1
|
Richardson DL, Quintanilha JCF, Danziger N, Li G, Sokol E, Schrock AB, Ebot E, Bhardwaj N, Norris T, Afghahi A, Frachioni A, Washington C, Dockery L, Elvin J, Graf RP, Moore KN. Effectiveness of PARP Inhibitor Maintenance Therapy in Ovarian Cancer by BRCA1/2 and a Scar-Based HRD Signature in Real-World Practice. Clin Cancer Res 2024; 30:4644-4653. [PMID: 39078736 PMCID: PMC11474169 DOI: 10.1158/1078-0432.ccr-24-1225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/21/2024] [Accepted: 07/26/2024] [Indexed: 10/16/2024]
Abstract
PURPOSE The purpose of the study was to compare the effectiveness of PARP inhibitor maintenance therapy (mPARPi) in real-world practice by biomarker status [BRCA1/2 alterations (BRCAalt) and a homologous recombination deficiency signature (HRDsig)] in advanced ovarian cancer. EXPERIMENTAL DESIGN Patients with ovarian cancer receiving first-line platinum-based chemotherapy and either mPARPi or no maintenance were included. Patient data were obtained by a US-based de-identified ovarian cancer Clinico-Genomic Database, from ∼280 US cancer clinics (01/2015-03/2023). Real-world progression-free survival (rwPFS) and overall survival (rwOS) were compared by biomarker status using Cox models, weighted by propensity scores. RESULTS Of 673 patients, 160 received mPARPi [31.2% BRCAalt and 51.9% HRDsig(+)] and 513 no maintenance [15.6% BRCAalt and 34.1% HRDsig(+)]. BRCAalt patients receiving mPARPi versus no maintenance had favorable rwPFS [HR, 0.48; 95% confidence interval (CI), 0.26-0.87; P = 0.0154], as did BRCA wild-type (WT; HR, 0.76; 95% CI, 0.57-1.01; P = 0.0595). Favorable rwOS was not observed with mPARPi for BRCAalt or BRCA-WT. HRDsig(+) patients receiving mPARPi versus no maintenance had favorable rwPFS (HR, 0.36; 95% CI, 0.24-0.55; P < 0.001) and numerically favorable rwOS (HR, 0.46; 95% CI, 0.21-1.02; P = 0.0561). No differences were observed for HRDsig(-). mPARPi treatment interaction was observed for HRDsig(+) versus HRDsig(-) (rwPFS P < 0.001/rwOS P = 0.016) but not for BRCAalt versus BRCA-WT. Patients with BRCA-WT/HRDsig(+) receiving mPARPi had favorable rwPFS (HR, 0.40; 95% CI, 0.22-0.72; P = 0.003), whereas no difference was observed for BRCA-WT/HRDsig(-). CONCLUSIONS HRDsig predicted benefit of mPARPi better than BRCAalt. Patients with HRDsig(+) status experienced favorable outcomes, even if they had BRCA-WT status. In contrast, patients with HRDsig(-) status did not show significant benefit from mPARPi treatment. HRDsig might predict benefit from mPARPi regardless of BRCAalt status.
Collapse
Affiliation(s)
- Debra L. Richardson
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | | | | | - Gerald Li
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | - Ethan Sokol
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | | | - Ericka Ebot
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | | | | | | | | | - Christina Washington
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Lauren Dockery
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Julia Elvin
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | - Ryon P. Graf
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | - Kathleen N. Moore
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
2
|
Lin DI, Quintanilha JCF, Danziger N, Lang L, Levitan D, Hayne C, Hiemenz MC, Smith DL, Albacker LA, Leibowitz J, Mata DA, Decker B, Lakis S, Patel NR, Graf RP, Elvin JA, Ross JS, Pattani V, Huang RSP, Wehn AK. Pan-tumor validation of a NGS fraction-based MSI analysis as a predictor of response to Pembrolizumab. NPJ Precis Oncol 2024; 8:204. [PMID: 39277692 PMCID: PMC11401835 DOI: 10.1038/s41698-024-00679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
Microsatellite instability high (MSI-H) and mismatch repair deficient (dMMR) tumor status have been demonstrated to predict patient response to immunotherapies. We developed and validated a next-generation sequencing (NGS)-based companion diagnostic (CDx) to detect MSI-H solid tumors via a comprehensive genomic profiling (CGP) assay, FoundationOne®CDx (F1CDx). To determine MSI status, F1CDx calculates the fraction of unstable microsatellite loci across >2000 loci using a fraction-based (FB) analysis. Across solid tumor types, F1CDx demonstrated a high analytical concordance with both PCR (n = 264) and IHC (n = 279) with an overall percent agreement (OPA) of 97.7% and 97.8%, respectively. As part of a retrospective bridging clinical study from KEYNOTE-158 Cohort K and KEYNOTE-164, patients with MSI-H tumors as determined by F1CDx demonstrated an objective response rate (ORR) of 43.0% to pembrolizumab. In real-world cancer patients from a deidentified clinicogenomic database, F1CDx was at least equivalent in assessing clinical outcome following immunotherapy compared with MMR IHC. Demonstrated analytical and clinical performance of F1CDx led to the pan-tumor FDA approval in 2022 of F1CDx to identify MSI-H solid tumor patients for treatment with pembrolizumab. F1CDx is an accurate, reliable, and FDA-approved method for the identification of MSI-H tumors for treatment with pembrolizumab.
Collapse
Affiliation(s)
| | | | | | | | | | - Cynthia Hayne
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Iwasawa O, Ikegami M, Miyagawa T, Morita H, Saito H, Omori I, Awaji K, Omatsu J, Yamada D, Kage H, Oda K, Sato S, Sumida H. Association of Genetic Alterations with Prognosis in Extramammary Paget's Disease: Insights into the Involvement of somatic CDKN2A variants in Poor Prognosis. Br J Dermatol 2024:ljae337. [PMID: 39172540 DOI: 10.1093/bjd/ljae337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Previous studies reported the mutational landscape in extramammary Paget's disease (EMPD); however, the prognostic implications of genetic alterations remain unexplored. While CDKN2A loss is known to be associated with tumor progression or poor prognosis in some types of cancer, its significance in EMPD has not been investigated. OBJECTIVES To examine the association between common genetic alterations and prognosis in EMPD. METHODS This is a retrospective cohort study analyzing EMPD cases registered until January 2024 in the Center for Cancer Genomics and Advanced Therapeutics database, which is a nationwide database recording clinical data and comprehensive genomic profiling (CGP) test results in Japan. RESULTS A total of 167 cases were recorded in the database, with CDKN2A loss being the most frequent genetic variant. Survival analysis was conducted on 127 cases. Survival from chemotherapy initiation was analyzed with adjusting for length bias inherent in the database using the Kaplan-Meier estimator, an established adjustment method. Cases with BRCA2-mutant tumors (n=18) had a worse prognosis than those with BRCA2-wild-type tumors (n=109; HR=2.97, 95% CI 1.46-6.01, p=0.003). Additionally, CDKN2A-mutant group (n=72) had a significantly worse prognosis than those with CDKN2A-wild-type group (n=55; HR=1.81, 95% CI 1.06-3.07, p=0.029). Most CDKN2A variants were pathogenic, primarily characterized by loss, while most BRCA2 variants were variants of uncertain significance. In the analysis of survival from CGP enrollment based on Eastern Cooperative Oncology Group performance status (ECOG-PS), cases with ECOG-PS 1 at the time of CGP enrollment had significantly poorer prognosis than those with ECOG-PS 0 (p=0.034; median survival time, 531 vs. 259 days). CONCLUSIONS Somatic CDKN2A variant, mainly exhibiting loss, may be associated with poor prognosis in EMPD. Cases with BRCA2-mutant cancer might also have a worse prognosis in EMPD. In addition, CGP testing before PS deteriorates is preferable, considering the observed median survival of individuals undergoing CGP tests in an ECOG-PS-1 condition was less than 9 months.
Collapse
Affiliation(s)
- Okuto Iwasawa
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masachika Ikegami
- Department of Musculoskeletal Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Takuya Miyagawa
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiromichi Morita
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hinako Saito
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Omori
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Awaji
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Omatsu
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Yamada
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidenori Kage
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hayakazu Sumida
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Scleroderma Center, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
4
|
Bercovitch Sadinsky M. Actionable Genotypes and Life Span in Iceland. N Engl J Med 2024; 390:958. [PMID: 38446684 DOI: 10.1056/nejmc2314021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
|
5
|
Kehl KL, Lavery JA, Brown S, Fuchs H, Riely G, Schrag D, Newcomb A, Nichols C, Micheel CM, Bedard PL, Sweeney SM, Fiandalo M, Panageas KS. Biomarker Inference and the Timing of Next-Generation Sequencing in a Multi-Institutional, Cross-Cancer Clinicogenomic Data Set. JCO Precis Oncol 2024; 8:e2300489. [PMID: 38484212 PMCID: PMC10954072 DOI: 10.1200/po.23.00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/03/2023] [Accepted: 01/03/2024] [Indexed: 03/19/2024] Open
Abstract
PURPOSE Observational clinicogenomic data sets, consisting of tumor next-generation sequencing (NGS) data linked to clinical records, are commonly used for cancer research. However, in real-world practice, oncologists frequently request NGS in search of treatment options for progressive cancer. The extent and impact of this dynamic on analysis of clinicogenomic research data are not well understood. METHODS We analyzed clinicogenomic data for patients with non-small cell lung, colorectal, breast, prostate, pancreatic, or urothelial cancers in the American Association for Cancer Research Biopharmaceutical Consortium cohort. Associations between baseline and time-varying clinical characteristics and time from diagnosis to NGS were measured. To explore the impact of informative cohort entry on biomarker inference, statistical interactions between selected biomarkers and time to NGS with respect to overall survival were calculated. RESULTS Among 7,182 patients, time from diagnosis to NGS varied significantly by clinical factors, including cancer type, calendar year of sequencing, institution, and age and stage at diagnosis. NGS rates also varied significantly by dynamic clinical status variables; in an adjusted model, compared with patients with stable disease at any given time after diagnosis, patients with progressive disease by imaging or oncologist assessment had higher NGS rates (hazard ratio for NGS, 1.61 [95% CI, 1.45 to 1.78] and 2.32 [95% CI, 2.01 to 2.67], respectively). Statistical interactions between selected biomarkers and time to NGS with respect to survival, potentially indicating biased biomarker inference results, were explored. CONCLUSION To evaluate the appropriateness of a data set for a particular research question, it is crucial to measure associations between dynamic cancer status and the timing of NGS, as well as to evaluate interactions involving biomarkers of interest and NGS timing with respect to survival outcomes.
