1
|
Zhang Z, Li Z, Li S, Xiong B, Zhou Y, Shi C. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury. Med Gas Res 2025; 15:156-163. [PMID: 39324933 PMCID: PMC11515069 DOI: 10.4103/mgr.medgasres-d-24-00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/17/2024] [Accepted: 05/23/2024] [Indexed: 09/27/2024] Open
Abstract
The use of hyperbaric oxygen (HBO 2 ) in the field of traumatic brain injury (TBI) is becoming more widespread and increasing yearly, however there are few prognostic reports on long-term functional efficacy. The aim of this study was to assess the functional prognosis of patients with moderate-to-severe TBI 5-8 years following HBO 2 treatments and to explore the optimal HBO 2 regimen associated with prognosis, using a retrospective study. Clinical data were retrospectively collected as a baseline for patients with moderate-to-severe TBI treated with HBO 2 during inpatient rehabilitation from January 2014 to December 2017. The primary outcome measure was the Disability Rating Scale (DRS) and the secondary outcome measure was the Glasgow Outcome Scale. A total of 133 patients enrolled, with 9 (6.8%) dying, 41 (30.8%) remaining moderately disabled or worse (DRS scores 4-29), 83 (62.4%) remaining partially/mildly disabled or no disability (DRS scores 0-3). Logistic regression analysis revealed that age at injury (odds ratio (OR), 0.96; 95% confidence interval (CI), 0.92-0.99), length of intensive care unit stay (OR, 0.94; 95% CI, 0.88-0.99), and HBO 2 sessions (OR, 0.97; 95% CI, 0.95-0.99) were variables that independently influenced long-term prognosis. Cubic fitting models revealed that 14 and 21.6 sessions of HBO 2 could be effective for moderate and severe TBI, respectively. This study highlighted that HBO 2 in moderate-to-severe TBI may contribute to minimize death and reduce overall disability in the long-term. However, clinicians should be cautious of the potential risk of adverse long-term prognosis from excessive HBO 2 exposure when tailoring individualized HBO 2 regimens for patients with moderate-to-severe TBI. The study was registered on ClinicalTrials.gov (NCT05387018) on March 31, 2022.
Collapse
Affiliation(s)
- Zhihua Zhang
- Departments of Physical Medicine and Rehabilitation, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhenwei Li
- Department of Infection Control, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shuyang Li
- Departments of Physical Medicine and Rehabilitation, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Bing Xiong
- Departments of Physical Medicine and Rehabilitation, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - You Zhou
- Departments of Physical Medicine and Rehabilitation, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chaohong Shi
- Departments of Physical Medicine and Rehabilitation, The First People’s Hospital of Wenling, Taizhou, Zhejiang Province, China
| |
Collapse
|
2
|
Haksteen WE, Nasim GZ, Admiraal MM, Velseboer DC, van Rootselaar AF, Horn J. Indications, results and consequences of electroencephalography in neurocritical care: A retrospective study. J Crit Care 2024; 84:154861. [PMID: 39018590 DOI: 10.1016/j.jcrc.2024.154861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/29/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE Electrocencephalography (EEG) is a tool to assess cerebral cortical activity. We investigated the indications and results of routine EEG recordings in neurocritical care patients and corresponding changes in anti-seizure medication (ASM). MATERIALS AND METHODS This was a single-center, retrospective cohort study. We included all adult Intensive Care Unit (ICU) patients with severe acute brain injury who received a routine EEG (30-60 min). Indications, background patterns, presence of rhythmic and periodic patterns, seizures, and adjustments in ASM were documented. RESULTS A total of 109 patients were included. The EEGs were performed primarily to investigate the presence of (non-convulsive) status epilepticus ((NC)SE) and/or seizures. A (slowed) continuous background pattern was present in 94%. Low voltage, burst-suppression and suppressed background patterns were found in six patients (5.5%). Seizures were diagnosed in two patients and (NC)SE was diagnosed in five patients (6.4%). Based on the EEG results, ASM was changed in 47 patients (43%). This encompassed discontinuation of ASM in 27 patients (24.8%) and initiation of ASM in 20 patients (18.3%). CONCLUSIONS All EEGs were performed to investigate the presence of (NC)SE or seizures. A slowed, but continuous background pattern was found in nearly all patients and (NC)SE and seizures were rarely diagnosed. Adjustments in ASM were made in approximately half of the patients.
Collapse
Affiliation(s)
- Wolmet E Haksteen
- Amsterdam UMC, University of Amsterdam, Department of Intensive Care, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, Netherlands.
| | - Gulsum Z Nasim
- Amsterdam UMC, University of Amsterdam, Department of Intensive Care, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, Netherlands
| | - Marjolein M Admiraal
- Amsterdam UMC, University of Amsterdam, Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Daan C Velseboer
- Amsterdam UMC, University of Amsterdam, Department of Intensive Care, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, Netherlands
| | - A Fleur van Rootselaar
- Amsterdam UMC, University of Amsterdam, Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Janneke Horn
- Amsterdam UMC, University of Amsterdam, Department of Intensive Care, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, Netherlands
| |
Collapse
|
3
|
Schey JE, Schoch M, Kerr D. The Predictive Validity of the Full Outline of UnResponsiveness Score Compared to the Glasgow Coma Scale in the Intensive Care Unit: A Systematic Review. Neurocrit Care 2024:10.1007/s12028-024-02150-8. [PMID: 39496882 DOI: 10.1007/s12028-024-02150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/01/2024] [Indexed: 11/06/2024]
Abstract
The Full Outline of UnResponsiveness (FOUR) score was developed to overcome the limitations of the Glasgow Coma Scale (GCS) when assessing individuals with impaired consciousness. We sought to review the evidence regarding the predictive validity of the GCS and FOUR score in intensive care unit (ICU) settings. This review was prospectively registered in PROSPERO (CRD42023420528). Systematic searches of CINAHL, MEDLINE, and Embase were undertaken. Prospective observational studies were included if both GCS and FOUR score were assessed in adults during ICU admission and if mortality and/or validated functional outcome measure scores were collected. Studies were excluded if they exclusively investigated patients with traumatic brain injury. Screening, data extraction, and quality assessment using the Quality in Prognosis Studies tool were conducted by two reviewers. Twenty studies of poor to moderate quality were included. Many studies only included patients with neurological illness and excluded sedated patients, despite high proportions of intubated patients. The FOUR score achieved higher area under the receiver operating characteristic curve values for mortality prediction compared with the GCS, and the FOUR score achieved significantly higher area under the receiver operating characteristic curve values for predictions of ICU mortality. Both coma scales showed similar accuracy in predicting "unfavorable" functional outcome. The FOUR score appeared to be more responsive than the GCS in the ICU, as most patients with a GCS score of 3 obtained FOUR scores between 1 and 8 due to preserved brainstem function. The FOUR score may be superior to the GCS for predicting mortality in ICU settings. Further adequately powered studies with clear, reliable methods for assessment of index and outcome scores are required to clarify the predictive performance of both coma scales in ICUs. Inclusion of sedated patients may improve generalizability of findings in general ICU populations.
Collapse
Affiliation(s)
- Jaime E Schey
- School of Nursing and Midwifery, Faculty of Health, Deakin University, Geelong, VIC, Australia.
- Intensive Care Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia.
- Centre for Quality and Patient Safety Research, School of Nursing and Midwifery, Institute for Health Transformation, Deakin University, Geelong, VIC, Australia.
| | - Monica Schoch
- School of Nursing and Midwifery, Faculty of Health, Deakin University, Geelong, VIC, Australia
- Centre for Quality and Patient Safety Research, School of Nursing and Midwifery, Institute for Health Transformation, Deakin University, Geelong, VIC, Australia
| | - Debra Kerr
- School of Nursing and Midwifery, Faculty of Health, Deakin University, Geelong, VIC, Australia
- Centre for Quality and Patient Safety Research, School of Nursing and Midwifery, Institute for Health Transformation, Deakin University, Geelong, VIC, Australia
- Deakin University, Western Health Partnership, St Albans, VIC, Australia
| |
Collapse
|
4
|
Tran J, Byerly S, Nelson J, Lenart EK, Kerwin AJ, Filiberto DM. Race and Socio-Economic Status Impact Withdrawal of Treatment in Young Traumatic Brain Injury. J Pain Symptom Manage 2024; 68:499-505. [PMID: 39097244 DOI: 10.1016/j.jpainsymman.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
CONTEXT Withdrawal of life-sustaining therapies (WDLST) in young individuals with traumatic brain injury (TBI) is an overwhelming situation often made more stressful by socioeconomic factors that shape health outcomes. Identifying these factors is crucial to developing equitable and goal-concordant care for patients and families. OBJECTIVES We aimed to identify predictors of WDLST in young patients with 1-TBI. We hypothesized uninsured payment method, race, and co-morbid status are associated with WDLST. METHODS We queried the 2021 Trauma Quality Improvement Program database for patients <45 years with TBI. Patients with WDLST were compared to patients without WDLST. Multivariable logistic regression (MLR) was performed. RESULTS 61,115 patients were included, of whom 2,487 (4.1%) underwent WDLST. Patients in the WDLST cohort were older (29 vs 27, P<0.001), more likely to suffer from a penetrating mechanism (29% vs 11%, P<.0001), and have uninsured (22% vs 18%) or other payment method (5% vs 3%) when compared to the non-WDLST cohort. MLR identified age (AOR:1.019, 95% CI 1.014-1.024, P<.0001), non-Hispanic ethnicity (AOR:1.590, 95% CI 1.373-1.841, P<.0001), penetrating mechanism (AOR:3.075, 95% CI 2.727-3.467, P<.0001), systolic blood pressure (AOR: 0.992, 95% CI 0.990-0.993, P<0.0001), advanced directive (AOR:4.987, 95% CI 2.823-8.812, P<.0001), cirrhosis (AOR:3.854, 95% CI 2.641-5.625, P<.0001), disseminated cancer (AOR:6.595, 95% CI 2.370-18.357, P=0.0003), and interfacility transfer (AOR:1.457, 95% CI 1.295-1.640, P<0.0001) as factors associated with WDLST. Black patients were less likely to undergo WDLST when compared to white patients (AOR:0.687, 95% CI 0.603-0.782, P<.0001). CONCLUSION The decision for WDLST in young patients with severe TBI may be influenced by cultural and socioeconomic factors in addition to clinical considerations.
Collapse
Affiliation(s)
- Jessica Tran
- College of Medicine (T.J), University of Tennessee Health Science Center, 910 Madison Avenue, Memphis, Tennessee, USA.
| | - Saskya Byerly
- Division of Trauma and Surgical Critical Care (B.S., L.E.K., K.A.J., F.D.M.), Department of Surgery, University of Tennessee Health Science Center, 910 Madison Avenue, Memphis, Tennessee, USA
| | - Jeffrey Nelson
- Division of General Internal Medicine (N.J.), Department of Medicine, University of Tennessee Health Science Center, 910 Madison Avenue, Memphis, Tennessee, USA
| | - Emily K Lenart
- Division of Trauma and Surgical Critical Care (B.S., L.E.K., K.A.J., F.D.M.), Department of Surgery, University of Tennessee Health Science Center, 910 Madison Avenue, Memphis, Tennessee, USA
| | - Andrew J Kerwin
- Division of Trauma and Surgical Critical Care (B.S., L.E.K., K.A.J., F.D.M.), Department of Surgery, University of Tennessee Health Science Center, 910 Madison Avenue, Memphis, Tennessee, USA
| | - Dina M Filiberto
- Division of Trauma and Surgical Critical Care (B.S., L.E.K., K.A.J., F.D.M.), Department of Surgery, University of Tennessee Health Science Center, 910 Madison Avenue, Memphis, Tennessee, USA
| |
Collapse
|
5
|
Yue JK, Kanter JH, Barber JK, Huang MC, van Essen TA, Elguindy MM, Foreman B, Korley FK, Belton PJ, Pisică D, Lee YM, Kitagawa RS, Vassar MJ, Sun X, Satris GG, Wong JC, Ferguson AR, Huie JR, Wang KK, Deng H, Wang VY, Bodien YG, Taylor SR, Madhok DY, McCrea MA, Ngwenya LB, DiGiorgio AM, Tarapore PE, Stein MB, Puccio AM, Giacino JT, Diaz-Arrastia R, Lingsma HF, Mukherjee P, Yuh EL, Robertson CS, Menon DK, Maas AI, Markowitz AJ, Jain S, Okonkwo DO, Temkin NR, Manley GT. Clinical profile of patients with acute traumatic brain injury undergoing cranial surgery in the United States: report from the 18-centre TRACK-TBI cohort study. LANCET REGIONAL HEALTH. AMERICAS 2024; 39:100915. [PMID: 39497836 PMCID: PMC11532273 DOI: 10.1016/j.lana.2024.100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024]
Abstract
Background Contemporary surgical practices for traumatic brain injury (TBI) remain unclear. We describe the clinical profile of an 18-centre US TBI cohort with cranial surgery. Methods The prospective, observational Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study (2014-2018; ClinicalTrials.gov #NCT02119182) enrolled subjects who presented to trauma centre and received head computed tomography within 24-h (h) post-TBI. We performed a secondary data analysis in subjects aged ≥17-years with hospitalisation. Clinical characteristics, surgery type/timing, hospital and six-month outcomes were reported. Findings Of 2032 subjects (age: mean = 41.4-years, range = 17-89-years; male = 71% female = 29%), 260 underwent cranial surgery, comprising 65% decompressive craniectomy, 23% craniotomy, 12% other surgery. Subjects with surgery (vs. without surgery) presented with worse neurological injury (median Glasgow Coma Scale = 6 vs. 15; midline shift ≥5 mm: 48% vs. 2%; cisternal effacement: 61% vs. 4%; p < 0.0001). Median time-to-craniectomy/craniotomy was 1.8 h (interquartile range = 1.1-5.0 h), and 67% underwent intracranial pressure monitoring. Seventy-three percent of subjects with decompressive craniectomy and 58% of subjects with craniotomy had ≥3 intracranial lesion types. Decompressive craniectomy (vs. craniotomy) was associated with intracranial injury severity (median Rotterdam Score = 4 vs. 3, p < 0.0001), intensive care length of stay (median = 13 vs. 4-days, p = 0.0002), and six-month unfavourable outcome (62% vs. 30%; p = 0.0001). Earlier time-to-craniectomy was associated with intracranial injury severity. Interpretation In a large representative cohort of patients hospitalised with TBI, surgical decision-making and time-to-surgery aligned with intracranial injury severity. Multifocal TBIs predominated in patients with cranial surgery. These findings summarise current TBI surgical practice across US trauma centres and provide the foundation for analyses in targeted subpopulations. Funding National Institute of Neurological Disorders and Stroke; US Department of Defense; Neurosurgery Research and Education Foundation.
Collapse
Affiliation(s)
- John K. Yue
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - John H. Kanter
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Jason K. Barber
- Departments of Neurological Surgery and Biostatistics, University of Washington, Seattle, WA, United States
| | - Michael C. Huang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Thomas A. van Essen
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center, HAGA, Leiden, The Hague, the Netherlands
- Department of Surgery, Division of Neurosurgery, QEII Health Sciences Centre and Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mahmoud M. Elguindy
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Brandon Foreman
- Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Frederick K. Korley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Patrick J. Belton
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Dana Pisică
- Center for Medical Decision Making, Department of Epidemiology and Public Health, Erasmus MC, University Center Rotterdam, Rotterdam, the Netherlands
- Department of Neurosurgery, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Young M. Lee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Ryan S. Kitagawa
- Department of Neurological Surgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mary J. Vassar
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Xiaoying Sun
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, CA, United States
| | - Gabriela G. Satris
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Justin C. Wong
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Adam R. Ferguson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - J. Russell Huie
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Kevin K.W. Wang
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Hansen Deng
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Vincent Y. Wang
- Department of Neurological Surgery, University of Texas at Austin, Austin, TX, United States
| | - Yelena G. Bodien
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Sabrina R. Taylor
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Debbie Y. Madhok
- Departments of Emergency Medicine and Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Michael A. McCrea
- Department of Neurological Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Laura B. Ngwenya
- Department of Neurological Surgery, University of Cincinnati, Cincinnati, OH, United States
| | - Anthony M. DiGiorgio
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Phiroz E. Tarapore
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Murray B. Stein
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Ava M. Puccio
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Joseph T. Giacino
- Department of Rehabilitation Medicine, Spaulding Rehabilitation Center, Boston, MA, United States
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Hester F. Lingsma
- Center for Medical Decision Making, Department of Epidemiology and Public Health, Erasmus MC, University Center Rotterdam, Rotterdam, the Netherlands
| | - Pratik Mukherjee
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Esther L. Yuh
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Claudia S. Robertson
- Department of Neurological Surgery, Baylor College of Medicine, Houston, TX, United States
| | - David K. Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew I.R. Maas
- Department of Neurological Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neuroscience, University of Antwerp, Antwerp, Belgium
| | - Amy J. Markowitz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, CA, United States
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Nancy R. Temkin
- Departments of Neurological Surgery and Biostatistics, University of Washington, Seattle, WA, United States
| | - Geoffrey T. Manley
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| |
Collapse
|
6
|
Caldas J, Cardim D, Edmundson P, Morales J, Feng A, Ashley JD, Park C, Valadka A, Foreman M, Cullum M, Sharma K, Liu Y, Zhu D, Zhang R, Ding K. Study protocol: Cerebral autoregulation, brain perfusion, and neurocognitive outcomes after traumatic brain injury -CAPCOG-TBI. Front Neurol 2024; 15:1465226. [PMID: 39479003 PMCID: PMC11521900 DOI: 10.3389/fneur.2024.1465226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024] Open
Abstract
Background Moderate-severe traumatic brain injury (msTBI) stands as a prominent etiology of adult disability, with increased risk for cognitive impairment and dementia. Although some recovery often occurs within the first year post-injury, predicting long-term cognitive outcomes remains challenging, partly due to the significant pathophysiological heterogeneity of TBI, including acute cerebrovascular injury. The primary aim of our recently funded study, cerebral autoregulation, brain perfusion, and neurocognitive outcomes after traumatic brain injury (CAPCOG-TBI), is to determine if acute cerebrovascular dysfunction after msTBI measured using multimodal non-invasive neuromonitoring is associated with cognitive outcome at 1-year post-injury. Methods This longitudinal observational study will be conducted at two Level 1 trauma centers in Texas, USA, and will include adult patients with msTBI, and/or mild TBI with neuroimaging abnormalities. Multimodal cerebral vascular assessment using transcranial Doppler and cerebral near-infrared spectroscopy (NIRS) will be conducted within 7-days of onset of TBI. Longitudinal outcomes, including cognitive/functional assessments (Glasgow Outcome Scale and Patient-Reported Outcomes Measurement Information System), cerebral vascular assessment, and imaging will be performed at follow-ups 3-, 6-, and 12-months post-injury. We aim to recruit 100 subjects with msTBI along with 30 orthopedic trauma controls (OTC). This study is funded by National Institute of Neurological Disease and Stroke (NINDS) and is registered on Clinicaltrial.org (NCT06480838). Expected results We anticipate that msTBI patients will exhibit impaired cerebrovascular function in the acute phase compared to the OTC group. The severity of cerebrovascular dysfunction during this stage is expected to inversely correlate with cognitive and functional outcomes at 1-year post-injury. Additionally, recovery from cerebrovascular dysfunction is expected to be linked to cognitive recovery. Conclusion The results of this study could help to understand the contribution of cerebrovascular dysfunction to cognitive outcomes after TBI and pave the way for innovative vascular-focused interventions aimed at enhancing cognitive recovery and mitigating neurodegeneration following msTB. In addition, its focus toward personalized medicine to aid in the management and prognosis of TBI patients.
