and 16S rRNA gene sequencing. Behavioral assessments were conducted at 13-14 months, followed by analysis of brain inflammation, blood-brain barrier integrity, and GSK-3β activation. RESULTS Rats expressing pseudophosphorylated tau displayed impairment in spatial Y-maze (F1,39 = 4.228, p = 0.046), spontaneous object location (F1,39 = 6.240, p = 0.017), and olfactory discrimination (F1,39 = 7.521, p = 0.009) tests. Phosphorylation of tau at S262 (t3 = -4.834) and S356 (t3 = -3.258) in the locus coeruleus was parallelled by GSK-3β activation in the hippocampus (F1,24 = 10.530, p = 0.003). Probiotic supplementation increased gut microbiome diversity (F1,31 = 8.065, p = 0.007) and improved bacterial composition (F1,31 = 3.4867, p = 0.001). The enhancement in gut microbiomes was associated with enhanced spatial learning (p < 0.05), reduced inflammation indexed by Iba-1 (F1,25 = 5.284, p = 0.030) and CD-68 (F1,26 = 8.441, p = 0.007) expression, and inhibited GSK-3β in female rats (p < 0.01 compared to control females). CONCLUSIONS This study underscores the potential of probiotics to modulate the gut-brain axis and mitigate pretangle tau-related pathology in preclinical AD. Probiotic supplementation could offer a novel early intervention strategy for AD, highlighting the pivotal role of gut health in neurodegeneration.
Collapse
Affiliation(s)
- Cassandra M Flynn
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Tamunotonye Omoluabi
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Alyssa M Janes
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
- Biochemistry Department, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Emma J Rodgers
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
- Psychology Department, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Sarah E Torraville
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Brenda L Negandhi
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Timothy E Nobel
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Shyamchand Mayengbam
- Biochemistry Department, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
22
|
Ortega A, Chernicki B, Ou G, Parmar MS. From Lab Bench to Hope: Emerging Gene Therapies in Clinical Trials for Alzheimer's Disease. Mol Neurobiol 2025; 62:1112-1135. [PMID: 38958888 DOI: 10.1007/s12035-024-04285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder that affects memory and cognitive abilities, affecting millions of people around the world. Current treatments focus on the management of symptoms, as no effective therapy has been approved to modify the underlying disease process. Gene therapy is a promising approach that can offer disease-modifying treatment for AD, targeting various aspects of the pathophysiology of the disease. This review presents a comprehensive overview of the current state of gene therapy research for AD, with a specific focus on clinical trials and preclinical studies that have used nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), apolipoprotein E2 (APOE2), and human telomerase reverse transcriptase (hTERT) as therapeutic gene therapy approaches. These gene targets have shown potential to alleviate the neuropathology of AD in animal studies and have demonstrated feasibility and safety in non-human primates. Despite the failure of the NGF gene therapy approach in clinical trials, we have reviewed and highlighted the reported findings and evaluations from the trials. Furthermore, the review included the conclusions of postmortem brain tissue analysis of AD patients who received NGF gene therapy. The goal is to learn from the failed trials and improve the approach in the future. Although gene therapy shows promise, it faces several challenges and limitations, including optimizing gene delivery methods, enhancing safety and efficacy profiles, and determining long-term results. This review contributes to the growing body of literature on innovative treatments for AD and highlights the need for more research and development to advance gene therapy as a viable treatment option for AD.
Collapse
Affiliation(s)
- Angelica Ortega
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Brendan Chernicki
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Grace Ou
- College of Arts and Sciences, Cornell University, Ithaca, NY, USA
| | - Mayur S Parmar
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA.
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA.
| |
Collapse
|
23
|
Zeng J, Gao Z, Xiong X, Hou X, Qin H, Liu Y, Bowman H, Ritchie C, O'Brien JT, Su L. The effects of two Alzheimer's disease related genes APOE and MAPT in healthy young adults: An attentional blink study. J Alzheimers Dis 2025; 103:167-179. [PMID: 39639576 DOI: 10.1177/13872877241299124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND Genetic risk factors start to affect the brain and behavior in Alzheimer's disease (AD) before clinical symptoms occur. Although AD is mainly associated with memory deficits, attention and executive dysfunctions can present at the early presymptomatic stages in middle age for those with non-modifiable risks. OBJECTIVE Here, we investigated whether known risk genes for AD already affected attention in young adulthood. METHODS A total of 392 healthy young adults aged around 20 years underwent genetic testing for risks of dementia (APOE and MAPT) and performed a computerized cognitive test for temporal attention called the Attentional Blink (AB) task, in which patients with dementia tested in previous studies often showed reduced performance. Here, the AB task was analyzed using repeated-measurements analysis of variance for the ability of visual perception, attention deployment and temporal memory encoding/binding performance. RESULTS The results showed that all participants exhibited AB effects. Importantly, genetic risk factors had statistically significant influence on temporal attention depending on sex in healthy young adults. APOE4 status was associated with enhanced attention deployment in males but not females, while MAPT AA carriers had poorer performance in AB but only in females. No genetic effects were found for visual perception and temporal memory binding errors between high and low risk groups. CONCLUSIONS We provided evidence that both APOE and MAPT start to affect attentional function as early as young adulthood. Furthermore, unlike previous findings in older people, these genes had a differential effect for males and females in young adults.
Collapse
Affiliation(s)
- Jianmin Zeng
- Sino-Britain Centre for Cognition and Ageing Research, Faculty of Psychology, Southwest University, Chongqing, China
| | - Ziyun Gao
- Sino-Britain Centre for Cognition and Ageing Research, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xiong Xiong
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Xingrong Hou
- Sino-Britain Centre for Cognition and Ageing Research, Faculty of Psychology, Southwest University, Chongqing, China
| | - Huihui Qin
- Sino-Britain Centre for Cognition and Ageing Research, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunication, Beijing, China
| | - Howard Bowman
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Craig Ritchie
- School of Medicine, University of St Andrews, St Andrews, UK
- Scottish Brain Sciences, Edinburgh, UK
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Li Su
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Almutairi JA, Kidd EJ. Biological Sex Disparities in Alzheimer's Disease. Curr Top Behav Neurosci 2025; 69:79-104. [PMID: 39485650 DOI: 10.1007/7854_2024_545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Alzheimer's disease is a highly complex and multifactorial neurodegenerative disorder, with age being the most significant risk factor. The incidence of Alzheimer's disease doubles every 5 years after the age of 65. Consequently, one of the major challenges in Alzheimer's disease research is understanding how the brain changes with age. Gaining insights into these changes could help identify individuals who are more prone to developing Alzheimer's disease as they age. Over the past 25 years, studies on brain aging have examined thousands of human brains to explore the neuronal basis of age-related cognitive decline. However, most of these studies have focused on adults over 60, often neglecting the critical menopause transition period. During menopause, women experience a substantial decline in ovarian sex hormone production, with a decrease of about 90% in estrogen levels. Estrogen is known for its neuroprotective effects, and its significant loss during menopause affects various biological systems, including the brain. Importantly, despite known differences in dementia risk between sexes, the impact of biological sex and sex hormones on brain aging and the development of Alzheimer's disease remains underexplored.
Collapse
Affiliation(s)
- Jawza A Almutairi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Emma J Kidd
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
25
|
Tarrá Marrugo AD. Histopathological changes of nervous tissue in women over 60 years of age with Alzheimer's disease and their relationship with menopause. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2025; 58:100800. [PMID: 39889508 DOI: 10.1016/j.patol.2024.100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/14/2024] [Indexed: 02/03/2025]
Abstract
INTRODUCTION Ageing is a natural and irreversible process that primarily manifests in older age, becoming more common after the age of 60. Currently, a significant increase has been observed in the elderly population, with forecasts indicating that this group will triple in size over the next 50 years. This phenomenon is evident in several countries, including Japan, Mexico, Brazil, and Colombia, where the growing population of older adults is accompanied by an increased risk of neurodegenerative diseases, such as Alzheimer's disease. Studies have shown differences in the onset and progression of the disease between men and women, highlighting menopause and hormonal factors as key determinants in women. An association has been identified between a lower exposure to endogenous oestrogens and a higher risk of dementia in women, linked to the action of the enzyme β-secretase (BACE1), which is involved in the formation of amyloid aggregates associated with Alzheimer's disease. These findings highlight the importance of thoroughly investigating and understanding the impact of ageing and related diseases on the current and future population. OBJECTIVE This study aims to describe the histopathological changes in nervous tissue in women over 60 years of age with Alzheimer's disease and their relationship to menopause. METHODOLOGY A comprehensive search was conducted in databases such as PubMed, ScienceDirect, Frontiers, Scopus, and Springer. RESULTS Two hundred thirteen articles were selected for review and 45 full articles were chosen. CONCLUSIONS Alzheimer's disease is characterised by a progressive loss of cognitive function due to brain lesions, including the accumulation of amyloid-beta plaques and neuronal apoptosis. Hormonal changes during menopause may contribute to the onset of the disease.