Collapse
Affiliation(s)
- Kenneth L. Kehl
- Division of Population Sciences, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jessica A. Lavery
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Samantha Brown
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hannah Fuchs
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gregory Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Deborah Schrag
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ashley Newcomb
- Division of Population Sciences, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Chelsea Nichols
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Christine M. Micheel
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | | | | | | | - Katherine S. Panageas
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
6
|
Sanz-Garcia E, Brown S, Lavery JA, Weiss J, Fuchs HE, Newcomb A, Postle A, Warner JL, LeNoue-Newton ML, Sweeney SM, Pillai S, Yu C, Nichols C, Mastrogiacomo B, Kundra R, Schultz N, Kehl KL, Riely GJ, Schrag D, Govindarajan A, Panageas KS, Bedard PL. Genomic Characterization and Clinical Outcomes of Patients with Peritoneal Metastases from the AACR GENIE Biopharma Collaborative Colorectal Cancer Registry. CANCER RESEARCH COMMUNICATIONS 2024; 4:475-486. [PMID: 38329392 PMCID: PMC10876516 DOI: 10.1158/2767-9764.crc-23-0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Peritoneal metastases (PM) are common in metastatic colorectal cancer (mCRC). We aimed to characterize patients with mCRC and PM from a clinical and molecular perspective using the American Association of Cancer Research Genomics Evidence Neoplasia Information Exchange (GENIE) Biopharma Collaborative (BPC) registry. Patients' tumor samples underwent targeted next-generation sequencing. Clinical characteristics and treatment outcomes were collected retrospectively. Overall survival (OS) from advanced disease and progression-free survival (PFS) from start of cancer-directed drug regimen were estimated and adjusted for the left truncation bias. A total of 1,281 patients were analyzed, 244 (19%) had PM at time of advanced disease. PM were associated with female sex [OR: 1.67; 95% confidence interval (CI): 1.11-2.54; P = 0.014] and higher histologic grade (OR: 1.72; 95% CI: 1.08-2.71; P = 0.022), while rectal primary tumors were less frequent in patients with PM (OR: 0.51; 95% CI: 0.29-0.88; P < 0.001). APC occurred less frequently in patients with PM (N = 151, 64% vs. N = 788, 79%) while MED12 alterations occurred more frequently in patients with PM (N = 20, 10% vs. N = 32, 4%); differences in MED12 were not significant when restricting to oncogenic and likely oncogenic variants according to OncoKB. Patients with PM had worse OS (HR: 1.45; 95% CI: 1.16-1.81) after adjustment for independently significant clinical and genomic predictors. PFS from initiation of first-line treatment did not differ by presence of PM. In conclusion, PM were more frequent in females and right-sided primary tumors. Differences in frequencies of MED12 and APC alterations were identified between patients with and without PM. PM were associated with shorter OS but not with PFS from first-line treatment. SIGNIFICANCE Utilizing the GENIE BPC registry, this study found that PM in patients with colorectal cancer occur more frequently in females and right-sided primary tumors and are associated with worse OS. In addition, we found a lower frequency of APC alterations and a higher frequency in MED12 alterations in patients with PM.
Collapse
Affiliation(s)
- Enrique Sanz-Garcia
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre – University Health Network, Department of Medicine, University of Toronto, Ontario, Canada
| | - Samantha Brown
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Jessica Weiss
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre – University Health Network, Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | - Asha Postle
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | - Shawn M. Sweeney
- American Association of Cancer Research, Philadelphia, Pennsylvania
| | - Shirin Pillai
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Celeste Yu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre – University Health Network, Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | - Ritika Kundra
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | - Deborah Schrag
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anand Govindarajan
- Sinai Health System, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Ontario, Canada
| | | | - Philippe L. Bedard
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre – University Health Network, Department of Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
7
|
Grabski IN, Heymach JV, Kehl KL, Kopetz S, Lau KS, Riely GJ, Schrag D, Yaeger R, Irizarry RA, Haigis KM. Effects of KRAS Genetic Interactions on Outcomes in Cancers of the Lung, Pancreas, and Colorectum. Cancer Epidemiol Biomarkers Prev 2024; 33:158-169. [PMID: 37943166 PMCID: PMC10841605 DOI: 10.1158/1055-9965.epi-23-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/02/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND KRAS is among the most commonly mutated oncogenes in cancer, and previous studies have shown associations with survival in many cancer contexts. Evidence from both clinical observations and mouse experiments further suggests that these associations are allele- and tissue-specific. These findings motivate using clinical data to understand gene interactions and clinical covariates within different alleles and tissues. METHODS We analyze genomic and clinical data from the AACR Project GENIE Biopharma Collaborative for samples from lung, colorectal, and pancreatic cancers. For each of these cancer types, we report epidemiological associations for different KRAS alleles, apply principal component analysis (PCA) to discover groups of genes co-mutated with KRAS, and identify distinct clusters of patient profiles with implications for survival. RESULTS KRAS mutations were associated with inferior survival in lung, colon, and pancreas, although the specific mutations implicated varied by disease. Tissue- and allele-specific associations with smoking, sex, age, and race were found. Tissue-specific genetic interactions with KRAS were identified by PCA, which were clustered to produce five, four, and two patient profiles in lung, colon, and pancreas. Membership in these profiles was associated with survival in all three cancer types. CONCLUSIONS KRAS mutations have tissue- and allele-specific associations with inferior survival, clinical covariates, and genetic interactions. IMPACT Our results provide greater insight into the tissue- and allele-specific associations with KRAS mutations and identify clusters of patients that are associated with survival and clinical attributes from combinations of genetic interactions with KRAS mutations.
Collapse
Affiliation(s)
- Isabella N. Grabski
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - John V. Heymach
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth L. Kehl
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken S. Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gregory J. Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Deborah Schrag
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rafael A. Irizarry
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kevin M. Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
8
|
de Bruijn I, Kundra R, Mastrogiacomo B, Tran TN, Sikina L, Mazor T, Li X, Ochoa A, Zhao G, Lai B, Abeshouse A, Baiceanu D, Ciftci E, Dogrusoz U, Dufilie A, Erkoc Z, Garcia Lara E, Fu Z, Gross B, Haynes C, Heath A, Higgins D, Jagannathan P, Kalletla K, Kumari P, Lindsay J, Lisman A, Leenknegt B, Lukasse P, Madela D, Madupuri R, van Nierop P, Plantalech O, Quach J, Resnick AC, Rodenburg SY, Satravada BA, Schaeffer F, Sheridan R, Singh J, Sirohi R, Sumer SO, van Hagen S, Wang A, Wilson M, Zhang H, Zhu K, Rusk N, Brown S, Lavery JA, Panageas KS, Rudolph JE, LeNoue-Newton ML, Warner JL, Guo X, Hunter-Zinck H, Yu TV, Pilai S, Nichols C, Gardos SM, Philip J, Kehl KL, Riely GJ, Schrag D, Lee J, Fiandalo MV, Sweeney SM, Pugh TJ, Sander C, Cerami E, Gao J, Schultz N. Analysis and Visualization of Longitudinal Genomic and Clinical Data from the AACR Project GENIE Biopharma Collaborative in cBioPortal. Cancer Res 2023; 83:3861-3867. [PMID: 37668528 PMCID: PMC10690089 DOI: 10.1158/0008-5472.can-23-0816] [Citation(s) in RCA: 112] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
International cancer registries make real-world genomic and clinical data available, but their joint analysis remains a challenge. AACR Project GENIE, an international cancer registry collecting data from 19 cancer centers, makes data from >130,000 patients publicly available through the cBioPortal for Cancer Genomics (https://genie.cbioportal.org). For 25,000 patients, additional real-world longitudinal clinical data, including treatment and outcome data, are being collected by the AACR Project GENIE Biopharma Collaborative using the PRISSMM data curation model. Several thousand of these cases are now also available in cBioPortal. We have significantly enhanced the functionalities of cBioPortal to support the visualization and analysis of this rich clinico-genomic linked dataset, as well as datasets generated by other centers and consortia. Examples of these enhancements include (i) visualization of the longitudinal clinical and genomic data at the patient level, including timelines for diagnoses, treatments, and outcomes; (ii) the ability to select samples based on treatment status, facilitating a comparison of molecular and clinical attributes between samples before and after a specific treatment; and (iii) survival analysis estimates based on individual treatment regimens received. Together, these features provide cBioPortal users with a toolkit to interactively investigate complex clinico-genomic data to generate hypotheses and make discoveries about the impact of specific genomic variants on prognosis and therapeutic sensitivities in cancer. SIGNIFICANCE Enhanced cBioPortal features allow clinicians and researchers to effectively investigate longitudinal clinico-genomic data from patients with cancer, which will improve exploration of data from the AACR Project GENIE Biopharma Collaborative and similar datasets.