Collapse
Affiliation(s)
- Juliana Caldas
- University of Texas Southwestern Medical Center, Dallas, TX, United States
- Bahiana School of Medicine and Public Health, Salvador, Bahia, Brazil
- D'or Institute for Research and Teaching, Salvador, Bahia, Brazil
| | - Danilo Cardim
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | - Jill Morales
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Aaron Feng
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | - Caroline Park
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Alex Valadka
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | - Munro Cullum
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kartavya Sharma
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yulun Liu
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David Zhu
- Albert Einstein College of Medicine, New York, NY, United States
| | - Rong Zhang
- University of Texas Southwestern Medical Center, Dallas, TX, United States
- Texas Health Resources, Dallas, TX, United States
| | - Kan Ding
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
7
|
Bouras M, Tessier P, Poulain C, Schirr-Bonnans S, Roquilly A. Three-month outcomes and cost-effectiveness of interferon gamma-1b in critically ill patients: a secondary analysis of the PREV-HAP trial. J Intensive Care 2024; 12:40. [PMID: 39394183 PMCID: PMC11468134 DOI: 10.1186/s40560-024-00753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Interferon gamma‑1b has been proposed to treat critical illness-induced immunosuppression. We aimed to determine the effects on 90-day outcomes and the cost-effectiveness of interferon gamma‑1b compared to placebo in mechanically ventilated critically ill patients. METHODS A cost-effectiveness analysis (CEA) was embedded in the "PREV-HAP trial", a multicenter, placebo‑controlled, randomized trial, which randomly assigned critically ill adults under mechanical ventilation to receive interferon gamma or placebo. The CEA compared interferon-gamma with placebo using a collective perspective at a 90-day time horizon. The primary outcome was the incremental cost-effectiveness ratio (ICER) expressed in terms of adjusted cost per adjusted Quality-Adjusted Life-Years (QALYs) gained. QALYs were estimated from the responses of patients and proxy respondents to the health-related quality of life questionnaire EQ-5D-3L. RESULTS The 109 patients in the PREV-HAP trial were included in the CEA. At day 90, all-cause mortality rates were 23.6% in the interferon group and 25% in the placebo group (Odds Ratio (OR) = 0.88 (0.40 -1.93) p = 0.67). The difference in the mean adjusted costs per patient at 90 days was €-1.638 (95%CI €-17.534 to €11.968) in favor of interferon gamma-1b. The mean difference in adjusted QALYs between interferon gamma-1b and the placebo group was + 0.019 (95%CI -0.005 to 0.043). The probability that interferon gamma-1b was cost-effective ranged from 0.60 to 0.71 for a willingness to pay a QALY between €20k and €150k for the base case analysis. CONCLUSION Early administration of interferon gamma might be cost-effective in critically ill patients supporting the realization of other studies on this treatment. However, the generalization of the findings should be considered cautiously, given the small sample size due to the premature end of PREV-HAP. Trial registration ClinicalTrials.gov Identifier: NCT04793568, Registration date: 2021-02-24.
Collapse
Affiliation(s)
- Marwan Bouras
- Nantes Université, CHU Nantes, Service d'Anesthésie Réanimation, 44000, Nantes, France.
- Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes Université, Inserm, CHU Nantes, 44000, Nantes, France.
- Department of Anaesthesia, Intensive Care Medicine and Peri-Operative Medicine, Hôpital de La Cavale Blanche, Bd Tanguy Prigent, CHRU de Brest, 29200, Brest, France.
| | - Philippe Tessier
- SPHERE, Service Evaluation Economique Et Développement Des Produits de Santé, Direction de La Recherche Et de LInnovation, Nantes Université, INSERM, MethodS in Patients-Centered Outcomes and HEalth Research, Université́, CHU Nantes, 44000, Nantes, Nantes, France
| | - Cécile Poulain
- Nantes Université, CHU Nantes, Service d'Anesthésie Réanimation, 44000, Nantes, France
- Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes Université, Inserm, CHU Nantes, 44000, Nantes, France
| | - Solène Schirr-Bonnans
- SPHERE, Service Evaluation Economique Et Développement Des Produits de Santé, Direction de La Recherche Et de LInnovation, Nantes Université, INSERM, MethodS in Patients-Centered Outcomes and HEalth Research, Université́, CHU Nantes, 44000, Nantes, Nantes, France
| | - Antoine Roquilly
- Nantes Université, CHU Nantes, Service d'Anesthésie Réanimation, 44000, Nantes, France
- Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes Université, Inserm, CHU Nantes, 44000, Nantes, France
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Pebole MM, Beck BM, Mahoney CT, Iverson KM. Improvements in Safety Outcomes Following Brief Healthcare-Based Intimate Partner Violence Interventions among Women Who Screen Positive for Intimate Partner Violence-Related Traumatic Brain Injuries. Brain Sci 2024; 14:1008. [PMID: 39452022 PMCID: PMC11506633 DOI: 10.3390/brainsci14101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Traumatic brain injuries (TBIs) are a common consequence of experiencing intimate partner violence (IPV). IPV-related TBI contributes to adverse health outcomes among women, but it is unknown whether a history of IPV-related TBI negatively impacts safety outcomes following healthcare-based interventions for IPV. Methods: Using data from a larger randomized clinical trial, we explored the impact of IPV-related TBI status on safety-related outcomes in two healthcare-based IPV interventions. At baseline, 35% (n = 21) of the sample screened positive for IPV-related TBI history. We used repeated measures ANOVAs to examine differences in safety outcomes at post-treatment and 1-month follow-up based on treatment condition and IPV-related TBI status. Results: Significant interaction effects were found for safety outcomes, such that women with IPV-related TBI history experienced larger reductions in the frequency of physical IPV and similar reductions in sexual IPV across both treatment conditions compared to women without IPV-TBI (F(2, 102) = 10.88, p < 0.001; F(2, 98) = 3.93, p = 0.036). Conclusions: Findings suggest that brief healthcare-based IPV interventions may result in improvements in safety outcomes for women with a history of IPV-TBI. This highlights the continued need for implementation of promising IPV-focused interventions to promote safety and protect women from experiencing further IPV.
Collapse
Affiliation(s)
- Michelle M. Pebole
- The Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare System, Boston, MA 02130, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Brigitta M. Beck
- Department of Psychology, University of Colorado, Colorado Springs, CO 80918, USA
| | - Colin T. Mahoney
- Department of Psychology, University of Colorado, Colorado Springs, CO 80918, USA
- Lyda Hill Institute for Human Resilience, Colorado Springs, CO 80918, USA
| | - Katherine M. Iverson
- Women’s Health Sciences Division, National Center for PTSD, VA Boston Healthcare System, Boston, MA 02130, USA
- Department of Psychiatry, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
9
|
Lipsky RH, Witkin JM, Shafique H, Smith JL, Cerne R, Marini AM. Traumatic brain injury: molecular biomarkers, genetics, secondary consequences, and medical management. Front Neurosci 2024; 18:1446076. [PMID: 39450122 PMCID: PMC11500614 DOI: 10.3389/fnins.2024.1446076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Traumatic brain injury (TBI) has reached epidemic proportions worldwide. The consequences of TBI can be severe even with repetitive mild trauma. If death and coma are avoided, the consequences of TBI in the long term typically involve dizziness, sleep disturbances, headache, seizures, cognitive impairment, focal deficits, depression, and anxiety. The severity of brain injury is a significant predictor of outcome. However, the heterogenous nature of the injury makes prognosis difficult. The present review of the literature focuses on the genetics of TBI including genome wide (GWAS) data and candidate gene associations, among them brain-derived neurotrophic factor (BDNF) with TBI and development of post-traumatic epilepsy (PTE). Molecular biomarkers of TBI are also discussed with a focus on proteins and the inflammatory protein IL1-β. The secondary medical sequela to TBI of cognitive impairment, PTE, headache and risk for neurodegenerative disorders is also discussed. This overview of TBI concludes with a review and discussion of the medical management of TBI and the medicines used for and being developed at the preclinical and clinical stages for the treatment of TBI and its host of life-debilitating symptoms.
Collapse
Affiliation(s)
- Robert H. Lipsky
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
- Departments of Neuroscience and Trauma Research Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Hana Shafique
- Duke University School of Medicine, Durham, NC, United States
| | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Ann M. Marini
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
10
|
Sanders WR, Barber JK, Temkin NR, Foreman B, Giacino JT, Williamson T, Edlow BL, Manley GT, Bodien YG. Recovery Potential in Patients Who Died After Withdrawal of Life-Sustaining Treatment: A TRACK-TBI Propensity Score Analysis. J Neurotrauma 2024; 41:2336-2348. [PMID: 38739032 DOI: 10.1089/neu.2024.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Among patients with severe traumatic brain injury (TBI), there is high prognostic uncertainty but growing evidence that recovery of independence is possible. Nevertheless, families are often asked to make decisions about withdrawal of life-sustaining treatment (WLST) within days of injury. The range of potential outcomes for patients who died after WLST (WLST+) is unknown, posing a challenge for prognostic modeling and clinical counseling. We investigated the potential for survival and recovery of independence after acute TBI in patients who died after WLST. We used Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) data and propensity score matching to pair participants with WLST+ to those with a similar probability of WLST (based on demographic and clinical characteristics), but for whom life-sustaining treatment was not withdrawn (WLST-). To optimize matching, we divided the WLST- cohort into tiers (Tier 1 = 0-11%, Tier 2 = 11-27%, Tier 3 = 27-70% WLST propensity). We estimated the level of recovery that could be expected in WLST+ participants by evaluating 3-, 6-, and 12-month Glasgow Outcome Scale-Extended (GOSE) and Disability Rating Scale outcomes in matched WLST- participants. Of 90 WLST+ participants (80% male, mean [standard deviation; SD] age = 59.2 [17.9] years, median [IQR] days to WLST = 5.4 [2.2, 11.7]), 80 could be matched to WLST- participants. Of 56 WLST- participants who were followed at 6 months, 31 (55%) died. Among survivors in the overall sample and survivors in Tiers 1 and 2, more than 30% recovered at least partial independence (GOSE ≥4). In Tier 3, recovery to GOSE ≥4 occurred at 12 months, but not 6 months, post-injury. These results suggest a substantial proportion of patients with TBI and WLST may have survived and achieved at least partial independence. However, death or severe disability is a common outcome when the probability of WLST is high. While further validation is needed, our findings support a more cautious clinical approach to WLST and more complete reporting on WLST in TBI studies.
Collapse
Affiliation(s)
- William R Sanders
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Jason K Barber
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Nancy R Temkin
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Joseph T Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| | - Theresa Williamson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Afsharian F, Abadi RK, Taheri R, Sarajehlou SA. Transcranial direct current stimulation combined with cognitive training improves two executive functions: Cognitive flexibility and information updating after traumatic brain injury. Acta Psychol (Amst) 2024; 250:104553. [PMID: 39503106 DOI: 10.1016/j.actpsy.2024.104553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/12/2024] Open
Abstract
Traumatic brain injury (TBI) often causes persistent deficits in cognitive flexibility and information updating. Cognitive flexibility refers to the brain's ability to adjust its thinking and behavior in response to changing circumstances, whereas information updating is the process of incorporating new facts into current knowledge. Both cognitive flexibility and information updating are critical components of executive function, and their impairment can have a major influence on a person's capacity to operate independently and adjust to life's problems following a TBI. Understanding and addressing these specific cognitive processes is therefore critical in designing successful therapies for TBI patients. Previous studies have examined the effects of non-invasive brain stimulation and cognitive training separately. This study investigated the effects of combining transcranial direct current stimulation (tDCS) with computer-based cognitive training, comparing this combined intervention against a control group with no treatment, to assess improvements in two executive functions in TBI patients: cognitive flexibility and information updating. Thirty TBI patients, 2-12 weeks post-injury with impaired executive dysfunction, were randomized to an experimental or control group. The experimental group received ten 30-minute sessions over 2 weeks of anodal (A-tDCS), 2.0 mA to the prefrontal cortex while performing cognitive training tasks from the RehaCom software. The control group received no intervention during this period. Cognitive flexibility and information updating were assessed before and after the intervention period using the n-back working memory task, Wisconsin Sorting Card Test, and quantitative electroencephalography (qEEG) during eyes-closed state. Statistically significant differences in theta, alpha, beta, and gamma band power were observed between groups (p < .05, 4 < f < 6). Secondary outcomes indicated significant improvements in cognitive flexibility within Wisconsin Card Sorting Test and information updating performance within n-back task (p < .05, 7 < f < 20). The combination of tDCS and cognitive training may improve cognitive flexibility and information updating in TBI patients by enhancing plasticity and connectivity in prefrontal regions involved in these complex cognitive processes.
Collapse
Affiliation(s)
- Fatemeh Afsharian
- Master of General Psychology, Persian Gulf University of Bushehr, Bushehr, Iran
| | | | - Reza Taheri
- Neurosurgery, Shiraz Neurosurgery Department, School of Medicine, SUMS, Iran; Shiraz Neuroscience Research Center, Shiraz Trauma Research Center, Iran
| | - Saeid Abbasi Sarajehlou
- Master of Clinical Psychology, Department of Psychology, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| |
Collapse
|
12
|
Weppner JL, Yim I, Raucheisen JS, Martinez M. A Survey to Determine Health Utility States After a Traumatic Brain Injury (TBI): Influence of a History of TBI on Disability Perceptions. Cureus 2024; 16:e70707. [PMID: 39493114 PMCID: PMC11530084 DOI: 10.7759/cureus.70707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Background The Glasgow Outcome Scale-Extended (GOSE) has emerged as one of the most widely used outcome instruments for evaluating ongoing disability and recovery after traumatic brain injury (TBI). The influence of a personal history of TBI on disability perception and quality of life is not well understood. This study aimed to assess changes in health utility states using the GOSE among individuals with severe TBI and their caregivers compared to a general population group. We hypothesized that individuals with a history of TBI, either as patients or caregivers, would recognize health utility associated with a more severe disability than the general population group. Methodology This cross-sectional, observational study included 300 individuals with a history of severe TBI, 300 designated primary caregivers or family members, with 1:1 participation for each subject with severe TBI, and 300 participants from the general population. A computer-based survey was developed based on the GOSE. Participants assessed hypothetical scenarios representing one-year post-TBI outcomes using a standard gamble approach. The main measure for this study was participants' perceptions of health-related quality of life and preferences for different GOSE health states following TBI. Results Of the 900 initial participants, 10 were excluded. Among the remaining 890 participants, lower GOSE states were rated to have lower health utilities. The general population group exhibited a notable decrease in health utility ratings from GOSE4 to GOSE3. Individuals with a history of severe TBI and their caregivers or family members experienced the most substantial decline in health utility ratings between GOSE3 and GOSE2. TBI and caregiver/family member status correlated with higher health utility ratings. Conclusions This study validated the use of the GOSE as a health utility metric and emphasized the subjective nature of acceptable outcomes. These findings underscore the need for considering personal experiences and preferences in decision-making regarding TBI care.
Collapse
Affiliation(s)
- Justin L Weppner
- Physical Medicine and Rehabilitation, Virginia Tech Carilion School of Medicine, Roanoke, USA
| | - Isaiah Yim
- Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, USA
| | | | - Melissa Martinez
- Physical Medicine and Rehabilitation, Carilion Clinic, Roanoke, USA
| |
Collapse
|
13
|
Svedung Wettervik T, Hånell A, Lewén A, Enblad P. Should Patients with Traumatic Brain Injury with Significant Contusions be Treated with Different Neurointensive Care Targets? Neurocrit Care 2024; 41:511-522. [PMID: 38506969 PMCID: PMC11377649 DOI: 10.1007/s12028-024-01954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/01/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Patients with traumatic brain injury (TBI) with large contusions make up a specific TBI subtype. Because of the risk of brain edema worsening, elevated cerebral perfusion pressure (CPP) may be particularly dangerous. The pressure reactivity index (PRx) and optimal cerebral perfusion pressure (CPPopt) are new promising perfusion targets based on cerebral autoregulation, but they reflect the global brain state and may be less valid in patients with predominant focal lesions. In this study, we aimed to investigate if patients with TBI with significant contusions exhibited a different association between PRx, CPP, and CPPopt in relation to functional outcome compared to those with small/no contusions. METHODS This observational study included 385 patients with moderate to severe TBI treated at a neurointensive care unit in Uppsala, Sweden. The patients were classified into two groups: (1) significant contusions (> 10 mL) and (2) small/no contusions (but with extra-axial or diffuse injuries). The percentage of good monitoring time (%GMT) with intracranial pressure > 20 mm Hg; PRx > 0.30; CPP < 60 mm Hg, within 60-70 mm Hg, or > 70 mm Hg; and ΔCPPopt less than - 5 mm Hg, ± 5 mm Hg, or > 5 mm Hg was calculated. Outcome (Glasgow Outcome Scale-Extended) was assessed after 6 months. RESULTS Among the 120 (31%) patients with significant contusions, a lower %GMT with CPP between 60 and 70 mm Hg was independently associated with unfavorable outcome. The %GMTs with PRx and ΔCPPopt ± 5 mm Hg were not independently associated with outcome. Among the 265 (69%) patients with small/no contusions, a higher %GMT of PRx > 0.30 and a lower %GMT of ΔCPPopt ± 5 mm Hg were independently associated with unfavorable outcome. CONCLUSIONS In patients with TBI with significant contusions, CPP within 60-70 mm Hg may improve outcome. PRx and CPPopt, which reflect global cerebral pressure autoregulation, may be useful in patients with TBI without significant focal brain lesions but seem less valid for those with large contusions. However, this was an observational, hypothesis-generating study; our findings need to be validated in prospective studies before translating them into clinical practice.
