1
|
Cheng W, Zhao M, Zhang X, Zhou X, Yan J, Li R, Shen H. Schizophrenia and antipsychotic medications present distinct and shared gut microbial composition: A meta-analysis. Schizophr Res 2024; 274:257-268. [PMID: 39388810 DOI: 10.1016/j.schres.2024.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 10/12/2024]
Abstract
There are some conflicting results regarding alterations of gut microbial composition in schizophrenia (SZ), even a few meta-analysis studies have addressed this field. Ignoring of antipsychotic medication effects may cause the large heterogeneity and impact on study results. This study is a meta-analysis to systematically evaluate composition of gut microbiota in patients with SZ, to elucidate the impact of antipsychotic use and reveal distinct and shared gut bacteria in SZ and antipsychotic medications. We re-analyzed the publicly available 16S rRNA-gene amplicon datasets by a standardized pipeline in QIIME2, used the natural log of response ratios as an effect index to directly and quantitatively compare composition of gut microbiota by random-effects meta-analysis with resampling tests in Metawin, ultimately to evaluate distinct abundance of gut bacteria. A total of 19 studies with 1968 participants (1067 patients with SZ and 901 healthy controls (HCs)) were included in this meta-analysis. The alterations of alpha diversity indices occurred in SZ on antipsychotics but not in drug-naïve or -free patients, while variation of beta diversity metrics appeared in SZ regardless of antipsychotic use. After antipsychotic treatment, reversed Simpson index, decreased observed species index and significant difference of Bray-Curtis distance were observed in patients. Especially, risperidone treatment increased the Shannon and Simpson indices. Noteworthy, three differed genera, including Lactobacillus, Roseburia and Dialister, were identified in both states of antipsychotic use. This meta-analysis is to provide a novel insight that SZ and antipsychotic medications present distinct and shared gut microbial composition.
Collapse
Affiliation(s)
- Weirong Cheng
- Department of psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264, Guangzhou Road, Nanjing, China
| | - Mengjie Zhao
- Neuro-psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264, Guangzhou Road, Nanjing, China
| | - Xinyun Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, No. 48, Xinxi Road, Beijing, China.
| | - Xia Zhou
- Neuro-psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264, Guangzhou Road, Nanjing, China.
| | - Jun Yan
- Department of Geriatrics, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264, Guangzhou Road, Nanjing, China.
| | - Rui Li
- School of Pharmacy, Nanjing Medical University, No. 101, Longmian Avenue, Nanjing, China.
| | - Hong Shen
- Neuro-psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264, Guangzhou Road, Nanjing, China.
| |
Collapse
|
2
|
Preller KH, Scholpp J, Wunder A, Rosenbrock H. Neuroimaging Biomarkers for Drug Discovery and Development in Schizophrenia. Biol Psychiatry 2024; 96:666-673. [PMID: 38272287 DOI: 10.1016/j.biopsych.2024.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/19/2023] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
Schizophrenia is a chronic mental illness that affects up to 1% of the population. While efficacious therapies are available for positive symptoms, effective treatment of cognitive and negative symptoms remains an unmet need after decades of research. New developments in the field of neuroimaging are accelerating our knowledge gain regarding the underlying pathophysiology of symptoms in schizophrenia and psychosis spectrum disorders, inspiring new targets for drug development. However, no validated and qualified biomarkers are currently available to support the development of new therapeutics. This review summarizes the current use of neuroimaging technology in clinical drug development for psychotic disorders. As exemplified by drug development programs that target NMDA receptor hypofunction, neuroimaging results play a critical role in target discovery and establishing target engagement and dose selection. Furthermore, pharmacological neuroimaging may provide response biomarkers that allow for early decision making in proof-of-concept studies that leverage pharmacological challenge models in healthy volunteers. That said, while response and predictive biomarkers are starting to be evaluated in patient populations, they continue to play a limited role. Novel approaches to neuroimaging data acquisition and analysis may aid the establishment of biomarkers that are predictive at the individual level in the future. Nevertheless, various gaps in knowledge need to be addressed and biomarkers need to be validated to establish them as "fit for purpose" in drug development.
Collapse
Affiliation(s)
- Katrin H Preller
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany; Boehringer Ingelheim (Schweiz) GmbH, Basel, Switzerland.
| | - Joachim Scholpp
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Andreas Wunder
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Holger Rosenbrock
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
3
|
Okubo R, Okada M, Motomura E. Dysfunction of the NMDA Receptor in the Pathophysiology of Schizophrenia and/or the Pathomechanisms of Treatment-Resistant Schizophrenia. Biomolecules 2024; 14:1128. [PMID: 39334894 PMCID: PMC11430065 DOI: 10.3390/biom14091128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
For several decades, the dopamine hypothesis contributed to the discovery of numerous typical and atypical antipsychotics and was the sole hypothesis for the pathophysiology of schizophrenia. However, neither typical nor atypical antipsychotics, other than clozapine, have been effective in addressing negative symptoms and cognitive impairments, which are indices for the prognostic and disability outcomes of schizophrenia. Following the development of atypical antipsychotics, the therapeutic targets for antipsychotics expanded beyond the blockade of dopamine D2 and serotonin 5-HT2A receptors to explore the partial agonism of the D2 receptor and the modulation of new targets, such as D3, 5-HT1A, 5-HT7, and metabotropic glutamate receptors. Despite these efforts, to date, psychiatry has not successfully developed antipsychotics with antipsychotic properties proven to be superior to those of clozapine. The glutamate hypothesis, another hypothesis regarding the pathophysiology/pathomechanism of schizophrenia, was proposed based on clinical findings that N-methyl-D-aspartate glutamate receptor (NMDAR) antagonists, such as phencyclidine and ketamine, induce schizophrenia-like psychotic episodes. Large-scale genome-wide association studies (GWASs) revealed that approximately 30% of the risk genes for schizophrenia (the total number was over one hundred) encode proteins associated with glutamatergic transmission. These findings supported the validation of the glutamate hypothesis, which was inspired by the clinical findings regarding NMDAR antagonists. Additionally, these clinical and genetic findings suggest that schizophrenia is possibly a syndrome with complicated pathomechanisms that are affected by multiple biological and genetic vulnerabilities. The glutamate hypothesis has been the most extensively investigated pathophysiology/pathomechanism hypothesis, other than the dopamine hypothesis. Studies have revealed the possibility that functional abnormalities of the NMDAR play important roles in the pathophysiology/pathomechanism of schizophrenia. However, no antipsychotics derived from the glutamatergic hypothesis have yet been approved for the treatment of schizophrenia or treatment-resistant schizophrenia. Considering the increasing evidence supporting the potential pro-cognitive effects of glutamatergic agents and the lack of sufficient medications to treat the cognitive impairments associated with schizophrenia, these previous setbacks cannot preclude research into potential novel glutamate modulators. Given this background, to emphasize the importance of the dysfunction of the NMDAR in the pathomechanism and/or pathophysiology of schizophrenia, this review introduces the increasing findings on the functional abnormalities in glutamatergic transmission associated with the NMDAR.
Collapse
Affiliation(s)
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (R.O.); (E.M.)
| | | |
Collapse
|
4
|
Faris P, Pischedda D, Palesi F, D’Angelo E. New clues for the role of cerebellum in schizophrenia and the associated cognitive impairment. Front Cell Neurosci 2024; 18:1386583. [PMID: 38799988 PMCID: PMC11116653 DOI: 10.3389/fncel.2024.1386583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Schizophrenia (SZ) is a complex neuropsychiatric disorder associated with severe cognitive dysfunction. Although research has mainly focused on forebrain abnormalities, emerging results support the involvement of the cerebellum in SZ physiopathology, particularly in Cognitive Impairment Associated with SZ (CIAS). Besides its role in motor learning and control, the cerebellum is implicated in cognition and emotion. Recent research suggests that structural and functional changes in the cerebellum are linked to deficits in various cognitive domains including attention, working memory, and decision-making. Moreover, cerebellar dysfunction is related to altered cerebellar circuit activities and connectivity with brain regions associated with cognitive processing. This review delves into the role of the cerebellum in CIAS. We initially consider the major forebrain alterations in CIAS, addressing impairments in neurotransmitter systems, synaptic plasticity, and connectivity. We then focus on recent findings showing that several mechanisms are also altered in the cerebellum and that cerebellar communication with the forebrain is impaired. This evidence implicates the cerebellum as a key component of circuits underpinning CIAS physiopathology. Further studies addressing cerebellar involvement in SZ and CIAS are warranted and might open new perspectives toward understanding the physiopathology and effective treatment of these disorders.
Collapse
Affiliation(s)
- Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Doris Pischedda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
5
|
Fan L, Liang L, Wang Y, Ma X, Yuan L, Ouyang L, He Y, Li Z, Li C, Chen X, Palaniyappan L. Glutamatergic basis of antipsychotic response in first-episode psychosis: a dual voxel study of the anterior cingulate cortex. Neuropsychopharmacology 2024; 49:845-853. [PMID: 37752221 PMCID: PMC10948866 DOI: 10.1038/s41386-023-01741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
A subgroup of patients with schizophrenia is believed to have aberrant excess of glutamate in the frontal cortex; this subgroup is thought to show poor response to first-line antipsychotic treatments that focus on dopamine blockade. If we can identify this subgroup early in the course of illness, we can reduce the repeated use of first-line antipsychotics and potentially stratify first-episode patients to intervene early with second-line treatments such as clozapine. The use of proton magnetic resonance spectroscopy (1H-MRS) to measure glutamate and Glx (glutamate plus glutamine) may provide a means for such a stratification. We must first establish if there is robust evidence linking elevations in anterior cingulate cortex (ACC) glutamate metabolites to poor response, and determine if the use of antipsychotics worsens the glutamatergic excess in eventual nonresponders. In this study, we estimated glutamate levels at baseline in 42 drug-naive patients with schizophrenia. We then treated them all with risperidone at a standard dose range of 2-6 mg/day and followed them up for 3 months to categorize their response status. We expected to see baseline "hyperglutamatergia" in nonresponders, and expected this to worsen over time at the follow-up. In line with our predictions, nonresponders had higher glutamate than responders, but patients as a group did not differ in glutamate and Glx from the healthy control (HC) group before treatment-onset (F1,79 = 3.20, p = 0.046, partial η2 = 0.075). Glutamatergic metabolites did not change significantly over time in both nonresponders and responders over the 3 months of antipsychotic exposure (F1,31 = 1.26, p = 0.270, partial η2 = 0.039). We conclude that the use of antipsychotics without prior knowledge of later response delays symptom relief in a subgroup of first-episode patients, but does not worsen the glutamatergic excess seen at the baseline. Given the current practice of nonstratified use of antipsychotics, longer-time follow-up MRS studies are required to see if improvement in symptoms accompanies a dynamic shift in glutamate profile.
Collapse
Affiliation(s)
- Lejia Fan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Liangbing Liang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Yujue Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoqian Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liu Yuan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lijun Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
6
|
Arumuham A, Nour MM, Veronese M, Beck K, Onwordi EC, Lythgoe DJ, Jauhar S, Rabiner EA, Howes OD. Histamine-3 Receptor Availability and Glutamate Levels in the Brain: A PET-1H-MRS Study of Patients With Schizophrenia and Healthy Controls. Int J Neuropsychopharmacol 2024; 27:pyae011. [PMID: 38373256 PMCID: PMC10946236 DOI: 10.1093/ijnp/pyae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND The histamine-3 receptor (H3R) may have a role in cognitive processes through its action as a presynaptic heteroreceptor inhibiting the release of glutamate in the brain. To explore this, we examined anterior cingulate cortex (ACC) and striatum H3R availability in patients with schizophrenia and characterized their relationships with glutamate levels in corresponding brain regions. METHODS We employed a cross-sectional study, recruiting 12 patients with schizophrenia and 12 healthy volunteers. Participants underwent positron emission tomography using the H3R-specific radio ligand [11C]MK-8278, followed by proton magnetic resonance spectroscopy to measure glutamate levels, recorded as Glu and Glx. Based on existing literature, the ACC and striatum were selected as regions of interest. RESULTS We found significant inverse relationships between tracer uptake and Glu (r = -0.66, P = .02) and Glx (r = -0.62, P = .04) levels in the ACC of patients, which were absent in healthy volunteers (Glu: r = -0.19, P = .56, Glx: r = 0.10, P = .75). We also found a significant difference in striatal (F1,20 = 6.00, P = .02) and ACC (F1,19 = 4.75, P = .04) Glx levels between groups. CONCLUSIONS These results provide evidence of a regionally specific relationship between H3Rs and glutamate levels, which builds on existing preclinical literature. Our findings add to a growing literature indicating H3Rs may be a promising treatment target in schizophrenia, particularly for cognitive impairment, which has been associated with altered glutamate signaling.
Collapse
Affiliation(s)
- Atheeshaan Arumuham
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| | - Matthew M Nour
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Mattia Veronese
- Department of Information Engineering, University of Padua, Padua, Italy
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Katherine Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| | - Ellis Chika Onwordi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Sameer Jauhar
- Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | | | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- H Lundbeck A/s, St Albans, UK
| |
Collapse
|
7
|
Singh U, Das B, Khanra S, Roy C. Resting state and activated brain glutamate-glutamine, brain lactate, cognition, and psychopathology among males with schizophrenia: A 3 Tesla proton magnetic resonance spectroscopic (1H-MRS) study. Indian J Psychiatry 2024; 66:82-89. [PMID: 38419937 PMCID: PMC10898519 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_621_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/09/2023] [Accepted: 12/25/2023] [Indexed: 03/02/2024] Open
Abstract
Background Research on glutamate (Glu) in schizophrenia has so far been inconclusive. Based on preclinical studies on Glu lactate interaction, researchers have now focused on brain lactate level as a sign of major pathology, including cognitive dysfunctions in the brain. Our study aimed to examine changes at resting and activated states in brain lactate and Glu-glutamine (Glx) at the anterior cingulate cortex (ACC) in schizophrenia. Methods A hospital-based prospective study was conducted with twenty-two male cases of schizophrenia and matched healthy controls (HCs). Positive and Negative Syndrome Scale (PANSS), Montreal Cognitive Assessment (MoCA), and Stroop tasks were administered among patients. Brain lactate and Glx at ACC were measured at resting state and during the Stroop test with proton magnetic resonance spectroscopy (1H-MRS) both at baseline and at remission and once among HC. Result Though MoCA scores improved significantly (P < 0.001) at remission from baseline among cases, repeated-measures analysis of variance (RM-ANOVA) did not find a significant time effect for Glx (P = 0.82) and lactate (P = 0.30) among cases from baseline to remission. Glx and lactate changed differently from baseline to remission. Conclusion Our study did not find significant differences in Glx and lactate between schizophrenia patients and HC. No significant time effect on Glx and lactate was observed from baseline to remission among schizophrenia cases. Different changes observed in Glx and lactate from baseline to remission require replication in future studies with larger sample size, longer follow-up period, and multivoxel MR assessment.