Collapse
Affiliation(s)
- Ino de Bruijn
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ritika Kundra
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Luke Sikina
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tali Mazor
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xiang Li
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Angelica Ochoa
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gaofei Zhao
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bryan Lai
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Adam Abeshouse
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Ersin Ciftci
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | - Ziya Erkoc
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Zhaoyuan Fu
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Benjamin Gross
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles Haynes
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Allison Heath
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David Higgins
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | - Priti Kumari
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Caris Life Sciences, Irving, Texas
| | | | - Aaron Lisman
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Divya Madela
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | - Joyce Quach
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Adam C. Resnick
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | | | | | | | - Rajat Sirohi
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | - Avery Wang
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Manda Wilson
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hongxin Zhang
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kelsey Zhu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Nicole Rusk
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samantha Brown
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | | | | | - Xindi Guo
- Sage Bionetworks, Seattle, Washington
| | | | | | - Shirin Pilai
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - John Philip
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | - Deborah Schrag
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jocelyn Lee
- American Association for Cancer Research: Project GENIE, Philadelphia, Pennsylvania
| | - Michael V. Fiandalo
- American Association for Cancer Research: Project GENIE, Philadelphia, Pennsylvania
| | - Shawn M. Sweeney
- American Association for Cancer Research: Project GENIE, Philadelphia, Pennsylvania
| | - Trevor J. Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | - Ethan Cerami
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jianjiong Gao
- Memorial Sloan Kettering Cancer Center, New York, New York
- Caris Life Sciences, Irving, Texas
| | | |
Collapse
|
9
|
Lavery JA, Boutros PC, Scott JM, Tammela T, Moskowitz CS, Jones LW. Pan-Cancer Analysis of Postdiagnosis Exercise and Mortality. J Clin Oncol 2023; 41:4982-4992. [PMID: 37651670 DOI: 10.1200/jco.23.00058] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/11/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023] Open
Abstract
PURPOSE The impact of postdiagnosis exercise on cause-specific mortality in cancer survivors and whether this differs on the basis of cancer site is unclear. METHODS We performed an analysis of 11,480 patients with cancer enrolled in the Prostate, Lung, Colorectal, and Ovarian cancer screening trial. Patients with a confirmed diagnosis of cancer completing a standardized survey quantifying exercise after diagnosis were included. The primary outcome was all-cause mortality (ACM); secondary end points were cancer mortality and mortality from other causes. Cox models were used to estimate the cause-specific hazard ratios (HRs) for ACM, cancer, and noncancer mortality as a function of meeting exercise guidelines versus not meeting guidelines with adjustment for important clinical covariates. RESULTS After a median follow-up of 16 years from diagnosis, 4,665 deaths were documented (1,940 due to cancer and 2,725 due to other causes). In multivariable analyses, exercise consistent with guidelines was associated with a 25% reduced risk of ACM compared with nonexercise (HR, 0.75; 95% CI, 0.70 to 0.80). Compared with nonexercise, exercise consistent with guidelines was associated with a significant reduction in cancer mortality (HR, 0.79; 95% CI, 0.72 to 0.88) and mortality from other causes (HR, 0.72; 95% CI, 0.66 to 0.78). The inverse relationship between exercise and cause-specific mortality varied by exercise dose. Exercise consistent with guidelines was associated with a reduced hazard of ACM for multiple cancer sites. Reduction in cancer mortality for exercisers was only observed in head and neck and renal cancer. CONCLUSION In this pan-cancer sample of long-term cancer survivors, exercise consistent with guidelines was associated with substantial ACM benefit driven by both reductions in cancer and noncancer mortality. The cause-specific impact of exercise differed as a function of cancer site.
Collapse
Affiliation(s)
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA
| | - Jessica M Scott
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, New York, NY
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Lee W Jones
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, New York, NY
| |
Collapse
|
10
|
Kobayashi K, Saito Y, Kamogashira T, Kage H, Fukuoka O, Yamamura K, Mukai T, Oda K, Yamasoba T. Survival analysis of high-grade salivary gland carcinoma adjusted for length bias due to delay in comprehensive genomic profiling. Jpn J Clin Oncol 2023; 53:1092-1093. [PMID: 37781750 DOI: 10.1093/jjco/hyad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023] Open
Affiliation(s)
- Kenya Kobayashi
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Yuki Saito
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Teru Kamogashira
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Hidenori Kage
- Department of Next-Generation Precision Medicine Development Laboratory, The University of Tokyo, Tokyo, Japan
| | - Osamu Fukuoka
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Koji Yamamura
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Toshiyuki Mukai
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Katsutoshi Oda
- Department of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Ikegami M. Letter to the editor: left-truncation bias should be considered in prognostic analysis using National Genomic Profiling Database. Jpn J Clin Oncol 2023; 53:1091. [PMID: 37781754 DOI: 10.1093/jjco/hyad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/26/2023] [Indexed: 10/03/2023] Open
Affiliation(s)
- Masachika Ikegami
- Department of Musculoskeletal Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| |
Collapse
|
12
|
Choudhury NJ, Lavery JA, Brown S, de Bruijn I, Jee J, Tran TN, Rizvi H, Arbour KC, Whiting K, Shen R, Hellmann M, Bedard PL, Yu C, Leighl N, LeNoue-Newton M, Micheel C, Warner JL, Ginsberg MS, Plodkowski A, Girshman J, Sawan P, Pillai S, Sweeney SM, Kehl KL, Panageas KS, Schultz N, Schrag D, Riely GJ. The GENIE BPC NSCLC Cohort: A Real-World Repository Integrating Standardized Clinical and Genomic Data for 1,846 Patients with Non-Small Cell Lung Cancer. Clin Cancer Res 2023; 29:3418-3428. [PMID: 37223888 PMCID: PMC10472103 DOI: 10.1158/1078-0432.ccr-23-0580] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
PURPOSE We describe the clinical and genomic landscape of the non-small cell lung cancer (NSCLC) cohort of the American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE) Biopharma Collaborative (BPC). EXPERIMENTAL DESIGN A total of 1,846 patients with NSCLC whose tumors were sequenced from 2014 to 2018 at four institutions participating in AACR GENIE were randomly chosen for curation using the PRISSMM data model. Progression-free survival (PFS) and overall survival (OS) were estimated for patients treated with standard therapies. RESULTS In this cohort, 44% of tumors harbored a targetable oncogenic alteration, with EGFR (20%), KRAS G12C (13%), and oncogenic fusions (ALK, RET, and ROS1; 5%) as the most frequent. Median OS (mOS) on first-line platinum-based therapy without immunotherapy was 17.4 months [95% confidence interval (CI), 14.9-19.5 months]. For second-line therapies, mOS was 9.2 months (95% CI, 7.5-11.3 months) for immune checkpoint inhibitors (ICI) and 6.4 months (95% CI, 5.1-8.1 months) for docetaxel ± ramucirumab. In a subset of patients treated with ICI in the second-line or later setting, median RECIST PFS (2.5 months; 95% CI, 2.2-2.8) and median real-world PFS based on imaging reports (2.2 months; 95% CI, 1.7-2.6) were similar. In exploratory analysis of the impact of tumor mutational burden (TMB) on survival on ICI treatment in the second-line or higher setting, TMB z-score harmonized across gene panels was associated with improved OS (univariable HR, 0.85; P = 0.03; n = 247 patients). CONCLUSIONS The GENIE BPC cohort provides comprehensive clinicogenomic data for patients with NSCLC, which can improve understanding of real-world patient outcomes.
Collapse
Affiliation(s)
- Noura J. Choudhury
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Jessica A. Lavery
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samantha Brown
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ino de Bruijn
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Justin Jee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thinh Ngoc Tran
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Kathryn C. Arbour
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Karissa Whiting
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Philippe L. Bedard
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Celeste Yu
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Natasha Leighl
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Michele LeNoue-Newton
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine Micheel
- Department of Medicine, Vanderbilt Ingram Cancer Center, Nashville, Tennessee
| | - Jeremy L. Warner
- Department of Medicine, Vanderbilt Ingram Cancer Center, Nashville, Tennessee
- Lifespan Cancer Institute, Providence, Rhode Island
- Legorreta Cancer Center at Brown University, Providence, Rhode Island
| | - Michelle S. Ginsberg
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew Plodkowski
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeffrey Girshman
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter Sawan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shirin Pillai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shawn M. Sweeney
- American Association for Cancer Research, Philadelphia, Pennsylvania
| | - Kenneth L. Kehl
- Department of Medical Oncology, Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Katherine S. Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nikolaus Schultz
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Deborah Schrag
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Gregory J. Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | | |
Collapse
|
13
|
Otani R, Ikegami M, Yamada R, Yajima H, Kawamura S, Shimizu S, Tanaka S, Takayanagi S, Takami H, Yamaguchi T. PTPN11 variant may be a prognostic indicator of IDH-wildtype glioblastoma in a comprehensive genomic profiling cohort. J Neurooncol 2023; 164:221-229. [PMID: 37552362 DOI: 10.1007/s11060-023-04411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
PURPOSE Glioblastoma (GBM) is the most common type of primary malignant brain tumor and has a poor prognosis. Identifying novel targets and stratification strategies is urgently needed to improve patient survival. The present study aimed to identify clinically relevant genomic alterations in IDH-wildtype GBM using data from comprehensive genomic profiling (CGP) assays performed nationwide in Japan. METHODS The CGP assay results of 392 IDH-wildtype GBM cases performed between October 2019 and February 2023 obtained from the Center for Cancer Genomics and Advanced Therapeutics were retrospectively analyzed. RESULTS The median patient age was 52.5 years, and 207 patients (53%) were male. In the 286 patients for whom survival information was available, a protein-tyrosine phosphatase non-receptor type 11 (PTPN11) variant detected in 20 patients (6.8%) was extracted as the gene associated with significantly shorter overall survival (p = 0.002). Multivariate analysis demonstrated that the PTPN11 variant and poor performance status were independent prognostic indicators. In contrast, no prognostic impact was observed in the cohort in The Cancer Genome Atlas data. The discrepancy in the prognostic impact of the PTPN11 variant from these two pools might have resulted from differences in the biases affecting the survival of patients who underwent a CGP assay, including left-truncation and right-censored bias. However, survival simulation done to adjust for these biases showed that the prognostic impact of the PTPN11 variant was also significant. CONCLUSIONS The PTPN11 variant was a negative prognostic indicator of IDH-wildtype GBM in the patient cohort with the CGP assay.