Collapse
Affiliation(s)
- Teodor Svedung Wettervik
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden.
| | - Anders Hånell
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden
| | - Anders Lewén
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden
| | - Per Enblad
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden
| |
Collapse
|
14
|
DE Tanti A, Bruni S, Bonavita J, Zadra A, Ciavarella M, Cannavò G, Saviola D. Long-term life expectancy in severe traumatic brain injury: a systematic review. Eur J Phys Rehabil Med 2024; 60:810-821. [PMID: 39291953 DOI: 10.23736/s1973-9087.24.08461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Traumatic brain injuries (TBIs) pose significant challenges to public health, medicine, and society due to their substantial impact on victims, caregivers, and the community. While indicators like life expectancy or death rates provide insights into mortality and long-term outcomes, they fail to address how TBIs affect aging, neurological sequelae, cognitive impairment, and psychological or psychiatric disorders. Moreover, most studies are limited to North America, limiting the generalizability of findings across different social welfare systems. As a result, clinicians face difficulties in providing optimal care and prognosis, hindering the improvement of life quality for victims and caregivers and efficient public health service planning. This study aims to address these limitations by examining life expectancy, mortality rates, and long-term outcomes in severely injured individuals. EVIDENCE ACQUISITION PubMed/Medline, Web of Science, Cochrane Library, Google Scholar, and PEDro search engines were systematically searched for studies investigating life expectancy and long-term outcomes in severe traumatic brain injuries. The final search date for all sources/databases was July 31, 2023. We conducted a systematic review, and only original research articles published in English were eligible for inclusion. After the screening process, data were extracted about life expectancy, follow-up, and conclusions. EVIDENCE SYNTHESIS This study analyzed 24 studies out of 343 identified. Life expectancy in the TBI population is lower than that of the general population. Older age and severity of functional impairments are major risk factors for mortality. Mortality rates are particularly high in the first two months. Mortality trends suggest a bimodal distribution, with a peak in the first five years followed by no further deaths until nine years after injury. The most influential factors include age, sex, trauma severity, independence in walking and feeding, time since injury, ventilator dependence, and cognitive and communication impairments. Respiratory and circulatory complications are among the leading causes of TBI-related deaths, followed by epilepsy, suicide, and respiratory infections. CONCLUSIONS Further research is required, considering the different long-term outcomes after TBI and their impact on families and society, to accurately estimate the life expectancy necessary for clinicians, caregivers, national health institutions, and medico-legal settlements.
Collapse
Affiliation(s)
| | - Stefania Bruni
- Centro Cardinal Ferrari KOS-Care, Fontanellato, Parma, Italy
| | - Jacopo Bonavita
- Neurorehabilitation Unit, Villa Rosa Hospital, APSS Trento, Trento, Italy
| | - Alessandro Zadra
- Neurorehabilitation Unit, Villa Rosa Hospital, APSS Trento, Trento, Italy
| | - Mauro Ciavarella
- Section of Legal Medicine, San Carlo Hospital, Potenza, Italy
- Società Scientifica Melchiorre Gioia, Pisa, Italy
| | | | | |
Collapse
|
15
|
Egawa S, Ader J, Claassen J. Recovery of consciousness after acute brain injury: a narrative review. J Intensive Care 2024; 12:37. [PMID: 39327599 PMCID: PMC11425956 DOI: 10.1186/s40560-024-00749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Disorders of consciousness (DoC) are frequently encountered in both, acute and chronic brain injuries. In many countries, early withdrawal of life-sustaining treatments is common practice for these patients even though the accuracy of predicting recovery is debated and delayed recovery can be seen. In this review, we will discuss theoretical concepts of consciousness and pathophysiology, explore effective strategies for management, and discuss the accurate prediction of long-term clinical outcomes. We will also address research challenges. MAIN TEXT DoC are characterized by alterations in arousal and/or content, being classified as coma, unresponsive wakefulness syndrome/vegetative state, minimally conscious state, and confusional state. Patients with willful modulation of brain activity detectable by functional MRI or EEG but not by behavioral examination is a state also known as covert consciousness or cognitive motor dissociation. This state may be as common as every 4th or 5th patient without behavioral evidence of verbal command following and has been identified as an independent predictor of long-term functional recovery. Underlying mechanisms are uncertain but intact arousal and thalamocortical projections maybe be essential. Insights into the mechanisms underlying DoC will be of major importance as these will provide a framework to conceptualize treatment approaches, including medical, mechanical, or electoral brain stimulation. CONCLUSIONS We are beginning to gain insights into the underlying mechanisms of DoC, identifying novel advanced prognostication tools to improve the accuracy of recovery predictions, and are starting to conceptualize targeted treatments to support the recovery of DoC patients. It is essential to determine how these advancements can be implemented and benefit DoC patients across a range of clinical settings and global societal systems. The Curing Coma Campaign has highlighted major gaps knowledge and provides a roadmap to advance the field of coma science with the goal to support the recovery of patients with DoC.
Collapse
Affiliation(s)
- Satoshi Egawa
- Department of Neurology, Neurological Institute, Columbia University Medical Center, NewYork-Presbyterian Hospital, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA
- NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jeremy Ader
- Department of Neurology, Neurological Institute, Columbia University Medical Center, NewYork-Presbyterian Hospital, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA
- NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jan Claassen
- Department of Neurology, Neurological Institute, Columbia University Medical Center, NewYork-Presbyterian Hospital, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA.
- NewYork-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
16
|
Gilmore N, Bergquist TF, Bogner J, Corrigan JD, Dams-O'Connor K, Dreer LE, Healy BC, Juengst SB, Kumar RG, O'Neil-Pirozzi TM, Wagner AK, Giacino JT, Edlow BL, Bodien YG. Cognitive Performance is Associated With 1-Year Participation and Life Satisfaction Outcomes: A Traumatic Brain Injury Model Systems Study. J Head Trauma Rehabil 2024:00001199-990000000-00195. [PMID: 39330921 DOI: 10.1097/htr.0000000000000997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
OBJECTIVE To determine, in persons with traumatic brain injury (TBI), the association between cognitive change after inpatient rehabilitation discharge and 1-year participation and life satisfaction outcomes. DESIGN Secondary analysis of prospectively collected TBI Model Systems (TBIMS) data. SETTING Inpatient rehabilitation and community. PARTICIPANTS 499 individuals with TBI requiring inpatient rehabilitation who completed the Brief Test of Adult Cognition by Telephone (BTACT) at inpatient rehabilitation discharge (ie, baseline) and 1-year postinjury. MAIN OUTCOME MEASURES Participation Assessment with Recombined Tools-Objective (PART-O) and Satisfaction with Life Scale (SWLS). RESULTS Of 2,840 TBIMS participants with baseline BTACT, 499 met inclusion criteria (mean [standard deviation] age = 45 [19] years; 72% male). Change in BTACT executive function (EF) was not associated with 1-year participation (PART-O; β = 0.087, 95% CI [-0.004, 0.178], P = .061) when it was the sole model predictor. Change in BTACT episodic memory (EM) was associated with 1-year participation (β = 0.096, [0.007, 0.184], P = .035), but not after adjusting for demographic, clinical, and functional status covariates (β = 0.067, 95% CI [-0.010, 0.145], P = .089). Change in BTACT EF was not associated with life satisfaction total scores (SWLS) when it was the sole model predictor (β = 0.091, 95% CI [-0.001, 0.182], P = .0503). Change in BTACT EM was associated with 1-year life satisfaction before (β = 0.114, 95% CI [0.025, 0.202], P = .012) and after adjusting for covariates (β = 0.103, [0.014, 0.191], P = .023). In secondary analyses, change in BTACT EF was associated with PART-O Social Relations and Out and About subdomains before (Social Relations: β = 0.127, 95% CI [0.036, 0.217], P = .006; Out and About: β = 0.141, 95% CI [0.051, 0.232], P = .002) and after (Social Relations: β = 0.168, 95% CI [0.072, 0.265], P < .002; Out and About: β = 0.156, 95% CI [0.061, 0.252], P < .002) adjusting for functional status and further adjusting for covariates (Social Relations: β = 0.127, 95% CI [0.040, 0.214], P = .004; Out and About: β = 0.136, 95% CI [0.043, 0.229], P = .004). However, only the models adjusting for functional status remained significant after multiple comparison correction (ie, Bonferroni-adjusted alpha level = 0.002). CONCLUSION EF gains during the first year after TBI were related to 1-year social and community participation. Gains in EM were associated with 1-year life satisfaction. These results highlight the potential benefit of cognitive rehabilitation after inpatient rehabilitation discharge and the need for interventions targeting specific cognitive functions that may contribute to participation and life satisfaction after TBI.
Collapse
Affiliation(s)
- Natalie Gilmore
- Author Affiliations: Department of Neurology (Drs Gilmore, Healy, Edlow and Bodien), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Center for Neurotechnology and Neurorecovery (Drs Gilmore, Edlow, and Bodien), Biostatistics Center (Dr Healy), Massachusetts General Hospital, Boston, Massachusetts; Mayo Clinic College of Medicine and Science (Dr Bergquist), Departments of Physical Medicine and Rehabilitation and Psychiatry and Psychology (Dr Bergquist), Mayo Clinic, Rochester, Minnesota; Department of Physical Medicine and Rehabilitation (Drs Bogner and Corrigan), College of Medicine, The Ohio State University, Columbus, Ohio; Department of Rehabilitation and Human Performance (Drs Dams-O'Connor and Kumar), Department of Neurology (Dr Dams-O'Connor), Icahn School of Medicine at Mount Sinai, New York, New York; Department of Ophthalmology and Visual Sciences & Physical Medicine and Rehabilitation (Dr Dreer), Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Brain Injury Research Center (Dr Juengst), TIRR Memorial Hermann, Houston, Texas; Department of Physical Medicine and Rehabilitation (Dr Juengst), UT Health Sciences Center at Houston, Houston, Texas; Department of Physical Medicine and Rehabilitation (Drs O'Neil-Pirozzi, Giacino, and Bodien), Spaulding Rehabilitation Hospital and Harvard Medical School, Charlestown, Massachusetts; Department of Communication Sciences and Disorders (Dr O'Neil-Pirozzi), Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts; Departments of Physical Medicine & Rehabilitation and Neuroscience (Dr Wagner), Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; and Athinoula A. Martinos Center for Biomedical Imaging (Dr Edlow), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Al Tannir AH, Pokrzywa CJ, Sparapani R, Maring M, Saltzman C, Tignanelli CJ, Duthie E, Haines K, Nattinger A, Carver TW, de Moya MA, Morris RS. Can We Actually Predict Long-Term Patient Satisfaction After Traumatic Brain Injury? J Surg Res 2024; 301:269-279. [PMID: 38986192 DOI: 10.1016/j.jss.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION The Traumatic Brain Injury - Patient Reported Outcome (TBI-PRO) model was previously derived to predict long-term patient satisfaction as assessed by the Quality of Life After Brain Injury (QOLIBRI) score. The aim of this study is to externally and prospectively validate the TBI-PRO model to predict long-term patient-reported outcomes and to derive a new model using a larger dataset of older adults with TBI. METHODS Patients admitted to a Level I trauma center with TBI were prospectively followed for 1 y after injury. Outcomes predicted by the TBI-PRO model based on admission findings were compared to actual QOLIBRI scores reported by patients at 3,6, and 12 mo. When deriving a new model, Collaborative European NeuroTrauma Effectiveness Research in TBI and the Transforming Research and Clinical Knowledge in Traumatic Brain Injury databases were used to identify older adults (≥50 y) with TBI from 2014 to 2018. Bayesian additive regression trees were used to identify predictive admission covariates. The coefficient of determination was used to identify the fitness of the model. RESULTS For prospective validation, a total of 140 patients were assessed at 3 mo, with follow-up from 69 patients at 6 mo and 13 patients at 12 mo postinjury. The area under receiver operating curve of the TBI-PRO model for predicting favorable outcomes at 3, 6, and 12 mo were 0.65, 0.57, and 0.62, respectively. When attempting to derive a novel predictive model, a total of 1521 patients (80%) was used in the derivation dataset while 384 (20%) were used in the validation dataset. A past medical history of heart conditions, initial hospital length of stay, admission systolic blood pressure, age, number of reactive pupils on admission, and the need for craniectomy were most predictive of long-term QOLIBRI-Overall Scale. The coefficient of determination for the validation model including only the most predictive variables were 0.28, 0.19, and 0.27 at 3, 6, and 12 mo, respectively. CONCLUSIONS In the present study, the prospective validation of a previously derived TBI-PRO model failed to accurately predict a long-term patient reported outcome measures in TBI. Additionally, the derivation of a novel model in older adults using a larger database showed poor accuracy in predicting long-term health-related quality of life. This study demonstrates limitations to current targeted approaches in TBI care. This study provides a framework for future studies and more targeted datasets looking to assess long-term quality of life based upon early hospital variables and can serve as a starting point for future predictive analysis.
Collapse
Affiliation(s)
- Abdul Hafiz Al Tannir
- Division of Trauma & Critical Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Courtney J Pokrzywa
- Division of Trauma & Critical Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rodney Sparapani
- Division of Biostatistics, Department of Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Morgan Maring
- Division of Trauma & Critical Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Claire Saltzman
- Division of Trauma & Critical Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christopher J Tignanelli
- Division of Trauma & Critical Care Surgery, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Edmund Duthie
- Division of Geriatric and Palliative Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Krista Haines
- Division of Trauma & Critical Care Surgery, Department of Surgery, Duke University, Durham, North Carolina
| | - Ann Nattinger
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Thomas W Carver
- Division of Trauma & Critical Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Marc A de Moya
- Division of Trauma & Critical Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rachel S Morris
- Division of Trauma & Critical Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
18
|
Shi X, Wick JA, Martin RL, Beall J, Silbergleit R, Rockswold GL, Barsan WG, Korley FK, Rockswold S, Gajewski BJ. Improved mortality analysis in early-phase dose-ranging clinical trials for emergency medical diseases using Bayesian time-to-event models with active comparators. Stat Med 2024; 43:3649-3663. [PMID: 38885949 PMCID: PMC11254573 DOI: 10.1002/sim.10141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Emergency medical diseases (EMDs) are the leading cause of death worldwide. A time-to-death analysis is needed to accurately identify the risks and describe the pattern of an EMD because the mortality rate can peak early and then decline. Dose-ranging Phase II clinical trials are essential for developing new therapies for EMDs. However, most dose-finding trials do not analyze mortality as a time-to-event endpoint. We propose three Bayesian dose-response time-to-event models for a secondary mortality analysis of a clinical trial: a two-group (active treatment vs control) model, a three-parameter sigmoid EMAX model, and a hierarchical EMAX model. The study also incorporates one specific active treatment as an active comparator in constructing three new models. We evaluated the performance of these six models and a very popular independent model using simulated data motivated by a randomized Phase II clinical trial focused on identifying the most effective hyperbaric oxygen dose to achieve favorable functional outcomes in patients with severe traumatic brain injury. The results show that the three-group, EMAX, and EMAX model with an active comparator produce the smallest averaged mean squared errors and smallest mean absolute biases. We provide a new approach for time-to-event analysis in early-phase dose-ranging clinical trials for EMDs. The EMAX model with an active comparator can provide valuable insights into the mortality analysis of new EMDs or other conditions that have changing risks over time. The restricted mean survival time, a function of the model's hazards, is recommended for displaying treatment effects for EMD research.
Collapse
Affiliation(s)
- Xiaosong Shi
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jo A. Wick
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Renee’ L. Martin
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jonathan Beall
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Robert Silbergleit
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gaylan L. Rockswold
- Department of Neurosurgery, University of Minnesota, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - William G. Barsan
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Frederick K. Korley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah Rockswold
- Department of Neurosurgery, University of Minnesota, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Byron J. Gajewski
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
19
|
Manley GT, Maas AI. The Glasgow Coma Scale at 50: looking back and forward. Lancet 2024; 404:734-735. [PMID: 39153494 DOI: 10.1016/s0140-6736(24)01596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Affiliation(s)
- Geoffrey T Manley
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, USA.
| | - Andrew Ir Maas
- Department of Neurosurgery, Antwerp University Hospital, Edegem, Belgium; Department of Translational Neuroscience, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
20
|
Martin FP, Goronflot T, Moyer JD, Huet O, Asehnoune K, Cinotti R, Gourraud PA, Roquilly A. Predictive Models of Long-Term Outcome in Patients with Moderate to Severe Traumatic Brain Injury are Biased Toward Mortality Prediction. Neurocrit Care 2024:10.1007/s12028-024-02082-3. [PMID: 39138720 DOI: 10.1007/s12028-024-02082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND The prognostication of long-term functional outcomes remains challenging in patients with traumatic brain injury (TBI). Our aim was to demonstrate that intensive care unit (ICU) variables are not efficient to predict 6-month functional outcome in survivors with moderate to severe TBI (msTBI) but are mostly associated with mortality, which leads to a mortality bias for models predicting a composite outcome of mortality and severe disability. METHODS We analyzed the data from the multicenter randomized controlled Continuous Hyperosmolar Therapy in Traumatic Brain-Injured Patients trial and developed predictive models using machine learning methods and baseline characteristics and predictors collected during ICU stay. We compared our models' predictions of 6-month binary Glasgow Outcome Scale extended (GOS-E) score in all patients with msTBI (unfavorable GOS-E 1-4 vs. favorable GOS-E 5-8) with mortality (GOS-E 1 vs. GOS-E 2-8) and binary functional outcome in survivors with msTBI (severe disability GOS-E 2-4 vs. moderate to no disability GOS-E 5-8). We investigated the link between ICU variables and long-term functional outcomes in survivors with msTBI using predictive modeling and factor analysis of mixed data and validated our hypotheses on the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) model. RESULTS Based on data from 370 patients with msTBI and classically used ICU variables, the prediction of the 6-month outcome in survivors was inefficient (mean area under the receiver operating characteristic 0.52). Using factor analysis of mixed data graph, we demonstrated that high-variance ICU variables were not associated with outcome in survivors with msTBI (p = 0.15 for dimension 1, p = 0.53 for dimension 2) but mostly with mortality (p < 0.001 for dimension 1), leading to a mortality bias for models predicting a composite outcome of mortality and severe disability. We finally identified this mortality bias in the IMPACT model. CONCLUSIONS We demonstrated using machine learning-based predictive models that classically used ICU variables are strongly associated with mortality but not with 6-month outcome in survivors with msTBI, leading to a mortality bias when predicting a composite outcome of mortality and severe disability.
Collapse
Affiliation(s)
- Florian P Martin
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1064, Center for Research in Transplantation and Translational Immunology (CR2TI), 22 Boulevard Bénoni Goullin, 44200, Nantes, France.