Collapse
Affiliation(s)
- Angel David Tarrá Marrugo
- GINUMED, Corporación Universitaria Rafael Núñez, Colombia; Facultad Ciencias de la Salud, Corporación Universitaria Rafael Núñez, Campus Cartagena de Indias, Colombia.
| |
Collapse
|
26
|
Peterson A, Sathe A, Zaras D, Yang Y, Durant A, Deters KD, Shashikumar N, Pechman KR, Kim ME, Gao C, Mohd Khairi N, Li Z, Yao T, Huo Y, Dumitrescu L, Gifford KA, Wilson JE, Cambronero FE, Risacher SL, Beason‐Held LL, An Y, Arfanakis K, Erus G, Davatzikos C, Tosun D, Toga AW, Thompson PM, Mormino EC, Habes M, Wang D, Zhang P, Schilling K, Albert M, Kukull W, Biber SA, Landman BA, Johnson SC, Schneider J, Barnes LL, Bennett DA, Jefferson AL, Resnick SM, Saykin AJ, Hohman TJ, Archer DB. Sex and APOE ε4 allele differences in longitudinal white matter microstructure in multiple cohorts of aging and Alzheimer's disease. Alzheimers Dement 2025; 21:e14343. [PMID: 39711105 PMCID: PMC11781133 DOI: 10.1002/alz.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/08/2024] [Accepted: 09/27/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION The effects of sex and apolipoprotein E (APOE)-Alzheimer's disease (AD) risk factors-on white matter microstructure are not well characterized. METHODS Diffusion magnetic resonance imaging data from nine well-established longitudinal cohorts of aging were free water (FW)-corrected and harmonized. This dataset included 4741 participants (age = 73.06 ± 9.75) with 9671 imaging sessions over time. FW and FW-corrected fractional anisotropy (FAFWcorr) were used to assess differences in white matter microstructure by sex and APOE ε4 carrier status. RESULTS Sex differences in FAFWcorr in projection tracts and APOE ε4 differences in FW limbic and occipital transcallosal tracts were most pronounced. DISCUSSION There are prominent differences in white matter microstructure by sex and APOE ε4 carrier status. This work adds to our understanding of disparities in AD. Additional work to understand the etiology of these differences is warranted. HIGHLIGHTS Sex and apolipoprotein E (APOE) ε4 carrier status relate to white matter microstructural integrity. Females generally have lower free water-corrected fractional anisotropy compared to males. APOE ε4 carriers tended to have higher free water than non-carriers.
Collapse
Affiliation(s)
- Amalia Peterson
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Aditi Sathe
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Dimitrios Zaras
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Yisu Yang
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Alaina Durant
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Kacie D. Deters
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Niranjana Shashikumar
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Kimberly R. Pechman
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Michael E. Kim
- Department of Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Chenyu Gao
- Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Nazirah Mohd Khairi
- Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Zhiyuan Li
- Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Tianyuan Yao
- Department of Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Yuankai Huo
- Department of Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
- Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Brain InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Katherine A. Gifford
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jo Ellen Wilson
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of Psychiatry and Behavioral SciencesCenter for Cognitive Medicine, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Veteran's Affairs, Geriatric Research, Education and Clinical CenterTennessee Valley Healthcare SystemNashvilleTennesseeUSA
| | - Francis E. Cambronero
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Shannon L. Risacher
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Lori L. Beason‐Held
- Laboratory for Behavioral NeuroscienceNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Yang An
- Laboratory for Behavioral NeuroscienceNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Konstantinos Arfanakis
- Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Diagnostic RadiologyRush University Medical CenterChicagoIllinoisUSA
| | - Guray Erus
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Christos Davatzikos
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Duygu Tosun
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Arthur W. Toga
- Laboratory of Neuroimaging, USC Stevens Institute of Neuroimaging and InformaticsKeck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and InformaticsKeck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Elizabeth C. Mormino
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Mohamad Habes
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative DisordersUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Di Wang
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative DisordersUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Panpan Zhang
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Kurt Schilling
- Department of Radiology & Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | | | | | - Marilyn Albert
- Department of NeurologyJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Walter Kukull
- National Alzheimer's Coordinating CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Sarah A. Biber
- National Alzheimer's Coordinating CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Bennett A. Landman
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
- Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Vanderbilt Brain InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology & Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Julie Schneider
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Lisa L. Barnes
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Angela L. Jefferson
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Susan M. Resnick
- Laboratory for Behavioral NeuroscienceNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Andrew J. Saykin
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Brain InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Derek B. Archer
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Brain InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
27
|
Van Egroo M, Beckers E, Ashton NJ, Blennow K, Zetterberg H, Jacobs HIL. Sex differences in the relationships between 24-h rest-activity patterns and plasma markers of Alzheimer's disease pathology. Alzheimers Res Ther 2024; 16:277. [PMID: 39736697 DOI: 10.1186/s13195-024-01653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/18/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND Although separate lines of research indicated a moderating role of sex in both sleep-wake disruption and in the interindividual vulnerability to Alzheimer's disease (AD)-related processes, the quantification of sex differences in the interplay between sleep-wake dysregulation and AD pathology remains critically overlooked. Here, we examined sex-specific associations between circadian rest-activity patterns and AD-related pathophysiological processes across the adult lifespan. METHODS Ninety-two cognitively unimpaired adults (mean age = 59.85 ± 13.77 years, range = 30-85, 47 females) underwent 10 days of actigraphic recordings, and blood drawing. Standard non-parametric indices of 24-h rest-activity rhythm fragmentation (intradaily variability, IV) and stability (interdaily stability, IS) were extracted from actigraphy data using the GGIR package. Plasma concentrations of neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), amyloid-β42/40 (Aβ42/40), total tau, and tau phosphorylated at threonine 181 (p-tau181) or threonine 231 (p-tau231) were measured using Single molecule array technology. Multiple linear regression models were adjusted for age, sex, education, body mass index, and actigraphic recording duration. RESULTS Higher IV, indicating worse 24-h rest-activity rhythm fragmentation, was associated with elevated levels of plasma NfL (t(85) = 4.26, P < 0.0001), GFAP (t(85) = 2.49, P = 0.01), and at trend level with lower Aβ42/40 ratio values (t(85) = -1.95, P = 0.054). Lower IS, reflecting less day-to-day stability in the 24-h rest-activity rhythm, was linked to elevated levels of plasma NfL (t(85) = -2.24, P = 0.03), but not with the other plasma biomarkers. Importantly, interaction models demonstrated that male participants were driving the observed relationships between IV and plasma NfL (t(84) = 4.05, P < 0.001) or GFAP (t(84) = 3.60, P < 0.001), but also revealed a male vulnerability in models testing interactions with p-tau181 (IV: t(76) = 3.71, P < 0.001; IS: t(76) = -3.30, P = 0.001) and p-tau231 (IV: t(82) = 3.28, P = 0.002). Sensitivity analyses further showed that accounting for potential confounding factors such as APOE genotype, depression, and self-reported symptoms of possible sleep apnea did not modify the observed relationships. CONCLUSIONS These findings suggest that the association between disrupted circadian rest-activity patterns and AD pathophysiological processes may be more evident in cognitively unimpaired males. Our results contribute to the precision medicine approach, and they have clinical implications for improved early detection and selection of at-risk individuals to be enrolled in preventive interventions.
Collapse
Affiliation(s)
- Maxime Van Egroo
- Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands.