Collapse
Affiliation(s)
- Ryohei Otani
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan.
| | - Masachika Ikegami
- Department of Musculoskeletal Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Ryoji Yamada
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Hirohisa Yajima
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Shinji Kawamura
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Sakura Shimizu
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shunsaku Takayanagi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hirokazu Takami
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsuro Yamaguchi
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| |
Collapse
|
14
|
Quintanilha JC, Storandt MH, Graf RP, Li G, Keller R, Lin DI, Ross JS, Huang RS, Schrock AB, Oxnard GR, Chakrabarti S, Mahipal A. Tumor Mutational Burden in Real-World Patients With Pancreatic Cancer: Genomic Alterations and Predictive Value for Immune Checkpoint Inhibitor Effectiveness. JCO Precis Oncol 2023; 7:e2300092. [PMID: 37410975 PMCID: PMC10581638 DOI: 10.1200/po.23.00092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 05/26/2023] [Indexed: 07/08/2023] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is largely considered a nonimmunogenic malignancy; however, approximately 1%, of patients may have tumors with deficient mismatch repair, high microsatellite instability, or high tumor mutational burden (TMB ≥10 mutations/Mb), which may be predictive of response to immune checkpoint inhibitor (ICI) therapy. We sought to analyze outcomes of patients with high-TMB and pathogenic genomic alterations observed in this population. METHODS This study included patients with PDAC who underwent comprehensive genomic profiling (CGP) at Foundation Medicine (Cambridge, MA). Clinical data were obtained from a US-wide real-world clinicogenomic pancreatic database. We report genomic alterations in those with high and low TMB, and compare outcomes on the basis of receipt of single-agent ICI or therapy regimens not containing ICI. RESULTS We evaluated 21,932 patients with PDAC who had tissue CGP data available, including 21,639 (98.7%) with low-TMB and 293 (1.3%) with high-TMB. Among patients with high-TMB, a greater number of alterations were observed in BRCA2, BRAF, PALB2, and genes of the mismatch repair pathway, whereas fewer alterations were observed in KRAS. Among patients who received an ICI (n = 51), those with high-TMB had more favorable median overall survival when compared with the low-TMB subset (25.7 v 5.2 months; hazard ratio, 0.32; 95% CI, 0.11 to 0.91; P = .034). CONCLUSION Longer survival was observed in patients with high-TMB receiving ICI compared with those with low-TMB. This supports the role of high-TMB as a predictive biomarker for efficacy of ICI therapy in PDAC. Additionally, we report higher rates of BRAF and BRCA2 mutations and lower rates of KRAS mutation among patients with PDAC and high-TMB, which to our knowledge, is a novel finding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sakti Chakrabarti
- University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Amit Mahipal
- University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
15
|
Hill BL, Graf RP, Shah K, Danziger N, Lin DI, Quintanilha J, Li G, Haberberger J, Ross JS, Santin AD, Slomovitz B, Elvin JA, Eskander RN. Mismatch repair deficiency, next-generation sequencing-based microsatellite instability, and tumor mutational burden as predictive biomarkers for immune checkpoint inhibitor effectiveness in frontline treatment of advanced stage endometrial cancer. Int J Gynecol Cancer 2023; 33:504-513. [PMID: 36750267 PMCID: PMC10086481 DOI: 10.1136/ijgc-2022-004026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
OBJECTIVE Molecular profiling is developing to inform treatment in endometrial cancer. Using real world evidence, we sought to evaluate frontline immune checkpoint inhibitor vs chemotherapy effectiveness in advanced endometrial cancer, stratified by Tumor Mutational Burden (TMB) ≥10 mut/MB and microsatellite instability (MSI). METHODS Patients with advanced endometrial cancer in the US-based de-identified Flatiron Health-Foundation Medicine Clinico-Genomic Database were included. Data originated from patients treated between January 2011- March 2022 at 280 US clinics. Next-generation sequencing assays were performed via FoundationOne or FoundationOneCDx. Longitudinal clinical data were derived from electronic health records. Immune checkpoint inhibitor treatment included pembrolizumab, dostarlimab, and nivolumab monotherapies. Time to next treatment, time to treatment discontinuation, and overall survival were assessed with the log-rank test and Cox proportional hazard models with adjusted hazard ratios (aHR) for known prognostic factors. We used the Likelihood ratio test to compare biomarker performance. RESULTS A total of 343 patients received chemotherapy and 28 received immune checkpoint inhibitor monotherapy as frontline treatment. Patients who received monotherapy were more likely to be stage III at diagnosis (immune checkpoint inhibitor: 54.6% vs chemotherapy: 15.0%; p<0.001) and more likely to test MSI-high via next-generation sequencing (immune checkpoint inhibitor: 53.6% vs chemotherapy: 19.2%; p<0.001). In MSI-high cancers, single-agent immune checkpoint inhibitor had a more favorable time to next treatment (aHR: 0.18, p=0.001) and overall survival (aHR 0.29, p=0.045). Additional analyses on 70 unique tumor specimens revealed mismatch repair deficiency (dMMR) via immunohistochemistry and MSI-high via next-generation sequencing concordance (91%), with nominal improvement of MSI over dMMR to predict time to treatment discontinuation (p=0.030), time to next treatment (p=0.032), and overall survival (p=0.22). MSI status was concordant with tumor mutational burden ≥10 in 94.3% of cases. CONCLUSION Immune checkpoint inhibitors may have improved efficacy over chemotherapy in frontline treatment for advanced endometrial cancer defined by MSI-high using next-generation sequencing as a nominally better predictor of outcomes than dMMR with immunohistochemistry. This provides the biologic rationale of active phase III trials.
Collapse
Affiliation(s)
- Breana L Hill
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, University of California San Diego Moores Cancer Center, La Jolla, California, USA
| | - Ryon P Graf
- Department of Clinical Development, Medical Team, Foundation Medicine Inc, San Diego, California, USA
| | - Kunal Shah
- Department of Data & Insights Delivery, Foundation Medicine Inc, Cambridge, Massachusetts, USA
| | - Natalie Danziger
- Department of Pathology and Diagnostic Medicine, Medical Team, Foundation Medicine Inc, Cambridge, Massachusetts, USA
| | - Douglas I Lin
- Department of Pathology and Diagnostic Medicine, Medical Team, Foundation Medicine Inc, Cambridge, Massachusetts, USA
| | - Julia Quintanilha
- Department of Clinical Development, Medical Team, Foundation Medicine Inc, Cambridge, Massachusetts, USA
| | - Gerald Li
- Department of Clinical Development, Medical Team, Foundation Medicine Inc, Cambridge, Massachusetts, USA
| | - James Haberberger
- Department of Pathology and Diagnostic Medicine, Medical Team, Foundation Medicine Inc, Morrisville, North Carolina, USA
| | - Jeffrey S Ross
- Department of Pathology and Diagnostic Medicine, Medical Team, Foundation Medicine Inc, Cambridge, Massachusetts, USA
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Gynecologic Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Brian Slomovitz
- Division of Gynecologic Oncology, Mount Sinai Medical Center, Miami Beach, Florida, USA
| | - Julia A Elvin
- Department of Pathology and Diagnostic Medicine, Medical Team, Foundation Medicine Inc, Cambridge, Massachusetts, USA
| | - Ramez N Eskander
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, University of California San Diego Moores Cancer Center, La Jolla, California, USA
| |
Collapse
|
16
|
Ecker BL, Tao AJ, Janssen QP, Walch HS, Court CM, Balachandran VP, Crane CH, D’Angelica MI, Drebin JA, Kingham TP, Soares KC, Iacobuzio-Donahue CA, Vakiani E, Gonen M, O’Reilly EM, Varghese AM, Jarnagin WR, Wei AC. Genomic Biomarkers Associated with Response to Induction Chemotherapy in Patients with Localized Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2023; 29:1368-1374. [PMID: 36795432 PMCID: PMC10073273 DOI: 10.1158/1078-0432.ccr-22-3089] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023]
Abstract
PURPOSE There is increasing use of neoadjuvant chemotherapy in the management of localized pancreatic ductal adenocarcinoma (PDAC), yet there are few validated biomarkers to guide therapy selection. We aimed to determine whether somatic genomic biomarkers predict response to induction FOLFIRINOX or gemcitabine/nab-paclitaxel. EXPERIMENTAL DESIGN This single-institution cohort study included consecutive patients (N = 322) with localized PDAC (2011-2020) who received at least one cycle of FOLFIRINOX (N = 271) or gemcitabine/nab-paclitaxel (N = 51) as initial treatment. We assessed somatic alterations in four driver genes (KRAS, TP53, CDKN2A, and SMAD4) by targeted next-generation sequencing, and determined associations between these alterations and (1) rate of metastatic progression during induction chemotherapy, (2) surgical resection, and (3) complete/major pathologic response. RESULTS The alteration rates in driver genes KRAS, TP53, CDKN2A, and SMAD4 were 87.0%, 65.5%, 26.7%, and 19.9%, respectively. For patients receiving first-line FOLFIRINOX, SMAD4 alterations were uniquely associated with metastatic progression (30.0% vs. 14.5%; P = 0.009) and decreased rate of surgical resection (37.1% vs. 66.7%; P < 0.001). For patients receiving induction gemcitabine/nab-paclitaxel, alterations in SMAD4 were not associated with metastatic progression (14.3% vs. 16.2%; P = 0.866) nor decreased rate of surgical resection (33.3% vs. 41.9%; P = 0.605). Major pathologic response was rare (6.3%) and not associated with type of chemotherapy regimen. CONCLUSIONS SMAD4 alterations were associated with more frequent development of metastasis and lower probability of reaching surgical resection during neoadjuvant FOLFIRINOX but not gemcitabine/nab-paclitaxel. Confirmation in a larger, diverse patient cohort will be important before prospective evaluation of SMAD4 as a genomic biomarker to guide treatment selection.
Collapse
Affiliation(s)
- Brett L. Ecker
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Alice J. Tao
- Weill Cornell Medical College, New York, NY, USA
| | - Quisette P. Janssen
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Henry S. Walch
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Colin M. Court
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vinod P. Balachandran
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
| | - Christopher H. Crane
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael I. D’Angelica
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeffrey A. Drebin
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - T. Peter Kingham
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin C. Soares
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine A. Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Efsevia Vakiani
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithat Gonen
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eileen M. O’Reilly
- Weill Cornell Medical College, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna M. Varghese
- Weill Cornell Medical College, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William R. Jarnagin
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alice C. Wei
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
17
|
Feldman S, Gupta D, Navi BB, Grace Ho KW, Willeit P, Devlin S, Bolton KL, Arcila ME, Mantha S. Tumor Genomic Profile Is Associated With Arterial Thromboembolism Risk in Patients With Solid Cancer. JACC CardioOncol 2023; 5:246-255. [PMID: 37144118 PMCID: PMC10152200 DOI: 10.1016/j.jaccao.2023.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 05/06/2023] Open
Abstract
Background Patients with cancer have an increased risk for arterial thromboembolism (ATE). Scant data exist about the impact of cancer-specific genomic alterations on the risk for ATE. Objectives The aim of this study was to determine whether individual solid tumor somatic genomic alterations influence the incidence of ATE. Methods A retrospective cohort study was conducted using tumor genetic alteration data from adults with solid cancers who underwent Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets testing between 2014 and 2016. The primary outcome, ATE, was defined as myocardial infarction, coronary revascularization, ischemic stroke, peripheral arterial occlusion, or limb revascularization and identified through systematic electronic medical record assessments. Patients were followed from date of tissue-matched blood control accession to first ATE event or death, for up to 1 year. Cause-specific Cox proportional hazards regression was used to determine HRs of ATE for individual genes adjusted for pertinent clinical covariates. Results Among 11,871 eligible patients, 74% had metastatic disease, and there were 160 ATE events. A significantly increased risk for ATE independent of tumor type was noted for the KRAS oncogene (HR: 1.98; 95% CI: 1.34-2.94; multiplicity-adjusted P = 0.015) and the STK11 tumor suppressor gene (HR: 2.51; 95% CI: 1.44-4.38; multiplicity-adjusted P = 0.015). Conclusions In a large genomic tumor-profiling registry of patients with solid cancers, alterations in KRAS and STK11 were associated with an increased risk for ATE independent of cancer type. Further investigation is needed to elucidate the mechanism by which these mutations contribute to ATE in this high-risk population.