Collapse
Affiliation(s)
- Ujjwal Singh
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Basudeb Das
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Sourav Khanra
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Chandramouli Roy
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| |
Collapse
|
8
|
Santa C, Rodrigues D, Coelho JF, Anjo SI, Mendes VM, Bessa-Neto D, Dunn MJ, Cotter D, Baltazar G, Monteiro P, Manadas B. Chronic treatment with D2-antagonist haloperidol leads to inhibitory/excitatory imbalance in striatal D1-neurons. Transl Psychiatry 2023; 13:312. [PMID: 37803004 PMCID: PMC10558446 DOI: 10.1038/s41398-023-02609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023] Open
Abstract
Striatal dysfunction has been implicated in the pathophysiology of schizophrenia, a disorder characterized by positive symptoms such as hallucinations and delusions. Haloperidol is a typical antipsychotic medication used in the treatment of schizophrenia that is known to antagonize dopamine D2 receptors, which are abundantly expressed in the striatum. However, haloperidol's delayed therapeutic effect also suggests a mechanism of action that may go beyond the acute blocking of D2 receptors. Here, we performed proteomic analysis of striatum brain tissue and found more than 400 proteins significantly altered after 30 days of chronic haloperidol treatment in mice, namely proteins involved in glutamatergic and GABAergic synaptic transmission. Cell-type specific electrophysiological recordings further revealed that haloperidol not only reduces the excitability of striatal medium spiny neurons expressing dopamine D2 receptors (D2-MSNs) but also affects D1-MSNs by increasing the ratio of inhibitory/excitatory synaptic transmission (I/E ratio) specifically onto D1-MSNs but not D2-MSNs. Therefore, we propose the slow remodeling of D1-MSNs as a mechanism mediating the delayed therapeutic effect of haloperidol over striatum circuits. Understanding how haloperidol exactly contributes to treating schizophrenia symptoms may help to improve therapeutic outcomes and elucidate the molecular underpinnings of this disorder.
Collapse
Affiliation(s)
- Cátia Santa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- III - Institute of Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Diana Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| | - Joana F Coelho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sandra I Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Vera M Mendes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Diogo Bessa-Neto
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Michael J Dunn
- Proteome Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, and Medical Sciences, University College Dublin, Dublin, Ireland
| | - David Cotter
- RCSI Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre Beaumont, Dublin, Ireland
| | - Graça Baltazar
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Patrícia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Portugal.
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
9
|
Grosu ȘA, Dobre M, Milanesi E, Hinescu ME. Blood-Based MicroRNAs in Psychotic Disorders-A Systematic Review. Biomedicines 2023; 11:2536. [PMID: 37760977 PMCID: PMC10525934 DOI: 10.3390/biomedicines11092536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Psychotic disorders are a heterogenous class of mental illness, with an intricate pathophysiology, involving genetics and environmental factors, and their interaction. The identification of accessible biomarkers in bodily systems such as blood may lead to more accurate diagnosis, and more effective treatments targeting dysfunctional pathways, and could assist in monitoring the disease evolution. This systematic review aims to highlight the dysregulated microRNAs (miRNAs) in the peripheral blood of patients with psychotic disorders. Using the PRISMA protocol, PubMed and Science Direct databases were investigated and 22 articles were included. Fifty-five different miRNAs were found differentially expressed in the blood of psychotic patients compared to controls. Seventeen miRNAs (miR-34a, miR-181b, miR-432, miR-30e, miR-21, miR-137, miR-134, miR-7, miR-92a, miR-1273d, miR-1303, miR-3064-5p, miR-3131, miR-3687, miR-4428, miR-4725-3p, and miR-5096) were dysregulated with the same trend (up- or down-regulation) in at least two studies. Of note, miR-34a and miR-181b were up-regulated in the blood of psychotic patients in seven and six studies, respectively. Moreover, the level of miR-181b in plasma was found to be positively correlated with the amelioration of negative symptoms. The panel of miRNAs identified in this review could be validated in future studies in large and well-characterized cohorts of psychotic patients.
Collapse
Affiliation(s)
- Ștefania-Alexandra Grosu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.-A.G.); (M.E.H.)
| | - Maria Dobre
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Elena Milanesi
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.-A.G.); (M.E.H.)
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Mihail Eugen Hinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.-A.G.); (M.E.H.)
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| |
Collapse
|
10
|
Cai XL, Pu CC, Zhou SZ, Wang Y, Huang J, Lui SSY, Møller A, Cheung EFC, Madsen KH, Xue R, Yu X, Chan RCK. Anterior cingulate glutamate levels associate with functional activation and connectivity during sensory integration in schizophrenia: a multimodal 1H-MRS and fMRI study. Psychol Med 2023; 53:4904-4914. [PMID: 35791929 DOI: 10.1017/s0033291722001817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Glutamatergic dysfunction has been implicated in sensory integration deficits in schizophrenia, yet how glutamatergic function contributes to behavioural impairments and neural activities of sensory integration remains unknown. METHODS Fifty schizophrenia patients and 43 healthy controls completed behavioural assessments for sensory integration and underwent magnetic resonance spectroscopy (MRS) for measuring the anterior cingulate cortex (ACC) glutamate levels. The correlation between glutamate levels and behavioural sensory integration deficits was examined in each group. A subsample of 20 pairs of patients and controls further completed an audiovisual sensory integration functional magnetic resonance imaging (fMRI) task. Blood Oxygenation Level Dependent (BOLD) activation and task-dependent functional connectivity (FC) were assessed based on fMRI data. Full factorial analyses were performed to examine the Group-by-Glutamate Level interaction effects on fMRI measurements (group differences in correlation between glutamate levels and fMRI measurements) and the correlation between glutamate levels and fMRI measurements within each group. RESULTS We found that schizophrenia patients exhibited impaired sensory integration which was positively correlated with ACC glutamate levels. Multimodal analyses showed significantly Group-by-Glutamate Level interaction effects on BOLD activation as well as task-dependent FC in a 'cortico-subcortical-cortical' network (including medial frontal gyrus, precuneus, ACC, middle cingulate gyrus, thalamus and caudate) with positive correlations in patients and negative in controls. CONCLUSIONS Our findings indicate that ACC glutamate influences neural activities in a large-scale network during sensory integration, but the effects have opposite directionality between schizophrenia patients and healthy people. This implicates the crucial role of glutamatergic system in sensory integration processing in schizophrenia.
Collapse
Affiliation(s)
- Xin-Lu Cai
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
| | - Cheng-Cheng Pu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Shu-Zhe Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Simon S Y Lui
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Arne Møller
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- Centre of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Special Administrative Region, China
| | - Kristoffer H Madsen
- Sino-Danish Centre for Education and Research, Beijing, China
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Amager and Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rong Xue
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Department of Diagnostic Radiology, the University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
11
|
Vinnakota C, Hudson MR, Jones NC, Sundram S, Hill RA. Potential Roles for the GluN2D NMDA Receptor Subunit in Schizophrenia. Int J Mol Sci 2023; 24:11835. [PMID: 37511595 PMCID: PMC10380280 DOI: 10.3390/ijms241411835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Glutamate N-methyl-D-aspartate receptor (NMDAR) hypofunction has been proposed to underlie schizophrenia symptoms. This theory arose from the observation that administration of NMDAR antagonists, which are compounds that inhibit NMDAR activity, reproduces behavioural and molecular schizophrenia-like phenotypes, including hallucinations, delusions and cognitive impairments in healthy humans and animal models. However, the role of specific NMDAR subunits in these schizophrenia-relevant phenotypes is largely unknown. Mounting evidence implicates the GluN2D subunit of NMDAR in some of these symptoms and pathology. Firstly, genetic and post-mortem studies show changes in the GluN2D subunit in people with schizophrenia. Secondly, the psychosis-inducing effects of NMDAR antagonists are blunted in GluN2D-knockout mice, suggesting that the GluN2D subunit mediates NMDAR-antagonist-induced psychotomimetic effects. Thirdly, in the mature brain, the GluN2D subunit is relatively enriched in parvalbumin (PV)-containing interneurons, a cell type hypothesized to underlie the cognitive symptoms of schizophrenia. Lastly, the GluN2D subunit is widely and abundantly expressed early in development, which could be of importance considering schizophrenia is a disorder that has its origins in early neurodevelopment. The limitations of currently available therapies warrant further research into novel therapeutic targets such as the GluN2D subunit, which may help us better understand underlying disease mechanisms and develop novel and more effective treatment options.
Collapse
Affiliation(s)
- Chitra Vinnakota
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Matthew R Hudson
- Department of Neuroscience, Faculty of Medical, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
| | - Nigel C Jones
- Department of Neuroscience, Faculty of Medical, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
- Mental Health Program, Monash Health, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
12
|
van Boxel R, Gangadin SS, Janssen H, van der Steur S, van der Vinne LJC, Dortants L, Pelgrim TAD, Draisma LWR, Tuura R, van der Meer P, Batalla A, Bossong MG. The impact of cannabidiol treatment on resting state functional connectivity, prefrontal metabolite levels and reward processing in recent-onset patients with a psychotic disorder. J Psychiatr Res 2023; 163:93-101. [PMID: 37207437 DOI: 10.1016/j.jpsychires.2023.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 05/01/2023] [Indexed: 05/21/2023]
Abstract
The first clinical trials with cannabidiol (CBD) as treatment for psychotic disorders have shown its potential as an effective and well-tolerated antipsychotic agent. However, the neurobiological mechanisms underlying the antipsychotic profile of CBD are currently unclear. Here we investigated the impact of 28-day adjunctive CBD or placebo treatment (600 mg daily) on brain function and metabolism in 31 stable recent-onset psychosis patients (<5 years after diagnosis). Before and after treatment, patients underwent a Magnetic Resonance Imaging (MRI) session including resting state functional MRI, proton Magnetic Resonance Spectroscopy (1H-MRS) and functional MRI during reward processing. Symptomatology and cognitive functioning were also assessed. CBD treatment significantly changed functional connectivity in the default mode network (DMN; time × treatment interaction p = 0.037), with increased connectivity in the CBD (from 0.59 ± 0.39 to 0.80 ± 0.32) and reduced connectivity in the placebo group (from 0.77 ± 0.37 to 0.62 ± 0.33). Although there were no significant treatment effects on prefrontal metabolite concentrations, we showed that decreased positive symptom severity over time was associated with both diminishing glutamate (p = 0.029) and N-acetyl-aspartate (NAA; neuronal integrity marker) levels (p = 0.019) in the CBD, but not the placebo group. CBD treatment did not have an impact on brain activity patterns during reward anticipation and receipt or functional connectivity in executive and salience networks. Our results show that adjunctive CBD treatment of recent-onset psychosis patients induced changes in DMN functional connectivity, but not prefrontal metabolite concentrations or brain activity during reward processing. These findings suggest that DMN connectivity alteration may be involved in the therapeutic effects of CBD.
Collapse
Affiliation(s)
- Ruben van Boxel
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Shiral S Gangadin
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Section of Neuropsychiatry, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, the Netherlands
| | - Hella Janssen
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Sanne van der Steur
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Lucia J C van der Vinne
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Lon Dortants
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Teuntje A D Pelgrim
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Psychiatry, Parnassia Psychiatric Institute, Amsterdam, the Netherlands
| | - Luc W R Draisma
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Ruth Tuura
- Center of MR Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - Pim van der Meer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Albert Batalla
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Matthijs G Bossong
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
13
|
Farmer CB, Roach EL, Bice LR, Falgout ME, Mata KG, Roche JK, Roberts RC. Excitatory and inhibitory imbalances in the trisynaptic pathway in the hippocampus in schizophrenia: a postmortem ultrastructural study. J Neural Transm (Vienna) 2023; 130:949-965. [PMID: 37193867 DOI: 10.1007/s00702-023-02650-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND A preponderance of evidence suggests that the hippocampus is a key region of dysfunction in schizophrenia. Neuroimaging and other studies indicate a relationship between hippocampal dysfunction and the degree of psychosis. Clinical data indicate hyperactivity in the hippocampus that precedes the onset of psychosis, and is correlated with symptom severity. In this study, we sought to identify circuitry at the electron microscopic level that could contribute to region-specific imbalances in excitation and inhibition in the hippocampus in schizophrenia. We used postmortem tissue from the anterior hippocampus from patients with schizophrenia and matched controls. Using stereological techniques, we counted and measured synapses, postsynaptic densities (PSDs), and evaluated size, number and optical density of mitochondria and parvalbumin-containing interneurons in key nodes of the trisynaptic pathway. Compared to controls, the schizophrenia group had decreased numbers of inhibitory synapses in CA3 and increased numbers of excitatory synapses in CA1; together, this indicates deficits in inhibition and an increase in excitation. The thickness of the PSD was larger in excitatory synapses in CA1, suggesting greater synaptic strength. In the schizophrenia group, there were fewer mitochondria in the dentate gyrus and a decrease in the optical density, a measure of functional integrity, in CA1. The number and optical density of parvalbumin interneurons were lower in CA3. The results suggest region-specific increases in excitatory circuitry, decreases in inhibitory neurotransmission and fewer or damaged mitochondria. These results are consistent with the hyperactivity observed in the hippocampus in schizophrenia in previous studies.
Collapse
Affiliation(s)
- Charlene B Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Erica L Roach
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Lily R Bice
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Madeleine E Falgout
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Kattia G Mata
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Joy K Roche
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
14
|
León-Ortiz P, Rivera-Chávez LF, Torres-Ruíz J, Reyes-Madrigal F, Carrillo-Vázquez D, Moncada-Habib T, Cassiano-Quezada F, Cadenhead KS, Gómez-Martín D, de la Fuente-Sandoval C. Systemic inflammation and cortical neurochemistry in never-medicated first episode-psychosis individuals. Brain Behav Immun 2023; 111:270-276. [PMID: 37149107 PMCID: PMC10330452 DOI: 10.1016/j.bbi.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023] Open
Abstract
Studies of cellular and cytokine profiles have contributed to the inflammation hypothesis of schizophrenia; however, precise markers of inflammatory dysfunction remain elusive. A number of proton magnetic resonance spectroscopy (1H-MRS) studies in patients with first-episode psychosis (FEP) have shown higher brain levels of metabolites such as glutamate, myo-inositol (mI) and choline-containing compounds (tCho), suggesting neuroinflammation. Here, we present peripheral inflammatory profiles in antipsychotic-naive FEP patients and age-and-sex matched healthy controls, as well as cortical glutamate, mI and tCho levels using 1H-MRS. Inflammatory profiles were analyzed using cytokine production by peripheral blood mononuclear cells, that were either spontaneous or stimulated, in 48 FEP patients and 23 controls. 1H-MRS of the medial prefrontal cortex was obtained in 29 FEP patients and 18 controls. Finally, 16 FEP patients were rescanned after 4 weeks of treatment (open-label) with Risperidone. FEP patients showed a higher proportion of proinflammatory Th1/Th17 subset, and an increased spontaneous production of Interleukin (IL)-6, IL-2 and IL-4 compared with the control group. Results obtained from 1H-MRS showed no significant difference in either glutamate, mI or tCho between FEP and control groups. At baseline, CD8% showed a negative correlation with glutamate in FEP patients; after 4 weeks of risperidone treatment, the FEP group exhibited a decrease in glutamate levels which positively correlated with CD4 + T cells. Nevertheless, these correlations did not survive correction for multiple comparisons. FEP patients show evidence of immune dysregulation, affecting both the innate and adaptive immune response, with a predominantly Th2 signature. These findings, along with the changes produced by antipsychotic treatment, could be associated with both systemic and central inflammatory processes in schizophrenia.