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- , UNS40 box 34, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
| | - Elise Beckers
- Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
- Sleep and Chronobiology Lab, CRC-In Vivo Imaging Unit, GIGA-Institute, University of Liège, Liège, Belgium
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, King's College London, London, Maurice, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Pitié-Salpêtrière Hospital, Paris Brain Institute, ICM, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Zhang X, Guo T, Zhang Y, Jiao M, Ji L, Dong Z, Li H, Chen S, Zheng W, Jing Q. Global burden of Alzheimer's disease and other dementias attributed to metabolic risks from 1990 to 2021: results from the global burden of disease study 2021. BMC Psychiatry 2024; 24:910. [PMID: 39696219 DOI: 10.1186/s12888-024-06375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE The risk of Alzheimer's disease (AD) and other dementias increases with greater global exposure to metabolic risks, making this a crucial public health issue. This study aimed to report the metabolism-attributable global burden of AD and other dementias from 1990 to 2021. METHODS The Global Burden of Disease Study (GBD) 2021 collected data on the number of deaths and disability-adjusted life-years (DALYs) related to AD and other dementias caused by metabolic risks, including high fasting plasma glucose (FPG) and high body mass index (BMI). The analysis assessed the disease burden and temporal patterns worldwide, examining data by region, country, level of social development, age group, and sex. RESULTS Globally, the count of AD and other dementia-related deaths due to metabolic risks grew from 98,608 to 399,824, a 4.1-fold increase. For dementias related to high FPG and high BMI, the age-standardized mortality rates (ASMR) and age-standardized DALY rate (ASDR) increased with age and were higher in females than in males. In 2021, the highest burden was observed in high-income North America. The ASMR and ASDR have grown worldwide between 1990 and 2021. The burden of metabolism-related AD and other dementias was positively correlated with the Socio-Demographic Index (SDI), with higher ASMR and ASDR in high SDI regions but showing more pronounced increases in low and low-middle SDI regions. CONCLUSIONS Metabolism-related global burden of AD and other dementias is increasing, particularly among women and in high-income regions. Targeted prevention programs for dementia should be developed, along with early interventions for risk factors.
Collapse
Affiliation(s)
- Xinyi Zhang
- School of Public Health, Shandong Second Medical University, Weifang, 261053, China
| | - Tongtong Guo
- School of Management, Shandong Second Medical University, Weifang, 261053, China
| | - Ya Zhang
- School of Public Health, Shandong Second Medical University, Weifang, 261053, China
| | - Min Jiao
- School of Public Health, Jining Medical University, Jining, 272067, China
| | - Lihong Ji
- School of Public Health, Shandong Second Medical University, Weifang, 261053, China
| | - Zhiwei Dong
- School of Management, Shandong Second Medical University, Weifang, 261053, China
| | - Haiyan Li
- School of Management, Shandong Second Medical University, Weifang, 261053, China
| | - Shanquan Chen
- International Centre for Evidence in Disability, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Wengui Zheng
- School of Public Health, Shandong Second Medical University, Weifang, 261053, China
| | - Qi Jing
- School of Management, Shandong Second Medical University, Weifang, 261053, China.
- The Oxford Institute of Population Ageing, University of Oxford, London, Oxford OX2 6PR, UK.
| |
Collapse
|
29
|
Yu G, Thorpe A, Zeng Q, Wang E, Cai D, Wang M, Zhang B. The Landscape of Sex- and APOE Genotype-Specific Transcriptional Changes in Alzheimer's Disease at the Single Cell Level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626234. [PMID: 39677706 PMCID: PMC11642736 DOI: 10.1101/2024.12.01.626234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with approximately two-thirds of AD patients are females. Basic and clinical research studies show evidence supporting sex-specific differences contributing to the complexity of AD. There is also strong evidence supporting sex-specific interaction between the primary genetic risk factor of AD, APOE4 and AD-associated neurodegenerative processes. Recent studies by us and others have identified sex and/or APOE4 specific differentially expressed genes in AD based on the bulk tissue RNA-sequencing data of postmortem human brain samples in AD. However, there lacks a comprehensive investigation of the interplay between sex and APOE genotypes at the single cell level. In the current study, we systematically explore sex and APOE genotype differences in single cell transcriptomics in AD. Our work provides a comprehensive overview of sex and APOE genotype-specific transcriptomic changes across 54 high-resolution cell types in AD and highlights individual genes and brain cell types that show significant differences between sexes and APOE genotypes. This study lays the groundwork for exploring the complex molecular mechanisms of AD and will inform the development of effective sex- and APOE-stratified interventions for AD.
Collapse
|
30
|
Williamson JN, James SA, Mullen SP, Sutton BP, Wszalek T, Mulyana B, Mukli P, Yabluchanskiy A, Yang Y. Sex differences in interacting genetic and functional connectivity biomarkers in Alzheimer's disease. GeroScience 2024; 46:6071-6084. [PMID: 38598069 PMCID: PMC11493897 DOI: 10.1007/s11357-024-01151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/01/2024] [Indexed: 04/11/2024] Open
Abstract
As of 2023, it is estimated that 6.7 million individuals in the United States live with Alzheimer's disease (AD). Prior research indicates that AD disproportionality affects females; females have a greater incidence rate, perform worse on a variety of neuropsychological tasks, and have greater total brain atrophy. Recent research shows that hippocampal functional connectivity differs by sex and may be related to the observed sex differences in AD, and apolipoprotein E (ApoE) ε4 carriers have reduced hippocampal functional connectivity. The purpose of this study was to determine if the ApoE genotype plays a role in the observed sex differences in hippocampal functional connectivity in Alzheimer's disease. The resting state fMRI and T2 MRI of individuals with AD (n = 30, female = 15) and cognitively normal individuals (n = 30, female = 15) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were analyzed using the functional connectivity toolbox (CONN). Our results demonstrated intrahippocampal functional connectivity differed between those without an ε4 allele and those with at least one ε4 allele in each group. Additionally, intrahippocampal functional connectivity differed only by sex when Alzheimer's participants had at least one ε4 allele. These results improve our current understanding of the role of the interacting relationship between sex, ApoE genotype, and hippocampal function in AD. Understanding these biomarkers may aid in the development of sex-specific interventions for improved AD treatment.
Collapse
Affiliation(s)
- Jordan N Williamson
- Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Shirley A James
- Hudson College of Public Health, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Sean P Mullen
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Kinesiology & Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Informatics Programs, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Center for Social & Behavioral Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Bradley P Sutton
- Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Tracey Wszalek
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Beni Mulyana
- Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yuan Yang
- Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Clinical Imaging Research Center, Stephenson Family Clinical Research Institute, Carle Foundation Hospital, Urbana, IL, USA.
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
31
|
Breeze B, Connell E, Wileman T, Muller M, Vauzour D, Pontifex MG. Menopause and Alzheimer's disease susceptibility: Exploring the potential mechanisms. Brain Res 2024; 1844:149170. [PMID: 39163895 DOI: 10.1016/j.brainres.2024.149170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Alzheimer's Disease (AD), responsible for 62% of all dementia cases, is a progressive neurodegenerative condition that leads to cognitive dysfunction. The prevalence of AD is consistently higher in women suggesting they are disproportionately affected by this disease. Despite this, our understanding of this female AD vulnerability remains limited. Menopause has been identified as a potential contributing factor to AD in women, with earlier menopause onset associated with greater AD risk. However, the underlying mechanisms responsible for this increased risk are not fully understood. This review examines the potential role of menopause in the development of Alzheimer's Disease providing a mechanistic overview of the available literature from hormones to pathology. While literature is now emerging that indicates a role of hormonal shifts, gut dysbiosis, lipid dysregulation and inflammation, more research is needed to fully elucidate the mechanisms involved.
Collapse
Affiliation(s)
- Bernadette Breeze
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Emily Connell
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Tom Wileman
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom; Quadram Institute Biosciences, Norwich NR4 7UQ, United Kingdom
| | - Michael Muller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Matthew G Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom.
| |
Collapse
|
32
|
Mansel C, Mazzotti DR, Townley R, Sardiu ME, Swerdlow RH, Honea RA, Veatch OJ. Distinct medical and substance use histories associate with cognitive decline in Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.26.24317918. [PMID: 39649607 PMCID: PMC11623748 DOI: 10.1101/2024.11.26.24317918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
INTRODUCTION Phenotype clustering reduces patient heterogeneity and could be useful when designing precision clinical trials. We hypothesized that the onset of early cognitive decline in patients would exhibit variance predicated on the clinical history documented prior to an Alzheimer's Disease (AD) diagnosis. METHODS Self-reported medical and substance use history (i.e., problem history) was used to cluster participants from the National Alzheimer's Coordinating Centers (NACC) into distinct subtypes. Linear mixed effects modeling was used to determine the effect of problem history subtype on cognitive decline over two years. RESULTS 2754 individuals were partitioned into three subtypes: minimal (n = 1380), substance use (n = 1038), and cardiovascular (n = 336) subtypes. The cardiovascular problem history subtype had significantly worse cognitive decline over a two-year follow-up period (p = 0.013). DISCUSSION Our study highlights the need to account for problem history to reduce heterogeneity of outcomes in AD clinical trials.