Collapse
Affiliation(s)
- Stephanie Feldman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dipti Gupta
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Babak B. Navi
- Department of Neurology and the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ka-Wai Grace Ho
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Peter Willeit
- Clinical Epidemiology Team, Medical University of Innsbruck, Innsbruck, Austria
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Sean Devlin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kelly L. Bolton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maria E. Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Simon Mantha
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Address for correspondence: Dr Simon Mantha, Memorial Sloan Kettering Cancer Center, Koch Center, 530 East 74th Street, New York, New York 10021, USA.
| |
Collapse
|
18
|
Kehl KL, Uno H, Gusev A, Groha S, Brown S, Lavery JA, Schrag D, Panageas KS. Elucidating Analytic Bias Due to Informative Cohort Entry in Cancer Clinico-genomic Datasets. Cancer Epidemiol Biomarkers Prev 2023; 32:344-352. [PMID: 36626408 PMCID: PMC9992002 DOI: 10.1158/1055-9965.epi-22-0875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/12/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Oncologists often order genomic testing to inform treatment for worsening cancer. The resulting correlation between genomic testing timing and prognosis, or "informative entry," can bias observational clinico-genomic research. The efficacy of existing approaches to this problem in clinico-genomic cohorts is poorly understood. METHODS We simulated clinico-genomic cohorts followed from an index date to death. Subgroups in each cohort who underwent genomic testing before death were "observed." We varied data generation parameters under four scenarios: (i) independent testing and survival times; (ii) correlated testing and survival times for all patients; (iii) correlated testing and survival times for a subset of patients; and (iv) testing and mortality exclusively following progression events. We examined the behavior of conditional Kendall tau (Tc) statistics, Cox entry time coefficients, and biases in overall survival (OS) estimation and biomarker inference across scenarios. RESULTS Scenario #1 yielded null Tc and Cox entry time coefficients and unbiased OS inference. Scenario #2 yielded positive Tc, negative Cox entry time coefficients, underestimated OS, and biomarker associations biased toward the null. Scenario #3 yielded negative Tc, positive Cox entry time coefficients, and underestimated OS, but biomarker estimates were less biased. Scenario #4 yielded null Tc and Cox entry time coefficients, underestimated OS, and biased biomarker estimates. Transformation and copula modeling did not provide unbiased results. CONCLUSIONS Approaches to informative clinico-genomic cohort entry, including Tc and Cox entry time statistics, are sensitive to heterogeneity in genotyping and survival time distributions. IMPACT Novel methods are needed for unbiased inference using observational clinico-genomic data.
Collapse
Affiliation(s)
- Kenneth L. Kehl
- Division of Population Sciences, Dana-Farber Cancer Institute; Harvard Medical School, Boston, MA
| | - Hajime Uno
- Division of Population Sciences, Dana-Farber Cancer Institute; Harvard Medical School, Boston, MA
| | - Alexander Gusev
- Division of Population Sciences, Dana-Farber Cancer Institute; Harvard Medical School, Boston, MA
| | - Stefan Groha
- Division of Population Sciences, Dana-Farber Cancer Institute; Harvard Medical School, Boston, MA
| | - Samantha Brown
- Departments of Epidemiology & Biostatistics, Memorial-Sloan Kettering Cancer Center, New York, NY
| | - Jessica A. Lavery
- Departments of Epidemiology & Biostatistics, Memorial-Sloan Kettering Cancer Center, New York, NY
| | - Deborah Schrag
- Departments of Medicine, Memorial-Sloan Kettering Cancer Center, New York, NY
| | - Katherine S. Panageas
- Departments of Epidemiology & Biostatistics, Memorial-Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
19
|
Nakamura Y, Yamashita R, Okamoto W, Komatsu Y, Yuki S, Ueno M, Kato K, Taniguchi H, Kagawa Y, Denda T, Hara H, Esaki T, Moriwaki T, Sunakawa Y, Oki E, Nagashima F, Nishina T, Satoh T, Kawakami H, Yamaguchi K, Ohtsubo K, Kato T, Horita Y, Tsuji A, Yasui H, Goto M, Hamamoto Y, Wakabayashi M, Ikeno T, Shitara K, Bando H, Tsuchihara K, Miki I, Ichiki H, Ohtsu A, Yoshino T. Efficacy of Targeted Trials and Signaling Pathway Landscape in Advanced Gastrointestinal Cancers From SCRUM-Japan GI-SCREEN: A Nationwide Genomic Profiling Program. JCO Precis Oncol 2023; 7:e2200653. [PMID: 36996376 DOI: 10.1200/po.22.00653] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
PURPOSE Genomic profiling programs have been implemented to apply next-generation sequencing (NGS) for facilitating trial enrollment. SCRUM-Japan GI-SCREEN is a large-scale genomic profiling program in advanced gastrointestinal cancers using a validated genomic assay with the goal of facilitating enrollment in targeted clinical trials, generating real-world data, and performing clinicogenomic analysis for biomarker discovery. PATIENTS AND METHODS Genotyping of tumor tissue samples from 5,743 patients with advanced gastrointestinal cancers enrolled in GI-SCREEN was centrally performed with NGS. Patients were enrolled in matched trials of targeted agents affiliated with GI-SCREEN on the basis of genotyping results. RESULTS A total of 11 gastrointestinal cancers were included, with colorectal cancer being the most common. The median age ranged from 59 to 70.5 years across cancer types. Patients enrolled after initiation of first-line treatment had significantly longer overall survival (OS) than that before treatment initiation with a median survival time difference of 8.9 months and a hazard ratio (HR) ranging from 0.25 to 0.73 across cancer types, demonstrating an immortal time bias. One hundred and forty-nine patients received matched therapies in clinical trials on the basis of their identified alterations. Among patients with colorectal cancer harboring actionable alterations, the median OS was significantly longer in patients who received matched therapies in trials than in those who did not (HR, 0.52; 95% CI, 0.26 to 1.01; P = .049). Cancer-specific pathway alterations were significantly associated with shorter survival and related to primary resistance to matched trial therapies. CONCLUSION Our genomic profiling program led to patient enrollment in targeted clinical trials and improved survival of patients with colorectal cancer who received matched therapies in clinical trials. To avoid immortal time bias, precautions are needed when using data from patients who have undergone NGS testing after initiation of the evaluated treatment line.
Collapse
Affiliation(s)
- Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center, Hospital East, Kashiwa, Japan
- Translational Research Support Section, National Cancer Center Hospital East, Kashiwa, Japan
| | - Riu Yamashita
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial, Center, National Cancer Center, Kashiwa, Japan
| | - Wataru Okamoto
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center, Hospital East, Kashiwa, Japan
- Translational Research Support Section, National Cancer Center Hospital East, Kashiwa, Japan
- Cancer Treatment Center, Hiroshima University Hospital, Hiroshima, Japan
| | - Yoshito Komatsu
- Department of Cancer Center, Hokkaido University Hospital, Sapporo, Japan
| | - Satoshi Yuki
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Japan
| | - Makoto Ueno
- Department of Gastroenterology, Hepatobiliary and Pancreatic Medical Oncology Division, Kanagawa Cancer Center, Yokohama, Japan
| | - Ken Kato
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center, Hospital, Tokyo, Japan
| | - Hiroya Taniguchi
- Department of Clinical Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Yoshinori Kagawa
- Department of Clinical Oncology, Kansai Rosai Hospital, Amagasaki, Japan
- Department of Gastroenterological Surgery, Osaka General Medical Center, Osaka, Japan
| | - Tadamichi Denda
- Division of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Hiroki Hara
- Department of Gastroenterology, Saitama Cancer Center, Kitaadachi-gun, Japan
| | - Taito Esaki
- Department of Gastrointestinal and Medical Oncology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | - Toshikazu Moriwaki
- Department of Gastroenterology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Yu Sunakawa
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu, University, Fukuoka, Japan
| | - Fumio Nagashima
- Department of Medical Oncology, Kyorin University Faculty of Medicine, Mitaka, Japan
| | - Tomohiro Nishina
- Gastrointestinal Medical Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan
| | - Taroh Satoh
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hisato Kawakami
- Department of Medical Oncology, Kindai University Hospital, Osakasayama, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese, Foundation for Cancer Research, Tokyo, Japan
| | - Koushiro Ohtsubo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Takeshi Kato
- Department of Surgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Yosuke Horita
- Department of Medical Oncology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Akihito Tsuji
- Department of Clinical Oncology, Kagawa University Faculty of Medicine, Kita-gun, Japan
| | - Hisateru Yasui
- Department of Medical Oncology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Masahiro Goto
- Cancer Chemotherapy Center, Osaka Medical and Pharmaceutical University Hospital, Takatsuki, Japan
| | - Yasuo Hamamoto
- Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Masashi Wakabayashi
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takashi Ikeno
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center, Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center, Hospital East, Kashiwa, Japan
- Translational Research Support Section, National Cancer Center Hospital East, Kashiwa, Japan
| | - Katsuya Tsuchihara
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial, Center, National Cancer Center, Kashiwa, Japan
| | - Izumi Miki
- Translational Research Support Section, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroko Ichiki
- Translational Research Support Section, National Cancer Center Hospital East, Kashiwa, Japan
| | - Atsushi Ohtsu
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center, Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center, Hospital East, Kashiwa, Japan
| |
Collapse
|
20
|
Tamura T, Ikegami M, Kanemasa Y, Yomota M, Furusawa A, Otani R, Saita C, Yonese I, Onishi T, Kobayashi H, Akiyama T, Shimoyama T, Aruga T, Yamaguchi T. Selection bias due to delayed comprehensive genomic profiling in Japan. Cancer Sci 2023; 114:1015-1025. [PMID: 36369895 PMCID: PMC9986065 DOI: 10.1111/cas.15651] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
Abstract
Patients with advanced cancer undergo comprehensive genomic profiling in Japan only after treatment options have been exhausted. Patients with a very poor prognosis were not able to undergo profiling tests, resulting in a selection bias called length bias, which makes accurate survival analysis impossible. The actual impact of length bias on the overall survival of patients who have undergone profiling tests is unclear, yet appropriate methods for adjusting for length bias have not been developed. To assess the length bias in overall survival, we established a simulation-based model for length bias adjustment. This study utilized clinicogenomic data of 8813 patients with advanced cancer who underwent profiling tests at hospitals throughout Japan between June 2019 and April 2022. Length bias was estimated by the conditional Kendall τ statistics and was significantly positive for 13 of the 15 cancer subtypes, suggesting a worse prognosis for patients who underwent profiling tests in early timing. The median overall survival time in colorectal, breast, and pancreatic cancer from the initial survival-prolonging chemotherapy with adjustment for length bias was 937 (886-991), 1225 (1152-1368), and 585 (553-617) days, respectively (median; 95% credible interval). Adjusting for length bias made it possible to analyze the prognostic relevance of oncogenic mutations and treatments. In total, 12 tumor-specific oncogenic mutations correlating with poor survival were detected after adjustment. There was no difference in survival between FOLFIRINOX (leucovorin, fluorouracil, irinotecan, and oxaliplatin) or gemcitabine with nab-paclitaxel-treated groups as first-line chemotherapy for pancreatic cancer. Adjusting for length bias is an essential part of utilizing real-world clinicogenomic data.