Collapse
Affiliation(s)
- Pablo León-Ortiz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico; Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Luis F Rivera-Chávez
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Jiram Torres-Ruíz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Daniel Carrillo-Vázquez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Tomás Moncada-Habib
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Fabiola Cassiano-Quezada
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | |
Collapse
|
15
|
Nelson EA, Kraguljac NV, Maximo JO, Armstrong W, Lahti AC. Hippocampal Hyperconnectivity to the Visual Cortex Predicts Treatment Response. Schizophr Bull 2023; 49:605-613. [PMID: 36752830 PMCID: PMC10154738 DOI: 10.1093/schbul/sbac213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND Converging lines of evidence point to hippocampal dysfunction in psychosis spectrum disorders, including altered functional connectivity. Evidence also suggests that antipsychotic medications can modulate hippocampal dysfunction. The goal of this project was to identify patterns of hippocampal connectivity predictive of response to antipsychotic treatment in 2 cohorts of patients with a psychosis spectrum disorder, one medication-naïve and the other one unmedicated. HYPOTHESIS We hypothesized that we would identify reliable patterns of hippocampal connectivity in the 2 cohorts that were predictive of treatment response and that medications would modulate abnormal hippocampal connectivity after 6 weeks of treatment. STUDY DESIGN We used a prospective design to collect resting-state fMRI scans prior to antipsychotic treatment and after 6 weeks of treatment with risperidone, a commonly used antipsychotic medication, in both cohorts. We enrolled 44 medication-naïve first-episode psychosis patients (FEP) and 39 unmedicated patients with schizophrenia (SZ). STUDY RESULTS In both patient cohorts, we observed a similar pattern where greater hippocampal connectivity to regions of the occipital cortex was predictive of treatment response. Lower hippocampal connectivity of the frontal pole, orbitofrontal cortex, subcallosal area, and medial prefrontal cortex was predictive of treatment response in unmedicated SZ, but not in the medication-naïve cohort. Furthermore, greater reduction in hippocampal connectivity to the visual cortex with treatment was associated with better clinical response. CONCLUSIONS Our results suggest that greater connectivity between the hippocampus and occipital cortex is not only predictive of better treatment response, but that antipsychotic medications have a modulatory effect by reducing hyperconnectivity.
Collapse
Affiliation(s)
- Eric A Nelson
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jose O Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William Armstrong
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
16
|
Wang M, Barker PB, Cascella NG, Coughlin JM, Nestadt G, Nucifora FC, Sedlak TW, Kelly A, Younes L, Geman D, Palaniyappan L, Sawa A, Yang K. Longitudinal changes in brain metabolites in healthy controls and patients with first episode psychosis: a 7-Tesla MRS study. Mol Psychiatry 2023; 28:2018-2029. [PMID: 36732587 PMCID: PMC10394114 DOI: 10.1038/s41380-023-01969-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
Seven Tesla magnetic resonance spectroscopy (7T MRS) offers a precise measurement of metabolic levels in the human brain via a non-invasive approach. Studying longitudinal changes in brain metabolites could help evaluate the characteristics of disease over time. This approach may also shed light on how the age of study participants and duration of illness may influence these metabolites. This study used 7T MRS to investigate longitudinal patterns of brain metabolites in young adulthood in both healthy controls and patients. A four-year longitudinal cohort with 38 patients with first episode psychosis (onset within 2 years) and 48 healthy controls was used to examine 10 brain metabolites in 5 brain regions associated with the pathophysiology of psychosis in a comprehensive manner. Both patients and controls were found to have significant longitudinal reductions in glutamate in the anterior cingulate cortex (ACC). Only patients were found to have a significant decrease over time in γ-aminobutyric acid, N-acetyl aspartate, myo-inositol, total choline, and total creatine in the ACC. Together we highlight the ACC with dynamic changes in several metabolites in early-stage psychosis, in contrast to the other 4 brain regions that also are known to play roles in psychosis. Meanwhile, glutathione was uniquely found to have a near zero annual percentage change in both patients and controls in all 5 brain regions during a four-year follow-up in young adulthood. Given that a reduction of the glutathione in the ACC has been reported as a feature of treatment-refractory psychosis, this observation further supports the potential of glutathione as a biomarker for this subset of patients with psychosis.
Collapse
Affiliation(s)
- Min Wang
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Peter B Barker
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Nicola G Cascella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick C Nucifora
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas W Sedlak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexandra Kelly
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laurent Younes
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Donald Geman
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Lena Palaniyappan
- Robarts Research Institution, University of Western Ontario, London, ON, Canada
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Merritt K, McCutcheon RA, Aleman A, Ashley S, Beck K, Block W, Bloemen OJN, Borgan F, Boules C, Bustillo JR, Capizzano AA, Coughlin JM, David A, de la Fuente-Sandoval C, Demjaha A, Dempster K, Do KQ, Du F, Falkai P, Galińska-Skok B, Gallinat J, Gasparovic C, Ginestet CE, Goto N, Graff-Guerrero A, Ho BC, Howes O, Jauhar S, Jeon P, Kato T, Kaufmann CA, Kegeles LS, Keshavan MS, Kim SY, King B, Kunugi H, Lauriello J, León-Ortiz P, Liemburg E, Mcilwain ME, Modinos G, Mouchlianitis E, Nakamura J, Nenadic I, Öngür D, Ota M, Palaniyappan L, Pantelis C, Patel T, Plitman E, Posporelis S, Purdon SE, Reichenbach JR, Renshaw PF, Reyes-Madrigal F, Russell BR, Sawa A, Schaefer M, Shungu DC, Smesny S, Stanley JA, Stone J, Szulc A, Taylor R, Thakkar KN, Théberge J, Tibbo PG, van Amelsvoort T, Walecki J, Williamson PC, Wood SJ, Xin L, Yamasue H, McGuire P, Egerton A. Variability and magnitude of brain glutamate levels in schizophrenia: a meta and mega-analysis. Mol Psychiatry 2023; 28:2039-2048. [PMID: 36806762 PMCID: PMC10575771 DOI: 10.1038/s41380-023-01991-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/19/2023]
Abstract
Glutamatergic dysfunction is implicated in schizophrenia pathoaetiology, but this may vary in extent between patients. It is unclear whether inter-individual variability in glutamate is greater in schizophrenia than the general population. We conducted meta-analyses to assess (1) variability of glutamate measures in patients relative to controls (log coefficient of variation ratio: CVR); (2) standardised mean differences (SMD) using Hedges g; (3) modal distribution of individual-level glutamate data (Hartigan's unimodality dip test). MEDLINE and EMBASE databases were searched from inception to September 2022 for proton magnetic resonance spectroscopy (1H-MRS) studies reporting glutamate, glutamine or Glx in schizophrenia. 123 studies reporting on 8256 patients and 7532 controls were included. Compared with controls, patients demonstrated greater variability in glutamatergic metabolites in the medial frontal cortex (MFC, glutamate: CVR = 0.15, p < 0.001; glutamine: CVR = 0.15, p = 0.003; Glx: CVR = 0.11, p = 0.002), dorsolateral prefrontal cortex (glutamine: CVR = 0.14, p = 0.05; Glx: CVR = 0.25, p < 0.001) and thalamus (glutamate: CVR = 0.16, p = 0.008; Glx: CVR = 0.19, p = 0.008). Studies in younger, more symptomatic patients were associated with greater variability in the basal ganglia (BG glutamate with age: z = -0.03, p = 0.003, symptoms: z = 0.007, p = 0.02) and temporal lobe (glutamate with age: z = -0.03, p = 0.02), while studies with older, more symptomatic patients associated with greater variability in MFC (glutamate with age: z = 0.01, p = 0.02, glutamine with symptoms: z = 0.01, p = 0.02). For individual patient data, most studies showed a unimodal distribution of glutamatergic metabolites. Meta-analysis of mean differences found lower MFC glutamate (g = -0.15, p = 0.03), higher thalamic glutamine (g = 0.53, p < 0.001) and higher BG Glx in patients relative to controls (g = 0.28, p < 0.001). Proportion of males was negatively associated with MFC glutamate (z = -0.02, p < 0.001) and frontal white matter Glx (z = -0.03, p = 0.02) in patients relative to controls. Patient PANSS total score was positively associated with glutamate SMD in BG (z = 0.01, p = 0.01) and temporal lobe (z = 0.05, p = 0.008). Further research into the mechanisms underlying greater glutamatergic metabolite variability in schizophrenia and their clinical consequences may inform the identification of patient subgroups for future treatment strategies.
Collapse
Affiliation(s)
- Kate Merritt
- Division of Psychiatry, UCL, Institute of Mental Health, London, UK.
| | | | - André Aleman
- Center for Brain Disorder and Cognitive Science, Shenzhen University, Shenzhen, China
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sarah Ashley
- Division of Psychiatry, UCL, Institute of Mental Health, London, UK
| | - Katherine Beck
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Wolfgang Block
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Oswald J N Bloemen
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Faith Borgan
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Christiana Boules
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Juan R Bustillo
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Research, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Aristides A Capizzano
- Department of Radiology, Division of Neuroradiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anthony David
- Division of Psychiatry, UCL, Institute of Mental Health, London, UK
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Arsime Demjaha
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kara Dempster
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Kim Q Do
- Center for Psychiatric Neuroscience (CNP), Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Peter Falkai
- Department of Psychiatry, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Beata Galińska-Skok
- Department of Psychiatry, Medical University of Bialystok, Bialystok, Poland
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Cedric E Ginestet
- Department of Biostatistics and Health Informatics (S2.06), Institute of Psychiatry, Psychology and Neuroscience King's College London, London, UK
| | - Naoki Goto
- Department of Psychiatry, Kokura Gamo Hospital, Kitakyushu, Fukuoka, 8020978, Japan
| | - Ariel Graff-Guerrero
- Multimodal Neuroimaging Schizophrenia Group, Research Imaging Centre, Geriatric Mental Health Program at Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Beng-Choon Ho
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Oliver Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sameer Jauhar
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Peter Jeon
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Charles A Kaufmann
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute (NYSPI), New York, NY, USA
| | - Lawrence S Kegeles
- Columbia University, Department of Psychiatry, New York State Psychiatric Institute (NYSPI), New York, NY, USA
| | | | | | - Bridget King
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Hiroshi Kunugi
- National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-0031, Japan
| | - J Lauriello
- Jefferson Health-Sidney Kimmel Medical College, Philadelphia, PA, USA
| | - Pablo León-Ortiz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Edith Liemburg
- Rob Giel Research Center, Department of Psychiatry, University Medical Center Groningen, Groningen, the Netherlands
| | - Meghan E Mcilwain
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Gemma Modinos
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Elias Mouchlianitis
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jun Nakamura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Miho Ota
- National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-0031, Japan
| | - Lena Palaniyappan
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Tulsi Patel
- Division of Psychiatry, UCL, Institute of Mental Health, London, UK
| | - Eric Plitman
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Sotirios Posporelis
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, BR3 3BX, UK
| | - Scot E Purdon
- Neuropsychology Department, Alberta Hospital Edmonton, Edmonton, AB, Canada
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology (IDIR), Jena University Hospital, Jena, Germany
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Bruce R Russell
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, Mental Health, Biomedical Engineering, and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Martin Schaefer
- Department of Psychiatry, Psychotherapy, Psychosomatics and Addiction Medicine, Kliniken Essen-Mitte, Essen, Germany
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medical College, New York City, NY, USA
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Jeffrey A Stanley
- Brain Imaging Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - James Stone
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Reggie Taylor
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Katharine N Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University, East Lansing, MI, USA
| | - Jean Théberge
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Psychiatry, Western University, London, ON, Canada
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | | | - Peter C Williamson
- Lawson Health Research Institute, London, ON, Canada
- Department of Psychiatry, Western University, London, ON, Canada
| | - Stephen J Wood
- Orygen, Melbourne, VIC, Australia
- Institute for Mental Health, University of Birmingham, Edgbaston, UK
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Philip McGuire
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alice Egerton
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
18
|
van Hooijdonk CFM, van der Pluijm M, Bosch I, van Amelsvoort TAMJ, Booij J, de Haan L, Selten JP, Giessen EVD. The substantia nigra in the pathology of schizophrenia: A review on post-mortem and molecular imaging findings. Eur Neuropsychopharmacol 2023; 68:57-77. [PMID: 36640734 DOI: 10.1016/j.euroneuro.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Dysregulation of striatal dopamine is considered to be an important driver of pathophysiological processes in schizophrenia. Despite being one of the main origins of dopaminergic input to the striatum, the (dys)functioning of the substantia nigra (SN) has been relatively understudied in schizophrenia. Hence, this paper aims to review different molecular aspects of nigral functioning in patients with schizophrenia compared to healthy controls by integrating post-mortem and molecular imaging studies. We found evidence for hyperdopaminergic functioning in the SN of patients with schizophrenia (i.e. increased AADC activity in antipsychotic-free/-naïve patients and elevated neuromelanin accumulation). Reduced GABAergic inhibition (i.e. decreased density of GABAergic synapses, lower VGAT mRNA levels and lower mRNA levels for GABAA receptor subunits), excessive glutamatergic excitation (i.e. increased NR1 and Glur5 mRNA levels and a reduced number of astrocytes), and several other disturbances implicating the SN (i.e. immune functioning and copper concentrations) could potentially underlie this nigral hyperactivity and associated striatal hyperdopaminergic functioning in schizophrenia. These results highlight the importance of the SN in schizophrenia pathology and suggest that some aspects of molecular functioning in the SN could potentially be used as treatment targets or biomarkers.