- Department of Anesthesiology and Surgical Intensive Care Unit, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France.
| | - Thomas Goronflot
- CHU Nantes, Pôle Hospitalo-Universitaire 11: Santé Publique, Clinique Des Données, INSERM, Nantes Université, Nantes, France
| | - Jean D Moyer
- Department of Anesthesia and Critical Care, Départements Médico-Universitaires Parabol, Assistance Publique-Hôpitaux de Paris Nord, Beaujon Hospital, Paris, France
| | - Olivier Huet
- Anesthesia and Intensive Care Unit, CHU Brest, Brest, France
| | - Karim Asehnoune
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1064, Center for Research in Transplantation and Translational Immunology (CR2TI), 22 Boulevard Bénoni Goullin, 44200, Nantes, France
- Department of Anesthesiology and Surgical Intensive Care Unit, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Raphaël Cinotti
- Department of Anesthesiology and Surgical Intensive Care Unit, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
- Methods in Patient-Centered Outcomes and Healthy Research (SPHERE), INSERM, UMR 1246, Nantes Université, Université de Tours, Nantes, France
| | - Pierre A Gourraud
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1064, Center for Research in Transplantation and Translational Immunology (CR2TI), 22 Boulevard Bénoni Goullin, 44200, Nantes, France
- CHU Nantes, Pôle Hospitalo-Universitaire 11: Santé Publique, Clinique Des Données, INSERM, Nantes Université, Nantes, France
| | - Antoine Roquilly
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1064, Center for Research in Transplantation and Translational Immunology (CR2TI), 22 Boulevard Bénoni Goullin, 44200, Nantes, France
- Department of Anesthesiology and Surgical Intensive Care Unit, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| |
Collapse
|
21
|
Snider SB, Temkin NR, Sun X, Stubbs JL, Rademaker QJ, Markowitz AJ, Rosenthal ES, Diaz-Arrastia R, Fox MD, Manley GT, Jain S, Edlow BL. Automated Measurement of Cerebral Hemorrhagic Contusions and Outcomes After Traumatic Brain Injury in the TRACK-TBI Study. JAMA Netw Open 2024; 7:e2427772. [PMID: 39212991 PMCID: PMC11365003 DOI: 10.1001/jamanetworkopen.2024.27772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 09/04/2024] Open
Abstract
Importance Because withdrawal of life-sustaining therapy based on perceived poor prognosis is the most common cause of death after moderate or severe traumatic brain injury (TBI), the accuracy of clinical prognoses is directly associated with mortality. Although the location of brain injury is known to be important for determining recovery potential after TBI, the best available prognostic models, such as the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) score, do not currently incorporate brain injury location. Objective To test whether automated measurement of cerebral hemorrhagic contusion size and location is associated with improved prognostic performance of the IMPACT score. Design, Setting, and Participants This prognostic cohort study was performed in 18 US level 1 trauma centers between February 26, 2014, and August 8, 2018. Adult participants aged 17 years or older from the US-based Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study with moderate or severe TBI (Glasgow Coma Scale score 3-12) and contusions detected on brain computed tomography (CT) scans were included. The data analysis was performed between January 2023 and February 2024. Exposures Labeled contusions detected on CT scans using Brain Lesion Analysis and Segmentation Tool for Computed Tomography (BLAST-CT), a validated artificial intelligence algorithm. Main Outcome and Measure The primary outcome was a Glasgow Outcome Scale-Extended (GOSE) score of 4 or less at 6 months after injury. Whether frontal or temporal lobe contusion volumes improved the performance of the IMPACT score was tested using logistic regression and area under the receiver operating characteristic curve comparisons. Sparse canonical correlation analysis was used to generate a disability heat map to visualize the strongest brainwide associations with outcomes. Results The cohort included 291 patients with moderate or severe TBI and contusions (mean [SD] age, 42 [18] years; 221 [76%] male; median [IQR] emergency department arrival Glasgow Coma Scale score, 5 [3-10]). Only temporal contusion volumes improved the discrimination of the IMPACT score (area under the receiver operating characteristic curve, 0.86 vs 0.84; P = .03). The data-derived disability heat map of contusion locations showed that the strongest association with unfavorable outcomes was within the bilateral temporal and medial frontal lobes. Conclusions and Relevance These findings suggest that CT-based automated contusion measurement may be an immediately translatable strategy for improving TBI prognostic models.
Collapse
Affiliation(s)
- Samuel B. Snider
- Division of Neurocritical Care, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Nancy R. Temkin
- Department of Neurological Surgery, University of Washington, Seattle
- Department of Biostatistics, University of Washington, Seattle
| | - Xiaoying Sun
- Biostatistics Research Center, Herbert Wertheim School of Public Health, University of California, San Diego
| | - Jacob L. Stubbs
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Quinn J. Rademaker
- Division of Neurocritical Care, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Amy J. Markowitz
- Department of Neurological Surgery, University of California, San Francisco
| | - Eric S. Rosenthal
- Harvard Medical School, Boston, Massachusetts
- Division of Clinical Neurophysiology, Department of Neurology, Massachusetts General Hospital, Boston
| | | | - Michael D. Fox
- Harvard Medical School, Boston, Massachusetts
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown
| | - Geoffrey T. Manley
- Department of Neurological Surgery, University of California, San Francisco
- Brain and Spinal Cord Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health, University of California, San Diego
| | - Brian L. Edlow
- Harvard Medical School, Boston, Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston
| |
Collapse
|
22
|
Yue JK, Lee YM, Sun X, van Essen TA, Elguindy MM, Belton PJ, Pisică D, Mikolic A, Deng H, Kanter JH, McCrea MA, Bodien YG, Satris GG, Wong JC, Ambati VS, Grandhi R, Puccio AM, Mukherjee P, Valadka AB, Tarapore PE, Huang MC, DiGiorgio AM, Markowitz AJ, Yuh EL, Okonkwo DO, Steyerberg EW, Lingsma HF, Menon DK, Maas AIR, Jain S, Manley GT. Performance of the IMPACT and CRASH prognostic models for traumatic brain injury in a contemporary multicenter cohort: a TRACK-TBI study. J Neurosurg 2024; 141:417-429. [PMID: 38489823 PMCID: PMC11010725 DOI: 10.3171/2023.11.jns231425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/16/2023] [Indexed: 03/17/2024]
Abstract
OBJECTIVE The International Mission on Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury (IMPACT) and Corticosteroid Randomization After Significant Head Injury (CRASH) prognostic models for mortality and outcome after traumatic brain injury (TBI) were developed using data from 1984 to 2004. This study examined IMPACT and CRASH model performances in a contemporary cohort of US patients. METHODS The prospective 18-center Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study (enrollment years 2014-2018) enrolled subjects aged ≥ 17 years who presented to level I trauma centers and received head CT within 24 hours of TBI. Data were extracted from the subjects who met the model criteria (for IMPACT, Glasgow Coma Scale [GCS] score 3-12 with 6-month Glasgow Outcome Scale-Extended [GOSE] data [n = 441]; for CRASH, GCS score 3-14 with 2-week mortality data and 6-month GOSE data [n = 831]). Analyses were conducted in the overall cohort and stratified on the basis of TBI severity (severe/moderate/mild TBI defined as GCS score 3-8/9-12/13-14), age (17-64 years or ≥ 65 years), and the 5 top enrolling sites. Unfavorable outcome was defined as GOSE score 1-4. Original IMPACT and CRASH model coefficients were applied, and model performances were assessed by calibration (intercept [< 0 indicated overprediction; > 0 indicated underprediction] and slope) and discrimination (c-statistic). RESULTS Overall, the IMPACT models overpredicted mortality (intercept -0.79 [95% CI -1.05 to -0.53], slope 1.37 [1.05-1.69]) and acceptably predicted unfavorable outcome (intercept 0.07 [-0.14 to 0.29], slope 1.19 [0.96-1.42]), with good discrimination (c-statistics 0.84 and 0.83, respectively). The CRASH models overpredicted mortality (intercept -1.06 [-1.36 to -0.75], slope 0.96 [0.79-1.14]) and unfavorable outcome (intercept -0.60 [-0.78 to -0.41], slope 1.20 [1.03-1.37]), with good discrimination (c-statistics 0.92 and 0.88, respectively). IMPACT overpredicted mortality and acceptably predicted unfavorable outcome in the severe and moderate TBI subgroups, with good discrimination (c-statistic ≥ 0.81). CRASH overpredicted mortality in the severe and moderate TBI subgroups and acceptably predicted mortality in the mild TBI subgroup, with good discrimination (c-statistic ≥ 0.86); unfavorable outcome was overpredicted in the severe and mild TBI subgroups with adequate discrimination (c-statistic ≥ 0.78), whereas calibration was nonlinear in the moderate TBI subgroup. In subjects ≥ 65 years of age, the models performed variably (IMPACT-mortality, intercept 0.28, slope 0.68, and c-statistic 0.68; CRASH-unfavorable outcome, intercept -0.97, slope 1.32, and c-statistic 0.88; nonlinear calibration for IMPACT-unfavorable outcome and CRASH-mortality). Model performance differences were observed across the top enrolling sites for mortality and unfavorable outcome. CONCLUSIONS The IMPACT and CRASH models adequately discriminated mortality and unfavorable outcome. Observed overestimations of mortality and unfavorable outcome underscore the need to update prognostic models to incorporate contemporary changes in TBI management and case-mix. Investigations to elucidate the relationships between increased survival, outcome, treatment intensity, and site-specific practices will be relevant to improve models in specific TBI subpopulations (e.g., older adults), which may benefit from the inclusion of blood-based biomarkers, neuroimaging features, and treatment data.
Collapse
Affiliation(s)
- John K. Yue
- Department of Neurological Surgery, University of California, San Francisco, California
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California
| | - Young M. Lee
- Department of Neurological Surgery, University of California, San Francisco, California
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California
| | - Xiaoying Sun
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California, San Diego, California
| | - Thomas A. van Essen
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center, Leiden, The Hague, The Netherlands
| | - Mahmoud M. Elguindy
- Department of Neurological Surgery, University of California, San Francisco, California
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California
| | - Patrick J. Belton
- Department of Neurological Surgery, University of California, San Francisco, California
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California
| | - Dana Pisică
- Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ana Mikolic
- Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hansen Deng
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - John H. Kanter
- Department of Neurological Surgery, University of California, San Francisco, California
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California
| | - Michael A. McCrea
- Department of Neurological Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yelena G. Bodien
- Department of Neurological Surgery, University of Utah Health Center, Salt Lake City, Utah
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Gabriela G. Satris
- Department of Neurological Surgery, University of California, San Francisco, California
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California
| | - Justin C. Wong
- Department of Neurological Surgery, University of California, San Francisco, California
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California
| | - Vardhaan S. Ambati
- Department of Neurological Surgery, University of California, San Francisco, California
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California
| | - Ramesh Grandhi
- Department of Rehabilitation Medicine, Spaulding Rehabilitation Hospital, Boston, Massachusetts
| | - Ava M. Puccio
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Pratik Mukherjee
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Alex B. Valadka
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Phiroz E. Tarapore
- Department of Neurological Surgery, University of California, San Francisco, California
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California
| | - Michael C. Huang
- Department of Neurological Surgery, University of California, San Francisco, California
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California
| | - Anthony M. DiGiorgio
- Department of Neurological Surgery, University of California, San Francisco, California
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California
- Institute of Health Policy Studies, University of California, San Francisco, California
| | - Amy J. Markowitz
- Department of Neurological Surgery, University of California, San Francisco, California
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California
| | - Esther L. Yuh
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ewout W. Steyerberg
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Hester F. Lingsma
- Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands
| | - David K. Menon
- Division of Anesthesia, Department of Medicine, University of Cambridge, United Kingdom; and
| | - Andrew I. R. Maas
- Department of Neurological Surgery, Antwerp University Hospital and University of Antwerp, Belgium
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California, San Diego, California
| | - Geoffrey T. Manley
- Department of Neurological Surgery, University of California, San Francisco, California
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California
| |
Collapse
|
23
|
Newcombe V. Detection of awareness after brain injury: time for change. Lancet Neurol 2024; 23:757-759. [PMID: 39030028 DOI: 10.1016/s1474-4422(24)00262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/21/2024]
Affiliation(s)
- Virginia Newcombe
- Department of Medicine, Cambridge University Hospital NHS Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
24
|
Yan D, Simei L, Hongzhao B, Hongyan D, Yuchao D. Prognosis of patients with prolonged disorders of consciousness after brain injury: a longitudinal cohort study. Front Public Health 2024; 12:1421779. [PMID: 39114510 PMCID: PMC11303146 DOI: 10.3389/fpubh.2024.1421779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Background The findings regarding the prognosis of prolonged disorders of consciousness (PDOC) vary widely among different studies. This study aims to investigate the mortality, consciousness recovery and disabilities of patients with PDOC after brain injury. Methods A total of 204 patients with PDOC were included in a longitudinal cohort study, including 129 males and 75 females. There were 112 cases of traumatic brain injury (TBI), 62 cases of cerebral hemorrhage (CH), 13 cases of cerebral infarction (CI) and 17 cases of ischemic hypoxic encephalopathy (IHE). The status of consciousness at 1, 2, 3, 6, 12, 18, 24, 36, 48 months of the disease course was assessed or followed up using the Revised Coma Recovery Scale (CRS-R). If the patients were conscious, the disability Rating Scale (DRS) was also performed. The prognosis of different PDOC including coma, vegetative state (VS) and minimal conscious state (MCS) was analyzed. The survival patients were screened for variables and included in multivariate binary Logistic regression to screen the factors affecting the recovery of consciousness. Results The mortality rates at 12, 24, 36, and 48 months were 10.7, 23.4, 38.9, and 68.4%, respectively. The median time of death was 18 months (8.75, 29). The probability of MCS regaining consciousness was higher than VS (p < 0.05), with the degree of disability left lower than VS (p < 0.05). There was no significant difference between MCS- and MCS+ groups in terms of the probability of regaining consciousness, the extent of residual disability, and mortality rates (p > 0.05). The mortality rate of coma was higher than that of other PDOC (p < 0.05). The mortality rate of MCS was lower than that of VS, but the difference was not statistically significant (p > 0.05). The probability of consciousness recovery after TBI was the highest and the mortality rate was the lowest. The possibility of consciousness recovery in IHE was the least, and the mortality rate of CI was the highest. The cause of brain injury and initial CRS-R score were the factors affecting the consciousness recovery of patients (p < 0.05). Conclusion The prognosis of MCS is more favorable than VS, with comparable outcomes between MCS- and MCS+, while comatose patients was the poorest. TBI has the best prognosis and IHE has the worst prognosis.
Collapse
Affiliation(s)
- Dong Yan
- Department of Rehabilitation Medicine, Hospital of Zhejiang People’s Armed Police, Hangzhou, China
| | | | | | | | | |
Collapse
|
25
|
Yue JK, Etemad LL, Elguindy MM, van Essen TA, Belton PJ, Nelson LD, McCrea MA, Vreeburg RJG, Gotthardt CJ, Tracey JX, Coskun BC, Krishnan N, Halabi C, Eagle SR, Korley FK, Robertson CS, Duhaime AC, Satris GG, Tarapore PE, Huang MC, Madhok DY, Giacino JT, Mukherjee P, Yuh EL, Valadka AB, Puccio AM, Okonkwo DO, Sun X, Jain S, Manley GT, DiGiorgio AM, Badjatia N, Barber J, Bodien YG, Fabian B, Ferguson AR, Foreman B, Gardner RC, Gopinath S, Grandhi R, Russell Huie J, Dirk Keene C, Lingsma HF, MacDonald CL, Markowitz AJ, Merchant R, Ngwenya LB, Rodgers RB, Schneider ALC, Schnyer DM, Taylor SR, Temkin NR, Torres-Espin A, Vassar MJ, Wang KKW, Wong JC, Zafonte RD. Prior traumatic brain injury is a risk factor for in-hospital mortality in moderate to severe traumatic brain injury: a TRACK-TBI cohort study. Trauma Surg Acute Care Open 2024; 9:e001501. [PMID: 39081460 PMCID: PMC11287071 DOI: 10.1136/tsaco-2024-001501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
ABSTRACT Objectives An estimated 14-23% of patients with traumatic brain injury (TBI) incur multiple lifetime TBIs. The relationship between prior TBI and outcomes in patients with moderate to severe TBI (msTBI) is not well delineated. We examined the associations between prior TBI, in-hospital mortality, and outcomes up to 12 months after injury in a prospective US msTBI cohort. Methods Data from hospitalized subjects with Glasgow Coma Scale score of 3-12 were extracted from the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study (enrollment period: 2014-2019). Prior TBI with amnesia or alteration of consciousness was assessed using the Ohio State University TBI Identification Method. Competing risk regressions adjusting for age, sex, psychiatric history, cranial injury and extracranial injury severity examined the associations between prior TBI and in-hospital mortality, with hospital discharged alive as the competing risk. Adjusted HRs (aHR (95% CI)) were reported. Multivariable logistic regressions assessed the associations between prior TBI, mortality, and unfavorable outcome (Glasgow Outcome Scale-Extended score 1-3 (vs. 4-8)) at 3, 6, and 12 months after injury. Results Of 405 acute msTBI subjects, 21.5% had prior TBI, which was associated with male sex (87.4% vs. 77.0%, p=0.037) and psychiatric history (34.5% vs. 20.7%, p=0.010). In-hospital mortality was 10.1% (prior TBI: 17.2%, no prior TBI: 8.2%, p=0.025). Competing risk regressions indicated that prior TBI was associated with likelihood of in-hospital mortality (aHR=2.06 (1.01-4.22)), but not with hospital discharged alive. Prior TBI was not associated with mortality or unfavorable outcomes at 3, 6, and 12 months. Conclusions After acute msTBI, prior TBI history is independently associated with in-hospital mortality but not with mortality or unfavorable outcomes within 12 months after injury. This selective association underscores the importance of collecting standardized prior TBI history data early after acute hospitalization to inform risk stratification. Prospective validation studies are needed. Level of evidence IV. Trial registration number NCT02119182.
Collapse
Affiliation(s)
- John K Yue
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Leila L Etemad
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Mahmoud M Elguindy
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Thomas A van Essen
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Patrick J Belton
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lindsay D Nelson
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael A McCrea
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Rick J G Vreeburg
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Christine J Gotthardt
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Joye X Tracey
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Bukre C Coskun
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Nishanth Krishnan
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Cathra Halabi
- Neurology, University of California San Francisco, San Francisco, California, USA
| | - Shawn R Eagle
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | | | | | | | - Gabriela G Satris
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Phiroz E Tarapore
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Michael C Huang
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Debbie Y Madhok
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
| | - Joseph T Giacino
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Pratik Mukherjee
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Esther L Yuh
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Alex B Valadka
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ava M Puccio
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - David O Okonkwo
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Xiaoying Sun
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Geoffrey T Manley
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Anthony M DiGiorgio
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | | | - Neeraj Badjatia
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Jason Barber
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Yelena G Bodien
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Brian Fabian
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Adam R Ferguson
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Brandon Foreman
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Raquel C Gardner
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Shankar Gopinath
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Ramesh Grandhi
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - J Russell Huie
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - C Dirk Keene
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Hester F Lingsma
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Christine L MacDonald
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Amy J Markowitz
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Randall Merchant
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Laura B Ngwenya
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Richard B Rodgers
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Andrea L C Schneider
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - David M Schnyer
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Sabrina R Taylor
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Nancy R Temkin
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Abel Torres-Espin
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Mary J Vassar
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Kevin K W Wang
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Justin C Wong
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Ross D Zafonte
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, Leiden University Medical Center, Leiden, Netherlands
- Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurology and Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neurology, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
- Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emergency Medicine, University of California San Francisco, San Francisco, California, USA
- Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
26
|
Malhotra AK, Shakil H, Essa A, Mathieu F, Taran S, Badhiwala J, He Y, Yuan EY, Kulkarni AV, Wilson JR, Nathens AB, Witiw CD. Influence of health insurance on withdrawal of life sustaining treatment for patients with isolated traumatic brain injury: a retrospective multi-center observational cohort study. Crit Care 2024; 28:251. [PMID: 39026325 PMCID: PMC11264615 DOI: 10.1186/s13054-024-05027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Healthcare inequities for patients with traumatic brain injury (TBI) represent a major priority area for trauma quality improvement. We hypothesized a relationship between health insurance status and timing of withdrawal of life sustaining treatment (WLST) for adults with severe TBI. METHODS This multicenter retrospective observational cohort study utilized data collected between 2017 and 2020. We identified adult (age ≥ 16) patients with isolated severe TBI admitted participating Trauma Quality Improvement Program centers. We determined the relationship between insurance status (public, private, and uninsured) and the timing of WLST using a competing risk survival analysis framework adjusting for baseline, clinical, injury and trauma center characteristics. Multivariable cause-specific Cox regressions were used to compute adjusted hazard ratios (HR) reflecting timing of WLST, accounting for mortality events. We also quantified the between-center residual variability in WLST using the median odds ratio (MOR) and measured insurance status association with access to rehabilitation at discharge. RESULTS We identified 42,111 adults with isolated severe TBI treated across 509 trauma centers across North America. There were 10,771 (25.6%) WLST events in the cohort and a higher unadjusted incidence of WLST events was evident in public insurance patients compared to private or uninsured groups. After adjustment, WLST occurred earlier for publicly insured (HR 1.07, 95% CI 1.02-1.12) and uninsured patients (HR 1.29, 95% CI 1.18-1.41) compared to privately insured patients. Access to rehabilitation was lower for both publicly insured and uninsured patients compared to patients with private insurance. Accounting for case-mix, the MOR was 1.49 (95% CI 1.43-1.55), reflecting significant residual between-center variation in WLST decision-making. CONCLUSIONS Our findings highlight the presence of disparate WLST practices independently associated with health insurance status. Additionally, these results emphasize between-center variability in WLST, persisting despite adjustments for measurable patient and trauma center characteristics.