Collapse
Affiliation(s)
- Clayton Mansel
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Diego R Mazzotti
- Department of Internal Medicine, Division of Medical Informatics, Division of Pulmonary Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ryan Townley
- Alzheimer's Disease Research Center, University of Kansas Medical Center, 4350 Shawnee Mission Pkwy, Mail Stop 6002, Fairway, KS, 66205
| | - Mihaela E Sardiu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Russell H Swerdlow
- Alzheimer's Disease Research Center, University of Kansas Medical Center, 4350 Shawnee Mission Pkwy, Mail Stop 6002, Fairway, KS, 66205
| | - Robyn A Honea
- Alzheimer's Disease Research Center, University of Kansas Medical Center, 4350 Shawnee Mission Pkwy, Mail Stop 6002, Fairway, KS, 66205
| | - Olivia J Veatch
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| |
Collapse
|
33
|
Losinski GM, Key MN, Vidoni ED, Clutton J, Morris JK, Burns JM, Watts A. APOE4 and Chronic Health Risk Factors are Associated with Sex-Specific Preclinical Alzheimer's Disease Neuroimaging Biomarkers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.21.24317732. [PMID: 39606325 PMCID: PMC11601779 DOI: 10.1101/2024.11.21.24317732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Introduction Two thirds of Alzheimer's disease (AD) patients are female. Genetic and chronic health risk factors for AD affect females more negatively compared to males. Objective This exploratory multimodal neuroimaging study aimed to examine sex differences in cognitively unimpaired older adults on: (1) amyloid-β via 18F-AV-45 Florbetapir PET imaging, (2) neurodegeneration via T1 weighted MRI volumetrics, (3) cerebral blood flow via ASL-MRI. We identified AD risk factors including genetic (APOE genotype status) and health markers (fasting glucose, mean arterial pressure, waist-to-hip ratio, and android and gynoid body fat) associated with neuroimaging outcomes for which we observed sex differences. Methods Participants were sedentary, amyloid-β positive older adults (N = 112, ages 65-87 years) without evidence of cognitive impairment (CDR = 0). Results Multivariate analysis of covariance models adjusted for intracranial volume, age, and years of education demonstrated lower volume (F (7, 102) = 2.67, p = 0.014) and higher blood flow F (6, 102) = 4.25, p =<0.001) among females compared to males in regions of interest connected to AD pathology and the estrogen receptor network. We did not observe sex differences in amyloid-β levels. Higher than optimal waist to hip ratio was most strongly associated with lower volume, while higher android fat percentage and APOE ε4 carrier status were most strongly associated with higher blood flow among female participants. Discussion Findings suggest genetic and chronic health risk factors are associated with sex-specific AD neuroimaging biomarkers. Underlying sex-specific biological pathways may explain these findings. Our results highlight the importance of considering sex differences in neuroimaging studies and when developing effective interventions for AD prevention and risk reduction.
Collapse
Affiliation(s)
| | - Mickeal N. Key
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center
| | - Eric D. Vidoni
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center
| | - Jonathan Clutton
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center
| | - Jill K. Morris
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center
| | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center
| | - Amber Watts
- Department of Psychology, University of Kansas
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center
| |
Collapse
|
34
|
Johnson CN, Lysaker CR, McCoin CS, Evans MR, Thyfault JP, Wilkins HM, Morris JK, Geiger PC. Skeletal muscle proteome differs between young APOE3 and APOE4 targeted replacement mice in a sex-dependent manner. Front Aging Neurosci 2024; 16:1486762. [PMID: 39634654 PMCID: PMC11615480 DOI: 10.3389/fnagi.2024.1486762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Apolipoprotein E4 (APOE4) is the strongest genetic risk factor for Alzheimer's disease (AD), yet it's unclear how this allele mediates risk. APOE4 carriers experience reduced mobility and faster decline in muscle strength, suggesting skeletal muscle involvement. Mitochondria are critical for muscle function and although we have reported defects in muscle mitochondrial respiration during early cognitive decline, APOE4-mediated effects on muscle mitochondria are unknown. Methods Here, we sought to determine the impact of APOE4 on skeletal muscle bioenergetics using young, male and female APOE3 (control) and APOE4 targeted replacement mice (n = 8 per genotype/sex combination). We examined the proteome, mitochondrial respiration, fiber size, and fiber-type distribution in skeletal muscle. Results We found that APOE4 alters mitochondrial pathway expression in young mouse muscle in a sex-dependent manner without affecting respiration and fiber size or composition relative to APOE3. In both sexes, the expression of mitochondrial pathways involved in electron transport, ATP synthesis, and heat production by uncoupling proteins and mitochondrial dysfunction significantly differed between APOE4 and APOE3 muscle. For pathways with predicted direction of activation, electron transport and oxidative phosphorylation were upregulated while mitochondrial dysfunction and sirtuin signaling were downregulated in female APOE4 vs. APOE3 muscle. In males, sulfur amino acid metabolism was upregulated in APOE4 vs. APOE3 muscle. Discussion This work highlights early involvement of skeletal muscle in a mouse model of APOE4-linked AD, which may contribute to AD pathogenesis or serve as a biomarker for brain health.
Collapse
Affiliation(s)
- Chelsea N. Johnson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, MO, United States
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Fairway, KS, United States
| | - Colton R. Lysaker
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, MO, United States
| | - Colin S. McCoin
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, MO, United States
- University of Kansas Diabetes Institute, University of Kansas Medical Center, Kansas City, MO, United States
| | - Mara R. Evans
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, MO, United States
| | - John P. Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, MO, United States
- University of Kansas Diabetes Institute, University of Kansas Medical Center, Kansas City, MO, United States
| | - Heather M. Wilkins
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, MO, United States
| | - Jill K. Morris
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, MO, United States
| | - Paige C. Geiger
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, MO, United States
- University of Kansas Diabetes Institute, University of Kansas Medical Center, Kansas City, MO, United States
| |
Collapse
|
35
|
Qi Q, Deng F, Sammon R, Ritchie K, Muniz-Terrera G, Koychev I, Malhotra P, Hutchinson S, Robinson D, O'Brien JT, Ritchie CW, Lawlor B, Naci L. Associations between sex and lifestyle activities with cognitive reserve in mid-life adults with genetic risk for Alzheimer's disease. Alzheimers Res Ther 2024; 16:246. [PMID: 39533372 PMCID: PMC11559201 DOI: 10.1186/s13195-024-01610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Females have a higher age-adjusted incidence of Alzheimer's Disease (AD) than males, even when accounting for longer lifespan and, therefore, stand to benefit the most from dementia prevention efforts. As exposure to many modifiable risk factors for dementia begins in mid-life, interventions must be implemented from middle-age. Building cognitive reserve, particularly through stimulating avocational activities and occupational attainment presents a crucial, underexplored, dementia prevention approach for mid-life. It is currently unknown, however, whether modifiable lifestyle factors can protect against AD processes, from mid-life, differentially for females and males who carry inherited risk for late-life dementia. To address this gap, this study investigated the impact of biological sex and APOE4 carrier status on the relationship between stimulating activities, occupational attainment, and cognition in mid-life. METHODS We leveraged the PREVENT-Dementia program, the world's largest study investigating the origins and early diagnosis of dementia in mid-life at-risk individuals (N = 700; 40-59 years). Cognitive performance was measured using the Cognito Battery and the Visual Short Term Memory Binding task. Mid-life specific reserve contributors were assessed via the Lifetime of Experiences Questionnaire. RESULTS Females had significantly better episodic and relational memory (p < 0.001), and lower occupational attainment than males (p < 0.001). Engagement in stimulating activities was positively associated with episodic and relational memory, regardless of sex and APOE4 status (β = 0.05, CI 0.03-0.07, p < 0.001). APOE4 carriers showed significant sex differences in the association between occupational attainment and episodic and relational memory (β = 0.38, CI 0.12-0.63, p = 0.003). APOE4 carrier females with higher occupational attainment showed better cognition (β = 0.16, CI -0.002-0.32, p = 0.053), whereas APOE4 carrier males showed the opposite effect (β = -0.20, CI -0.40 - -0.001, p = 0.049). CONCLUSION Our findings suggest that occupational attainment in mid-life contributes to cognitive reserve against inherited risk of dementia in females, but not males. They highlight the need for high precision approaches that consider biological sex and APOE4 carrier status to inform Alzheimer's disease prevention strategies and clinical trials.