Collapse
Affiliation(s)
- Taichi Tamura
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Masachika Ikegami
- Department of Musculoskeletal Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yusuke Kanemasa
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan.,Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Makiko Yomota
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Akiko Furusawa
- Department of Gynecology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Ryohei Otani
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Chiaki Saita
- Department of Breast Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Ichiro Yonese
- Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Tomoko Onishi
- Department of Gastroenterology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Hiroshi Kobayashi
- Department of Orthopedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toru Akiyama
- Department of Orthopedic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Tatsu Shimoyama
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Tomoyuki Aruga
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan.,Department of Breast Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Tatsuro Yamaguchi
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| |
Collapse
|
21
|
Lavery JA, Brown S, Curry MA, Martin A, Sjoberg DD, Whiting K. A data processing pipeline for the AACR project GENIE biopharma collaborative data with the {genieBPC} R package. Bioinformatics 2023; 39:6909009. [PMID: 36519837 PMCID: PMC9822536 DOI: 10.1093/bioinformatics/btac796] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
MOTIVATION Data from the American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange Biopharma Collaborative (GENIE BPC) represent comprehensive clinical data linked to high-throughput sequencing data, providing a multi-institution, pan-cancer, publicly available data repository. GENIE BPC data provide detailed demographic, clinical, treatment, genomic and outcome data for patients with cancer. These data result in a unique observational database of molecularly characterized tumors with comprehensive clinical annotation that can be used for health outcomes and precision medicine research in oncology. Due to the inherently complex structure of the multiple phenomic and genomic datasets, the use of these data requires a robust process for data integration and preparation in order to build analytic models. RESULTS We present the {genieBPC} package, a user-friendly data processing pipeline to facilitate the creation of analytic cohorts from the GENIE BPC data that are ready for clinico-genomic modeling and analyses. AVAILABILITY AND IMPLEMENTATION {genieBPC} is available on CRAN and GitHub.
Collapse
Affiliation(s)
| | - Samantha Brown
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 633 3rd Avenue New York, New York 10017, United States
| | - Michael A Curry
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 633 3rd Avenue New York, New York 10017, United States
| | - Axel Martin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 633 3rd Avenue New York, New York 10017, United States
| | - Daniel D Sjoberg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 633 3rd Avenue New York, New York 10017, United States
| | - Karissa Whiting
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 633 3rd Avenue New York, New York 10017, United States
| |
Collapse
|
22
|
Huang RSP, Carbone DP, Li G, Schrock A, Graf RP, Zhang L, Murugesan K, Ross JS, Tolba K, Sands J, Oxnard GR, Spigel D. Durable responders in advanced NSCLC with elevated TMB and treated with 1L immune checkpoint inhibitor: a real-world outcomes analysis. J Immunother Cancer 2023; 11:e005801. [PMID: 36650021 PMCID: PMC9853253 DOI: 10.1136/jitc-2022-005801] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND For patients with advanced non-small cell lung carcinoma (NSCLC), immune checkpoint inhibitor (ICPI) and chemotherapy (chemo) ICPI represent two distinct first-line standard-of-care regimens without clear and established biomarkers to inform the optimal choice for individual patients. Here, we examined the complementary roles of tumor mutational burden (TMB) and programmed death ligand-1 (PD-L1) immunohistochemistry (IHC) to inform first-line therapy using a large real-world (rw) data set. MATERIALS AND METHODS The study included patients with NSCLC from an rw de-identified clinico-genomic database. All patients underwent genomic testing using Foundation Medicine's tissue comprehensive genomic profiling assay and PD-L1 IHC assay scored for tumor cell staining (TS). RESULTS Of 2165 patients included in the analysis, 150 exhibited durable benefit from first-line ICPI regimens (these patients were enriched for PD-L1 TS ≥50, non-squamous histology, and TMB ≥20 mutations/megabase (muts/Mb)). Comparing low TMB (<10 muts/Mb), high TMB (10-19 muts/Mb), and very high TMB (≥20 muts/Mb) receiving ICPI alone, we observed a stepwise increase in median rwPFS (real world-progression free survival) (6.5, 7.5, 17.2 months) and rwOS (real world-overall survival) (10.1, 11.8, 26.9 months) as TMB increased. In the low PD-L1 (TS <50%) cohort, TMB <20 muts/Mb showed a more favorable rwPFS (HR: 0.56 (95% CI: 0.40 to 0.79)) and rwOS (HR 0.74 (95% CI: 0.58 to 0.96)) on chemoICPI when compared with ICPI alone while the point estimate in rwPFS favored monoICPI in the TMB ≥20 muts/Mb cohort, the CI is wide and does not reach statistical significance (HR: 1.68 (95% CI: 0.52 to 5.48)). CONCLUSION This study provides evidence that higher TMB cut-offs, such as 20 muts/Mb, can identify patients with prolonged benefit from ICPI. TMB ≥20 muts/Mb is a potential biomarker that may identify patients in whom an ICPI without chemo could be considered, even in the setting of lower PD-L1 levels. Prospective validation of these findings could increase access to chemo-sparing regimens for the first-line treatment of advanced NSCLC.
Collapse
Affiliation(s)
| | - David P Carbone
- The Ohio State University and the Pelotonia Institute for Immune Oncology, Columbus, Ohio, USA
| | - Gerald Li
- Foundation Medicine Inc, Cambridge, Massachusetts, USA
| | - Alexa Schrock
- Foundation Medicine Inc, Cambridge, Massachusetts, USA
| | - Ryon P Graf
- Foundation Medicine Inc, Cambridge, Massachusetts, USA
| | | | | | - Jeffrey S Ross
- Foundation Medicine Inc, Cambridge, Massachusetts, USA
- Upstate Medical University, Syracuse, New York, USA
| | - Khaled Tolba
- Foundation Medicine Inc, Cambridge, Massachusetts, USA
| | - Jacob Sands
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - David Spigel
- Sarah Cannon Research Institute and Tennessee Oncology, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Swami U, Graf RP, Nussenzveig RH, Fisher V, Tukachinsky H, Schrock AB, Li G, Ross JS, Sayegh N, Tripathi N, Mathew Thomas V, Oxnard GR, Antonarakis ES, Agarwal N. SPOP Mutations as a Predictive Biomarker for Androgen Receptor Axis-Targeted Therapy in De Novo Metastatic Castration-Sensitive Prostate Cancer. Clin Cancer Res 2022; 28:4917-4925. [PMID: 36088616 DOI: 10.1158/1078-0432.ccr-22-2228] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Intensification of androgen deprivation therapy (ADT) with either docetaxel or androgen receptor axis-targeted therapies (ARAT) are the current standard of care for patients with metastatic castration-sensitive prostate cancer (mCSPC). However, biomarkers guiding treatment selection are lacking. We hypothesized that ADT intensification with ARAT, but not with docetaxel, would be associated with improved outcomes in patients with de novo (dn)-mCSPC harboring SPOP mutations. EXPERIMENTAL DESIGN Patient-level data from a deidentified nationwide (U.S.-based) prostate cancer clinico-genomic database between January 2011 and December 2021 were extracted. Eligibility criteria: diagnosis of metastatic disease within 30 days of original prostate cancer diagnosis, genomic profiling of a tissue biopsy collected within 90 days of original diagnosis, and initiation of ARAT or docetaxel within 120 days of initial diagnosis. The log-rank test and Cox proportional hazards models were used to compare time to castration-resistant prostate cancer (TTCRPC) and overall survival (OS) for patients with and without SPOP mutations undergoing ADT intensification with ARAT or docetaxel. RESULTS In the ARAT cohort, presence of SPOP mutation compared with wild-type was associated with more favorable TTCRPC [not reached (NR) vs. 16.7 months; adjusted HR (aHR), 0.20; 95% confidence interval (CI), 0.06-0.63; P = 0.006] and OS (NR vs. 27.2 months; aHR, 0.19; 95% CI, 0.05-0.79; P = 0.022). In contrast, SPOP mutation status was not associated with TTCRPC or OS in docetaxel-treated cohort. CONCLUSIONS In real-world settings, SPOP mutations were associated with improved outcomes to ADT plus ARAT (but not ADT plus docetaxel) in patients with dn-mCSPC. This may serve as a predictive biomarker to guide treatment selection for patients with mCSPC.