Collapse
Affiliation(s)
- Carmen F M van Hooijdonk
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands.
| | - Marieke van der Pluijm
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Iris Bosch
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Therese A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Jean-Paul Selten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
19
|
Egerton A, Griffiths K, Casetta C, Deakin B, Drake R, Howes OD, Kassoumeri L, Khan S, Lankshear S, Lees J, Lewis S, Mikulskaya E, Millgate E, Oloyede E, Pollard R, Rich N, Segev A, Sendt KV, MacCabe JH. Anterior cingulate glutamate metabolites as a predictor of antipsychotic response in first episode psychosis: data from the STRATA collaboration. Neuropsychopharmacology 2023; 48:567-575. [PMID: 36456813 PMCID: PMC9852590 DOI: 10.1038/s41386-022-01508-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022]
Abstract
Elevated brain glutamate has been implicated in non-response to antipsychotic medication in schizophrenia. Biomarkers that can accurately predict antipsychotic non-response from the first episode of psychosis (FEP) could allow stratification of patients; for example, patients predicted not to respond to standard antipsychotics could be fast-tracked to clozapine. Using proton magnetic resonance spectroscopy (1H-MRS), we examined the ability of glutamate and Glx (glutamate plus glutamine) in the anterior cingulate cortex (ACC) and caudate to predict response to antipsychotic treatment. A total of 89 minimally medicated patients with FEP not meeting symptomatic criteria for remission were recruited across two study sites. 1H-MRS and clinical data were acquired at baseline, 2 and 6 weeks. Response was defined as >20% reduction in Positive and Negative Syndrome Scale (PANSS) Total score from baseline to 6 weeks. In the ACC, baseline glutamate and Glx were higher in Non-Responders and significantly predicted response (P < 0.02; n = 42). Overall accuracy was greatest for ACC Glx (69%) and increased to 75% when symptom severity at baseline was included in the model. Glutamate metabolites in the caudate were not associated with response, and there was no significant change in glutamate metabolites over time in either region. These results add to the evidence linking elevations in ACC glutamate metabolites to a poor antipsychotic response. They indicate that glutamate may have utility in predicting response during early treatment of first episode psychosis. Improvements in accuracy may be made by combining glutamate measures with other response biomarkers.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK.
| | - Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Cecila Casetta
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Greater Manchester Mental Health NHS Foundation Trust Bury New Road, Prestwich, Manchester, M25 3BL, UK
| | - Richard Drake
- Greater Manchester Mental Health NHS Foundation Trust Bury New Road, Prestwich, Manchester, M25 3BL, UK
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Laura Kassoumeri
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sobia Khan
- Greater Manchester Mental Health NHS Foundation Trust Bury New Road, Prestwich, Manchester, M25 3BL, UK
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Steve Lankshear
- Greater Manchester Mental Health NHS Foundation Trust Bury New Road, Prestwich, Manchester, M25 3BL, UK
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jane Lees
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Shon Lewis
- Greater Manchester Mental Health NHS Foundation Trust Bury New Road, Prestwich, Manchester, M25 3BL, UK
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elena Mikulskaya
- Greater Manchester Mental Health NHS Foundation Trust Bury New Road, Prestwich, Manchester, M25 3BL, UK
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Edward Millgate
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Ebenezer Oloyede
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rebecca Pollard
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Nathalie Rich
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Aviv Segev
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Kyra-Verena Sendt
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
20
|
Kruse AO, Bustillo JR. Glutamatergic dysfunction in Schizophrenia. Transl Psychiatry 2022; 12:500. [PMID: 36463316 PMCID: PMC9719533 DOI: 10.1038/s41398-022-02253-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
The NMDA-R hypofunction model of schizophrenia started with the clinical observation of the precipitation of psychotic symptoms in patients with schizophrenia exposed to PCP or ketamine. Healthy volunteers exposed to acute low doses of ketamine experienced mild psychosis but also negative and cognitive type symptoms reminiscent of the full clinical picture of schizophrenia. In rodents, acute systemic ketamine resulted in a paradoxical increase in extracellular frontal glutamate as well as of dopamine. Similar increase in prefrontal glutamate was documented with acute ketamine in healthy volunteers with 1H-MRS. Furthermore, sub-chronic low dose PCP lead to reductions in frontal dendritic tree density in rodents. In post-mortem ultrastructural studies in schizophrenia, a broad reduction in dendritic complexity and somal volume of pyramidal cells has been repeatedly described. This most likely accounts for the broad, subtle progressive cortical thinning described with MRI in- vivo. Additionally, prefrontal reductions in the obligatory GluN1 subunit of the NMDA-R has been repeatedly found in post-mortem tissue. The vast 1H-MRS literature in schizophrenia has documented trait-like small increases in glutamate concentrations in striatum very early in the illness, before antipsychotic treatment (the same structure where increased pre-synaptic release of dopamine has been reported with PET). The more recent genetic literature has reliably detected very small risk effects for common variants involving several glutamate-related genes. The pharmacological literature has followed two main tracks, directly informed by the NMDA-R hypo model: agonism at the glycine site (as mostly add-on studies targeting negative and cognitive symptoms); and pre-synaptic modulation of glutamatergic release (as single agents for acute psychosis). Unfortunately, both approaches have failed so far. There is little doubt that brain glutamatergic abnormalities are present in schizophrenia and that some of these are related to the etiology of the illness. The genetic literature directly supports a non- specific etiological role for glutamatergic dysfunction. Whether NMDA-R hypofunction as a specific mechanism accounts for any important component of the illness is still not evident. However, a glutamatergic model still has heuristic value to guide future research in schizophrenia. New tools to jointly examine brain glutamatergic, GABA-ergic and dopaminergic systems in-vivo, early in the illness, may lay the ground for a next generation of clinical trials that go beyond dopamine D2 blockade.
Collapse
Affiliation(s)
- Andreas O Kruse
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Juan R Bustillo
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
21
|
Investigating the effects of antipsychotics on brain insulin action: Study protocol for a multi-modality magnetic resonance imaging (MRI) study in healthy controls. PLoS One 2022; 17:e0277211. [PMID: 36441736 PMCID: PMC9704670 DOI: 10.1371/journal.pone.0277211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Antipsychotics (APs) are the cornerstone of treatment for schizophrenia (SCZ) but are unfortunately associated with serious metabolic adverse effects including weight gain and type 2 diabetes. The pathophysiology of AP-induced metabolic dysfunction is largely undetermined. Brain insulin resistance has been posited to be at the cross-roads of many cognitive and metabolic disorders, and disruption of central insulin action has emerged as a possible explanatory mechanism underlying AP induced metabolic dysfunction. Previous studies suggest that change in neuroimaging-based parameters with intranasal insulin administration can be leveraged to investigate brain insulin resistance. In this proof-of-concept study, we will utilize neural signatures of insulin action in the brain to examine if APs disrupt brain insulin signaling. It is hypothesized that: 1) intranasal insulin (INI), but not intranasal placebo (INP), will change cerebral blood flow and resting state connectivity, as well as increase glutamate levels in the striatum and dorsolateral prefrontal cortex; 2) oral olanzapine (OLA), but not oral placebo (PL), will inhibit the effect of INI on these parameters. Thirty-two healthy volunteers will undergo a single blind, cross-over design, wherein all participants receive the following four treatment combinations, 2-6 weeks apart, in a random sequence: INP + PL, INP + OLA, INI + PL, and INI + OLA. Participants will undergo an MRI-based assay of brain insulin resistance 15 minutes after administering 160 IU INI or INP. The scanning protocol includes resting and task-based functional MRI, arterial spin labelling, and proton magnetic resonance spectroscopy. Demonstrating that OLA can acutely induce brain insulin resistance is clinically relevant to metabolic health in SCZ. Evidence of brain insulin resistance induced by acute AP dosing can inform the early use of adjunctive insulin sensitizers for the treatment of metabolic comorbidities associated with AP treatment in severe mental illness. Trial registration ClinicalTrials.gov Registration: NCT03741478.
Collapse
|
22
|
Roberts RC, McCollum LA, Schoonover KE, Mabry SJ, Roche JK, Lahti AC. Ultrastructural evidence for glutamatergic dysregulation in schizophrenia. Schizophr Res 2022; 249:4-15. [PMID: 32014360 PMCID: PMC7392793 DOI: 10.1016/j.schres.2020.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/14/2022]
Abstract
The aim of this paper is to summarize ultrastructural evidence for glutamatergic dysregulation in several linked regions in postmortem schizophrenia brain. Following a brief summary of glutamate circuitry and how synapses are identified at the electron microscopic (EM) level, we will review EM pathology in the cortex and basal ganglia. We will include the effects of antipsychotic drugs and the relation of treatment response. We will discuss how these findings support or confirm other postmortem findings as well as imaging results. Briefly, synaptic and mitochondrial density in anterior cingulate cortex was decreased in schizophrenia, versus normal controls (NCs), in a selective layer specific pattern. In dorsal striatum, increases in excitatory synaptic density were detected in caudate matrix, a compartment associated with cognitive and motor function, and in the putamen patches, a region associated with limbic function and in the core of the nucleus accumbens. Patients who were treatment resistant or untreated had significantly elevated numbers of excitatory synapses in limbic striatal areas in comparison to NCs and responders. Protein levels of vGLUT2, found in subcortical glutamatergic neurons, were increased in the nucleus accumbens in schizophrenia. At the EM level, schizophrenia subjects had an increase in density of excitatory synapses in several areas of the basal ganglia. In the substantia nigra, the protein levels of vGLUT2 were elevated in untreated patients compared to NCs. The density of inhibitory synapses was decreased in schizophrenia versus NCs. In schizophrenia, glutamatergic synapses are differentially affected depending on the brain region, treatment status, and treatment response.
Collapse
Affiliation(s)
- Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America.
| | - Lesley A McCollum
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| | - Kirsten E Schoonover
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| | - Samuel J Mabry
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| | - Joy K Roche
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| |
Collapse
|
23
|
Sonnenschein SF, Mayeli A, Yushmanov VE, Blazer A, Calabro FJ, Perica M, Foran W, Luna B, Hetherington HP, Ferrarelli F, Sarpal DK. A longitudinal investigation of GABA, glutamate, and glutamine across the insula during antipsychotic treatment of first-episode schizophrenia. Schizophr Res 2022; 248:98-106. [PMID: 36029656 PMCID: PMC10018530 DOI: 10.1016/j.schres.2022.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/29/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022]
Abstract
Individuals with first-episode schizophrenia (FES) typically present with acute psychotic symptoms. Though antipsychotic drugs are the mainstay for treatment, the neurobiology underlying successful treatment remains largely elusive. Recent evidence from functional connectivity studies highlights the insula as a key structure in the neural mechanism of response. However, molecular contributions to response across insular regions remain largely unknown. We used 7-Tesla magnetic resonance spectroscopic imaging (MRSI) to measure glutamate (Glu), Glutamine (Gln), and GABA from anterior and posterior regions of the insula across antipsychotic treatment. A total of 36 participants were examined, including 15 individuals with FES and moderate to severe psychosis who were scanned at two time points, while starting and after 6 weeks of antipsychotic treatment. Symptoms were carefully monitored across the study period to characterize treatment response. GABA, Glu, and Gln levels were calculated relative to creatine in anterior and posterior insular regions, bilaterally. In relation to psychotic symptom reduction, we observed a significant increase in Glu across all insular regions with (p < 0.001), but no corresponding changes in Gln or GABA. In group analyses, the FES cohort showed lower levels of Glu (p < 0.001) and GABA (p = 0.02) at baseline. Finally, in exploratory analyses, treatment remitters demonstrated a normalization of lower insular Glu levels across treatment, unlike non-remitters. Overall, these findings contribute to our understating of molecular changes associated with antipsychotic response and demonstrate abnormalities specific to the insula in FES.
Collapse
Affiliation(s)
| | - Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Annie Blazer
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Perica
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Joe P, Clemente JC, Piras E, Wallach DS, Robinson-Papp J, Boka E, Remsen B, Bonner M, Kimhy D, Goetz D, Hoffman K, Lee J, Ruby E, Fendrich S, Gonen O, Malaspina D. An integrative study of the microbiome gut-brain-axis and hippocampal inflammation in psychosis: Persistent effects from mode of birth. Schizophr Res 2022; 247:101-115. [PMID: 34625336 PMCID: PMC8980116 DOI: 10.1016/j.schres.2021.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
The mechanism producing psychosis appears to include hippocampal inflammation, which could be associated with the microbiome-gut-brain-axis (MGBS). To test this hypothesis we are conducting a multidisciplinary study, herein described. The procedures are illustrated with testing of a single subject and group level information on the impact of C-section birth are presented. METHOD Study subjects undergo research diagnostic interviews and symptom assessments to be categorized into one of 3 study groups: psychosis, nonpsychotic affective disorder or healthy control. Hippocampal volume and metabolite concentrations are assessed using 3-dimensional, multi-voxel H1 Magnetic Resonance Imaging (MRSI) encompassing all gray matter in the entire hippocampal volume. Rich self-report information is obtained with the PROMIS interview, which was developed by the NIH Commons for research in chronic conditions. Early trauma is assessed and cognition is quantitated using the MATRICS. The method also includes the most comprehensive autonomic nervous system (ANS) battery used to date in psychiatric research. Stool and oral samples are obtained for microbiome assessments and cytokines and other substances are measured in blood samples. RESULTS Group level preliminary data shows that C-section birth is associated with higher concentrations of GLX, a glutamate related hippocampal neurotransmitter in psychotic cases, worse symptoms in affective disorder cases and smaller hippocampal volume in controls. CONCLUSION Mode of birth appears to have persistent influences through adulthood. The methodology described for this study will define pathways through which the MGBA may influence the risk for psychiatric disorders.