Collapse
Affiliation(s)
- Armaan K Malhotra
- Division of Neurosurgery, Unity Health Toronto, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B1W8, Canada
- Li Ka Shing Knowledge Institute, Toronto, ON, Canada
- Institute for Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Husain Shakil
- Division of Neurosurgery, Unity Health Toronto, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B1W8, Canada
- Li Ka Shing Knowledge Institute, Toronto, ON, Canada
- Institute for Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Ahmad Essa
- Division of Neurosurgery, Unity Health Toronto, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B1W8, Canada
- Division of Orthopedics, Department of Surgery, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Francois Mathieu
- Division of Neurosurgery, Unity Health Toronto, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B1W8, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Shaurya Taran
- Institute for Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Jetan Badhiwala
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Yingshi He
- Division of Neurosurgery, Unity Health Toronto, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B1W8, Canada
- Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | - Eva Y Yuan
- Division of Neurosurgery, Unity Health Toronto, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B1W8, Canada
- Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | - Abhaya V Kulkarni
- Institute for Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada
| | - Jefferson R Wilson
- Division of Neurosurgery, Unity Health Toronto, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B1W8, Canada
- Li Ka Shing Knowledge Institute, Toronto, ON, Canada
- Institute for Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Avery B Nathens
- Institute for Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
- Division of General Surgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Christopher D Witiw
- Division of Neurosurgery, Unity Health Toronto, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B1W8, Canada.
- Li Ka Shing Knowledge Institute, Toronto, ON, Canada.
- Institute for Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
27
|
Ponsford JL, Portelli P, Vakil E, Downing MG. The processing of verbal memories after traumatic brain injury. Clin Neuropsychol 2024:1-17. [PMID: 38984770 DOI: 10.1080/13854046.2024.2374043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Objective: Memory dysfunction is a persistent cognitive symptom following traumatic brain injury (TBI), negatively impacting capacity for independent living and productivity. Traditional scoring of neuropsychological memory tests does not allow for differentiation of specific impairments of encoding, consolidation and/or retrieval, or the potential impact of strategy deficits. Method: The current study examined performance of 142 moderate-to-severe TBI participants and 68 demographically matched healthy controls on the Rey Auditory Verbal Learning Test (RAVLT) using Item Specific Data Analysis (ISDA) and strategy use analyses. Results: Results revealed significantly greater impairments in encoding, consolidation, and retrieval in TBI participants, compared to controls. Encoding deficits significantly explained the most variance in the long-delayed recall of TBI participants, followed by consolidation, and then retrieval. Participants with TBI showed a reduced ability to spontaneously apply strategies during learning, evident in decreased subjective clusters and increased word omissions, compared to controls. No difference was found between groups in passive learning strategy application, shown through serial clustering. Spontaneous strategy measures both uniquely accounted for variance in the encoding ability of TBI participants. Conclusions: These findings highlight the potential value in using ISDA and strategy use measures to assess RAVLT results to better characterize individual memory profiles and inform rehabilitative interventions.
Collapse
Affiliation(s)
- Jennie L Ponsford
- Monash-Epworth Rehabilitation Research Centre, Melbourne, Australia
- School of Psychological Sciences, Monash University, Melbourne, Australia
- Epworth HealthCare, Melbourne, Australia
| | - Pagan Portelli
- Monash-Epworth Rehabilitation Research Centre, Melbourne, Australia
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Eli Vakil
- Department of Psychology and Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Marina G Downing
- Monash-Epworth Rehabilitation Research Centre, Melbourne, Australia
- School of Psychological Sciences, Monash University, Melbourne, Australia
- Epworth HealthCare, Melbourne, Australia
| |
Collapse
|
28
|
Austin TA, Hodges CB, Thomas ML, Szabo YZ, Parr S, Eschler BD, Lantrip C, Twamley E. Meta-analysis of Cognitive Rehabilitation Interventions in Veterans and Service Members With Traumatic Brain Injuries. J Head Trauma Rehabil 2024; 39:258-272. [PMID: 38270528 PMCID: PMC11227399 DOI: 10.1097/htr.0000000000000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
MAIN OBJECTIVE Cognitive difficulties are some of the most frequently experienced symptoms following mild-to-moderate traumatic brain injuries (TBIs). There is meta-analytic evidence that cognitive rehabilitation improves cognitive functioning after TBI in nonveteran populations but not specifically within the veteran and service member (V/SM) population. The purpose of the current meta-analysis was to examine the effect of cognitive rehabilitation interventions for V/SMs with a history of mild-to-moderate TBI. DESIGN AND MAIN MEASURES This meta-analysis was preregistered with PROSPERO (CRD42021262902) and used the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) checklist for reporting guidelines. Inclusion criteria required studies to have (1) randomized controlled trials; (2) used adult participants (aged 18 years or older) who were US veterans or active-duty service members who had a history of mild-to-moderate TBI; (3) cognitive rehabilitation treatments designed to improve cognition and/or everyday functioning; (4) used objective neuropsychological testing as a primary outcome measure; and (5) been published in English. At least 2 reviewers independently screened all identified abstracts and full-text articles and coded demographic and effect size data. The final search was run on February 24, 2023, using 4 databases (PubMed, PsycINFO, Web of Science, and Google Scholar). Study quality and bias were examined using the revised Cochrane Risk-of-Bias Tool for Randomized Trials. RESULTS We identified 8 articles meeting full criteria (total participants = 564; 97% of whom had a history of mild TBI). Compared with control groups, participants showed a small, but significant, improvement in overall objective neuropsychological functioning after cognitive rehabilitation interventions. Interventions focusing on teaching strategies had a larger effect size than did those focusing on drill-and-practice approaches for both objective neuropsychological test performance and performance-based measures of functional capacity. CONCLUSION There is evidence of cognitive improvement in V/SMs with TBI histories after participation in cognitive rehabilitation. Clinician-administered interventions focusing on teaching strategies may yield the greatest cognitive improvement in this population.
Collapse
Affiliation(s)
- Tara A. Austin
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA
- Research Service, VA San Diego Healthcare System, San Diego, CA
- The VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX
| | - Cooper B. Hodges
- School of Social and Behavioral Sciences, Andrews University, Berrien Springs, MI
| | - Michael L. Thomas
- Department of Psychology, Colorado State University, Fort Collins, CO
| | - Yvette Z. Szabo
- The VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX
- California State University, Los Angeles, Department of Psychology, Los Angeles, CA
| | - Sarah Parr
- Department of Psychology and Neuroscience, Baylor University, Waco, TX
| | - Ben D. Eschler
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX
| | - Crystal Lantrip
- The VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX
- Department of Psychology and Neuroscience, Baylor University, Waco, TX
| | - Elizabeth Twamley
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA
- Research Service, VA San Diego Healthcare System, San Diego, CA
- Department of Psychiatry, University of California San Diego, San Diego, CA
| |
Collapse
|
29
|
Hagedorn A, Haberl H, Adamzik M, Wolf A, Unterberg M. [Current Aspects of Intensive Medical Care for Traumatic Brain Injury - Part 2 - Secondary Treatment Strategies, Long-term Outcome, Neuroprognostics and Chronification]. Anasthesiol Intensivmed Notfallmed Schmerzther 2024; 59:466-478. [PMID: 39074791 DOI: 10.1055/a-2332-1423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
This two-part article deals with the intensive medical care of traumatic brain injury. Part 1 addresses the primary treatment strategy, haemodynamic management and multimodal monitoring, Part 2 secondary treatment strategies, long-term outcome, neuroprognostics and chronification. Traumatic brain injury is a complex clinical entity with a high mortality rate. The primary aim is to maintain homeostasis based on physiological targeted values. In addition, further therapy must be geared towards intracranial pressure. In addition to this, there are other monitoring options that appear sensible from a pathophysiological point of view with appropriate therapy adjustment. However, there is still a lack of data on their effectiveness. A further aspect is the inflammation of the cerebrum with the "cross-talk" of the organs, which has a significant influence on further intensive medical care.
Collapse
|
30
|
Santana LS, Diniz JBC, Solla DJF, Neville IS, Figueiredo EG, Mota Telles JP. Brain tissue oxygen combined with intracranial pressure monitoring versus isolated intracranial pressure monitoring in patients with traumatic brain injury: an updated systematic review and meta-analysis. Neurol Sci 2024; 45:3051-3059. [PMID: 38353849 DOI: 10.1007/s10072-024-07392-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/05/2024] [Indexed: 06/15/2024]
Abstract
Monitoring intracranial pressure (ICP) is pivotal in the management of severe traumatic brain injury (TBI), but secondary brain injuries can arise despite normal ICP levels. Cerebral tissue oxygenation monitoring (PbtO2) may detect neuronal tissue infarction thresholds, enhancing neuroprotection. We performed a systematic review and meta-analysis to evaluate the effects of combined cerebral tissue oxygenation (PbtO2) and ICP compared to isolated ICP monitoring in patients with TBI. PubMed, Embase, Cochrane, and Web of Sciences databases were searched for trials published up to June 2023. A total of 16 studies comprising 37,820 patients were included. ICP monitoring was universal, with additional placement of PbtO2 in 2222 individuals (5.8%). The meta-analysis revealed a reduction in mortality (OR 0.57, 95% CI 0.37-0.89, p = 0.01), a greater likelihood of favorable outcomes (OR 2.28, 95% CI 1.66-3.14, p < 0.01), and a lower chance of poor outcomes (OR 0.51, 95% CI 0.34-0.79, p < 0.01) at 6 months for the PbtO2 plus ICP group. However, these patients experienced a longer length of hospital stay (MD 2.35, 95% CI 0.50-4.20, p = 0.01). No significant difference was found in hospital mortality rates (OR 0.81, 95% CI 0.61-1.08, p = 0.16) or intensive care unit length of stay (MD 2.46, 95% CI - 0.11-5.04, p = 0.06). The integration of PbtO2 to ICP monitoring improved mortality outcomes and functional recovery at 6 months in patients with TBI. PROSPERO (International Prospective Register of Systematic Reviews) CRD42022383937; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=383937.
Collapse
Affiliation(s)
| | | | - Davi Jorge Fontoura Solla
- Department of Neurology, Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, SP, 05403-010, Brazil
| | - Iuri Santana Neville
- Department of Neurology, Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, SP, 05403-010, Brazil
| | - Eberval Gadelha Figueiredo
- Department of Neurology, Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, SP, 05403-010, Brazil
| | - João Paulo Mota Telles
- Department of Neurology, University of São Paulo, Av Dr Arnaldo, 455 - Cerqueira César, São Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
31
|
Ack SE, Dolmans RG, Foreman B, Manley GT, Rosenthal ES, Zabihi M. Deriving Automated Device Metadata From Intracranial Pressure Waveforms: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury ICU Physiology Cohort Analysis. Crit Care Explor 2024; 6:e1118. [PMID: 39016273 PMCID: PMC11254120 DOI: 10.1097/cce.0000000000001118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
IMPORTANCE Treatment for intracranial pressure (ICP) has been increasingly informed by machine learning (ML)-derived ICP waveform characteristics. There are gaps, however, in understanding how ICP monitor type may bias waveform characteristics used for these predictive tools since differences between external ventricular drain (EVD) and intraparenchymal monitor (IPM)-derived waveforms have not been well accounted for. OBJECTIVES We sought to develop a proof-of-concept ML model differentiating ICP waveforms originating from an EVD or IPM. DESIGN, SETTING, AND PARTICIPANTS We examined raw ICP waveform data from the ICU physiology cohort within the prospective Transforming Research and Clinical Knowledge in Traumatic Brain Injury multicenter study. MAIN OUTCOMES AND MEASURES Nested patient-wise five-fold cross-validation and group analysis with bagged decision trees (BDT) and linear discriminant analysis were used for feature selection and fair evaluation. Nine patients were kept as unseen hold-outs for further evaluation. RESULTS ICP waveform data totaling 14,110 hours were included from 82 patients (EVD, 47; IPM, 26; both, 9). Mean age, Glasgow Coma Scale (GCS) total, and GCS motor score upon admission, as well as the presence and amount of midline shift, were similar between groups. The model mean area under the receiver operating characteristic curve (AU-ROC) exceeded 0.874 across all folds. In additional rigorous cluster-based subgroup analysis, targeted at testing the resilience of models to cross-validation with smaller subsets constructed to develop models in one confounder set and test them in another subset, AU-ROC exceeded 0.811. In a similar analysis using propensity score-based rather than cluster-based subgroup analysis, the mean AU-ROC exceeded 0.827. Of 842 extracted ICP features, 62 were invariant within every analysis, representing the most accurate and robust differences between ICP monitor types. For the nine patient hold-outs, an AU-ROC of 0.826 was obtained using BDT. CONCLUSIONS AND RELEVANCE The developed proof-of-concept ML model identified differences in EVD- and IPM-derived ICP signals, which can provide missing contextual data for large-scale retrospective datasets, prevent bias in computational models that ingest ICP data indiscriminately, and control for confounding using our model's output as a propensity score by to adjust for the monitoring method that was clinically indicated. Furthermore, the invariant features may be leveraged as ICP features for anomaly detection.
Collapse
Affiliation(s)
- Sophie E. Ack
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Rianne G.F. Dolmans
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Brandon Foreman
- Department of Neurology, University of Cincinnati, Cincinnati, OH
| | - Geoffrey T. Manley
- Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Eric S. Rosenthal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Morteza Zabihi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
32
|
Gonsalves N, Sun MK, Chopra P, Latchoumane CF, Bajwa S, Tang R, Patel B, Boons GJ, Karumbaiah L. Neuritogenic glycosaminoglycan hydrogels promote functional recovery after severe traumatic brain injury. J Neural Eng 2024; 21:036058. [PMID: 38806019 PMCID: PMC11209949 DOI: 10.1088/1741-2552/ad5108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/22/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Objective.Severe traumatic brain injury (sTBI) induced neuronal loss and brain atrophy contribute significantly to long-term disabilities. Brain extracellular matrix (ECM) associated chondroitin sulfate (CS) glycosaminoglycans promote neural stem cell (NSC) maintenance, and CS hydrogel implants have demonstrated the ability to enhance neuroprotection, in preclinical sTBI studies. However, the ability of neuritogenic chimeric peptide (CP) functionalized CS hydrogels in promoting functional recovery, after controlled cortical impact (CCI) and suction ablation (SA) induced sTBI, has not been previously demonstrated. We hypothesized that neuritogenic (CS)CP hydrogels will promote neuritogenesis of human NSCs, and accelerate brain tissue repair and functional recovery in sTBI rats.Approach.We synthesized chondroitin 4-Osulfate (CS-A)CP, and 4,6-O-sulfate (CS-E)CP hydrogels, using strain promoted azide-alkyne cycloaddition (SPAAC), to promote cell adhesion and neuritogenesis of human NSCs,in vitro; and assessed the ability of (CS-A)CP hydrogels in promoting tissue and functional repair, in a novel CCI-SA sTBI model,in vivo. Main results.Results indicated that (CS-E)CP hydrogels significantly enhanced human NSC aggregation and migration via focal adhesion kinase complexes, when compared to NSCs in (CS-A)CP hydrogels,in vitro. In contrast, NSCs encapsulated in (CS-A)CP hydrogels differentiated into neurons bearing longer neurites and showed greater spontaneous activity, when compared to those in (CS-E)CP hydrogels. The intracavitary implantation of (CS-A)CP hydrogels, acutely after CCI-SA-sTBI, prevented neuronal and axonal loss, as determined by immunohistochemical analyses. (CS-A)CP hydrogel implanted animals also demonstrated the significantly accelerated recovery of 'reach-to-grasp' function when compared to sTBI controls, over a period of 5-weeks.Significance.These findings demonstrate the neuritogenic and neuroprotective attributes of (CS)CP 'click' hydrogels, and open new avenues for the development of multifunctional glycomaterials that are functionalized with biorthogonal handles for sTBI repair.
Collapse
Affiliation(s)
- Nathan Gonsalves
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States of America
- Division of Neuroscience, Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA, United States of America
| | - Min Kyoung Sun
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States of America
- Division of Neuroscience, Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA, United States of America
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States of America
| | - Charles-Francois Latchoumane
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States of America
- Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA, United States of America
| | - Simar Bajwa
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States of America
| | - Ruiping Tang
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States of America
- Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA, United States of America
| | - Bianca Patel
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States of America
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States of America
- Department of Chemistry, University of Georgia, Athens, GA, United States of America
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States of America
- Division of Neuroscience, Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA, United States of America
- Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
33
|
Wehn AC, Khalin I, Hu S, Harapan BN, Mao X, Cheng S, Plesnila N, Terpolilli NA. Bradykinin 2 Receptors Mediate Long-Term Neurocognitive Deficits After Experimental Traumatic Brain Injury. J Neurotrauma 2024. [PMID: 38818807 DOI: 10.1089/neu.2024.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
The kallikrein-kinin system is one of the first inflammatory pathways to be activated following traumatic brain injury (TBI) and has been shown to exacerbate brain edema formation in the acute phase through activation of bradykinin 2 receptors (B2R). However, the influence of B2R on chronic post-traumatic damage and outcome is unclear. In the current study, we assessed long-term effects of B2R-knockout (KO) after experimental TBI. B2R KO mice (heterozygous, homozygous) and wild-type (WT) littermates (n = 10/group) were subjected to controlled cortical impact (CCI) TBI. Lesion size was evaluated by magnetic resonance imaging up to 90 days after CCI. Motor and memory function were regularly assessed by Neurological Severity Score, Beam Walk, and Barnes maze test. Ninety days after TBI, brains were harvested for immunohistochemical analysis. There was no difference in cortical lesion size between B2R-deficient and WT animals 3 months after injury; however, hippocampal damage was reduced in B2R KO mice (p = 0.03). Protection of hippocampal tissue was accompanied by a significant improvement of learning and memory function 3 months after TBI (p = 0.02 WT vs. KO), whereas motor function was not influenced. Scar formation and astrogliosis were unaffected, but B2R deficiency led to a gene-dose-dependent attenuation of microglial activation and a reduction of CD45+ cells 3 months after TBI in cortex (p = 0.0003) and hippocampus (p < 0.0001). These results suggest that chronic hippocampal neurodegeneration and subsequent cognitive impairment are mediated by prolonged neuroinflammation and B2R. Inhibition of B2R may therefore represent a novel strategy to reduce long-term neurocognitive deficits after TBI.