Collapse
Affiliation(s)
- Umang Swami
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Ryon P Graf
- Foundation Medicine, Cambridge, Massachusetts
| | - Roberto H Nussenzveig
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | | | | | | | - Gerald Li
- Foundation Medicine, Cambridge, Massachusetts
| | - Jeffrey S Ross
- Foundation Medicine, Cambridge, Massachusetts.,Departments of Urology and Pathology, Upstate Medical University, Syracuse, New York
| | - Nicolas Sayegh
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Nishita Tripathi
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Vinay Mathew Thomas
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | | | | | - Neeraj Agarwal
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
24
|
Van Egeren D, Kohli K, Warner JL, Bedard PL, Riely G, Lepisto E, Schrag D, LeNoue-Newton M, Catalano P, Kehl KL, Michor F, Fiandalo M, Foti M, Khotskaya Y, Lee J, Peters N, Sweeney S, Abraham J, Brenton JD, Caldas C, Doherty G, Nimmervoll B, Pinilla K, Martin JE, Rueda OM, Sammut SJ, Silva D, Cao K, Heath AP, Li M, Lilly J, MacFarland S, Maris JM, Mason JL, Morgan AM, Resnick A, Welsh M, Zhu Y, Johnson B, Li Y, Sholl L, Beaudoin R, Biswas R, Cerami E, Cushing O, Dand D, Ducar M, Gusev A, Hahn WC, Haigis K, Hassett M, Janeway KA, Jänne P, Jawale A, Johnson J, Kehl KL, Kumari P, Laucks V, Lepisto E, Lindeman N, Lindsay J, Lueders A, Macconaill L, Manam M, Mazor T, Miller D, Newcomb A, Orechia J, Ovalle A, Postle A, Quinn D, Reardon B, Rollins B, Shivdasani P, Tramontano A, Van Allen E, Van Nostrand SC, Bell J, Datto MB, Green M, Hubbard C, McCall SJ, Mettu NB, Strickler JH, Andre F, Besse B, Deloger M, Dogan S, Italiano A, Loriot Y, Ludovic L, Michels S, Scoazec J, Tran-Dien A, Vassal G, Freeman CE, Hsiao SJ, Ingham M, Pang J, Rabadan R, Roman LC, Carvajal R, DuBois R, Arcila ME, Benayed R, Berger MF, Bhuiya M, Brannon AR, Brown S, Chakravarty D, Chu C, de Bruijn I, Galle J, Gao J, Gardos S, Gross B, Kundra R, Kung AL, Ladanyi M, Lavery JA, Li X, Lisman A, Mastrogiacomo B, McCarthy C, Nichols C, Ochoa A, Panageas KS, Philip J, Pillai S, Riely GJ, Rizvi H, Rudolph J, Sawyers CL, Schrag D, Schultz N, Schwartz J, Sheridan R, Solit D, Wang A, Wilson M, Zehir A, Zhang H, Zhao G, Ahmed L, Bedard PL, Bruce JP, Chow H, Cooke S, Del Rossi S, Felicen S, Hakgor S, Jagannathan P, Kamel-Reid S, Krishna G, Leighl N, Lu Z, Nguyen A, Oldfield L, Plagianakos D, Pugh TJ, Rizvi A, Sabatini P, Shah E, Singaravelan N, Siu L, Srivastava G, Stickle N, Stockley T, Tang M, Virtaenen C, Watt S, Yu C, Bernard B, Bifulco C, Cramer JL, Lee S, Piening B, Reynolds S, Slagel J, Tittel P, Urba W, VanCampen J, Weerasinghe R, Acebedo A, Guinney J, Guo X, Hunter-Zinck H, Yu T, Dang K, Anagnostou V, Baras A, Brahmer J, Gocke C, Scharpf RB, Tao J, Velculescu VE, Alexander S, Bailey N, Gold P, Bierkens M, de Graaf J, Hudeček J, Meijer GA, Monkhorst K, Samsom KG, Sanders J, Sonke G, ten Hoeve J, van de Velde T, van den Berg J, Voest E, Steinhardt G, Kadri S, Pankhuri W, Wang P, Segal J, Moung C, Espinosa-Mendez C, Martell HJ, Onodera C, Quintanar Alfaro A, Sweet-Cordero EA, Talevich E, Turski M, Van’t Veer L, Wren A, Aguilar S, Dienstmann R, Mancuso F, Nuciforo P, Tabernero J, Viaplana C, Vivancos A, Anderson I, Chaugai S, Coco J, Fabbri D, Johnson D, Jones L, Li X, Lovly C, Mishra S, Mittendorf K, Wen L, Yang YJ, Ye C, Holt M, LeNoue-Newton ML, Micheel CM, Park BH, Rubinstein SM, Stricker T, Wang L, Warner J, Guan M, Jin G, Liu L, Topaloglu U, Urtis C, Zhang W, D’Eletto M, Hutchison S, Longtine J, Walther Z. Genomic analysis of early-stage lung cancer reveals a role for TP53 mutations in distant metastasis. Sci Rep 2022; 12:19055. [PMID: 36351964 PMCID: PMC9646734 DOI: 10.1038/s41598-022-21448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
Patients with non-small cell lung cancer (NSCLC) who have distant metastases have a poor prognosis. To determine which genomic factors of the primary tumor are associated with metastasis, we analyzed data from 759 patients originally diagnosed with stage I-III NSCLC as part of the AACR Project GENIE Biopharma Collaborative consortium. We found that TP53 mutations were significantly associated with the development of new distant metastases. TP53 mutations were also more prevalent in patients with a history of smoking, suggesting that these patients may be at increased risk for distant metastasis. Our results suggest that additional investigation of the optimal management of patients with early-stage NSCLC harboring TP53 mutations at diagnosis is warranted in light of their higher likelihood of developing new distant metastases.
Collapse
Affiliation(s)
- Debra Van Egeren
- grid.65499.370000 0001 2106 9910Department of Data Science, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Systems Biology, Harvard Medical School, Boston, MA USA ,grid.2515.30000 0004 0378 8438Stem Cell Program, Boston Children’s Hospital, Boston, MA USA ,grid.5386.8000000041936877XDepartment of Medicine, Weill Cornell Medicine, New York, NY USA
| | - Khushi Kohli
- grid.65499.370000 0001 2106 9910Department of Data Science, Dana-Farber Cancer Institute, Boston, MA USA
| | - Jeremy L. Warner
- grid.152326.10000 0001 2264 7217Department of Medicine, Vanderbilt University, Nashville, TN USA ,grid.152326.10000 0001 2264 7217Department of Biomedical Informatics, Vanderbilt University, Nashville, TN USA
| | - Philippe L. Bedard
- grid.17063.330000 0001 2157 2938Department of Medicine, University of Toronto, Toronto, ON Canada
| | - Gregory Riely
- grid.51462.340000 0001 2171 9952Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Eva Lepisto
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.429426.f0000 0000 9350 5788Present Address: Multiple Myeloma Research Foundation, Norwalk, CT USA
| | - Deborah Schrag
- grid.51462.340000 0001 2171 9952Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Michele LeNoue-Newton
- grid.412807.80000 0004 1936 9916Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN USA
| | - Paul Catalano
- grid.65499.370000 0001 2106 9910Department of Data Science, Dana-Farber Cancer Institute, Boston, MA USA
| | - Kenneth L. Kehl
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Franziska Michor
- grid.65499.370000 0001 2106 9910Department of Data Science, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA ,grid.65499.370000 0001 2106 9910The Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XThe Ludwig Center at Harvard, Boston, MA USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Graf RP, Fisher V, Creeden J, Schrock AB, Ross JS, Nimeiri H, Oxnard GR, Klempner SJ. Real-world Validation of TMB and Microsatellite Instability as Predictive Biomarkers of Immune Checkpoint Inhibitor Effectiveness in Advanced Gastroesophageal Cancer. CANCER RESEARCH COMMUNICATIONS 2022; 2:1037-1048. [PMID: 36922935 PMCID: PMC10010289 DOI: 10.1158/2767-9764.crc-22-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/27/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Patients with advanced gastroesophageal cancer (mEG) and tumor mutational burden ≥10 mut/Mb (TMB ≥ 10) have more favorable outcomes on immune checkpoint inhibitor (ICPI) monotherapy compared with chemotherapy in subgroup analyses of randomized controlled trials. We sought to evaluate the robustness of these associations in real-world settings where patients and practices are more diverse. A total of 362 2 L and 692 1 L patients, respectively received ICPI (n = 99, 33) or chemotherapy (n = 263, 659) across approximately 280 U.S. academic or community-based cancer clinics March 2014-July 2021. Deidentified data were captured into a real-world clinico-genomic database. All patients underwent Foundation Medicine testing. Time to next treatment (TTNT) and overall survival (OS) comparing ICPI versus chemotherapy were adjusted for treatment assignment imbalances using propensity scores. 2L: TMB ≥ 10 had more favorable TTNT [median 24 vs. 4.1 months; HR: 0.19; 95% confidence interval (CI): 0.09-0.44; P = 0.0001] and OS (median 43.1 vs. 6.2 months; HR: 0.24; 95% CI: 0.011-0.54; P = 0.0005), TMB < 10 did not (P > 0.05). 1L: TMB ≥ 10 had more favorable TTNT (not reached vs. median 4.1 months; HR: 0.13; 95% CI: 0.03-0.48; P = 0.0024) and OS (not reached vs. median 17.1 months; HR: 0.30; 95% CI: 0.08-1.14; P = 0.078), TMB < 10 had less favorable TTNT (median 2.8 vs. 6.5 months; HR: 2.36; 95% CI: 1.25-4.45; P = 0.008) and OS (median 4.5 vs. 13.1 months; HR: 1.82, 95% CI: 0.87-3.81; P = 0.11). TMB ≥ 10 robustly identifies patients with mEG with more favorable outcomes on 2 L ICPI monotherapy versus chemotherapy. 1 L data are more limited, but effects are consistent with 2L. Significance Using real-world data, we sought to evaluate robustness of these clinical associations using the same assay platform and biomarker cut-off point used in both clinical trials and pan-tumor CDx approvals for later treatment lines. TMB ≥ 10 robustly identified patients with mEG with more favorable outcomes on ICPI monotherapy versus chemotherapy and suggests this subset of patients could be targeted for further trial development.