Collapse
Affiliation(s)
- Peter Joe
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA.
| | - Jose C Clemente
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Enrica Piras
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - David S Wallach
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | | | - Emeka Boka
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Brooke Remsen
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA; Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Mharisi Bonner
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - David Kimhy
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Deborah Goetz
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Kevin Hoffman
- Perelman School of Medicine, University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - Jakleen Lee
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Eugene Ruby
- University of California, Los Angeles, Department of Psychology, Los Angeles, CA, USA
| | - Sarah Fendrich
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA; Perelman School of Medicine, University of Pennsylvania, Center for Health Care Incentives & Behavioral Economics, Philadelphia, PA, USA
| | - Oded Gonen
- NYU Langone Medical Center, Department of Radiology, New York, NY, USA
| | - Dolores Malaspina
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| |
Collapse
|
25
|
Beck K, Arumuham A, Brugger S, McCutcheon RA, Veronese M, Santangelo B, McGinnity CJ, Dunn J, Kaar S, Singh N, Pillinger T, Borgan F, Sementa T, Neji R, Jauhar S, Aigbirhio F, Boros I, Turkheimer F, Hammers A, Lythgoe D, Stone J, Howes OD. The association between N-methyl-d-aspartate receptor availability and glutamate levels: A multi-modal PET-MR brain imaging study in first-episode psychosis and healthy controls. J Psychopharmacol 2022; 36:1051-1060. [PMID: 36120998 DOI: 10.1177/02698811221099643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Evidence from post-mortem studies and in vivo imaging studies suggests there may be reduced N-methyl-d-aspartate receptor (NMDAR) levels in the hippocampus in patients with schizophrenia. Other studies have reported increased glutamate in striatum in schizophrenia patients. It has been hypothesised that NMDAR hypofunction leads to the disinhibition of glutamatergic signalling; however, this has not been tested in vivo. METHODS In this study, we investigated the relationship between hippocampal NMDAR and striatal glutamate using simultaneous positron emission tomography-magnetic resonance (PET-MR) imaging. We recruited 40 volunteers to this cross-sectional study; 21 patients with schizophrenia, all in their first episode of illness, and 19 healthy controls. We measured hippocampal NMDAR availability using the PET ligand [18F]GE179. This was indexed relative to whole brain as the distribution volume ratio (DVR). Striatal glutamatergic indices (glutamate and Glx) were acquired simultaneously, using combined PET-MR proton magnetic resonance spectroscopy (1H-MRS). RESULTS A total of 33 individuals (15 healthy controls, 18 patients) were included in the analyses (mean (SD) age of controls, 27.31 (4.68) years; mean (SD) age of patients, 24.75 (4.33), 27 male and 6 female). We found an inverse relationship between hippocampal DVR and striatal glutamate levels in people with first-episode psychosis (rho = -0.74, p < 0.001) but not in healthy controls (rho = -0.22, p = 0.44). CONCLUSION This study show that lower relative NMDAR availability in the hippocampus may drive increased striatal glutamate levels in patients with schizophrenia. Further work is required to determine whether these findings may yield new targets for drug development in schizophrenia.
Collapse
Affiliation(s)
- Katherine Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Atheeshaan Arumuham
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Stefan Brugger
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Mattia Veronese
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Barbara Santangelo
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Colm J McGinnity
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Joel Dunn
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Stephen Kaar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Nisha Singh
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Toby Pillinger
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Faith Borgan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Teresa Sementa
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Radhouene Neji
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Franklin Aigbirhio
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Istvan Boros
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - David Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - James Stone
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
- Department of Psychiatry, Eastbourne District General Hospital, Sussex Partnership NHS Foundation Trust, Eastbourne, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
26
|
Zahid U, McCutcheon RA, Borgan F, Jauhar S, Pepper F, Nour MM, Rogdaki M, Osugo M, Murray GK, Hathway P, Murray RM, Egerton A, Howes OD. The effect of antipsychotics on glutamate levels in the anterior cingulate cortex and clinical response: A 1H-MRS study in first-episode psychosis patients. Front Psychiatry 2022; 13:967941. [PMID: 36032237 PMCID: PMC9403834 DOI: 10.3389/fpsyt.2022.967941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
Introduction Glutamatergic dysfunction is implicated in the pathophysiology of schizophrenia. It is unclear whether glutamatergic dysfunction predicts response to treatment or if antipsychotic treatment influences glutamate levels. We investigated the effect of antipsychotic treatment on glutamatergic levels in the anterior cingulate cortex (ACC), and whether there is a relationship between baseline glutamatergic levels and clinical response after antipsychotic treatment in people with first episode psychosis (FEP). Materials and methods The sample comprised 25 FEP patients; 22 completed magnetic resonance spectroscopy scans at both timepoints. Symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS). Results There was no significant change in glutamate [baseline 13.23 ± 2.33; follow-up 13.89 ± 1.74; t(21) = -1.158, p = 0.260], or Glx levels [baseline 19.64 ± 3.26; follow-up 19.66 ± 2.65; t(21) = -0.034, p = 0.973]. There was no significant association between glutamate or Glx levels at baseline and the change in PANSS positive (Glu r = 0.061, p = 0.777, Glx r = -0.152, p = 0.477), negative (Glu r = 0.144, p = 0.502, Glx r = 0.052, p = 0.811), general (Glu r = 0.110, p = 0.607, Glx r = -0.212, p = 0.320), or total scores (Glu r = 0.078, p = 0.719 Glx r = -0.155, p = 0.470). Conclusion These findings indicate that treatment response is unlikely to be associated with baseline glutamatergic metabolites prior to antipsychotic treatment, and there is no major effect of antipsychotic treatment on glutamatergic metabolites in the ACC.
Collapse
Affiliation(s)
- Uzma Zahid
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Robert A. McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Faith Borgan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Fiona Pepper
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London Centre, London, United Kingdom
| | - Matthew M. Nour
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, United Kingdom
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Maria Rogdaki
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Martin Osugo
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Graham K. Murray
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Pamela Hathway
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- H. Lundbeck UK, Valby, Denmark
| |
Collapse
|
27
|
Wada M, Noda Y, Iwata Y, Tsugawa S, Yoshida K, Tani H, Hirano Y, Koike S, Sasabayashi D, Katayama H, Plitman E, Ohi K, Ueno F, Caravaggio F, Koizumi T, Gerretsen P, Suzuki T, Uchida H, Müller DJ, Mimura M, Remington G, Grace AA, Graff-Guerrero A, Nakajima S. Dopaminergic dysfunction and excitatory/inhibitory imbalance in treatment-resistant schizophrenia and novel neuromodulatory treatment. Mol Psychiatry 2022; 27:2950-2967. [PMID: 35444257 DOI: 10.1038/s41380-022-01572-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Antipsychotic drugs are the mainstay in the treatment of schizophrenia. However, one-third of patients do not show adequate improvement in positive symptoms with non-clozapine antipsychotics. Additionally, approximately half of them show poor response to clozapine, electroconvulsive therapy, or other augmentation strategies. However, the development of novel treatment for these conditions is difficult due to the complex and heterogenous pathophysiology of treatment-resistant schizophrenia (TRS). Therefore, this review provides key findings, potential treatments, and a roadmap for future research in this area. First, we review the neurobiological pathophysiology of TRS, particularly the dopaminergic, glutamatergic, and GABAergic pathways. Next, the limitations of existing and promising treatments are presented. Specifically, this article focuses on the therapeutic potential of neuromodulation, including electroconvulsive therapy, repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation. Finally, we propose multivariate analyses that integrate various perspectives of the pathogenesis, such as dopaminergic dysfunction and excitatory/inhibitory imbalance, thereby elucidating the heterogeneity of TRS that could not be obtained by conventional statistics. These analyses can in turn lead to a precision medicine approach with closed-loop neuromodulation targeting the detected pathophysiology of TRS.
Collapse
Affiliation(s)
- Masataka Wada
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Yusuke Iwata
- Department of Neuropsychiatry, University of Yamanashi Faculty of Medicine, Yamanashi, Japan
| | - Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Kazunari Yoshida
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan.,Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Hideaki Tani
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Kyushu University, Fukuoka, Japan.,Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Haruyuki Katayama
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Eric Plitman
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Fumihiko Ueno
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Fernando Caravaggio
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Teruki Koizumi
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan.,Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Philip Gerretsen
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Takefumi Suzuki
- Department of Neuropsychiatry, University of Yamanashi Faculty of Medicine, Yamanashi, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Daniel J Müller
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Gary Remington
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ariel Graff-Guerrero
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan. .,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| |
Collapse
|
28
|
Bissonnette JN, Francis AM, MacNeil S, Crocker CE, Tibbo PG, Fisher DJ. Glutamate and N-Acetylaspartate Alterations Observed in Early Phase Psychosis: A Systematic Review of Proton Magnetic Resonance Spectroscopy Studies. Psychiatry Res Neuroimaging 2022; 321:111459. [PMID: 35183897 DOI: 10.1016/j.pscychresns.2022.111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
Abstract
Glutamate and N-acetylaspartate have been investigated in the neuropathology of chronic schizophrenia, with fewer studies focusing on early phase psychosis. Additionally, there has been little review and synthesis of the literature focused on multiple brain regions. This systematic review aims to provide a clear report of the current state of research on glutamate and n-acetylaspartate concentrations in early phase psychosis (defined as the first five years following psychosis onset) in multiple brain regions. Existing literature was searched systematically to compile reports of glutamate/glutamate+glutamine (Glx) and n-acetylaspartate absolute levels and ratios in both male and female individuals with early phase psychosis. Reports on glutamate/Glx concentrations in the medial prefrontal region and thalamus were varied, but the majority of reports suggested no alterations in EPP. No studies reported glutamate alterations in the hippocampus or cerebellum. There was no evidence for n-acetylaspartate alterations in the caudate, basal ganglia, and medial prefrontal cortex, and minimal evidence for NAA reductions in the thalamus, anterior cingulate cortex, and hippocampus. Future research should focus on the regions that are less commonly reported, and should aim to explore possible confounds, such as medication status and substance use.
Collapse
Affiliation(s)
- J N Bissonnette
- Department of Psychiatry, Dalhousie University, Halifax, NS.
| | - A M Francis
- Department of Psychology, Saint Mary's University, Halifax, NS.
| | - S MacNeil
- Department of Psychology, Mount Saint Vincent University, Halifax, NS.
| | - C E Crocker
- Department of Psychiatry, Dalhousie University, Halifax, NS; Nova Scotia Early Psychosis Program, Halifax, NS; Department of Diagnostic Imaging, Dalhousie University, Halifax, NS.
| | - P G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, NS; Nova Scotia Early Psychosis Program, Halifax, NS.
| | - D J Fisher
- Department of Psychiatry, Dalhousie University, Halifax, NS; Department of Psychology, Saint Mary's University, Halifax, NS; Department of Psychology, Mount Saint Vincent University, Halifax, NS.
| |
Collapse
|
29
|
Broeders TAA, Bhogal AA, Morsinkhof LM, Schoonheim MM, Röder CH, Edens M, Klomp DWJ, Wijnen JP, Vinkers CH. Glutamate levels across deep brain structures in patients with a psychotic disorder and its relation to cognitive functioning. J Psychopharmacol 2022; 36:489-497. [PMID: 35243931 PMCID: PMC9066676 DOI: 10.1177/02698811221077199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Patients with psychotic disorders often show prominent cognitive impairment. Glutamate seems to play a prominent role, but its role in deep gray matter (DGM) regions is unclear. AIMS To evaluate glutamate levels within deep gray matter structures in patients with a psychotic disorder in relation to cognitive functioning, using advanced spectroscopic acquisition, reconstruction, and post-processing techniques. METHODS A 7-Tesla magnetic resonance imaging scanner combined with a lipid suppression coil and subject-specific water suppression pulses was used to acquire high-resolution magnetic resonance spectroscopic imaging data. Tissue fraction correction and registration to a standard brain were performed for group comparison in specifically delineated DGM regions. The brief assessment of cognition in schizophrenia was used to evaluate cognitive status. RESULTS Average glutamate levels across DGM structures (i.e. caudate, pallidum, putamen, and thalamus) in mostly medicated patients with a psychotic disorder (n = 16, age = 33, 4 females) were lower compared to healthy controls (n = 23, age = 24, 7 females; p = 0.005, d = 1.06). Stratified analyses showed lower glutamate levels in the caudate (p = 0.046, d = 0.76) and putamen p = 0.013, d = 0.94). These findings were largely explained by age differences between groups. DGM glutamate levels were positively correlated with psychomotor speed (r(30) = 0.49, p = 0.028), but not with other cognitive domains. CONCLUSIONS We find reduced glutamate levels across DGM structures including the caudate and putamen in patients with a psychotic disorder that are linked to psychomotor speed. Despite limitations concerning age differences, these results underscore the potential role of detailed in vivo glutamate assessments to understand cognitive deficits in psychotic disorders.
Collapse
Affiliation(s)
- Tommy AA Broeders
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands,Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Tommy AA Broeders, Department of Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Alex A Bhogal
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lisan M Morsinkhof
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Menno M Schoonheim
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christian H Röder
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mirte Edens
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis WJ Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jannie P Wijnen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christiaan H Vinkers
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam/GGZ inGeest, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Reyes-Madrigal F, Guma E, León-Ortiz P, Gómez-Cruz G, Mora-Durán R, Graff-Guerrero A, Kegeles LS, Chakravarty MM, de la Fuente-Sandoval C. Striatal glutamate, subcortical structure and clinical response to first-line treatment in first-episode psychosis patients. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110473. [PMID: 34748864 PMCID: PMC8643337 DOI: 10.1016/j.pnpbp.2021.110473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Recent studies have observed that patients with treatment-resistant schizophrenia as well as patients with schizophrenia who do not respond within a medication trial exhibit excess activity of the glutamate system. In this study we sought to replicate the within-trial glutamate abnormality and to investigate the potential for structural differences and treatment-induced changes to improve identification of medication responders and non-responders. METHODS We enrolled 48 medication-naïve patients in a 4-week trial of risperidone and classified them retrospectively into responders and non-responders using clinical criteria. Proton magnetic resonance spectroscopy and T1-weighted structural MRI were acquired pre- and post-treatment to quantify striatal glutamate levels and several measures of subcortical brain structure. RESULTS Patients were classified as 29 responders and 19 non-responders. Striatal glutamate was higher in the non-responders than responders both pre- and post-treatment (F1,39 = 7.15, p = .01). Volumetric measures showed a significant group x time interaction (t = 5.163, <1%FDR), and group x time x glutamate interaction (t = 4.23, <15%FDR) were seen in several brain regions. Striatal volumes increased at trend level with treatment in both groups, and a positive association of striatal volumes with glutamate levels was seen in the non-responders. CONCLUSIONS Combining anatomic measures with glutamate levels offers the potential to enhance classification of responders and non-responders to antipsychotic medications as well as to provide mechanistic understanding of the interplay between neuroanatomical and neurochemical changes induced by these medications. Ethical statement The study was approved by the Ethics and Scientific committees of the Instituto Nacional de Neurología y Neurocirugía in Mexico City. All participants over 18 years fully understood and signed the informed consent; in case the patient was under 18 years, informed consent was obtained from both parents. Participants did not receive a stipend.