Collapse
Affiliation(s)
- Qing Qi
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Feng Deng
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Rebecca Sammon
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Karen Ritchie
- Institut de Neurosciences INM Inserm, Montpellier, France
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, UK
- Department of Social Medicine, Ohio University, Athens, OH, USA
| | - Ivan Koychev
- Department of Psychiatry, Oxford University, Oxford, UK
| | - Paresh Malhotra
- Department of Brain Science, Imperial College London, London, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London, UK
| | | | - David Robinson
- Mercer's Institute for Successful Ageing, St. James's Hospital, Dublin, Ireland
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Craig W Ritchie
- Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, UK
- Scottish Brain Sciences, Edinburgh, UK
| | - Brian Lawlor
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland.
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
36
|
Colarusso B, Ortiz R, Yeboah J, Chang A, Gupta M, Kulkarni P, Ferris CF. APOE4 rat model of Alzheimer's disease: sex differences, genetic risk and diet. BMC Neurosci 2024; 25:57. [PMID: 39506641 PMCID: PMC11539573 DOI: 10.1186/s12868-024-00901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024] Open
Abstract
The strongest genetic risk factor for Alzheimer's disease (AD) is the ε4 allele of apolipoprotein E (ApoE ε4). A high fat diet also adds to the risk of dementia and AD. In addition, there are sex differences as women carriers have a higher risk of an earlier onset and rapid decline in memory than men. The present study looked at the effect of the genetic risk of ApoE ε4 together with a high fat/high sucrose diet (HFD/HSD) on brain function in male and female rats using magnetic resonance imaging. We hypothesized female carriers would present with deficits in cognitive behavior together with changes in functional connectivity as compared to male carriers. Four-month-old wildtype and human ApoE ε4 knock-in (TGRA8960), male and female Sprague Dawley rats were put on a HFD/HSD for four months. Afterwards they were imaged for changes in function using resting state BOLD functional connectivity. Images were registered to, and analyzed, using a 3D MRI rat atlas providing site-specific data on 173 different brain areas. Resting state functional connectivity showed male wildtype had greater connectivity between areas involved in feeding and metabolism while there were no differences between female and male carriers and wildtype females. The data were unexpected. The genetic risk was overshadowed by the diet. Male wildtype rats were most sensitive to the HFD/HSD presenting with a deficit in cognitive performance with enhanced functional connectivity in neural circuitry associated with food consumption and metabolism.
Collapse
Affiliation(s)
- Bradley Colarusso
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Richard Ortiz
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Julian Yeboah
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Arnold Chang
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Megha Gupta
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA.
- Departments of Psychology and Pharmaceutical Sciences, Northeastern University, 125 NI Hall, 360 Huntington Ave, Boston, MA, 02115-5000, USA.
| |
Collapse
|
37
|
Rudroff T, Rainio O, Klén R. AI for the prediction of early stages of Alzheimer's disease from neuroimaging biomarkers - A narrative review of a growing field. Neurol Sci 2024; 45:5117-5127. [PMID: 38866971 DOI: 10.1007/s10072-024-07649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
OBJECTIVES The objectives of this narrative review are to summarize the current state of AI applications in neuroimaging for early Alzheimer's disease (AD) prediction and to highlight the potential of AI techniques in improving early AD diagnosis, prognosis, and management. METHODS We conducted a narrative review of studies using AI techniques applied to neuroimaging data for early AD prediction. We examined single-modality studies using structural MRI and PET imaging, as well as multi-modality studies integrating multiple neuroimaging techniques and biomarkers. Furthermore, they reviewed longitudinal studies that model AD progression and identify individuals at risk of rapid decline. RESULTS Single-modality studies using structural MRI and PET imaging have demonstrated high accuracy in classifying AD and predicting progression from mild cognitive impairment (MCI) to AD. Multi-modality studies, integrating multiple neuroimaging techniques and biomarkers, have shown improved performance and robustness compared to single-modality approaches. Longitudinal studies have highlighted the value of AI in modeling AD progression and identifying individuals at risk of rapid decline. However, challenges remain in data standardization, model interpretability, generalizability, clinical integration, and ethical considerations. CONCLUSION AI techniques applied to neuroimaging data have the potential to improve early AD diagnosis, prognosis, and management. Addressing challenges related to data standardization, model interpretability, generalizability, clinical integration, and ethical considerations is crucial for realizing the full potential of AI in AD research and clinical practice. Collaborative efforts among researchers, clinicians, and regulatory agencies are needed to develop reliable, robust, and ethical AI tools that can benefit AD patients and society.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.
| | - Oona Rainio
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Riku Klén
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
38
|
Buckley RF, Seto M. How Is the X Chromosome Involved in Alzheimer Disease? JAMA Neurol 2024; 81:1028-1029. [PMID: 39250122 DOI: 10.1001/jamaneurol.2024.2831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Affiliation(s)
- Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Boston
- Center for Alzheimer's Research and Therapy, Brigham & Women's Hospital, Boston, Massachusetts
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Mabel Seto
- Center for Alzheimer's Research and Therapy, Brigham & Women's Hospital, Boston, Massachusetts
| |
Collapse
|
39
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
40
|
Leclaire KN, Blujus JK, Korthauer LE, Driscoll I. APOE4-related differences in cortical thickness are modulated by sex in middle age. Brain Imaging Behav 2024; 18:1163-1171. [PMID: 39196521 PMCID: PMC11845251 DOI: 10.1007/s11682-024-00911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Apolipoprotein E (APOE) ε4, the strongest genetic risk for late-onset Alzheimer's disease (AD), confers greater risk in females than males. While APOE4-related modulation of structural brain integrity in AD is well documented, extant literature on sex-APOE interactions has focused on older adults. The understanding of the healthy brain as a part of the normal aging process and as distinct from explicit disease or pathology is essential before comparison can be made with pathological states. Hence, it is crucial to characterize and better understand these relationships in middle-age prior to the onset of overt clinical symptoms and advanced neurodegeneration. The present study examined the relationships between sex, APOE status, and cortical thickness in 128 healthy, cognitively unimpaired, middle-aged adults (ages 40-60, M(SD) = 49.97(6.04); 77 females). All participants underwent structural magnetic resonance imaging and were genotyped for APOE (APOE4 + = 38; APOE4- = 90). Compared to males, females had thicker superior frontal cortices bilaterally, left middle temporal cortex, and left pars triangularis. APOE4 + had thinner left rostral middle frontal gyrus compared to APOE4-. Female compared to male APOE4- had thicker left banks of the superior temporal sulcus, left caudal anterior cingulate, left superior frontal, left superior parietal, and right precentral cortices. Female compared to male APOE4 + had thicker superior frontal cortices bilaterally. Female APOE4 + had thinner left rostral anterior cingulate cortex compared to female APOE4-. Overall, APOE-related differences in cortical thickness are more pronounced in females and detectable in middle age, well before the onset of overt clinical symptoms of AD.
Collapse
Affiliation(s)
- Kaitlynne N Leclaire
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave, Milwaukee, WI, 53211, USA
| | - Jenna K Blujus
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave, Milwaukee, WI, 53211, USA
| | - Laura E Korthauer
- Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave, Milwaukee, WI, 53211, USA.
- Geriatrics and Gerontology, School of Medicine and Public Health, University of WI - Madison, Madison, WI, 53792, USA.
- Alzheimer's Disease Research Center, University of WI - Madison, J5/M192 Clinical Science Center, 00 Highland Avenue, Madison, WI, 53792, USA.
| |
Collapse
|
41
|
Khajouei E, Ghisays V, Piras IS, Martinez KL, Naymik M, Ngo P, Tran TC, Denny JC, Wheeler TJ, Huentelman MJ, Reiman EM, Karnes JH. Phenome-Wide Association of APOE Alleles in the All of Us Research Program. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.04.24313010. [PMID: 39281754 PMCID: PMC11398429 DOI: 10.1101/2024.09.04.24313010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background Genetic variation in APOE is associated with altered lipid metabolism, as well as cardiovascular and neurodegenerative disease risk. However, prior studies are largely limited to European ancestry populations and differential risk by sex and ancestry has not been widely evaluated. We utilized a phenome-wide association study (PheWAS) approach to explore APOE-associated phenotypes in the All of Us Research Program. Methods We determined APOE alleles for 181,880 All of Us participants with whole genome sequencing and electronic health record (EHR) data, representing seven gnomAD ancestry groups. We tested association of APOE variants, ordered based on Alzheimer's disease risk hierarchy (ε2/ε2<ε2/ε3<ε3/ε3<ε2/ε4<ε3/ε4<ε4/ε4), with 2,318 EHR-derived phenotypes. Bonferroni-adjusted analyses were performed overall, by ancestry, by sex, and with adjustment for social determinants of health (SDOH). Findings In the overall cohort, PheWAS identified 17 significant associations, including an increased odds of hyperlipidemia (OR 1.15 [1.14-1.16] per APOE genotype group; P=1.8×10-129), dementia, and Alzheimer's disease (OR 1.55 [1.40-1.70]; P=5×10-19), and a reduced odds of fatty liver disease (OR 0.93 [0.90-0.95]; P=1.6×10-9) and chronic liver disease. ORs were similar after SDOH adjustment and by sex, except for an increased number of cardiovascular associations in males, and decreased odds of noninflammatory disorders of vulva and perineum in females (OR 0.89 [0.84-0.94]; P=1.1×10-5). Significant heterogeneity was observed for hyperlipidemia and mild cognitive impairment across ancestry. Unique associations by ancestry included transient retinal arterial occlusion in the European ancestry group, and first-degree atrioventricular block in the American Admixed/Latino ancestry group. Interpretation We replicate extensive phenotypic associations with APOE alleles in a large, diverse cohort, despite limitations in accuracy for EHR-derived phenotypes. We provide a comprehensive catalog of APOE-associated phenotypes and present evidence of unique phenotypic associations by sex and ancestry, as well as heterogeneity in effect size across ancestry.