Collapse
Affiliation(s)
- Ryon P Graf
- Foundation Medicine, Cambridge, Massachusetts
| | | | | | | | - Jeffrey S Ross
- Foundation Medicine, Cambridge, Massachusetts.,Upstate Medical University, Syracuse, New York
| | | | | | - Samuel J Klempner
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
26
|
Ecker BL, Court CM, Janssen QP, Tao AJ, D'Angelica MI, Drebin JA, Gonen M, O'Reilly EM, Jarnagin WR, Wei AC. Alterations in Somatic Driver Genes Are Associated with Response to Neoadjuvant FOLFIRINOX in Patients with Localized Pancreatic Ductal Adenocarcinoma. J Am Coll Surg 2022; 235:342-349. [PMID: 35839413 PMCID: PMC9319357 DOI: 10.1097/xcs.0000000000000212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND There is increased use of neoadjuvant fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX) in the management of localized pancreatic ductal adenocarcinoma (PDAC), yet there are few validated biomarkers of treatment response. STUDY DESIGN Consecutive patients (n = 196) with resectable, borderline resectable or locally advanced PDAC (2012-2019) receiving FOLFIRINOX as initial treatment and with targeted sequencing of a pretreatment biopsy were identified in a prospective institutional database. Genomic alterations were determined in the 4 driver mutations (KRAS, TP53, CDKN2A, SMAD4), and associations between genomic alterations and clinical outcomes were assessed. RESULTS Alterations in KRAS (n = 172, 87.8%) and TP53 (n = 131, 66.8%) were common; alterations in CDKN2A (n = 49, 25.0%) and SMAD4 (n = 36, 18.4%) were less frequently observed. A total of 105 patients (53.6%) were able to undergo resection, of whom 8 (7.6%) had a complete/near-complete pathologic response. There were no somatic alterations associated with major pathologic response. Alterations in SMAD4 were associated with a lower rate of surgical resection (27.8% vs 59.4%, p < 0.001); this was additionally observed in a multivariable regression model accounting for resectability status (OR 0.35, 95% confidence interval [CI] 0.15-0.85). Thirty-three patients (16.8%) developed metastatic disease while on neoadjuvant therapy. SMAD4 alterations were associated with a significant risk of metastatic progression on therapy when controlling for resectability status (OR 3.31, 95% CI 1.44-7.60). CONCLUSIONS SMAD4 alterations are associated with more frequent development of metastasis during neoadjuvant FOLFIRINOX and lower probability of reaching surgical resection. Evaluation of alternative chemotherapy regimens in patients with SMAD4 alterations will be important to distinguish whether this represents a prognostic or predictive biomarker.
Collapse
Affiliation(s)
- Brett L Ecker
- From the Hepatopancreatobiliary Service, Department of Surgery (Ecker, Court, D'Angelica, Drebin, Jarnagin, Wei), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Colin M Court
- From the Hepatopancreatobiliary Service, Department of Surgery (Ecker, Court, D'Angelica, Drebin, Jarnagin, Wei), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Quisette P Janssen
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands (Janssen)
| | - Alice J Tao
- Weill Cornell Medical College, New York, NY (Tao)
| | - Michael I D'Angelica
- From the Hepatopancreatobiliary Service, Department of Surgery (Ecker, Court, D'Angelica, Drebin, Jarnagin, Wei), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jeffrey A Drebin
- From the Hepatopancreatobiliary Service, Department of Surgery (Ecker, Court, D'Angelica, Drebin, Jarnagin, Wei), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mithat Gonen
- Department of Biostatistics (Gonen), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eileen M O'Reilly
- Department of Medicine (O'Reilly), Memorial Sloan Kettering Cancer Center, New York, NY
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY (O'Reilly)
| | - William R Jarnagin
- From the Hepatopancreatobiliary Service, Department of Surgery (Ecker, Court, D'Angelica, Drebin, Jarnagin, Wei), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alice C Wei
- From the Hepatopancreatobiliary Service, Department of Surgery (Ecker, Court, D'Angelica, Drebin, Jarnagin, Wei), Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
27
|
Zhang L, Sun S, Zhao X, Liu J, Xu Y, Xu L, Song C, Li N, Yu J, Zhao S, Yu P, Fang F, Xie J, Ji X, Yu R, Ou Q, Zhao Z, Li M. Prognostic value of baseline genetic features and newly identified
TP53
mutations in advanced breast cancer. Mol Oncol 2022; 16:3689-3702. [PMID: 35971249 PMCID: PMC9580879 DOI: 10.1002/1878-0261.13297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Approximately 30% of breast cancer (BC) patients suffer from disease relapse after definitive treatment. Monitoring BC at baseline and disease progression using comprehensive genomic profiling would facilitate the prediction of prognosis. We retrospectively studied 101 BC patients ultimately experiencing relapse and/or metastases. The baseline and circulating tumor DNA‐monitoring cohorts included patients with baseline tumor tissue and serial plasma samples, respectively. Samples were analyzed with targeted next‐generation sequencing of 425 cancer‐relevant genes. Of 35 patients in the baseline cohort, patients with TP53 mutations (P < 0.01), or CTCF/GNAS mutations (P < 0.01) displayed inferior disease‐free survival, and patients harboring TP53 (P = 0.06) or NOTCH1 (P = 0.06) mutations showed relatively poor overall survival (OS), compared to patients with wild‐type counterparts. Of the 59 patients with serial plasma samples, 11 patients who were newly detected with TP53 mutations had worse OS than patients whose TP53 mutational status remained negative (P < 0.01). These results indicate that an inferior prognosis of advanced breast cancer was potentially associated with baseline TP53, CTCF, and NOTCH1 alterations. Newly identified TP53 mutations after relapse and/or metastasis was another potential prognostic biomarker of poor prognosis.
Collapse
Affiliation(s)
- Lanxin Zhang
- Department of Oncology The Second Hospital of Dalian Medical University Dalian Liaoning China
| | - Siwen Sun
- Department of Oncology The Second Hospital of Dalian Medical University Dalian Liaoning China
| | - Xiaotian Zhao
- Geneseeq Research Institute Nanjing Geneseeq Technology Inc Nanjing Jiangsu China
| | - Jingwen Liu
- Geneseeq Research Institute Nanjing Geneseeq Technology Inc Nanjing Jiangsu China
| | - Yang Xu
- Geneseeq Research Institute Nanjing Geneseeq Technology Inc Nanjing Jiangsu China
| | - Lingzhi Xu
- Department of Oncology The Second Hospital of Dalian Medical University Dalian Liaoning China
| | - Chen Song
- Department of Oncology The Second Hospital of Dalian Medical University Dalian Liaoning China
| | - Na Li
- Department of Oncology The Second Hospital of Dalian Medical University Dalian Liaoning China
| | - Jing Yu
- Department of Oncology The Second Hospital of Dalian Medical University Dalian Liaoning China
| | - Shanshan Zhao
- Department of Oncology The Second Hospital of Dalian Medical University Dalian Liaoning China
| | - Peiyao Yu
- Department of Oncology First Affiliated Hospital of Dalian Medical University Dalian Liaoning China
| | - Fengqi Fang
- Department of Oncology First Affiliated Hospital of Dalian Medical University Dalian Liaoning China
| | - Jiping Xie
- Department of Breast and Thyroid Surgery Affiliated Zhongshan Hospital of Dalian University Dalian Liaoning China
| | - Xuening Ji
- Department of Oncology Affiliated Zhongshan Hospital of Dalian University Dalian Liaoning China
| | - Ruoying Yu
- Geneseeq Research Institute Nanjing Geneseeq Technology Inc Nanjing Jiangsu China
| | - Qiuxiang Ou
- Geneseeq Research Institute Nanjing Geneseeq Technology Inc Nanjing Jiangsu China
| | - Zuowei Zhao
- Department of Oncology The Second Hospital of Dalian Medical University Dalian Liaoning China
- Department of Breast Surgery The Second Hospital of Dalian Medical University Dalian Liaoning China
| | - Man Li
- Department of Oncology The Second Hospital of Dalian Medical University Dalian Liaoning China
| |
Collapse
|
28
|
Luthra A, Mastrogiacomo B, Smith SA, Chakravarty D, Schultz N, Sanchez-Vega F. Computational methods and translational applications for targeted next-generation sequencing platforms. Genes Chromosomes Cancer 2022; 61:322-331. [PMID: 35066956 PMCID: PMC10129038 DOI: 10.1002/gcc.23023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/09/2022] Open
Abstract
During the past decade, next-generation sequencing (NGS) technologies have become widely adopted in cancer research and clinical care. Common applications within the clinical setting include patient stratification into relevant molecular subtypes, identification of biomarkers of response and resistance to targeted and systemic therapies, assessment of heritable cancer risk based on known pathogenic variants, and longitudinal monitoring of treatment response. The need for efficient downstream processing and reliable interpretation of sequencing data has led to the development of novel algorithms and computational pipelines, as well as structured knowledge bases that link genomic alterations to currently available drugs and ongoing clinical trials. Cancer centers around the world use different types of targeted solid-tissue and blood based NGS assays to analyze the genomic and transcriptomic profile of patients as part of their routine clinical care. Recently, cross-institutional collaborations have led to the creation of large pooled datasets that can offer valuable insights into the genomics of rare cancers.
Collapse
Affiliation(s)
- Anisha Luthra
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Brooke Mastrogiacomo
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shaleigh A Smith
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Debyani Chakravarty
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Francisco Sanchez-Vega
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
29
|
Kehl KL, Xu W, Gusev A, Bakouny Z, Choueiri TK, Riaz IB, Elmarakeby H, Van Allen EM, Schrag D. Artificial intelligence-aided clinical annotation of a large multi-cancer genomic dataset. Nat Commun 2021; 12:7304. [PMID: 34911934 PMCID: PMC8674229 DOI: 10.1038/s41467-021-27358-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
To accelerate cancer research that correlates biomarkers with clinical endpoints, methods are needed to ascertain outcomes from electronic health records at scale. Here, we train deep natural language processing (NLP) models to extract outcomes for participants with any of 7 solid tumors in a precision oncology study. Outcomes are extracted from 305,151 imaging reports for 13,130 patients and 233,517 oncologist notes for 13,511 patients, including patients with 6 additional cancer types. NLP models recapitulate outcome annotation from these documents, including the presence of cancer, progression/worsening, response/improvement, and metastases, with excellent discrimination (AUROC > 0.90). Models generalize to cancers excluded from training and yield outcomes correlated with survival. Among patients receiving checkpoint inhibitors, we confirm that high tumor mutation burden is associated with superior progression-free survival ascertained using NLP. Here, we show that deep NLP can accelerate annotation of molecular cancer datasets with clinically meaningful endpoints to facilitate discovery.
Collapse
Affiliation(s)
- Kenneth L Kehl
- From Dana-Farber Cancer Institute, Boston, MA, USA.
- Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Wenxin Xu
- From Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alexander Gusev
- From Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ziad Bakouny
- From Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Toni K Choueiri
- From Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Haitham Elmarakeby
- From Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute, Rochester, USA
| | - Eliezer M Van Allen
- From Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute, Rochester, USA
| | | |
Collapse
|