Collapse
Affiliation(s)
- Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Elisa Guma
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Computational Brain Anatomy (CoBrA) Lab, Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada
| | - Pablo León-Ortiz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Gladys Gómez-Cruz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Ricardo Mora-Durán
- Emergency Department, Hospital Fray Bernardino Álvarez, Mexico City, Mexico
| | - Ariel Graff-Guerrero
- Multimodal Neuroimaging Schizophrenia Group, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Lawrence S Kegeles
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, USA
| | - M Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Computational Brain Anatomy (CoBrA) Lab, Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico; Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico.
| |
Collapse
|
31
|
Glutamatergic and GABAergic metabolite levels in schizophrenia-spectrum disorders: a meta-analysis of 1H-magnetic resonance spectroscopy studies. Mol Psychiatry 2022; 27:744-757. [PMID: 34584230 DOI: 10.1038/s41380-021-01297-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The glutamate (Glu) and gamma aminobutyric acid (GABA) hypotheses of schizophrenia were proposed in the 1980s. However, current findings on those metabolite levels in schizophrenia have been inconsistent, and the relationship between their abnormalities and the pathophysiology of schizophrenia remains unclear. To summarize the nature of the alterations of glutamatergic and GABAergic systems in schizophrenia, we conducted meta-analyses of proton magnetic resonance spectroscopy (1H-MRS) studies examining these metabolite levels. METHODS A systematic literature search was conducted using Embase, Medline, PsycINFO, and PubMed. Original studies that compared four metabolite levels (Glu, glutamine [Gln], Glx [Glu+Gln], and GABA), as measured by 1H-MRS, between individuals at high risk for psychosis, patients with first-episode psychosis, or patients with schizophrenia and healthy controls (HC) were included. A random-effects model was used to calculate the effect sizes for group differences in these metabolite levels of 18 regions of interest between the whole group or schizophrenia group and HC. Subgroup analysis and meta-regression were performed based on the status of antipsychotic treatment, illness stage, treatment resistance, and magnetic field strength. RESULTS One-hundred-thirty-four studies met the eligibility criteria, totaling 7993 participants with SZ-spectrum disorders and 8744 HC. 14 out of 18 ROIs had enough numbers of studies to examine the group difference in the metabolite levels. In the whole group, Glx levels in the basal ganglia (g = 0.32; 95% CIs: 0.18-0.45) were elevated. Subgroup analyses showed elevated Glx levels in the hippocampus (g = 0.47; 95% CIs: 0.21-0.73) and dorsolateral prefrontal cortex (g = 0.25; 95% CIs: 0.05-0.44) in unmedicated patients than HC. GABA levels in the MCC were decreased in the first-episode psychosis group compared with HC (g = -0.40; 95% CIs: -0.62 to -0.17). Treatment-resistant schizophrenia (TRS) group had elevated Glx and Glu levels in the MCC (Glx: g = 0.7; 95% CIs: 0.38-1.01; Glu: g = 0.63; 95% CIs: 0.31-0.94) while MCC Glu levels were decreased in the patient group except TRS (g = -0.17; 95% CIs: -0.33 to -0.01). CONCLUSIONS Increased glutamatergic metabolite levels and reduced GABA levels indicate that the disruption of excitatory/inhibitory balance may be related to the pathophysiology of schizophrenia-spectrum disorders.
Collapse
|
32
|
Blaylock RL, Faria M. New concepts in the development of schizophrenia, autism spectrum disorders, and degenerative brain diseases based on chronic inflammation: A working hypothesis from continued advances in neuroscience research. Surg Neurol Int 2021; 12:556. [PMID: 34877042 PMCID: PMC8645502 DOI: 10.25259/sni_1007_2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
This paper was written prompted by a poignant film about adolescent girl with schizophrenia who babysits for a younger girl in an isolated cabin. Schizophrenia is an illness that both authors are fascinated with and that they continue to study and investigate. There is now compelling evidence that schizophrenia is a very complex syndrome that involves numerous neural pathways in the brain, far more than just dopaminergic and serotonergic systems. One of the more popular theories in recent literature is that it represents a hypo glutaminergic deficiency of certain pathways, including thalamic ones. After much review of research and study in this area, we have concluded that most such theories contain a number of shortcomings. Most are based on clinical responses to certain drugs, particularly antipsychotic drugs affecting the dopaminergic neurotransmitters; thus, assuming dopamine release was the central cause of the psychotic symptoms of schizophrenia. The theory was limited in that dopamine excess could only explain the positive symptoms of the disorder. Antipsychotic medications have minimal effectiveness for the negative and cognitive symptoms associated with schizophrenia. It has been estimated that 20–30% of patients show either a partial or no response to antipsychotic medications. In addition, the dopamine hypothesis does not explain the neuroanatomic findings in schizophrenia.
Collapse
Affiliation(s)
| | - Miguel Faria
- Clinical Professor of Surgery (Neurosurgery, ret.) and Adjunct Professor of Medical History (ret.), Mercer University School of Medicine, United States
| |
Collapse
|
33
|
Allen P, Hird EJ, Orlov N, Modinos G, Bossong M, Antoniades M, Sampson C, Azis M, Howes O, Stone J, Perez J, Broome M, Grace AA, McGuire P. Adverse clinical outcomes in people at clinical high-risk for psychosis related to altered interactions between hippocampal activity and glutamatergic function. Transl Psychiatry 2021; 11:579. [PMID: 34759289 PMCID: PMC8580992 DOI: 10.1038/s41398-021-01705-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Preclinical rodent models suggest that psychosis involves alterations in the activity and glutamatergic function in the hippocampus, driving dopamine activity through projections to the striatum. The extent to which this model applies to the onset of psychosis in clinical subjects is unclear. We assessed whether interactions between hippocampal glutamatergic function and activity/striatal connectivity are associated with adverse clinical outcomes in people at clinical high-risk (CHR) for psychosis. We measured functional Magnetic Resonance Imaging of hippocampal activation/connectivity, and 1H-Magnetic Resonance Spectroscopy of hippocampal glutamatergic metabolites in 75 CHR participants and 31 healthy volunteers. At follow-up, 12 CHR participants had transitioned to psychosis and 63 had not. Within the clinical high-risk cohort, at follow-up, 35 and 17 participants had a poor or a good functional outcome, respectively. The onset of psychosis (ppeakFWE = 0.003, t = 4.4, z = 4.19) and a poor functional outcome (ppeakFWE < 0.001, t = 5.52, z = 4.81 and ppeakFWE < 0.001, t = 5.25, z = 4.62) were associated with a negative correlation between the hippocampal activation and hippocampal Glx concentration at baseline. In addition, there was a negative association between hippocampal Glx concentration and hippocampo-striatal connectivity (ppeakFWE = 0.016, t = 3.73, z = 3.39, ppeakFWE = 0.014, t = 3.78, z = 3.42, ppeakFWE = 0.011, t = 4.45, z = 3.91, ppeakFWE = 0.003, t = 4.92, z = 4.23) in the total CHR sample, not seen in healthy volunteers. As predicted by preclinical models, adverse clinical outcomes in people at risk for psychosis are associated with altered interactions between hippocampal activity and glutamatergic function.
Collapse
Affiliation(s)
- Paul Allen
- Department of Psychology, University of Roehampton, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| | - Emily J Hird
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- National Institute of Health Research Biomedical Research Centre at South London and Maudsley National Health Service Foundation Trust, London, UK.
| | - Natasza Orlov
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Liu Lab, Harvard Medical School, Athinoula Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Lab for Precision Brain Imaging, Department of Neuroscience, Precision Brain Imaging Lab, Medical University of South Carolina, Charleston, SC, USA
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Matthijs Bossong
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mathilde Antoniades
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Carly Sampson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Matilda Azis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Institute of Health Research Biomedical Research Centre at South London and Maudsley National Health Service Foundation Trust, London, UK
- Medical Research Council London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - James Stone
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
| | - Jesus Perez
- CAMEO Early Intervention in Psychosis Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Matthew Broome
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Institute of Health Research Biomedical Research Centre at South London and Maudsley National Health Service Foundation Trust, London, UK
| |
Collapse
|
34
|
Overbeek G, Gawne TJ, Reid MA, Kraguljac NV, Lahti AC. A multimodal neuroimaging study investigating resting-state connectivity, glutamate and GABA at 7 T in first-episode psychosis. J Psychiatry Neurosci 2021; 46:E702-E710. [PMID: 34933941 PMCID: PMC8695527 DOI: 10.1503/jpn.210107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The major excitatory and inhibitory neurometabolites in the brain, glutamate and γ-aminobutyric acid (GABA), respectively, are related to the functional MRI signal. Disruption of resting-state functional MRI signals has been reported in psychosis spectrum disorders, but few studies have investigated the role of these metabolites in this context. METHODS We included 19 patients with first-episode psychosis and 21 healthy controls in this combined magnetic resonance spectroscopy (MRS) and resting-state functional connectivity study. All imaging was performed on a Siemens Magnetom 7 T MRI scanner. Both the MRS voxel and the seed for functional connectivity analysis were located in the dorsal anterior cingulate cortex (ACC). We used multiple regressions to test for an interaction between ACC brain connectivity, diagnosis and neurometabolites. RESULTS ACC brain connectivity was altered in first-episode psychosis. The relationship between ACC glutamate and ACC functional connectivity differed between patients with first-episode psychosis and healthy controls in the precuneus, retrosplenial cortex, supramarginal gyrus and angular gyrus. As well, the relationship between ACC GABA and ACC functional connectivity differed between groups in the caudate, putamen and supramarginal gyrus. LIMITATIONS We used a small sample size. As well, although they were not chronically medicated, all participants were medicated during the study. CONCLUSION We demonstrated a link between the major excitatory and inhibitory brain metabolites and resting-state functional connectivity in healthy participants, as well as an alteration in this relationship in patients with first-episode psychosis. Combining data from different imaging modalities may help our mechanistic understanding of the relationship between major neurometabolites and brain network dynamics, and shed light on the pathophysiology of first-episode psychosis.
Collapse
Affiliation(s)
- Gregory Overbeek
- From the Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Overbeek, Kraguljac, Lahti); the Department of Optometry and Vision Science, University of Alabama at Birmingham (Gawne); and the Department of Electrical and Computer Engineering, Auburn University, Auburn AL (Reid)
| | - Timothy J Gawne
- From the Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Overbeek, Kraguljac, Lahti); the Department of Optometry and Vision Science, University of Alabama at Birmingham (Gawne); and the Department of Electrical and Computer Engineering, Auburn University, Auburn AL (Reid)
| | - Meredith A Reid
- From the Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Overbeek, Kraguljac, Lahti); the Department of Optometry and Vision Science, University of Alabama at Birmingham (Gawne); and the Department of Electrical and Computer Engineering, Auburn University, Auburn AL (Reid)
| | - Nina V Kraguljac
- From the Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Overbeek, Kraguljac, Lahti); the Department of Optometry and Vision Science, University of Alabama at Birmingham (Gawne); and the Department of Electrical and Computer Engineering, Auburn University, Auburn AL (Reid)
| | - Adrienne C Lahti
- From the Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Overbeek, Kraguljac, Lahti); the Department of Optometry and Vision Science, University of Alabama at Birmingham (Gawne); and the Department of Electrical and Computer Engineering, Auburn University, Auburn AL (Reid)
| |
Collapse
|
35
|
Palaniyappan L, Park MTM, Jeon P, Limongi R, Yang K, Sawa A, Théberge J. Is There a Glutathione Centered Redox Dysregulation Subtype of Schizophrenia? Antioxidants (Basel) 2021; 10:1703. [PMID: 34829575 PMCID: PMC8615159 DOI: 10.3390/antiox10111703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia continues to be an illness with poor outcome. Most mechanistic changes occur many years before the first episode of schizophrenia; these are not reversible after the illness onset. A developmental mechanism that is still modifiable in adult life may center on intracortical glutathione (GSH). A large body of pre-clinical data has suggested the possibility of notable GSH-deficit in a subgroup of patients with schizophrenia. Nevertheless, studies of intracortical GSH are not conclusive in this regard. In this review, we highlight the recent ultra-high field magnetic resonance spectroscopic studies linking GSH to critical outcome measures across various stages of schizophrenia. We discuss the methodological steps required to conclusively establish or refute the persistence of GSH-deficit subtype and clarify the role of the central antioxidant system in disrupting the brain structure and connectivity in the early stages of schizophrenia. We propose in-vivo GSH quantification for patient selection in forthcoming antioxidant trials in psychosis. This review offers directions for a promising non-dopaminergic early intervention approach in schizophrenia.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Min Tae M. Park
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
| | - Peter Jeon
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Roberto Limongi
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.Y.); (A.S.)
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.Y.); (A.S.)
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jean Théberge
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
36
|
Maximo JO, Briend F, Armstrong WP, Kraguljac NV, Lahti AC. Salience network glutamate and brain connectivity in medication-naïve first episode patients - A multimodal magnetic resonance spectroscopy and resting state functional connectivity MRI study. Neuroimage Clin 2021; 32:102845. [PMID: 34662778 PMCID: PMC8526757 DOI: 10.1016/j.nicl.2021.102845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/08/2021] [Accepted: 09/25/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Salience network (SN) connectivity is altered in schizophrenia, but the pathophysiological origin remains poorly understood. The goal of this multimodal neuroimaging study was to investigate the role of glutamatergic metabolism as putative mechanism underlying SN dysconnectivity in first episode psychosis (FEP) subjects. METHODS We measured glutamate + glutamine (Glx) in the dorsal anterior cingulate cortex (dACC) from 70 antipsychotic-naïve FEP subjects and 52 healthy controls (HC). The dACC was then used as seed to define positive and negative resting state functional connectivity (FC) of the SN. We used multiple regression analyses to test main effects and group interactions of Glx and FC associations. RESULTS dACC Glx levels did not differ between groups. Positive FC was significantly reduced in FEP compared to HC, and no group differences were found in negative FC. Group interactions of Glx-FC associations were found within the SN for positive FC, and in parietal cortices for negative FC. In HC, higher Glx levels predicted greater positive FC in the dACC and insula, and greater negative FC of the lateral parietal cortex. These relationships were weaker or absent in FEP. CONCLUSIONS Here, we found that positive FC in the SN is already altered in medication-naïve FEP, underscoring the importance of considering both correlations and anticorrelations for characterization of pathology. Our data demonstrate that Glx and functional connectivity work differently in FEP than in HC, pointing to a possible mechanism underlying dysconnectivity in psychosis.