Collapse
Affiliation(s)
- Ehsan Khajouei
- Department of Pharmacy Practice and Science, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | | | - Ignazio S. Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Kiana L. Martinez
- Department of Pharmacy Practice and Science, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Marcus Naymik
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Preston Ngo
- Department of Pharmacy Practice and Science, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Tam C. Tran
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua C. Denny
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- All of Us Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Travis J. Wheeler
- Department of Pharmacy Practice and Science, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | | | | | - Jason H. Karnes
- Department of Pharmacy Practice and Science, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
42
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
43
|
Dounavi M, Mak E, Operto G, Muniz‐Terrera G, Bridgeman K, Koychev I, Malhotra P, Naci L, Lawlor B, Su L, Falcon C, Ritchie K, Ritchie CW, Gispert JD, O'Brien JT. Texture-based morphometry in relation to apolipoprotein ε4 genotype, ageing and sex in a midlife population. Hum Brain Mapp 2024; 45:e26798. [PMID: 39081128 PMCID: PMC11289425 DOI: 10.1002/hbm.26798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/06/2024] [Accepted: 07/10/2024] [Indexed: 08/03/2024] Open
Abstract
Brain atrophy and cortical thinning are typically observed in people with Alzheimer's disease (AD) and, to a lesser extent, in those with mild cognitive impairment. In asymptomatic middle-aged apolipoprotein ε4 (ΑPOE4) carriers, who are at higher risk of future AD, study reports are discordant with limited evidence of brain structural differences between carriers and non-carriers of the ε4 allele. Alternative imaging markers with higher sensitivity at the presymptomatic stage, ideally quantified using typically acquired structural MRI scans, would thus be of great benefit for the detection of early disease, disease monitoring and subject stratification. In the present cross-sectional study, we investigated textural properties of T1-weighted 3T MRI scans in relation to APOE4 genotype, age and sex. We pooled together data from the PREVENT-Dementia and ALFA studies focused on midlife healthy populations with dementia risk factors (analysable cohort: 1585 participants; mean age 56.2 ± 7.4 years). Voxel-based and texture (examined features: contrast, entropy, energy, homogeneity) based morphometry was used to identify areas of volumetric and textural differences between APOE4 carriers and non-carriers. Textural maps were generated and were subsequently harmonised using voxel-wise COMBAT. For all analyses, APOE4, sex, age and years of education were used as model predictors. Interactions between APOE4 and age were further examined. There were no group differences in regional brain volume or texture based on APOE4 carriership or when age × APOE4 interactions were examined. Older people tended to have a less homogeneous textural profile in grey and white matter and a more homogeneous profile in the ventricles. A more heterogeneous textural profile was observed for females in areas such as the ventricles, frontal and parietal lobes and for males in the brainstem, cerebellum, precuneus and cingulate. Overall, we have shown the absence of volumetric and textural differences between APOE4 carriers and non-carriers at midlife and have established associations of textural features with ageing and sex.
Collapse
Affiliation(s)
- Maria‐Eleni Dounavi
- Department of PsychiatrySchool of Clinical Medicine, University of CambridgeCambridgeUK
| | - Elijah Mak
- Department of PsychiatrySchool of Clinical Medicine, University of CambridgeCambridgeUK
| | - Gregory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
| | - Graciela Muniz‐Terrera
- Centre for Dementia PreventionUniversity of EdinburghEdinburghUK
- Heritage College of Osteopathic MedicineOhio UniversityAthensOhioUSA
| | - Katie Bridgeman
- Centre for Dementia PreventionUniversity of EdinburghEdinburghUK
| | | | - Paresh Malhotra
- Division of Brain ScienceImperial College Healthcare NHS TrustUK
| | - Lorina Naci
- Institute of Neuroscience, Trinity College Dublin, University of DublinIreland
| | - Brian Lawlor
- Institute of Neuroscience, Trinity College Dublin, University of DublinIreland
| | - Li Su
- Department of PsychiatrySchool of Clinical Medicine, University of CambridgeCambridgeUK
- Department of NeuroscienceUniversity of SheffieldSheffieldUK
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
| | - Karen Ritchie
- INSERM and University of MontpellierMontpellierFrance
| | - Craig W. Ritchie
- Centre for Dementia PreventionUniversity of EdinburghEdinburghUK
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
| | - John T. O'Brien
- Department of PsychiatrySchool of Clinical Medicine, University of CambridgeCambridgeUK
| |
Collapse
|
44
|
Lee BH, Cevizci M, Lieblich SE, Ibrahim M, Wen Y, Eid RS, Lamers Y, Duarte-Guterman P, Galea LAM. Exploring the parity paradox: Differential effects on neuroplasticity and inflammation by APOEe4 genotype at middle age. Brain Behav Immun 2024; 120:54-70. [PMID: 38772427 DOI: 10.1016/j.bbi.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/20/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024] Open
Abstract
Female sex and Apolipoprotein E (APOE) ε4 genotype are top non-modifiable risk factors for Alzheimer's disease (AD). Although female-unique experiences like parity (pregnancy and motherhood) have positive effects on neuroplasticity at middle age, previous pregnancy may also contribute to AD risk. To explore these seemingly paradoxical long-term effects of parity, we investigated the impact of parity with APOEε4 genotype by examining behavioural and neural biomarkers of brain health in middle-aged female rats. Our findings show that primiparous (parous one time) hAPOEε4 rats display increased use of a non-spatial cognitive strategy and exhibit decreased number and recruitment of new-born neurons in the ventral dentate gyrus of the hippocampus in response to spatial working memory retrieval. Furthermore, primiparity and hAPOEε4 genotype synergistically modulate inflammatory markers in the ventral hippocampus. Collectively, these findings demonstrate that previous parity in hAPOEε4 rats confers an added risk to present with reduced activity and engagement of the hippocampus as well as elevated pro-inflammatory signaling, and underscore the importance of considering female-specific factors and genotype in health research.
Collapse
Affiliation(s)
- Bonnie H Lee
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Melike Cevizci
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie E Lieblich
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Muna Ibrahim
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Yanhua Wen
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Rand S Eid
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Yvonne Lamers
- Food Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Paula Duarte-Guterman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, ON, Canada.
| |
Collapse
|
45
|
Monnig M, Shah K. Linking alcohol use to Alzheimer's disease: Interactions with aging and APOE along immune pathways. MEDICAL RESEARCH ARCHIVES 2024; 12:10.18103/mra.v12i8.5228. [PMID: 39544182 PMCID: PMC11563488 DOI: 10.18103/mra.v12i8.5228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Although it is known that APOE genotype is the strongest genetic risk factor for late-onset Alzheimer's disease, development is a multifactorial process. Alcohol use is a contributor to the epidemic of Alzheimer's disease and related dementias in the US and globally, yet mechanisms are not fully understood. Carriers of the APOE ε4 allele show elevated risk of dementia in relation to several lifestyle factors, including alcohol use. In this review, we describe how alcohol interacts with APOE genotype and aging with potential implications for Alzheimer's disease promotion. Age-related immune senescence and "inflammaging" (i.e., low-grade inflammation associated with aging) are increasingly recognized as contributors to age-related disease. We focus on three immune pathways that are likely contributors to Alzheimer's disease development, centering on alcohol and APOE genotype interactions, specifically: 1) microbial translocation and immune activation, 2) the senescence associated secretory phenotype, and 3) neuroinflammation. First, microbial translocation, the unphysiological movement of gut products into systemic circulation, elicits a proinflammatory response and increases with aging, with proposed links to Alzheimer's disease. Second, the senescence associated secretory phenotype is a set of intercellular signaling factors, e.g., proinflammatory cytokines and chemokines, growth regulators, and proteases, that drives cellular aging when senescent cells remain metabolically active. The senescence associated secretory phenotype can drive development of aging-diseases such as Alzheimer's disease. Third, neuroinflammation occurs via numerous mechanisms such as microglial activation and is gaining recognition as an etiological factor in the development of Alzheimer's disease. This review focuses on interactions of alcohol with APOE genotype and aging along these three pathways that may promote Alzheimer's disease. Further research on these processes may inform development of strategies to prevent onset and progression of Alzheimer's disease and to delay associated cognitive decline.