Collapse
Affiliation(s)
- Antonia Clarissa Wehn
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Igor Khalin
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Rouen, France
| | - Senbin Hu
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Biyan Nathanael Harapan
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Xiang Mao
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Neurotrauma Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shiqi Cheng
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurosurgery, The Second affiliated Hospital of Nanchang University, Nanchang, China
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicole A Terpolilli
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
34
|
Kabatas S, Civelek E, Boyalı O, Sezen GB, Ozdemir O, Bahar-Ozdemir Y, Kaplan N, Savrunlu EC, Karaöz E. Safety and efficiency of Wharton's Jelly-derived mesenchymal stem cell administration in patients with traumatic brain injury: First results of a phase I study. World J Stem Cells 2024; 16:641-655. [PMID: 38948099 PMCID: PMC11212551 DOI: 10.4252/wjsc.v16.i6.641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/26/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. Stem cell transplantation has evolved as a novel treatment modality in the management of TBI, as it has the potential to arrest the degeneration and promote regeneration of new cells in the brain. Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) have recently shown beneficial effects in the functional recovery of neurological deficits. AIM To evaluate the safety and efficiency of MSC therapy in TBI. METHODS We present 6 patients, 4 male and 2 female aged between 21 and 27 years who suffered a TBI. These 6 patients underwent 6 doses of intrathecal, intramuscular (i.m.) and intravenous transplantation of WJ-MSCs at a target dose of 1 × 106/kg for each application route. Spasticity was assessed using the Modified Ashworth scale (MAS), motor function according to the Medical Research Council Muscle Strength Scale, quality of life was assessed by the Functional Independence Measure (FIM) scale and Karnofsky Performance Status scale. RESULTS Our patients showed only early, transient complications, such as subfebrile fever, mild headache, and muscle pain due to i.m. injection, which resolved within 24 h. During the one year follow-up, no other safety issues or adverse events were reported. These 6 patients showed improvements in their cognitive abilities, muscle spasticity, muscle strength, performance scores and fine motor skills when compared before and after the intervention. MAS values, which we used to assess spasticity, were observed to statistically significantly decrease for both left and right sides (P < 0.001). The FIM scale includes both motor scores (P < 0.05) and cognitive scores (P < 0.001) and showed a significant increase in pretest posttest analyses. The difference observed in the participants' Karnofsky Performance Scale values pre and post the intervention was statistically significant (P < 0.001). CONCLUSION This study showed that cell transplantation has a safe, effective and promising future in the management of TBI.
Collapse
Affiliation(s)
- Serdar Kabatas
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Türkiye
- Center for Stem Cell & Gene Therapy Research and Practice, University of Health Sciences Turkey, Istanbul 34255, Türkiye.
| | - Erdinç Civelek
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Türkiye
| | - Osman Boyalı
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Türkiye
| | - Gülseli Berivan Sezen
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Istanbul 34255, Türkiye
| | - Omer Ozdemir
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Türkiye
| | - Yeliz Bahar-Ozdemir
- Department of Physical Medicine and Rehabilitation, Health Sciences University Sultan Abdulhamid Han Training and Research Hospital, Istanbul 34668, Türkiye
| | - Necati Kaplan
- Department of Neurosurgery, Istanbul Rumeli University, Çorlu Reyap Hospital, Tekirdağ 59860, Türkiye
| | - Eyüp Can Savrunlu
- Department of Neurosurgery, Nevşehir State Hospital, Nevşehir 50300, Türkiye
| | - Erdal Karaöz
- Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Liv Hospital, Istanbul 34340, Türkiye
- Department of Histology and Embryology, Istinye University, Faculty of Medicine, Istanbul 34010, Türkiye
- Center for Stem Cell and Tissue Engineering Research and Practice, Istinye University, Istanbul 34340, Türkiye
| |
Collapse
|
35
|
Kabatas S, Civelek E, Boyalı O, Sezen GB, Ozdemir O, Bahar-Ozdemir Y, Kaplan N, Savrunlu EC, Karaöz E. Safety and efficiency of Wharton’s Jelly-derived mesenchymal stem cell administration in patients with traumatic brain injury: First results of a phase I study. World J Stem Cells 2024; 16:640-654. [DOI: 10.4252/wjsc.v16.i6.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/26/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. Stem cell transplantation has evolved as a novel treatment modality in the management of TBI, as it has the potential to arrest the degeneration and promote regeneration of new cells in the brain. Wharton’s Jelly-derived mesenchymal stem cells (WJ-MSCs) have recently shown beneficial effects in the functional recovery of neurological deficits.
AIM To evaluate the safety and efficiency of MSC therapy in TBI.
METHODS We present 6 patients, 4 male and 2 female aged between 21 and 27 years who suffered a TBI. These 6 patients underwent 6 doses of intrathecal, intramuscular (i.m.) and intravenous transplantation of WJ-MSCs at a target dose of 1 × 106/kg for each application route. Spasticity was assessed using the Modified Ashworth scale (MAS), motor function according to the Medical Research Council Muscle Strength Scale, quality of life was assessed by the Functional Independence Measure (FIM) scale and Karnofsky Performance Status scale.
RESULTS Our patients showed only early, transient complications, such as subfebrile fever, mild headache, and muscle pain due to i.m. injection, which resolved within 24 h. During the one year follow-up, no other safety issues or adverse events were reported. These 6 patients showed improvements in their cognitive abilities, muscle spasticity, muscle strength, performance scores and fine motor skills when compared before and after the intervention. MAS values, which we used to assess spasticity, were observed to statistically significantly decrease for both left and right sides (P < 0.001). The FIM scale includes both motor scores (P < 0.05) and cognitive scores (P < 0.001) and showed a significant increase in pretest posttest analyses. The difference observed in the participants’ Karnofsky Performance Scale values pre and post the intervention was statistically significant (P < 0.001).
CONCLUSION This study showed that cell transplantation has a safe, effective and promising future in the management of TBI.
Collapse
Affiliation(s)
- Serdar Kabatas
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Türkiye
- Center for Stem Cell & Gene Therapy Research and Practice, University of Health Sciences Turkey, Istanbul 34255, Türkiye
| | - Erdinç Civelek
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Türkiye
| | - Osman Boyalı
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Türkiye
| | - Gülseli Berivan Sezen
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Istanbul 34255, Türkiye
| | - Omer Ozdemir
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Türkiye
| | - Yeliz Bahar-Ozdemir
- Department of Physical Medicine and Rehabilitation, Health Sciences University Sultan Abdulhamid Han Training and Research Hospital, Istanbul 34668, Türkiye
| | - Necati Kaplan
- Department of Neurosurgery, Istanbul Rumeli University, Çorlu Reyap Hospital, Tekirdağ 59860, Türkiye
| | - Eyüp Can Savrunlu
- Department of Neurosurgery, Nevşehir State Hospital, Nevşehir 50300, Türkiye
| | - Erdal Karaöz
- Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Liv Hospital, Istanbul 34340, Türkiye
- Department of Histology and Embryology, Istinye University, Faculty of Medicine, Istanbul 34010, Türkiye
- Center for Stem Cell and Tissue Engineering Research and Practice, Istinye University, Istanbul 34340, Türkiye
| |
Collapse
|
36
|
Pebole MM, Whitworth JW, Iverson KM, Currao A, Fortier CB. Traumatic Brain Injury and Posttraumatic Stress Disorder Are Associated with Physical Health Burden among Post-9/11 Women Veterans. J Womens Health (Larchmt) 2024. [PMID: 38873776 DOI: 10.1089/jwh.2024.0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Background: Little research focuses on physical health outcomes of traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) among post-9/11 women veterans (WVs). This study examined lifetime TBI, current PTSD, and their associations with biomarkers of cardiometabolic health, sleep, pain, and functional disability among post-9/11 WVs. Methods: WVs (n = 90) from the Translational Research Center for TBI and Stress Disorders longitudinal cohort study were included in this study. Gold standard clinician administered interviews assessed lifetime TBI (Boston Assessment of TBI-Lifetime) and current PTSD symptoms (Clinician-Administered PTSD Scale-IV). Objective measures of health included waist-hip ratio (WHR) and fasted blood biomarker (high density lipoprotein [HDL], low density lipoprotein [LDL], blood glucose, triglycerides) levels. Self-reported surveys assessed sleep, pain, and functional disability. Results: Just under two-thirds (58.9%) of WVs experienced a lifetime TBI, and just over half (53.3%) of this sample had a current PTSD diagnosis at the time of testing. Lifetime TBI was significantly associated with higher WHR, triglycerides levels, and worse pain and sleep (ps = <0.01 to 0.02; ds = 0.01 to 1.12). Current PTSD was significantly associated with higher WHR, lower HDL, and worse pain and sleep (ps = <0.01 to 0.02; ds = 0.009 to 1.19). PTSD was significantly associated with lower total functioning and each of its subdomains (βs = -0.58 to 0.63; ps = <0.001 to 0.02). Lifetime TBI was significantly associated with total functioning, mobility, and life/work (βs = -0.20 to 0.30; ps = <0.01 to 0.02). Conclusions: These findings highlight the importance of screening for lifetime TBI and cardiovascular disease for WVs and support transdiagnostic treatment approaches targeting physical health outcomes.
Collapse
Affiliation(s)
- Michelle M Pebole
- The Translational Research Center for TBI and Stress Disorders (TRACTS), Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - James W Whitworth
- National Center for PTSD Behavioral Health Sciences Division at VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston Massachusetts, USA
| | - Katherine M Iverson
- The Translational Research Center for TBI and Stress Disorders (TRACTS), Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston Massachusetts, USA
- National Center for PTSD Women's Health Sciences Division, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Alyssa Currao
- The Translational Research Center for TBI and Stress Disorders (TRACTS), Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA
| | - Catherine B Fortier
- The Translational Research Center for TBI and Stress Disorders (TRACTS), Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Conklin JP, Wallace T, McCauley KL, Breitenstein J, Gore RK. Level of Evidence of Telehealth Rehabilitation and Behavioral Health Services for Traumatic Brain Injury: A Scoping Review. J Clin Psychol Med Settings 2024; 31:379-402. [PMID: 37903966 DOI: 10.1007/s10880-023-09981-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 11/01/2023]
Abstract
Traumatic brain injury (TBI) can result in significant impairments in functioning associated with partial or permanent disabilities. Examining the evidence for domain-specific telehealth interventions is necessary to guide the development of effective clinical and research programs for this population. The present scoping review characterizes the level of evidence across a range of TBI-related disabilities and impairments. A literature search was performed across comprehensive databases using search terms related to TBI, rehabilitation, telehealth, and outcome. A total of 19 publications from 17 studies met inclusion criteria. Articles focused on telehealth interventions to improve global, cognitive, emotional, and physical functioning post-TBI. Levels of evidence ranged from 1 to 4 across domains, with predominantly experimental designs (level 1). Outcomes demonstrating improvement or benefit from telehealth treatments were reported across all functional domains (50-80% of studies). Results highlight the potential of telehealth interventions across the span of comprehensive interdisciplinary rehabilitation care. Expanded research is needed on remote treatment options for physical symptoms, for subgroups within TBI populations (i.e., mild TBI, military populations), as well as on remote and hybrid comprehensive rehabilitation programs.
Collapse
Affiliation(s)
- Jessica P Conklin
- SHARE Military Initiative, Shepherd Center, 80 Peachtree Park Drive NE, Atlanta, GA, 30309, USA
| | - Tracey Wallace
- SHARE Military Initiative, Shepherd Center, 80 Peachtree Park Drive NE, Atlanta, GA, 30309, USA.
| | - Katherine L McCauley
- SHARE Military Initiative, Shepherd Center, 80 Peachtree Park Drive NE, Atlanta, GA, 30309, USA
| | - Jackie Breitenstein
- SHARE Military Initiative, Shepherd Center, 80 Peachtree Park Drive NE, Atlanta, GA, 30309, USA
| | - Russell K Gore
- SHARE Military Initiative, Shepherd Center, 80 Peachtree Park Drive NE, Atlanta, GA, 30309, USA
| |
Collapse
|
38
|
Muehlschlegel S. Prognostication in Neurocritical Care. Continuum (Minneap Minn) 2024; 30:878-903. [PMID: 38830074 DOI: 10.1212/con.0000000000001433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE This article synthesizes the current literature on prognostication in neurocritical care, identifies existing challenges, and proposes future research directions to reduce variability and enhance scientific and patient-centered approaches to neuroprognostication. LATEST DEVELOPMENTS Patients with severe acute brain injury often lack the capacity to make their own medical decisions, leaving surrogate decision makers responsible for life-or-death choices. These decisions heavily rely on clinicians' prognostication, which is still considered an art because of the previous lack of specific guidelines. Consequently, there is significant variability in neuroprognostication practices. This article examines various aspects of neuroprognostication. It explores the cognitive approach to prognostication, highlights the use of statistical modeling such as Bayesian models and machine learning, emphasizes the importance of clinician-family communication during prognostic disclosures, and proposes shared decision making for more patient-centered care. ESSENTIAL POINTS This article identifies ongoing challenges in the field and emphasizes the need for future research to ameliorate variability in neuroprognostication. By focusing on scientific methodologies and patient-centered approaches, this research aims to provide guidance and tools that may enhance neuroprognostication in neurocritical care.
Collapse
|
39
|
Plante V, Basu M, Gettings JV, Luchette M, LaRovere KL. Update in Pediatric Neurocritical Care: What a Neurologist Caring for Critically Ill Children Needs to Know. Semin Neurol 2024; 44:362-388. [PMID: 38788765 DOI: 10.1055/s-0044-1787047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Currently nearly one-quarter of admissions to pediatric intensive care units (PICUs) worldwide are for neurocritical care diagnoses that are associated with significant morbidity and mortality. Pediatric neurocritical care is a rapidly evolving field with unique challenges due to not only age-related responses to primary neurologic insults and their treatments but also the rarity of pediatric neurocritical care conditions at any given institution. The structure of pediatric neurocritical care services therefore is most commonly a collaborative model where critical care medicine physicians coordinate care and are supported by a multidisciplinary team of pediatric subspecialists, including neurologists. While pediatric neurocritical care lies at the intersection between critical care and the neurosciences, this narrative review focuses on the most common clinical scenarios encountered by pediatric neurologists as consultants in the PICU and synthesizes the recent evidence, best practices, and ongoing research in these cases. We provide an in-depth review of (1) the evaluation and management of abnormal movements (seizures/status epilepticus and status dystonicus); (2) acute weakness and paralysis (focusing on pediatric stroke and select pediatric neuroimmune conditions); (3) neuromonitoring modalities using a pathophysiology-driven approach; (4) neuroprotective strategies for which there is evidence (e.g., pediatric severe traumatic brain injury, post-cardiac arrest care, and ischemic stroke and hemorrhagic stroke); and (5) best practices for neuroprognostication in pediatric traumatic brain injury, cardiac arrest, and disorders of consciousness, with highlights of the 2023 updates on Brain Death/Death by Neurological Criteria. Our review of the current state of pediatric neurocritical care from the viewpoint of what a pediatric neurologist in the PICU needs to know is intended to improve knowledge for providers at the bedside with the goal of better patient care and outcomes.
Collapse
Affiliation(s)
- Virginie Plante
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Meera Basu
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | | | - Matthew Luchette
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Kerri L LaRovere
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
40
|
Elser H, Pappalardo LW, Gottesman RF, Coresh J, Diaz-Arrastia R, Mosley TH, Kasner SE, Koton S, Schneider ALC. Head Injury and Risk of Incident Ischemic Stroke in Community-Dwelling Adults. Stroke 2024; 55:1562-1571. [PMID: 38716662 PMCID: PMC11126353 DOI: 10.1161/strokeaha.123.046443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/29/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND While stroke is a recognized short-term sequela of traumatic brain injury, evidence about long-term ischemic stroke risk after traumatic brain injury remains limited. METHODS The Atherosclerosis Risk in Communities Study is an ongoing prospective cohort comprised of US community-dwelling adults enrolled in 1987 to 1989 followed through 2019. Head injury was defined using self-report and hospital-based diagnostic codes and was analyzed as a time-varying exposure. Incident ischemic stroke events were physician-adjudicated. We used Cox regression adjusted for sociodemographic and cardiovascular risk factors to estimate the hazard of ischemic stroke as a function of head injury. Secondary analyses explored the number and severity of head injuries; the mechanism and severity of incident ischemic stroke; and heterogeneity within subgroups defined by race, sex, and age. RESULTS Our analysis included 12 813 participants with no prior head injury or stroke. The median follow-up age was 27.1 years (25th-75th percentile=21.1-30.5). Participants were of median age 54 years (25th-75th percentile=49-59) at baseline; 57.7% were female and 27.8% were Black. There were 2158 (16.8%) participants with at least 1 head injury and 1141 (8.9%) participants with an incident ischemic stroke during follow-up. For those with head injuries, the median age to ischemic stroke was 7.5 years (25th-75th percentile=2.2-14.0). In adjusted models, head injury was associated with an increased hazard of incident ischemic stroke (hazard ratio [HR], 1.34 [95% CI, 1.12-1.60]). We observed evidence of dose-response for the number of head injuries (1: HR, 1.16 [95% CI, 0.97-1.40]; ≥2: HR, 1.94 [95% CI, 1.39-2.71]) but not for injury severity. We observed evidence of stronger associations between head injury and more severe stroke (National Institutes of Health Stroke Scale score ≤5: HR, 1.31 [95% CI, 1.04-1.64]; National Institutes of Health Stroke Scale score 6-10: HR, 1.64 [95% CI, 1.06-2.52]; National Institutes of Health Stroke Scale score ≥11: HR, 1.80 [95% CI, 1.18-2.76]). Results were similar across stroke mechanism and within strata of race, sex, and age. CONCLUSIONS In this community-based cohort, head injury was associated with subsequent ischemic stroke. These results suggest the importance of public health interventions aimed at preventing head injuries and primary stroke prevention among individuals with prior traumatic brain injuries.
Collapse
Affiliation(s)
- Holly Elser
- Department of Neurology (H.E., L.W.P., R.D.-A., S.E.K., A.L.C.S.), University of Pennsylvania, Philadelphia
| | - Laura W Pappalardo
- Department of Neurology (H.E., L.W.P., R.D.-A., S.E.K., A.L.C.S.), University of Pennsylvania, Philadelphia
| | - Rebecca F Gottesman
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD (R.F.G.)
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (J.C., S.K.)
| | - Ramon Diaz-Arrastia
- Department of Neurology (H.E., L.W.P., R.D.-A., S.E.K., A.L.C.S.), University of Pennsylvania, Philadelphia
| | - Thomas H Mosley
- The Memory Impairment and Neurodegenerative Dementia Center, University of Mississippi Medical Center, Jackson (T.H.M.)
| | - Scott E Kasner
- Department of Neurology (H.E., L.W.P., R.D.-A., S.E.K., A.L.C.S.), University of Pennsylvania, Philadelphia
| | - Silvia Koton
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (J.C., S.K.)