Collapse
Affiliation(s)
- Jose O Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frederic Briend
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA; UMR1253, iBrain, Université de Tours, Inserm, Tours, France
| | - William P Armstrong
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
37
|
Kraguljac NV, Anthony T, Morgan CJ, Jindal RD, Burger MS, Lahti AC. White matter integrity, duration of untreated psychosis, and antipsychotic treatment response in medication-naïve first-episode psychosis patients. Mol Psychiatry 2021; 26:5347-5356. [PMID: 32398721 PMCID: PMC7658031 DOI: 10.1038/s41380-020-0765-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/10/2023]
Abstract
It is becoming increasingly clear that longer duration of untreated psychosis (DUP) is associated with adverse clinical outcomes in patients with psychosis spectrum disorders. Because this association is often cited when justifying early intervention efforts, it is imperative to better understand underlying biological mechanisms. We enrolled 66 antipsychotic-naïve first-episode psychosis (FEP) patients and 45 matched healthy controls in this trial. At baseline, we used a human connectome style diffusion-weighted imaging (DWI) sequence to quantify white matter integrity in both groups. Patients then received 16 weeks of treatment with risperidone, 51 FEP completed the trial. We compared whole-brain fractional anisotropy (FA), mean diffusivity, axial diffusivity (AD), and radial diffusivity between groups. To test if structural white matter integrity mediates the relationship between longer DUP and poorer treatment response, we fit a mediator model and estimated indirect effects. We found decreased whole-brain FA and AD in medication-naive FEP compared with controls. In patients, lower FA was correlated with longer DUP (r = -0.32; p = 0.03) and poorer subsequent response to antipsychotic treatment (r = 0.40; p = 0.01). Importantly, we found a significant mediation effect for FA (indirect effect: -2.70; p = 0.03), indicating that DUP exerts its effects on treatment response through affecting white matter integrity. Our data provide empirical support to the idea the DUP may have fundamental pathogenic effects on the natural history of psychosis, suggest a biological mechanism underlying this phenomenon, and underscore the importance of early intervention efforts in this disabling neuropsychiatric syndrome.
Collapse
Affiliation(s)
- Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Thomas Anthony
- Department of Electrical and Computer Engineering/ IT Research Computing, University of Alabama at Birmingham
| | | | - Ripu Daman Jindal
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham,Department of Neurology, Birmingham VA Medical Center
| | - Mark Steven Burger
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| |
Collapse
|
38
|
The Effects of Acute Δ 9-Tetrahydrocannabinol on Striatal Glutamatergic Function: A Proton Magnetic Resonance Spectroscopy Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:660-667. [PMID: 34099186 DOI: 10.1016/j.bpsc.2021.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cannabis and its main psychoactive component, Δ9-tetrahydrocannabinol (THC), can elicit transient psychotic symptoms. A key candidate biological mechanism of how THC induces psychotic symptoms is the modulation of glutamate in the brain. We sought to investigate the effects of acute THC administration on striatal glutamate levels and its relationship to the induction of psychotic symptoms. METHODS We used proton magnetic resonance spectroscopy to measure glutamate levels in the striatum in 20 healthy participants after THC (15 mg, oral) and matched placebo administration in a randomized, double-blind, placebo-controlled design. Psychotic symptoms were measured using the Psychotomimetic States Inventory. RESULTS We found that THC administration did not significantly change glutamate (glutamate plus glutamine relative to creatine) concentration in the striatum (p = .58; scaled Jeffreys-Zellner-Siow Bayes factor = 4.29). THC increased psychotic symptoms, but the severity of these symptoms was not correlated with striatal glutamate levels. CONCLUSIONS These findings suggest that oral administration of 15 mg of THC does not result in altered striatal glutamate levels. Further work is needed to clarify the effects of THC on striatal glutamate.
Collapse
|
39
|
Bustillo JR, Mayer EG, Upston J, Jones T, Garcia C, Sheriff S, Maudsley A, Tohen M, Gasparovic C, Lenroot R. Increased Glutamate Plus Glutamine in the Right Middle Cingulate in Early Schizophrenia but Not in Bipolar Psychosis: A Whole Brain 1H-MRS Study. Front Psychiatry 2021; 12:660850. [PMID: 34163382 PMCID: PMC8215955 DOI: 10.3389/fpsyt.2021.660850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/19/2021] [Indexed: 01/11/2023] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) studies have examined glutamatergic abnormalities in schizophrenia and bipolar-I disorders, mostly in single voxels. Though the critical nodes remain unknown, schizophrenia and bipolar-I involve brain networks with broad abnormalities. To provide insight on the biochemical differences that may underlie these networks, the combined glutamine and glutamate signal (Glx) and other metabolites were examined in patients in early psychosis with whole brain 1H-MRS imaging (1H-MRSI). Data were acquired in young schizophrenia subjects (N = 48), bipolar-I subjects (N = 21) and healthy controls (N = 51). Group contrasts for Glx, as well as for N-acetyl aspartate, choline, myo-inositol and creatine, from all voxels that met spectral quality criteria were analyzed in standardized brain space, followed by cluster-corrected level alpha-value (CCLAV ≤ 0.05) analysis. Schizophrenia subjects had higher Glx in the right middle cingulate gyrus (19 voxels, CCLAV = 0.05) than bipolar-I subjects. Healthy controls had intermediate Glx values, though not significant. Schizophrenia subjects also had higher N-acetyl aspartate (three clusters, left occipital, left frontal, right frontal), choline (two clusters, left and right frontal) and myo-inositol (one cluster, left frontal) than bipolar-I, with healthy controls having intermediate values. These increases were likely accounted for by antipsychotic medication effects in the schizophrenia subgroup for N-acetyl aspartate and choline. Likewise, creatine was increased in two clusters in treated vs. antipsychotic-naïve schizophrenia, supporting a medication effect. Conversely, the increments in Glx in right cingulate were not driven by antipsychotic medication exposure. We conclude that increments in Glx in the cingulate may be critical to the pathophysiology of schizophrenia and are consistent with the NMDA hypo-function model. This model however may be more specific to schizophrenia than to psychosis in general. Postmortem and neuromodulation schizophrenia studies focusing on right cingulate, may provide critical mechanistic and therapeutic advancements, respectively.
Collapse
Affiliation(s)
- Juan R. Bustillo
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Elizabeth G. Mayer
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Joel Upston
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, United States
| | - Thomas Jones
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Crystal Garcia
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Sulaiman Sheriff
- Department of Radiology, University of Miami, Miami, FL, United States
| | - Andrew Maudsley
- Department of Radiology, University of Miami, Miami, FL, United States
| | - Mauricio Tohen
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | | | - Rhoshel Lenroot
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
40
|
Kraguljac NV, McDonald WM, Widge AS, Rodriguez CI, Tohen M, Nemeroff CB. Neuroimaging Biomarkers in Schizophrenia. Am J Psychiatry 2021; 178:509-521. [PMID: 33397140 PMCID: PMC8222104 DOI: 10.1176/appi.ajp.2020.20030340] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a complex neuropsychiatric syndrome with a heterogeneous genetic, neurobiological, and phenotypic profile. Currently, no objective biological measures-that is, biomarkers-are available to inform diagnostic or treatment decisions. Neuroimaging is well positioned for biomarker development in schizophrenia, as it may capture phenotypic variations in molecular and cellular disease targets, or in brain circuits. These mechanistically based biomarkers may represent a direct measure of the pathophysiological underpinnings of the disease process and thus could serve as true intermediate or surrogate endpoints. Effective biomarkers could validate new treatment targets or pathways, predict response, aid in selection of patients for therapy, determine treatment regimens, and provide a rationale for personalized treatments. In this review, the authors discuss a range of mechanistically plausible neuroimaging biomarker candidates, including dopamine hyperactivity, N-methyl-d-aspartate receptor hypofunction, hippocampal hyperactivity, immune dysregulation, dysconnectivity, and cortical gray matter volume loss. They then focus on the putative neuroimaging biomarkers for disease risk, diagnosis, target engagement, and treatment response in schizophrenia. Finally, they highlight areas of unmet need and discuss strategies to advance biomarker development.
Collapse
Affiliation(s)
- Nina V. Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL,Corresponding Author: Nina Vanessa Kraguljac, MD, Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, SC 501, 1720 7th Ave S, Birmingham, AL 35294-0017, 205-996-7171,
| | - William M. McDonald
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
| | - Alik S. Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Carolyn I. Rodriguez
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - Mauricio Tohen
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Charles B. Nemeroff
- Department of Psychiatry, University of Texas Dell Medical School, Austin, TX
| |
Collapse
|
41
|
The why behind the high: determinants of neurocognition during acute cannabis exposure. Nat Rev Neurosci 2021; 22:439-454. [PMID: 34045693 DOI: 10.1038/s41583-021-00466-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 11/08/2022]
Abstract
Acute cannabis intoxication may induce neurocognitive impairment and is a possible cause of human error, injury and psychological distress. One of the major concerns raised about increasing cannabis legalization and the therapeutic use of cannabis is that it will increase cannabis-related harm. However, the impairing effect of cannabis during intoxication varies among individuals and may not occur in all users. There is evidence that the neurocognitive response to acute cannabis exposure is driven by changes in the activity of the mesocorticolimbic and salience networks, can be exacerbated or mitigated by biological and pharmacological factors, varies with product formulations and frequency of use and can differ between recreational and therapeutic use. It is argued that these determinants of the cannabis-induced neurocognitive state should be taken into account when defining and evaluating levels of cannabis impairment in the legal arena, when prescribing cannabis in therapeutic settings and when informing society about the safe and responsible use of cannabis.
Collapse
|
42
|
Bell T, Boudes ES, Loo RS, Barker GJ, Lythgoe DJ, Edden RAE, Lebel RM, Wilson M, Harris AD. In vivo Glx and Glu measurements from GABA-edited MRS at 3 T. NMR IN BIOMEDICINE 2021; 34:e4245. [PMID: 31990112 PMCID: PMC7384936 DOI: 10.1002/nbm.4245] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 05/29/2023]
Abstract
In vivo quantification of glutamate (Glu) and γ-aminobutyric acid (GABA) using MRS is often achieved using two separate sequences: a short-echo point resolved spectroscopy (PRESS) acquisition for Glu and a Mescher-Garwood PRESS (MEGA-PRESS) acquisition for GABA. The purpose of this study was to examine the agreement of Glu and Glx (the combined signal of glutamate + glutamine) quantified from two different GABA-edited MEGA-PRESS acquisitions (GABA plus macromolecules, GABA+, TE = 68 ms, and macromolecule suppressed, MMSup, TE = 80 ms) with Glu and Glx quantified from a short-echo PRESS (PRESS-35, TE = 35 ms) acquisition. Fifteen healthy male volunteers underwent a single scan session, in which data were acquired using the three acquisitions (GABA+, MMSup and PRESS-35) in both the sensorimotor and anterior cingulate cortices using a voxel size of 3 × 3 × 3 cm3 . Glx and Glu were quantified from the MEGA-PRESS data using both the OFF sub-spectra and the difference (DIFF) spectra. Agreement was assessed using correlation analyses, Bland-Altman plots and intraclass correlation coefficients. Glx quantified from the OFF sub-spectra from both the GABA+ and MMSup acquisitions showed poor agreement with PRESS-35 in both brain regions. In the sensorimotor cortex, Glu quantified from the OFF sub-spectra of GABA+ showed moderate agreement with PRESS-35 data, but this finding was not replicated in the anterior cingulate cortex. Glx and Glu quantified using the DIFF spectra of either MEGA-PRESS sequence were in poor agreement with the PRESS-35 data in both brain regions. In conclusion, Glx and Glu measured from MEGA-PRESS data generally showed poor agreement with Glx and Glu measured using PRESS-35.
Collapse
Affiliation(s)
- Tiffany Bell
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Calgary, Canada
| | - Elodie S Boudes
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Calgary, Canada
| | - Rachelle S Loo
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Calgary, Canada
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Richard AE Edden
- Russel H Morgan Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, USA
- F.M. Kirby Centre for Functional MRI, Kennedy Krieger Institute, Baltimore, USA
| | | | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Calgary, Canada
| |
Collapse
|
43
|
McQueen G, Sendt KV, Gillespie A, Avila A, Lally J, Vallianatou K, Chang N, Ferreira D, Borgan F, Howes OD, Barker GJ, Lythgoe DJ, Stone JM, McGuire P, MacCabe JH, Egerton A. Changes in Brain Glutamate on Switching to Clozapine in Treatment-Resistant Schizophrenia. Schizophr Bull 2021; 47:662-671. [PMID: 33398325 PMCID: PMC8084451 DOI: 10.1093/schbul/sbaa156] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It has been suggested that the antipsychotic clozapine may modulate brain glutamate, and that this effect could contribute to its efficacy in treatment-resistant schizophrenia (TRS). The aim of this study was to examine the effects of clozapine on brain glutamate in TRS longitudinally. This study examined individuals with TRS before and 12 weeks after switching from a non-clozapine antipsychotic to treatment with clozapine as part of their normal clinical care. Proton magnetic resonance spectroscopy (1H-MRS) measured concentrations, corrected for voxel tissue content, of glutamate (Glucorr), and glutamate plus glutamine (Glxcorr) in the anterior cingulate cortex (ACC) and right caudate nucleus. Symptoms were monitored using the Positive and Negative Syndrome Scale (PANSS). Of 37 recruited patients (27 men, 39.30 years old, 84% clozapine naïve), 25 completed 1H-MRS at both timepoints. 12 weeks of clozapine was associated with a longitudinal reduction in Glucorr in the caudate (n = 23, F = 7.61 P = .01) but not in the ACC (n = 24, F = 0.02, P = .59). Percentage reduction in caudate Glucorr was positively correlated with percentage improvement in symptoms (total PANSS score, n = 23, r = .42, P = .04). These findings indicate that reductions in glutamate in the caudate nucleus may contribute to symptomatic improvement during the first months of clozapine treatment.