Collapse
Affiliation(s)
- Mollie Monnig
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI 02912, USA
| | - Krish Shah
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI 02912, USA
| |
Collapse
|
46
|
Yoshida K, Hata Y, Ichimata S, Tanaka R, Nishida N. Prevalence and clinicopathological features of primary age-related tauopathy (PART): A large forensic autopsy study. Alzheimers Dement 2024; 20:5411-5420. [PMID: 38938196 PMCID: PMC11350034 DOI: 10.1002/alz.14037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Primary age-related tauopathy (PART), often regarded as a minimally symptomatic pathology of old age, lacks comprehensive cohorts across various age groups. METHODS We examined PART prevalence and clinicopathologic features in 1589 forensic autopsy cases (≥40 years old, mean age ± SD 70.2 ± 14.2 years). RESULTS PART cases meeting criteria for argyrophilic grain diseases (AGD) were AGD+PART (n = 181). The remaining PART cases (n = 719, 45.2%) were classified as comorbid conditions (PART-C, n = 90) or no comorbid conditions (pure PART, n = 629). Compared to controls (n = 208), Alzheimer's disease (n = 133), and AGD+PART, PART prevalence peaked in the individuals in their 60s (65.5%) and declined in the 80s (21.5%). No significant clinical background differences were found (excluding controls). However, PART-C in patients inclusive of age 80 had a higher suicide rate than pure PART (p < 0.05), and AGD+PART showed more dementia (p < 0.01) and suicide (p < 0.05) than pure PART. DISCUSSION Our results advocate a reevaluation of the PART concept and its diagnostic criteria. HIGHLIGHTS We investigated 1589 forensic autopsy cases to investigate the features of primary age-related tauopathy (PART). PART peaked in people in their 60s in our study. Many PART cases over 80s had comorbid pathologies in addition to neurofibrillary tangles pathology. Argyrophilic grain disease and Lewy pathology significantly affected dementia and suicide rates in PART. Our results suggest that the diagnostic criteria of PART need to be reconsidered.
Collapse
Affiliation(s)
- Koji Yoshida
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
- Tanz Centre for Research in Neurodegenerative DiseaseKrembil Discovery TowerUniversity of TorontoTorontoOntarioCanada
- Department of Laboratory Medicine and Pathobiology and Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Yukiko Hata
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| | - Shojiro Ichimata
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| | - Ryo Tanaka
- Department of NeurologyToyama University HospitalToyamaJapan
| | - Naoki Nishida
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| |
Collapse
|
47
|
Arenaza‐Urquijo EM, Boyle R, Casaletto K, Anstey KJ, Vila‐Castelar C, Colverson A, Palpatzis E, Eissman JM, Kheng Siang Ng T, Raghavan S, Akinci M, Vonk JMJ, Machado LS, Zanwar PP, Shrestha HL, Wagner M, Tamburin S, Sohrabi HR, Loi S, Bartrés‐Faz D, Dubal DB, Vemuri P, Okonkwo O, Hohman TJ, Ewers M, Buckley RF. Sex and gender differences in cognitive resilience to aging and Alzheimer's disease. Alzheimers Dement 2024; 20:5695-5719. [PMID: 38967222 PMCID: PMC11350140 DOI: 10.1002/alz.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 07/06/2024]
Abstract
Sex and gender-biological and social constructs-significantly impact the prevalence of protective and risk factors, influencing the burden of Alzheimer's disease (AD; amyloid beta and tau) and other pathologies (e.g., cerebrovascular disease) which ultimately shape cognitive trajectories. Understanding the interplay of these factors is central to understanding resilience and resistance mechanisms explaining maintained cognitive function and reduced pathology accumulation in aging and AD. In this narrative review, the ADDRESS! Special Interest Group (Alzheimer's Association) adopted a multidisciplinary approach to provide the foundations and recommendations for future research into sex- and gender-specific drivers of resilience, including a sex/gender-oriented review of risk factors, genetics, AD and non-AD pathologies, brain structure and function, and animal research. We urge the field to adopt a sex/gender-aware approach to resilience to advance our understanding of the intricate interplay of biological and social determinants and consider sex/gender-specific resilience throughout disease stages. HIGHLIGHTS: Sex differences in resilience to cognitive decline vary by age and cognitive status. Initial evidence supports sex-specific distinctions in brain pathology. Findings suggest sex differences in the impact of pathology on cognition. There is a sex-specific change in resilience in the transition to clinical stages. Gender and sex factors warrant study: modifiable, immune, inflammatory, and vascular.
Collapse
Affiliation(s)
- Eider M. Arenaza‐Urquijo
- Environment and Health Over the Life Course Programme, Climate, Air Pollution, Nature and Urban Health ProgrammeBarcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- University of Pompeu FabraBarcelonaBarcelonaSpain
| | - Rory Boyle
- Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kaitlin Casaletto
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kaarin J. Anstey
- University of New South Wales Ageing Futures InstituteSydneyNew South WalesAustralia
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Psychology, University of New South WalesSidneyNew South WalesAustralia
| | | | - Aaron Colverson
- University of Florida Center for Arts in Medicine Interdisciplinary Research LabUniversity of Florida, Center of Arts in MedicineGainesvilleFloridaUSA
| | - Eleni Palpatzis
- Environment and Health Over the Life Course Programme, Climate, Air Pollution, Nature and Urban Health ProgrammeBarcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- University of Pompeu FabraBarcelonaBarcelonaSpain
| | - Jaclyn M. Eissman
- Vanderbilt Memory and Alzheimer's Center, Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Ted Kheng Siang Ng
- Rush Institute for Healthy Aging and Department of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | | | - Muge Akinci
- Environment and Health Over the Life Course Programme, Climate, Air Pollution, Nature and Urban Health ProgrammeBarcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- University of Pompeu FabraBarcelonaBarcelonaSpain
| | - Jet M. J. Vonk
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Luiza S. Machado
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, FarroupilhaPorto AlegreBrazil
| | - Preeti P. Zanwar
- Jefferson College of Population Health, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- The Network on Life Course and Health Dynamics and Disparities, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Maude Wagner
- Rush Alzheimer's Disease Center, Rush University Medical CenterChicagoIllinoisUSA
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Hamid R. Sohrabi
- Centre for Healthy AgeingHealth Future InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- School of Psychology, Murdoch UniversityMurdochWestern AustraliaAustralia
| | - Samantha Loi
- Neuropsychiatry Centre, Royal Melbourne HospitalParkvilleVictoriaAustralia
- Department of PsychiatryUniversity of MelbourneParkvilleVictoriaAustralia
| | - David Bartrés‐Faz
- Department of MedicineFaculty of Medicine and Health Sciences & Institut de NeurociènciesUniversity of BarcelonaBarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques (IDIBAPS)BarcelonaBarcelonaSpain
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de BarcelonaBadalonaBarcelonaSpain
| | - Dena B. Dubal
- Department of Neurology and Weill Institute of NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Biomedical and Neurosciences Graduate ProgramsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | - Ozioma Okonkwo
- Alzheimer's Disease Research Center and Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer's Center, Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Michael Ewers
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig Maximilians Universität (LMU)MunichGermany
- German Center for Neurodegenerative Diseases (DZNE, Munich)MunichGermany
| | - Rachel F. Buckley
- Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | |
Collapse
|
48
|
André C, Martineau-Dussault MÈ, Baril AA, Marchi NA, Daneault V, Lorrain D, Hudon C, Bastien CH, Petit D, Thompson C, Poirier J, Montplaisir J, Gosselin N, Carrier J. Reduced rapid eye movement sleep in late middle-aged and older apolipoprotein E ɛ4 allele carriers. Sleep 2024; 47:zsae094. [PMID: 38634644 PMCID: PMC11236949 DOI: 10.1093/sleep/zsae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
STUDY OBJECTIVES Apolipoprotein E ɛ4 (APOE4) is the strongest genetic risk factor for Alzheimer's disease (AD). In addition, APOE4 carriers may exhibit sleep disturbances, but conflicting results have been reported, such that there is no clear consensus regarding which aspects of sleep are impacted. Our objective was to compare objective sleep architecture between APOE4 carriers and non-carriers, and to investigate the modulating impact of age, sex, cognitive status, and obstructive sleep apnea (OSA). METHODS A total of 198 dementia-free participants aged >55 years old (mean age: 68.7 ± 8.08 years old, 40.91% women, 41 APOE4 carriers) were recruited in this cross-sectional study. They underwent polysomnography, APOE4 genotyping, and a neuropsychological evaluation. ANCOVAs assessed the effect of APOE4 status on sleep architecture, controlling for age, sex, cognitive status, and the apnea-hypopnea index. Interaction terms were added between APOE4 status and covariates. RESULTS Rapid eye movement (REM) sleep percentage (F = 9.95, p = .002, ηp2 = 0.049) and duration (F = 9.23, p = .003, ηp2 = 0.047) were lower in APOE4 carriers. The results were replicated in a subsample of 112 participants without moderate-to-severe OSA. There were no significant interactions between APOE4 status and age, sex, cognitive status, and OSA in the whole sample. CONCLUSIONS Our results show that APOE4 carriers exhibit lower REM sleep duration, including in cognitively unimpaired individuals, possibly resulting from early neurodegenerative processes in regions involved in REM sleep generation and maintenance.