- School of Health Professions, Tel Aviv University, Israel (S.K.)
| | - Andrea L C Schneider
- Department of Neurology (H.E., L.W.P., R.D.-A., S.E.K., A.L.C.S.), University of Pennsylvania, Philadelphia
- Department of Biostatistics, Epidemiology, and Informatics, School of Medicine (A.L.C.S.), University of Pennsylvania, Philadelphia
| |
Collapse
|
41
|
de Aquino Costa Sousa T, Gagnon IJ, Li KZH, McFadyen BJ, Lamontagne A. Exploring the challenges of avoiding collisions with virtual pedestrians using a dual-task paradigm in individuals with chronic moderate to severe traumatic brain injury. J Neuroeng Rehabil 2024; 21:80. [PMID: 38755606 PMCID: PMC11097498 DOI: 10.1186/s12984-024-01378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Individuals with a moderate-to-severe traumatic brain injury (m/sTBI), despite experiencing good locomotor recovery six months post-injury, face challenges in adapting their locomotion to the environment. They also present with altered cognitive functions, which may impact dual-task walking abilities. Whether they present collision avoidance strategies with moving pedestrians that are altered under dual-task conditions, however, remains unclear. This study aimed to compare between individuals with m/sTBI and age-matched control individuals: (1), the locomotor and cognitive costs associated with the concurrent performance of circumventing approaching virtual pedestrians (VRPs) while attending to an auditory-based cognitive task and; (2) gaze behaviour associated with the VRP circumvention task in single and dual-task conditions. METHODOLOGY Twelve individuals with m/sTBI (age = 43.3 ± 9.5 yrs; >6 mo. post injury) and 12 healthy controls (CTLs) (age = 41.8 ± 8.3 yrs) were assessed while walking in a virtual subway station viewed in a head-mounted display. They performed a collision avoidance task with VRPs, as well as auditory-based cognitive tasks (pitch discrimination and auditory Stroop), both under single and dual-task conditions. Dual-task cost (DTC) for onset distance of trajectory deviation, minimum distance from the VRP, maximum lateral deviation, walking speed, gaze fixations and cognitive task accuracy were contrasted between groups using generalized estimating equations. RESULTS In contrast to CTLs who showed locomotor DTCs only, individuals with m/sTBI displayed both locomotor and cognitive DTCs. While both groups walked slower under dual-task conditions, only individuals with m/sTBI failed to modify their onset distance of trajectory deviation and maintained smaller minimum distances and smaller maximum lateral deviation compared to single-task walking. Both groups showed shorter gaze fixations on the approaching VRP under dual-task conditions, but this reduction was less pronounced in the individuals with m/sTBI. A reduction in cognitive task accuracy under dual-task conditions was found in the m/sTBI group only. CONCLUSION Individuals with m/sTBI present altered locomotor and gaze behaviours, as well as altered cognitive performances, when executing a collision avoidance task involving moving pedestrians in dual-task conditions. Potential mechanisms explaining those alterations are discussed. Present findings highlight the compromised complex walking abilities in individuals with m/sTBI who otherwise present a good locomotor recovery.
Collapse
Affiliation(s)
- Thiago de Aquino Costa Sousa
- School of Physical & Occupational Therapy, McGill University, Montreal, QC, Canada.
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital - CISSS Laval, Site of the Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), 3205 Place Alton-Goldbloom, Laval, QC, H7V 1R2, Canada.
| | - Isabelle J Gagnon
- School of Physical & Occupational Therapy, McGill University, Montreal, QC, Canada
- Trauma/Child Development, Montreal Children's Hospital, Montreal, QC, Canada
| | - Karen Z H Li
- Department of Psychology, Concordia University, Montreal, QC, Canada
- Centre for Research in Human Development, Concordia University, Montreal, QC, Canada
- PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Bradford J McFadyen
- School of Rehabilitation Sciences, Université Laval, Quebec City, QC, Canada
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS Capitale Nationale, Quebec City, QC, Canada
| | - Anouk Lamontagne
- School of Physical & Occupational Therapy, McGill University, Montreal, QC, Canada
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital - CISSS Laval, Site of the Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), 3205 Place Alton-Goldbloom, Laval, QC, H7V 1R2, Canada
| |
Collapse
|
42
|
Cáceres E, Divani AA, Rubinos CA, Olivella-Gómez J, Viñan Garcés AE, González A, Alvarado Arias A, Bhatia K, Samadani U, Reyes LF. PaCO 2 Association with Outcomes of Patients with Traumatic Brain Injury at High Altitude: A Prospective Single-Center Cohort Study. Neurocrit Care 2024:10.1007/s12028-024-01982-8. [PMID: 38740704 DOI: 10.1007/s12028-024-01982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Partial pressure of carbon dioxide (PaCO2) is generally known to influence outcome in patients with traumatic brain injury (TBI) at normal altitudes. Less is known about specific relationships of PaCO2 levels and clinical outcomes at high altitudes. METHODS This is a prospective single-center cohort of consecutive patients with TBI admitted to a trauma center located at 2600 m above sea level. An unfavorable outcome was defined as a Glasgow Outcome Scale-Extended (GOSE) score < 4 at the 6-month follow-up. RESULTS We had a total of 81 patients with complete data, 80% (65/81) were men, and the median (interquartile range) age was 36 (25-50) years. Median Glasgow Coma Scale (GCS) score on admission was 9 (6-14); 49% (40/81) of patients had severe TBI (GCS 3-8), 32% (26/81) had moderate TBI (GCS 12-9), and 18% (15/81) had mild TBI (GCS 13-15). The median (interquartile range) Abbreviated Injury Score of the head (AISh) was 3 (2-4). The frequency of an unfavorable outcome (GOSE < 4) was 30% (25/81), the median GOSE was 4 (2-5), and the median 6-month mortality rate was 24% (20/81). Comparison between patients with favorable and unfavorable outcomes revealed that those with unfavorable outcome were older, (median age 49 [30-72] vs. 29 [22-41] years, P < 0.01), had lower admission GCS scores (6 [4-8] vs. 13 [8-15], P < 0.01), had higher AISh scores (4 [4-4] vs. 3 [2-4], P < 0.01), had higher Acute Physiology and Chronic Health disease Classification System II scores (17 [15-23] vs. 10 [6-14], P < 0.01), had higher Charlson scores (0 [0-2] vs. 0 [0-0], P < 0.01), and had higher PaCO2 levels (mean 35 ± 8 vs. 32 ± 6 mm Hg, P < 0.01). In a multivariate analysis, age (odds ratio [OR] 1.14, 95% confidence interval [CI] 1.1-1.30, P < 0.01), AISh (OR 4.7, 95% CI 1.55-21.0, P < 0.05), and PaCO2 levels (OR 1.23, 95% CI 1.10-1.53, P < 0.05) were significantly associated with the unfavorable outcomes. When applying the same analysis to the subgroup on mechanical ventilation, AISh (OR 5.4, 95% CI 1.61-28.5, P = 0.017) and PaCO2 levels (OR 1.36, 95% CI 1.13-1.78, P = 0.015) remained significantly associated with the unfavorable outcome. CONCLUSIONS Higher PaCO2 levels are associated with an unfavorable outcome in ventilated patients with TBI. These results underscore the importance of PaCO2 levels in patients with TBI and whether it should be adjusted for populations living at higher altitudes.
Collapse
Affiliation(s)
- Eder Cáceres
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia.
- Department of Bioscience, School of Engineering, Universidad de La Sabana, Chía, Colombia.
- Department of Critical Care, Clínica Universidad de La Sabana, Chía, Colombia.
| | - Afshin A Divani
- Department of Neurology, The University of New Mexico, Albuquerque, NM, USA
| | - Clio A Rubinos
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Juan Olivella-Gómez
- Department of Critical Care, Clínica Universidad de La Sabana, Chía, Colombia
| | | | - Angélica González
- Department of Critical Care, Clínica Universidad de La Sabana, Chía, Colombia
| | | | - Kunal Bhatia
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Uzma Samadani
- Department of Neurosurgery, Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Luis F Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Department of Critical Care, Clínica Universidad de La Sabana, Chía, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Joannides A, Korhonen TK, Clark D, Gnanakumar S, Venturini S, Mohan M, Bashford T, Baticulon R, Bhagavatula ID, Esene I, Fernández-Méndez R, Figaji A, Gupta D, Khan T, Laeke T, Martin M, Menon D, Paiva W, Park KB, Pattisapu JV, Rubiano AM, Sekhar V, Shabani H, Sichizya K, Solla D, Tirsit A, Tripathi M, Turner C, Depreitere B, Iaccarino C, Lippa L, Reisner A, Rosseau G, Servadei F, Trivedi R, Waran V, Kolias A, Hutchinson P. An international, prospective observational study on traumatic brain injury epidemiology study protocol: GEO-TBI: Incidence. NIHR OPEN RESEARCH 2024; 3:34. [PMID: 37881453 PMCID: PMC10593326 DOI: 10.3310/nihropenres.13377.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 10/27/2023]
Abstract
Background The epidemiology of traumatic brain injury (TBI) is unclear - it is estimated to affect 27-69 million individuals yearly with the bulk of the TBI burden in low-to-middle income countries (LMICs). Research has highlighted significant between-hospital variability in TBI outcomes following emergency surgery, but the overall incidence and epidemiology of TBI remains unclear. To address this need, we established the Global Epidemiology and Outcomes following Traumatic Brain Injury (GEO-TBI) registry, enabling recording of all TBI cases requiring admission irrespective of surgical treatment. Objective The GEO-TBI: Incidence study aims to describe TBI epidemiology and outcomes according to development indices, and to highlight best practices to facilitate further comparative research. Design Multi-centre, international, registry-based, prospective cohort study. Subjects Any unit managing TBI and participating in the GEO-TBI registry will be eligible to join the study. Each unit will select a 90-day study period. All TBI patients meeting the registry inclusion criteria (neurosurgical/ICU admission or neurosurgical operation) during the selected study period will be included in the GEO-TBI: Incidence. Methods All units will form a study team, that will gain local approval, identify eligible patients and input data. Data will be collected via the secure registry platform and validated after collection. Identifiers may be collected if required for local utility in accordance with the GEO-TBI protocol. Data Data related to initial presentation, interventions and short-term outcomes will be collected in line with the GEO-TBI core dataset, developed following consensus from an iterative survey and feedback process. Patient demographics, injury details, timing and nature of interventions and post-injury care will be collected alongside associated complications. The primary outcome measures for the study will be the Glasgow Outcome at Discharge Scale (GODS) and 14-day mortality. Secondary outcome measures will be mortality and extended Glasgow Outcome Scale (GOSE) at the most recent follow-up timepoint.
Collapse
Affiliation(s)
- Alexis Joannides
- NIHR Global Health Research Group on Acquired Brain & Spine Injury, University of Cambridge, Cambridge, UK
| | - Tommi Kalevi Korhonen
- NIHR Global Health Research Group on Acquired Brain & Spine Injury, University of Cambridge, Cambridge, UK
- Neurocenter, Neurosurgery, Oulu University Hospital & University of Oulu, Oulu, Pohjois-Pohjanmaa, Finland
| | - David Clark
- NIHR Global Health Research Group on Acquired Brain & Spine Injury, University of Cambridge, Cambridge, UK
| | - Sujit Gnanakumar
- NIHR Global Health Research Group on Acquired Brain & Spine Injury, University of Cambridge, Cambridge, UK
| | - Sara Venturini
- NIHR Global Health Research Group on Acquired Brain & Spine Injury, University of Cambridge, Cambridge, UK
| | - Midhun Mohan
- NIHR Global Health Research Group on Acquired Brain & Spine Injury, University of Cambridge, Cambridge, UK
| | - Thomas Bashford
- Health Systems Design Group, Department of Engineering, University of Cambridge, Cambridge, UK
- Division of Anaesthesia, Department of Medicine, University of Cambridge & Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ronnie Baticulon
- Division of Neurosurgery, Department of Neurosciences, Philippine General Hospital & University of the Philippines Manila, Manila, Philippines
| | - Indira Devi Bhagavatula
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, NIMHANS, Bengaluru, Karnataka, India
| | - Ignatius Esene
- Division of Neurosurgery, Faculty of Health Sciences, The University of Bamenda, Bambili, Cameroon
| | - Rocío Fernández-Méndez
- NIHR Global Health Research Group on Acquired Brain & Spine Injury, University of Cambridge, Cambridge, UK
| | - Anthony Figaji
- Division of Neurosurgery and Neurosciences Institute, University of Cape Town, Cape Town, South Africa
| | - Deepak Gupta
- Department of neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Tariq Khan
- Department of Neurosurgery, North Western General and Research Hospital, Peshawar, Pakistan
| | - Tsegazeab Laeke
- Division of Neurosurgery, Department of Surgery, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - David Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge & Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Wellingson Paiva
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Kee B. Park
- Global Neurosurgery Initiative-Program in Global Surgery and Social Change, Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jogi V. Pattisapu
- University of Central Florida College of Medicine, Orlando, Florida, USA
- Department of Neurosurgery, King George Hospital, Visakhapatnam, Andra Pradesh, India
| | | | - Vijaya Sekhar
- Department of Neurosurgery, King George Hospital, Visakhapatnam, Andra Pradesh, India
| | - Hamisi Shabani
- Department of Neurosurgery, Muhimbili Orthopaedic Institute, Dar es Salaam, Tanzania
| | - Kachinga Sichizya
- Department of Neurosurgery, University Teaching Hospital, Lusaka, Zambia
| | - Davi Solla
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Abenezer Tirsit
- Division of Neurosurgery, Department of Surgery, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Manjul Tripathi
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, Chandigarh, India
| | - Carole Turner
- NIHR Global Health Research Group on Acquired Brain & Spine Injury, University of Cambridge, Cambridge, UK
| | - Bart Depreitere
- Department of Neurosciences, University Hospital Leuven, UZ, Leuven, Belgium
| | - Corrado Iaccarino
- School of Neurosurgery, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Division of Neurosurgery, University Hospital of Modena, Modena, Italy
- Emergency Neurosurgery Unit, AUSL RE IRCCS, Reggio Emilia, Italy
| | - Laura Lippa
- Department of Neurosurgery, Ospedale Niguarda, Milan, Italy
| | - Andrew Reisner
- Departments of Neurosurgery and Pediatrics, Children's Healthcare of Atlanta & Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gail Rosseau
- Barrow Global, Barrow Neurosurgical Institute, Phoenix, Arizona, USA
- Department of Neurosurgery, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Franco Servadei
- Department of Neurosurgery, Humanitas Research Hospital-IRCCS & Humanitas University, Rozzano, Milan, Italy
| | - Rikin Trivedi
- NIHR Global Health Research Group on Acquired Brain & Spine Injury, University of Cambridge, Cambridge, UK
| | - Vicknes Waran
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Angelos Kolias
- NIHR Global Health Research Group on Acquired Brain & Spine Injury, University of Cambridge, Cambridge, UK
| | - Peter Hutchinson
- NIHR Global Health Research Group on Acquired Brain & Spine Injury, University of Cambridge, Cambridge, UK
| | - NIHR Global Health Research Group on Acquired Brain and Spine Injury
- NIHR Global Health Research Group on Acquired Brain & Spine Injury, University of Cambridge, Cambridge, UK
- Neurocenter, Neurosurgery, Oulu University Hospital & University of Oulu, Oulu, Pohjois-Pohjanmaa, Finland
- Health Systems Design Group, Department of Engineering, University of Cambridge, Cambridge, UK
- Division of Anaesthesia, Department of Medicine, University of Cambridge & Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Division of Neurosurgery, Department of Neurosciences, Philippine General Hospital & University of the Philippines Manila, Manila, Philippines
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, NIMHANS, Bengaluru, Karnataka, India
- Division of Neurosurgery, Faculty of Health Sciences, The University of Bamenda, Bambili, Cameroon
- Division of Neurosurgery and Neurosciences Institute, University of Cape Town, Cape Town, South Africa
- Department of neurosurgery, All India Institute of Medical Sciences, New Delhi, India
- Department of Neurosurgery, North Western General and Research Hospital, Peshawar, Pakistan
- Division of Neurosurgery, Department of Surgery, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Orion MedTech Ltd. CIC, Cambridge, UK
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of Sao Paulo, São Paulo, Brazil
- Global Neurosurgery Initiative-Program in Global Surgery and Social Change, Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
- University of Central Florida College of Medicine, Orlando, Florida, USA
- Department of Neurosurgery, King George Hospital, Visakhapatnam, Andra Pradesh, India
- Neurosciences Institute, El Bosque University, Bogotá, Colombia
- Department of Neurosurgery, Muhimbili Orthopaedic Institute, Dar es Salaam, Tanzania
- Department of Neurosurgery, University Teaching Hospital, Lusaka, Zambia
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, Chandigarh, India
- Department of Neurosciences, University Hospital Leuven, UZ, Leuven, Belgium
- School of Neurosurgery, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Division of Neurosurgery, University Hospital of Modena, Modena, Italy
- Emergency Neurosurgery Unit, AUSL RE IRCCS, Reggio Emilia, Italy
- Department of Neurosurgery, Ospedale Niguarda, Milan, Italy
- Departments of Neurosurgery and Pediatrics, Children's Healthcare of Atlanta & Emory University School of Medicine, Atlanta, Georgia, USA
- Barrow Global, Barrow Neurosurgical Institute, Phoenix, Arizona, USA
- Department of Neurosurgery, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Neurosurgery, Humanitas Research Hospital-IRCCS & Humanitas University, Rozzano, Milan, Italy
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - The GEO-TBI Collaborative
- NIHR Global Health Research Group on Acquired Brain & Spine Injury, University of Cambridge, Cambridge, UK
- Neurocenter, Neurosurgery, Oulu University Hospital & University of Oulu, Oulu, Pohjois-Pohjanmaa, Finland
- Health Systems Design Group, Department of Engineering, University of Cambridge, Cambridge, UK
- Division of Anaesthesia, Department of Medicine, University of Cambridge & Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Division of Neurosurgery, Department of Neurosciences, Philippine General Hospital & University of the Philippines Manila, Manila, Philippines
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, NIMHANS, Bengaluru, Karnataka, India
- Division of Neurosurgery, Faculty of Health Sciences, The University of Bamenda, Bambili, Cameroon
- Division of Neurosurgery and Neurosciences Institute, University of Cape Town, Cape Town, South Africa
- Department of neurosurgery, All India Institute of Medical Sciences, New Delhi, India
- Department of Neurosurgery, North Western General and Research Hospital, Peshawar, Pakistan
- Division of Neurosurgery, Department of Surgery, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Orion MedTech Ltd. CIC, Cambridge, UK
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of Sao Paulo, São Paulo, Brazil
- Global Neurosurgery Initiative-Program in Global Surgery and Social Change, Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
- University of Central Florida College of Medicine, Orlando, Florida, USA
- Department of Neurosurgery, King George Hospital, Visakhapatnam, Andra Pradesh, India
- Neurosciences Institute, El Bosque University, Bogotá, Colombia
- Department of Neurosurgery, Muhimbili Orthopaedic Institute, Dar es Salaam, Tanzania
- Department of Neurosurgery, University Teaching Hospital, Lusaka, Zambia
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, Chandigarh, India
- Department of Neurosciences, University Hospital Leuven, UZ, Leuven, Belgium
- School of Neurosurgery, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Division of Neurosurgery, University Hospital of Modena, Modena, Italy
- Emergency Neurosurgery Unit, AUSL RE IRCCS, Reggio Emilia, Italy
- Department of Neurosurgery, Ospedale Niguarda, Milan, Italy
- Departments of Neurosurgery and Pediatrics, Children's Healthcare of Atlanta & Emory University School of Medicine, Atlanta, Georgia, USA
- Barrow Global, Barrow Neurosurgical Institute, Phoenix, Arizona, USA
- Department of Neurosurgery, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Neurosurgery, Humanitas Research Hospital-IRCCS & Humanitas University, Rozzano, Milan, Italy
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
44
|
Aude CA, Vattipally VN, Das O, Ran KR, Giwa GA, Rincon-Torroella J, Xu R, Byrne JP, Muehlschlegel S, Suarez JI, Mukherjee D, Huang J, Azad TD, Bettegowda C. Machine Learning Identifies Variation in Timing of Palliative Care Consultations Among Traumatic Brain Injury Patients. RESEARCH SQUARE 2024:rs.3.rs-4290808. [PMID: 38746163 PMCID: PMC11092864 DOI: 10.21203/rs.3.rs-4290808/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background and Objective Timely palliative care involvement offers demonstrable benefits for traumatic brain injury (TBI) patients; however, palliative care consultations (PCCs) are used inconsistently during TBI management. This study aimed to employ advanced machine learning techniques to elucidate the primary drivers of PCC timing variability for TBI patients. Methods Data on admission, hospital course, and outcomes were collected for a cohort of 232 TBI patients who received both PCCs and neurosurgical consultations during the same hospitalization. Principal Component Analysis (PCA) and K-means clustering were used to identify patient phenotypes, which were then compared using Kaplan-Meier analysis. An extreme gradient boosting model (XGBoost) was employed to determine drivers of PCC timing, with model interpretation performed using SHapley Additive exPlanations (SHAP). Results Cluster A (n = 86) consisted mainly of older (median [IQR] = 87 [78, 94] years), White females with mild TBIs and demonstrated the shortest time-to-PCC (2.5 [1.0, 7.0] days). Cluster B (n = 108) also sustained mild TBIs but comprised moderately younger (81 [75, 86] years) married White males with later PCC (5.0 [3.0, 10.8] days). Cluster C (n = 38) represented much younger (46.5 [29.5, 59.8] years), more severely injured, non-White patients with the latest PCC initiation (9.0 [4.2, 17.0] days). The clusters did not differ by discharge disposition (p = 0.4) or frequency inpatient mortality (p > 0.9); however, Kaplan-Meier analysis revealed a significant difference in the time from admission to PCC (p < 0.001), despite no differences in time from admission to mortality (p = 0.18). SHAP analysis of the XGBoost model identified age, sex, and race as the most influential drivers of PCC timing. Conclusions This study highlights crucial disparities in PCC timing for TBI patients and underscores the need for targeted strategies to ensure timely and equitable palliative care integration for this vulnerable population.