Collapse
Affiliation(s)
- Grant McQueen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Kyra-Verena Sendt
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Amy Gillespie
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Alessia Avila
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - John Lally
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK.,Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kalliopi Vallianatou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Nynn Chang
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Diogo Ferreira
- Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Faith Borgan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroimaging, King's College London, De Crespigny Park, London, UK
| | - David J Lythgoe
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroimaging, King's College London, De Crespigny Park, London, UK
| | - James M Stone
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK.,South London and Maudsley NHS Trust, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| |
Collapse
|
44
|
Egerton A, Murphy A, Donocik J, Anton A, Barker GJ, Collier T, Deakin B, Drake R, Eliasson E, Emsley R, Gregory CJ, Griffiths K, Kapur S, Kassoumeri L, Knight L, Lambe EJB, Lawrie SM, Lees J, Lewis S, Lythgoe DJ, Matthews J, McGuire P, McNamee L, Semple S, Shaw AD, Singh KD, Stockton-Powdrell C, Talbot PS, Veronese M, Wagner E, Walters JTR, Williams SR, MacCabe JH, Howes OD. Dopamine and Glutamate in Antipsychotic-Responsive Compared With Antipsychotic-Nonresponsive Psychosis: A Multicenter Positron Emission Tomography and Magnetic Resonance Spectroscopy Study (STRATA). Schizophr Bull 2021; 47:505-516. [PMID: 32910150 PMCID: PMC7965076 DOI: 10.1093/schbul/sbaa128] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The variability in the response to antipsychotic medication in schizophrenia may reflect between-patient differences in neurobiology. Recent cross-sectional neuroimaging studies suggest that a poorer therapeutic response is associated with relatively normal striatal dopamine synthesis capacity but elevated anterior cingulate cortex (ACC) glutamate levels. We sought to test whether these measures can differentiate patients with psychosis who are antipsychotic responsive from those who are antipsychotic nonresponsive in a multicenter cross-sectional study. 1H-magnetic resonance spectroscopy (1H-MRS) was used to measure glutamate levels (Glucorr) in the ACC and in the right striatum in 92 patients across 4 sites (48 responders [R] and 44 nonresponders [NR]). In 54 patients at 2 sites (25 R and 29 NR), we additionally acquired 3,4-dihydroxy-6-[18F]fluoro-l-phenylalanine (18F-DOPA) positron emission tomography (PET) to index striatal dopamine function (Kicer, min-1). The mean ACC Glucorr was higher in the NR than the R group after adjustment for age and sex (F1,80 = 4.27; P = .04). This was associated with an area under the curve for the group discrimination of 0.59. There were no group differences in striatal dopamine function or striatal Glucorr. The results provide partial further support for a role of ACC glutamate, but not striatal dopamine synthesis, in determining the nature of the response to antipsychotic medication. The low discriminative accuracy might be improved in groups with greater clinical separation or increased in future studies that focus on the antipsychotic response at an earlier stage of the disorder and integrate other candidate predictive biomarkers. Greater harmonization of multicenter PET and 1H-MRS may also improve sensitivity.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Anna Murphy
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jacek Donocik
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Adriana Anton
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Academic Unit of Radiology, Medical School, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield, UK
| | - Gareth J Barker
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Tracy Collier
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard Drake
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Emma Eliasson
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Richard Emsley
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Catherine J Gregory
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Shitij Kapur
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Laura Kassoumeri
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Laura Knight
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Emily J B Lambe
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | | | - Jane Lees
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Shôn Lewis
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David J Lythgoe
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Julian Matthews
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Lily McNamee
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Scott Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Alexander D Shaw
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Krish D Singh
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Charlotte Stockton-Powdrell
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Peter S Talbot
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mattia Veronese
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Ernest Wagner
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Stephen R Williams
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| |
Collapse
|
45
|
Bojesen KB, Broberg BV, Fagerlund B, Jessen K, Thomas MB, Sigvard A, Tangmose K, Nielsen MØ, Andersen GS, Larsson HBW, Edden RA, Rostrup E, Glenthøj BY. Associations Between Cognitive Function and Levels of Glutamatergic Metabolites and Gamma-Aminobutyric Acid in Antipsychotic-Naïve Patients With Schizophrenia or Psychosis. Biol Psychiatry 2021; 89:278-287. [PMID: 32928500 PMCID: PMC9683086 DOI: 10.1016/j.biopsych.2020.06.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Abnormal glutamate and GABA (gamma-aminobutyric acid) levels have been found in the early phase of schizophrenia and may underlie cognitive deficits. However, the association between cognitive function and levels of glutamatergic metabolites and GABA has not been investigated in a large group of antipsychotic-naïve patients. METHODS In total, 56 antipsychotic-naïve patients with schizophrenia or psychotic disorder and 51 healthy control subjects underwent magnetic resonance spectroscopy to measure glutamate, glutamate+glutamine (Glx), and GABA levels in dorsal anterior cingulate cortex (ACC) and glutamate and Glx levels in left thalamus. The cognitive domains of attention, working memory, and IQ were assessed. RESULTS The whole group of antipsychotic-naïve patients had lower levels of GABA in dorsal ACC (p = .03), and the subgroup of patients with a schizophrenia diagnosis had higher glutamate levels in thalamus (p = .01), but Glx levels in dorsal ACC and thalamus did not differ between groups. Glx levels in dorsal ACC were positively associated with working memory (logarithmically transformed: b = -.016 [higher score indicates worse performance], p = .005) and attention (b = .056, p = .035) in both patients and healthy control subjects, although the association with attention did not survive adjustment for multiple comparisons. CONCLUSIONS The findings suggest a positive association between glutamatergic metabolites and cognitive function that do not differ between patients and healthy control subjects. Moreover, our data indicate that decreased GABAergic levels in dorsal ACC are involved in schizophrenia and psychotic disorder, whereas increased glutamate levels in thalamus seem to be implicated in schizophrenia pathophysiology. The findings imply that first-episode patients with cognitive deficits may gain from glutamate-modulating compounds.
Collapse
Affiliation(s)
- Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark.
| | - Brian Villumsen Broberg
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark,Faculty of Health and Medical Sciences, and Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Glostrup, Denmark
| | - Kasper Jessen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Marie Bjerregaard Thomas
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Anne Sigvard
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Social Sciences, University of Copenhagen, Glostrup, Denmark
| | - Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Social Sciences, University of Copenhagen, Glostrup, Denmark
| | - Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Social Sciences, University of Copenhagen, Glostrup, Denmark
| | - Gitte Saltoft Andersen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, F.M. Kirby Research Center for Functional Brain Imaging, Baltimore, Maryland
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Social Sciences, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
46
|
Kaminski J, Mascarell-Maricic L, Fukuda Y, Katthagen T, Heinz A, Schlagenhauf F. Glutamate in the Dorsolateral Prefrontal Cortex in Patients With Schizophrenia: A Meta-analysis of 1H-Magnetic Resonance Spectroscopy Studies. Biol Psychiatry 2021; 89:270-277. [PMID: 33129486 DOI: 10.1016/j.biopsych.2020.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND To date, there is no systematic overview of glutamate in the dorsolateral prefrontal cortex (DLPFC) of patients with schizophrenia. Here, we meta-analyzed case-control studies of high-field proton magnetic resonance spectroscopy (1H-MRS) investigating glutamate in DLPFC. Additionally, we estimated variance ratios to investigate homo/heterogeneity. METHODS Preregistration of the study was performed on September 20, 2019. The predefined literature search on PubMed comprised articles with search terms (magnetic resonance spectroscopy OR MRS) AND (glutamate OR glut∗ OR GLX) AND (schizophrenia OR psychosis OR schizophren∗). Meta-analyses with a fixed- and random-effects model with inverse variance method, DerSimonian-Laird estimator for τ2, and Cohen's d were calculated. For differences in variability, we calculated a random-effects model for measures of variance ratios. The primary study outcome was the difference in glutamate in the DLPFC in cases versus controls. Secondary outcomes were differences in variability. RESULTS The quantitative analysis comprised 429 cases and 365 controls. Overall, we found no group difference (d = 0.03 [95% confidence interval (CI), -0.20 to 0.26], z = 0.28, p = .78). Sensitivity analysis revealed an effect for medication status (Q = 8.35, p = .039), i.e., increased glutamate in antipsychotic-naïve patients (d = 0.46 [95% CI, 0.08 to 0.84], z = 2.37, p = .018). Concerning variance ratios, we found an effect of medication status (Q = 16.95, p < .001) due to lower coefficient of variation ratio (CVR) in medication-naïve patients (logCVR = -0.49 [95% CI, -0.78 to -0.20], z = -3.33, p < .001). In studies with medicated patients, we found higher CVR (logCVR = 0.22 [95% CI, 0.06 to 0.39], z = 2.67; p = .008). CONCLUSIONS We carefully interpret the higher levels and lower variability in cortical glutamate in antipsychotic-naïve patients as a possible key factor resulting from a putative allostatic mechanism. We conclude that care has to be taken when evaluating metabolite levels in clinical samples in which medication might confound findings.
Collapse
Affiliation(s)
- Jakob Kaminski
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany; Berlin Institute of Health, Berlin, Germany.
| | - Lea Mascarell-Maricic
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany
| | - Yu Fukuda
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany
| | - Teresa Katthagen
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany
| | - Andreas Heinz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Florian Schlagenhauf
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Science, Leipzig, Germany
| |
Collapse
|
47
|
Rubio JM, Malhotra AK, Kane JM. Towards a framework to develop neuroimaging biomarkers of relapse in schizophrenia. Behav Brain Res 2021; 402:113099. [PMID: 33417996 DOI: 10.1016/j.bbr.2020.113099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/16/2020] [Accepted: 12/27/2020] [Indexed: 12/31/2022]
Abstract
Schizophrenia is a chronic disorder that often requires long-term relapse-prevention treatment. This treatment is effective for most individuals, yet approximately 20-30 % of them may still relapse despite confirmed adherence. Alternatively, for about 15 % it may be safe to discontinue medications over the long term, but since there are no means to identify who those individuals will be, the recommendation is that all individuals receive long-term relapse-prevention treatment with antipsychotic maintenance. Thus, the current approach to prevent relapse in schizophrenia may be suboptimal for over one third of individuals, either by being insufficient to protect against relapse, or by unnecessarily exposing them to medication side effects. There is great need to identify biomarkers of relapse in schizophrenia to stratify treatment according to the risk and develop therapeutics targeting its pathophysiology. In order to develop a line of research that meets those needs, it is necessary to create a framework by identifying the challenges to this type of study as well as potential areas for biomarker identification and development. In this manuscript we review the literature to create such a framework.
Collapse
Affiliation(s)
- Jose M Rubio
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Center for Psychiatric Neuroscience, Manhasset, NY, USA.
| | - Anil K Malhotra
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Center for Psychiatric Neuroscience, Manhasset, NY, USA
| | - John M Kane
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Center for Psychiatric Neuroscience, Manhasset, NY, USA
| |
Collapse
|
48
|
Abstract
RATIONALE Proton magnetic resonance spectroscopy (1H-MRS) is a cross-species neuroimaging technique that can measure concentrations of several brain metabolites, including glutamate and GABA. This non-invasive method has promise in developing centrally acting drugs, as it can be performed repeatedly within-subjects and be used to translate findings from the preclinical to clinical laboratory using the same imaging biomarker. OBJECTIVES This review focuses on the utility of single-voxel 1H-MRS in developing novel glutamatergic or GABAergic drugs for the treatment of psychiatric disorders and includes research performed in rodent models, healthy volunteers and patient cohorts. RESULTS Overall, these studies indicate that 1H-MRS is able to detect the predicted pharmacological effects of glutamatergic or GABAergic drugs on voxel glutamate or GABA concentrations, although there is a shortage of studies examining dose-related effects. Clinical studies have applied 1H-MRS to better understand drug therapeutic mechanisms, including the glutamatergic effects of ketamine in depression and of acamprosate in alcohol dependence. There is an emerging interest in identifying patient subgroups with 'high' or 'low' brain regional 1H-MRS glutamate levels for more targeted drug development, which may require ancillary biomarkers to improve the accuracy of subgroup discrimination. CONCLUSIONS Considerations for future research include the sensitivity of single-voxel 1H-MRS in detecting drug effects, inter-site measurement reliability and the interpretation of drug-induced changes in 1H-MRS metabolites relative to the known pharmacological molecular mechanisms. On-going technological development, in single-voxel 1H-MRS and in related complementary techniques, will further support applications within CNS drug discovery.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK.
| |
Collapse
|
49
|
Juruena MF, Jelen LA, Young AH, Cleare AJ. New Pharmacological Interventions in Bipolar Disorder. Curr Top Behav Neurosci 2021; 48:303-324. [PMID: 33547595 DOI: 10.1007/7854_2020_181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The biological bases of bipolar disorder include aspects related, among others, to neurohormonal pathways, neurotransmission, signal transduction, regulation of gene expression, oxidative stress, neuroplasticity, and changes in the immune system. There is still a gap in understanding its complex neurobiology and, consequently, developing new treatments. Multiple factors probably interact in this complex equation of pathophysiology of bipolar disorder, such as genetic, biochemical, psychosocial, and environmental stress events, correlating with the development and severity of the bipolar disorder. These mechanisms can interact to exacerbate inflammation, impair neurogenesis, and increase oxidative stress damage, cellular mitochondrial dysfunction, changes in neurotrophins and in epigenetic mechanisms, neuroendocrine dysfunction, activation of neuronal death pathways, and dysfunction in neurotransmission systems. In this review, we explore the up-to-date knowledge of the neurobiological underpinnings of bipolar disorders. The difficulty in developing new drugs for bipolar disorder is very much associated with the lack of knowledge about the precise pathophysiology of this disorder. Pharmacological treatment for bipolar patients is vital; to progress to effective medications, it is essential to understand the neurobiology in bipolar patients better and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Mario F Juruena
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Luke A Jelen
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anthony J Cleare
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
50
|
Gurler D, White DM, Kraguljac NV, Ver Hoef L, Martin C, Tennant B, Lahti AC. Neural Signatures of Memory Encoding in Schizophrenia Are Modulated by Antipsychotic Treatment. Neuropsychobiology 2021; 80:12-24. [PMID: 32316023 PMCID: PMC7874518 DOI: 10.1159/000506402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
There is no pharmacological treatment to remediate cognitive impairment in schizophrenia (SZ). It is imperative to characterize underlying pathologies of memory processing in order to effectively develop new treatments. In this longitudinal study, we combined functional magnetic resonance imaging during a memory encoding task with proton MR spectroscopy to measure hippocampal glutamate + glutamine (Glx). Seventeen SZ were scanned while unmedicated and after 6 weeks of treatment with risperidone and compared to a group of matched healthy controls (HC) scanned 6 weeks apart. Unmedicated patients showed reduced blood oxygen level dependent (BOLD) response in several regions, including the hippocampus, and greater BOLD response in regions of the default mode network (DMN) during correct memory encoding. Post hoc contrasts from significant group by time interactions indicated reduced hippocampal BOLD response at baseline with subsequent increase following treatment. Hippocampal Glx was not different between groups at baseline, but at week 6, hippocampal Glx was significantly lower in SZ compared to HC. Finally, in unmedicated SZ, higher hippocampal Glx predicted less deactivation of the BOLD response in regions of the DMN. Using 2 brain imaging modalities allowed us to concurrently investigate different mechanisms involved in memory encoding dysfunction in SZ. Hippocampal pathology during memory encoding stems from decreased hippocampal recruitment and faulty deactivation of the DMN, and hippocampal recruitment during encoding can be modulated by antipsychotic treatment. High Glx in unmedicated patients predicted less deactivation of the DMN; these results suggest a mechanism by which faulty DMN deactivation, a hallmark of pathological findings in SZ, is achieved.
Collapse
Affiliation(s)
- Demet Gurler
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - David Matthew White
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | | | - Clinton Martin
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Blake Tennant
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA,
| |
Collapse
|