Collapse
Affiliation(s)
- Claire André
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Marie-Ève Martineau-Dussault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Andrée-Ann Baril
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nicola Andrea Marchi
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
- Center for Investigation and Research in Sleep, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Véronique Daneault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Dominique Lorrain
- Research Centre on Aging, University Institute of Geriatrics of Sherbrooke, CIUSSS de l’Estrie-CHUS, Sherbrooke, QC, Canada
- Department of Psychology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Carol Hudon
- CERVO Brain Research Centre, Institut Universitaire en Santé Mentale de Québec, Québec City, QC, Canada
- School of Psychology, Université Laval, Québec City, QC, Canada
| | - Célyne H Bastien
- CERVO Brain Research Centre, Institut Universitaire en Santé Mentale de Québec, Québec City, QC, Canada
- School of Psychology, Université Laval, Québec City, QC, Canada
| | - Dominique Petit
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| | - Cynthia Thompson
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
| | - Judes Poirier
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, CIUSSS de l’Ouest-de-l’Ile-de-Montréal, Verdun, QC, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
49
|
Wugalter KA, Schroeder RA, Thurston RC, Wu M, Aizenstein HJ, Cohen AD, Kamboh MI, Karikari TK, Derby CA, Maki PM. Associations of endogenous estrogens, plasma Alzheimer's disease biomarkers, and APOE4 carrier status on regional brain volumes in postmenopausal women. Front Aging Neurosci 2024; 16:1426070. [PMID: 39044806 PMCID: PMC11263297 DOI: 10.3389/fnagi.2024.1426070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Background Women carrying the APOE4 allele are at greater risk of developing Alzheimer's disease (AD) from ages 65-75 years compared to men. To better understand the elevated risk conferred by APOE4 carrier status among midlife women, we investigated the separate and interactive associations of endogenous estrogens, plasma AD biomarkers, and APOE4 carrier status on regional brain volumes in a sample of late midlife postmenopausal women. Methods Participants were enrolled in MsBrain, a cohort study of postmenopausal women (n = 171, mean age = 59.4 years, mean MoCA score = 26.9; race = 83.2% white, APOE4 carriers = 40). Serum estrone (E1) and estradiol (E2) levels were assessed using liquid chromatography-tandem mass spectrometry. APOE genotype was determined using TaqMan SNP genotyping assays. Plasma AD biomarkers were measured using single molecule array technology. Cortical volume was measured and segmented by FreeSurfer software using individual T1w MPRAGE images. Multiple linear regression models were conducted to determine whether separate and interactive associations between endogenous estrogen levels, plasma AD biomarkers (Aβ42/Aβ40, Aβ42/p-tau181), and APOE4 carrier status predict regional brain volume (21 regions per hemisphere, selected a priori); and, whether significant interactive associations between estrogens and AD biomarkers on brain volume differed by APOE4 carrier status. Results There was no main effect of APOE4 carrier status on regional brain volumes, endogenous estrogen levels, or plasma AD biomarkers. Estrogens did not associate with regional brain volumes, except for positive associations with left caudal middle frontal gyrus and fusiform volumes. The interactive association of estrogens and APOE4 carrier status on brain volume was not significant for any region. The interactive association of estrogens and plasma AD biomarkers predicted brain volume of several regions. Higher E1 and E2 were more strongly associated with greater regional brain volumes among women with a poorer AD biomarker profile (lower Aβ42/40, lower Aβ42/p-tau181 ratios). In APOE4-stratified analyses, these interactions were driven by non-APOE4 carriers. Conclusion We demonstrate that the brain volumes of postmenopausal women with poorer AD biomarker profiles benefit most from higher endogenous estrogen levels. These findings are driven by non-APOE4 carriers, suggesting that APOE4 carriers may be insensitive to the favorable effects of estrogens on brain volume in the postmenopause.
Collapse
Affiliation(s)
- Katrina A. Wugalter
- Department of Psychology, University of Illinois Chicago, Chicago, IL, United States
| | - Rachel A. Schroeder
- Department of Psychology, University of Illinois Chicago, Chicago, IL, United States
| | - Rebecca C. Thurston
- Departments of Psychiatry, Epidemiology, Psychology, and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA, United States
| | - Minjie Wu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Howard J. Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ann D. Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - M. Ilyas Kamboh
- Departments of Psychiatry, Human Genetics, and Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Thomas K. Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Carol A. Derby
- The Saul R. Korey Department of Neurology, Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Pauline M. Maki
- Departments of Psychiatry, Psychology and Obstetrics & Gynecology, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
50
|
Wang YZ, Zhao W, Moorjani P, Gross AL, Zhou X, Dey AB, Lee J, Smith JA, Kardia SLR. Effect of apolipoprotein E ε4 and its modification by sociodemographic characteristics on cognitive measures in South Asians from LASI-DAD. Alzheimers Dement 2024; 20:4854-4867. [PMID: 38889280 PMCID: PMC11247697 DOI: 10.1002/alz.14052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND We investigated the effects of apolipoprotein E (APOE) ε4 and its interactions with sociodemographic characteristics on cognitive measures in South Asians from the Diagnostic Assessment of Dementia for the Longitudinal Aging Study of India (LASI-DAD). METHODS Linear regression was used to assess the association between APOE ε4 and global- and domain-specific cognitive function in 2563 participants (mean age 69.6 ± 7.3 years; 53% female). Effect modification by age, sex, and education were explored using interaction terms and subgroup analyses. RESULTS APOE ε4 was inversely associated with most cognitive measures (p < 0.05). This association was stronger with advancing age for the Hindi Mental State Examination (HMSE) score (βε4×age = -0.44, p = 0.03), orientation (βε4×age = -0.07, p = 0.01), and language/fluency (βε4×age = -0.07, p = 0.01), as well as in females for memory (βε4×male = 0.17, p = 0.02) and language/fluency (βε4×male = 0.12, p = 0.03). DISCUSSION APOE ε4 is associated with lower cognitive function in South Asians from India, with a more pronounced impact observed in females and older individuals. HIGHLIGHTS APOE ε4 carriers had lower global and domain-specific cognitive performance. Females and older individuals may be more susceptible to ε4 effects. For most cognitive measures, there was no interaction between ε4 and education.
Collapse
Affiliation(s)
- Yi Zhe Wang
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Wei Zhao
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
- Survey Research CenterInstitute for Social ResearchUniversity of MichiganAnn ArborMichiganUSA
| | - Priya Moorjani
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Center for Computational BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Alden L. Gross
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Xiang Zhou
- Department of BiostatisticsSchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Aparajit B. Dey
- Department of Geriatric MedicineAll India Institute of Medical Sciences, Ansari NagarNew DelhiIndia
| | - Jinkook Lee
- Department of Economics and Center for Social ResearchUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jennifer A. Smith
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
- Survey Research CenterInstitute for Social ResearchUniversity of MichiganAnn ArborMichiganUSA
| | - Sharon L. R. Kardia
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|