Collapse
Affiliation(s)
| | | | - Oishika Das
- The Johns Hopkins University School of Medicine
| | | | | | | | - Risheng Xu
- The Johns Hopkins University School of Medicine
| | | | | | | | | | - Judy Huang
- The Johns Hopkins University School of Medicine
| | - Tej D Azad
- The Johns Hopkins University School of Medicine
| | | |
Collapse
|
45
|
Chan ST, Mercaldo N, Figueiro Longo MG, Welt J, Avesta A, Lee J, Lev MH, Ratai EM, Wenke MR, Parry BA, Drake L, Anderson RR, Rauch T, Diaz-Arrastia R, Kwong KK, Hamblin M, Vakoc BJ, Gupta R, Panzer A. Effects of Low-Level Light Therapy on Resting-State Connectivity Following Moderate Traumatic Brain Injury: Secondary Analyses of a Double-blinded Placebo-controlled Study. Radiology 2024; 311:e230999. [PMID: 38805733 PMCID: PMC11140530 DOI: 10.1148/radiol.230999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 05/30/2024]
Abstract
Background Low-level light therapy (LLLT) has been shown to modulate recovery in patients with traumatic brain injury (TBI). However, the impact of LLLT on the functional connectivity of the brain when at rest has not been well studied. Purpose To use functional MRI to assess the effect of LLLT on whole-brain resting-state functional connectivity (RSFC) in patients with moderate TBI at acute (within 1 week), subacute (2-3 weeks), and late-subacute (3 months) recovery phases. Materials and Methods This is a secondary analysis of a prospective single-site double-blinded sham-controlled study conducted in patients presenting to the emergency department with moderate TBI from November 2015 to July 2019. Participants were randomized for LLLT and sham treatment. The primary outcome of the study was to assess structural connectivity, and RSFC was collected as the secondary outcome. MRI was used to measure RSFC in 82 brain regions in participants during the three recovery phases. Healthy individuals who did not receive treatment were imaged at a single time point to provide control values. The Pearson correlation coefficient was estimated to assess the connectivity strength for each brain region pair, and estimates of the differences in Fisher z-transformed correlation coefficients (hereafter, z differences) were compared between recovery phases and treatment groups using a linear mixed-effects regression model. These analyses were repeated for all brain region pairs. False discovery rate (FDR)-adjusted P values were computed to account for multiple comparisons. Quantile mixed-effects models were constructed to quantify the association between the Rivermead Postconcussion Symptoms Questionnaire (RPQ) score, recovery phase, and treatment group. Results RSFC was evaluated in 17 LLLT-treated participants (median age, 50 years [IQR, 25-67 years]; nine female), 21 sham-treated participants (median age, 50 years [IQR, 43-59 years]; 11 female), and 23 healthy control participants (median age, 42 years [IQR, 32-54 years]; 13 male). Seven brain region pairs exhibited a greater change in connectivity in LLLT-treated participants than in sham-treated participants between the acute and subacute phases (range of z differences, 0.37 [95% CI: 0.20, 0.53] to 0.45 [95% CI: 0.24, 0.67]; FDR-adjusted P value range, .010-.047). Thirteen different brain region pairs showed an increase in connectivity in sham-treated participants between the subacute and late-subacute phases (range of z differences, 0.17 [95% CI: 0.09, 0.25] to 0.26 [95% CI: 0.14, 0.39]; FDR-adjusted P value range, .020-.047). There was no evidence of a difference in clinical outcomes between LLLT-treated and sham-treated participants (range of differences in medians, -3.54 [95% CI: -12.65, 5.57] to -0.59 [95% CI: -7.31, 8.49]; P value range, .44-.99), as measured according to RPQ scores. Conclusion Despite the small sample size, the change in RSFC from the acute to subacute phases of recovery was greater in LLLT-treated than sham-treated participants, suggesting that acute-phase LLLT may have an impact on resting-state neuronal circuits in the early recovery phase of moderate TBI. ClinicalTrials.gov Identifier: NCT02233413 © RSNA, 2024 Supplemental material is available for this article.
Collapse
Affiliation(s)
| | | | - Maria G. Figueiro Longo
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Jonathan Welt
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Arman Avesta
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Jarone Lee
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Michael H. Lev
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Eva-Maria Ratai
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Michael R. Wenke
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Blair A. Parry
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Lynn Drake
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Richard R. Anderson
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Terry Rauch
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Ramon Diaz-Arrastia
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Kenneth K. Kwong
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Michael Hamblin
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | | | | | - Ariane Panzer
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| |
Collapse
|
46
|
Pease M, Gupta K, Moshé SL, Correa DJ, Galanopoulou AS, Okonkwo DO, Gonzalez-Martinez J, Shutter L, Diaz-Arrastia R, Castellano JF. Insights into epileptogenesis from post-traumatic epilepsy. Nat Rev Neurol 2024; 20:298-312. [PMID: 38570704 DOI: 10.1038/s41582-024-00954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Post-traumatic epilepsy (PTE) accounts for 5% of all epilepsies. The incidence of PTE after traumatic brain injury (TBI) depends on the severity of injury, approaching one in three in groups with the most severe injuries. The repeated seizures that characterize PTE impair neurological recovery and increase the risk of poor outcomes after TBI. Given this high risk of recurrent seizures and the relatively short latency period for their development after injury, PTE serves as a model disease to understand human epileptogenesis and trial novel anti-epileptogenic therapies. Epileptogenesis is the process whereby previously normal brain tissue becomes prone to recurrent abnormal electrical activity, ultimately resulting in seizures. In this Review, we describe the clinical course of PTE and highlight promising research into epileptogenesis and treatment using animal models of PTE. Clinical, imaging, EEG and fluid biomarkers are being developed to aid the identification of patients at high risk of PTE who might benefit from anti-epileptogenic therapies. Studies in preclinical models of PTE have identified tractable pathways and novel therapeutic strategies that can potentially prevent epilepsy, which remain to be validated in humans. In addition to improving outcomes after TBI, advances in PTE research are likely to provide therapeutic insights that are relevant to all epilepsies.
Collapse
Affiliation(s)
- Matthew Pease
- Department of Neurosurgery, Indiana University, Bloomington, IN, USA.
| | - Kunal Gupta
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Solomon L Moshé
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Paediatrics, Albert Einstein College of Medicine, New York, NY, USA
| | - Daniel J Correa
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
| | - Aristea S Galanopoulou
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - David O Okonkwo
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Lori Shutter
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
47
|
Ge Q, Lu H, Geng X, Chen X, Liu X, Sun H, Guo Z, Sun J, Qi F, Niu X, Wang A, He J, Sun W, Xu L. Serum metabolism alteration behind different etiology, diagnosis, and prognosis of disorders of consciousness. Chin Neurosurg J 2024; 10:12. [PMID: 38594757 PMCID: PMC11003070 DOI: 10.1186/s41016-024-00365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Patients with disorders of consciousness (DoC) exhibit varied revival outcomes based on different etiologies and diagnoses, the mechanisms of which remain largely unknown. The fluctuating clinical presentations in DoC pose challenges in accurately assessing consciousness levels and prognoses, often leading to misdiagnoses. There is an urgent need for a deeper understanding of the physiological changes in DoC and the development of objective diagnostic and prognostic biomarkers to improve treatment guidance. METHODS To explore biomarkers and understand the biological processes, we conducted a comprehensive untargeted metabolomic analysis on serum samples from 48 patients with DoC. Patients were categorized based on etiology (TBI vs. non-TBI), CRS-R scores, and prognosis. Advanced analytical techniques, including PCA and OPLS-DA models, were employed to identify differential metabolites. RESULTS Our analysis revealed a distinct separation in metabolomic profiles among the different groups. The primary differential metabolites distinguishing patients with varying etiologies were predominantly phospholipids, with a notable decrease in glycerophospholipids observed in the TBI group. Patients with higher CRS-R scores exhibited a pattern of impaired carbohydrate metabolism coupled with enhanced lipid metabolism. Notably, serum concentrations of both LysoPE and PE were reduced in patients with improved outcomes, suggesting their potential as prognostic biomarkers. CONCLUSIONS Our study underscores the critical role of phospholipid metabolism in the brain's metabolic alterations in patients with DoC. It identifies key biomarkers for diagnosis and prognosis, offering insights that could lead to novel therapeutic targets. These findings highlight the value of metabolomic profiling in understanding and potentially treating DoC.
Collapse
Affiliation(s)
- Qianqian Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hezhen Lu
- China-Japan Union Hospital of Jilin University, Changchun, China
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaoli Geng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueling Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Liu
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Haidan Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhengguang Guo
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jiameng Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Feng Qi
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xia Niu
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Aiwei Wang
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Wei Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Long Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.
| |
Collapse
|
48
|
Eghzawi A, Alsabbah A, Gharaibeh S, Alwan I, Gharaibeh A, Goyal AV. Mortality Predictors for Adult Patients with Mild-to-Moderate Traumatic Brain Injury: A Literature Review. Neurol Int 2024; 16:406-418. [PMID: 38668127 PMCID: PMC11053597 DOI: 10.3390/neurolint16020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
Traumatic brain injuries (TBIs) represent a significant public health concern, with mild-to-moderate cases comprising a substantial portion of incidents. Understanding the predictors of mortality among adult patients with mild-to-moderate TBIs is crucial for optimizing clinical management and improving outcomes. This literature review examines the existing research to identify and analyze the mortality predictors in this patient population. Through a comprehensive review of peer-reviewed articles and clinical studies, key prognostic factors, such as age, Glasgow Coma Scale (GCS) score, the presence of intracranial hemorrhage, pupillary reactivity, and coexisting medical conditions, are explored. Additionally, this review investigates the role of advanced imaging modalities, biomarkers, and scoring systems in predicting mortality following a mild-to-moderate TBI. By synthesizing the findings from diverse studies, this review aims to provide clinicians and researchers with valuable insights into the factors influencing mortality outcomes in adult patients with a mild-to-moderate TBI, thus facilitating more informed decision making and targeted interventions in clinical practice.
Collapse
Affiliation(s)
- Ansam Eghzawi
- Insight Research Institute, Flint, MI 48507, USA; (A.E.); (A.A.); (S.G.); (I.A.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
- Department of Research, Insight Hospital and Medical Center, Chicago, IL 60616 USA
| | - Alameen Alsabbah
- Insight Research Institute, Flint, MI 48507, USA; (A.E.); (A.A.); (S.G.); (I.A.)
| | - Shatha Gharaibeh
- Insight Research Institute, Flint, MI 48507, USA; (A.E.); (A.A.); (S.G.); (I.A.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
| | - Iktimal Alwan
- Insight Research Institute, Flint, MI 48507, USA; (A.E.); (A.A.); (S.G.); (I.A.)
- Department of Research, Insight Hospital and Medical Center, Chicago, IL 60616 USA
| | - Abeer Gharaibeh
- Insight Research Institute, Flint, MI 48507, USA; (A.E.); (A.A.); (S.G.); (I.A.)
- Department of Research, Insight Hospital and Medical Center, Chicago, IL 60616 USA
| | - Anita V. Goyal
- Department of Emergency Medicine, Insight Hospital and Medical Center, Chicago, IL 60616, USA
| |
Collapse
|
49
|
Rodriguez EE, Zaccarelli M, Sterchele ED, Taccone FS. "NeuroVanguard": a contemporary strategy in neuromonitoring for severe adult brain injury patients. Crit Care 2024; 28:104. [PMID: 38561829 PMCID: PMC10985991 DOI: 10.1186/s13054-024-04893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Severe acute brain injuries, stemming from trauma, ischemia or hemorrhage, remain a significant global healthcare concern due to their association with high morbidity and mortality rates. Accurate assessment of secondary brain injuries severity is pivotal for tailor adequate therapies in such patients. Together with neurological examination and brain imaging, monitoring of systemic secondary brain injuries is relatively straightforward and should be implemented in all patients, according to local resources. Cerebral secondary injuries involve factors like brain compliance loss, tissue hypoxia, seizures, metabolic disturbances and neuroinflammation. In this viewpoint, we have considered the combination of specific noninvasive and invasive monitoring tools to better understand the mechanisms behind the occurrence of these events and enhance treatment customization, such as intracranial pressure monitoring, brain oxygenation assessment and metabolic monitoring. These tools enable precise intervention, contributing to improved care quality for severe brain injury patients. The future entails more sophisticated technologies, necessitating knowledge, interdisciplinary collaboration and resource allocation, with a focus on patient-centered care and rigorous validation through clinical trials.
Collapse
Affiliation(s)
- Edith Elianna Rodriguez
- Department of Intensive Care, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070, Brussels, Belgium
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mario Zaccarelli
- Department of Intensive Care, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070, Brussels, Belgium
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070, Brussels, Belgium
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Terapia Intensiva e del Dolore, Scuola di Anestesia Rianimazione, Università degli Studi di Milano, Milan, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070, Brussels, Belgium.
| |
Collapse
|
50
|
Wang HE, Hu C, Barnhart BJ, Jansen JO, Moeller K, Spaite DW. Changes in neurologic status after traumatic brain injury in the Resuscitation Outcomes Consortium Hypertonic Saline trial. J Am Coll Emerg Physicians Open 2024; 5:e13107. [PMID: 38486833 PMCID: PMC10938931 DOI: 10.1002/emp2.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 03/17/2024] Open
Abstract
Objectives Traumatic brain injury (TBI) is an important public health problem resulting in significant death and disability. Emergency medical services (EMS) personnel often provide initial treatment for TBI, but only limited data describe the long-term course and outcomes of this care. We sought to characterize changes in neurologic status among adults with TBI patients enrolled in the Resuscitation Outcomes Consortium Hypertonic Saline (ROC-HS) trial. Methods We used data from the TBI cohort of the ROC-HS trial. The trial included adults with TBI, with Glasgow Coma Scale (GCS) ≤8, and excluded those with shock (systolic blood pressure [SBP] ≤70 or SBP 71-90 with a heart rate [HR] ≥108). The primary outcome was Glasgow Outcome Scale-Extended (GOS-E; 1 = dead, 8 = no disability) determined at (a) hospital discharge and (b) 6-month follow-up. We assessed changes in GOS-E between hospital discharge and 6-month follow-up using descriptive statistics and Sankey graphs. Results Among 1279 TBI included in the analysis, GOS-E categories at hospital discharge were as follows: favorable (GOS-E 5-8) 220 (17.2%), unfavorable (GOS-E 2-4) 664 (51.9%), dead (GOS-E 1) 321 (25.1%), and missing 74 (5.8%). GOS-E categories at 6-month follow-up were as follows: favorable 459 (35.9%), unfavorable 279 (21.8%), dead 346 (27.1%), and missing 195 (15.2%). Among initial TBI survivors with complete GOS-E, >96% followed one of three neurologic recovery patterns: (1) favorable to favorable (20.0%), (2) unfavorable to favorable (40.3%), and (3) unfavorable to unfavorable (36.0%). Few patients deteriorated from favorable to unfavorable neurologic status, and there were few additional deaths. Conclusions Among TBI receiving initial prehospital care in the ROC-HS trial, changes in 6-month neurologic status followed distinct patterns. Among TBI with unfavorable neurologic status at hospital discharge, almost half improved to favorable neurologic status at 6 months. Among those with favorable neurologic status at discharge, very few worsened or died at 6 months. These findings have important implications for TBI clinical care, research, and trial design.
Collapse
Affiliation(s)
- Henry E. Wang
- Department of Emergency MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Chengcheng Hu
- Department of BiostatisticsMel and Enid Zuckerman College of Public HealthThe University of ArizonaTucsonArizonaUSA
| | - Bruce J. Barnhart
- Department of Emergency MedicineThe University of Arizona College of Medicine‐PhoenixPhoenixArizonaUSA
| | - Jan O. Jansen
- Division of Trauma, Burns and Critical CareDepartment of SurgeryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Kim Moeller
- Department of Emergency MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Daniel W. Spaite
- Department of Emergency MedicineThe University of Arizona College of MedicineTucsonArizonaUSA
| |
Collapse
|