1
|
Tan S, Chen Y, Gao Y, He J, Guo X, Zhang S, Zhang J, Zeng F. β-Galactosidase gene codon optimization results in post-transcriptional enhancement of expression. Gene 2020; 748:144676. [PMID: 32305635 DOI: 10.1016/j.gene.2020.144676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/04/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE lacZ encodes for β-galactosidase within the galactose operon of bacterial cells. When used as a reporter gene, bacterial "β-galactosidase" expression is often insufficient for detection in mammalian cells. We intended to optimize the lacZ codon usage according to the most frequently used codons for the seven major proteins in cow's milk, in order to pave a way for the enhancement of transgenic genes expression in eukaryotes. RESULTS We constructed modified lacZ (named olacZ) according to optional codons used for proteins expressed in cow's milk. The expression of lacZ and olacZ was then compared in HC11 (a murine mammary gland epithelial line), 293T, HeLa, Cos7, and NIH 3T3 cells. While there was no significant difference at the mRNA level between lacZ and olacZ (P > 0.05). The quantification of β-galactosidase activity and in situ staining experiments showed a 1.2-fold to 3.3-fold expression improvement when comparing olacZ with lacZ. The levels of β-galactosidase expression at the protein levels from olacZ were approximately 9.2-fold and 2.4-fold respectively for Cos7 and HC11 cells. Furthermore, a 1.9-fold tendency of enhanced expression of olacZ in mammary gland during lactation was observed in transgenic-olacZ mice. CONCLUSION This study demonstrates an alternative choice for improving lacZ reporter expression in eukaryotes, especially in the mammary gland of cattle or goats.
Collapse
Affiliation(s)
- Shuo Tan
- Shanghai Jiao Tong University Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, 24/1400 West Beijing Road, Shanghai 200040, PR China; Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, PR China
| | - Yuan Chen
- Shanghai Jiao Tong University Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, 24/1400 West Beijing Road, Shanghai 200040, PR China; Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, PR China
| | - Yue Gao
- Shanghai Jiao Tong University Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, 24/1400 West Beijing Road, Shanghai 200040, PR China; Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, PR China
| | - Jiaping He
- Shanghai Jiao Tong University Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, 24/1400 West Beijing Road, Shanghai 200040, PR China; Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, PR China
| | - Xinbing Guo
- Shanghai Jiao Tong University Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, 24/1400 West Beijing Road, Shanghai 200040, PR China; Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, PR China
| | - Simin Zhang
- Shanghai Jiao Tong University Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, 24/1400 West Beijing Road, Shanghai 200040, PR China; Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, PR China
| | - Jingzhi Zhang
- Shanghai Jiao Tong University Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, 24/1400 West Beijing Road, Shanghai 200040, PR China; Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, PR China.
| | - Fanyi Zeng
- Shanghai Jiao Tong University Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, 24/1400 West Beijing Road, Shanghai 200040, PR China; Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, PR China; Department of Histoembryology, Genetics and Development, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| |
Collapse
|
2
|
Achilleos A, Huffman NT, Marcinkiewicyz E, Seidah NG, Chen Q, Dallas SL, Trainor PA, Gorski JP. MBTPS1/SKI-1/S1P proprotein convertase is required for ECM signaling and axial elongation during somitogenesis and vertebral development†. Hum Mol Genet 2015; 24:2884-98. [PMID: 25652402 DOI: 10.1093/hmg/ddv050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/02/2015] [Indexed: 11/15/2022] Open
Abstract
Caudal regression syndrome (sacral agenesis), which impairs development of the caudal region of the body, occurs with a frequency of about 2 live births per 100 000 newborns although this incidence rises to 1 in 350 infants born to mothers with gestational diabetes. The lower back and limbs can be affected as well as the genitourinary and gastrointestinal tracts. The axial skeleton is formed during embryogenesis through the process of somitogenesis in which the paraxial mesoderm periodically segments into bilateral tissue blocks, called somites. Somites are the precursors of vertebrae and associated muscle, tendons and dorsal dermis. Vertebral anomalies in caudal regression syndrome may arise through perturbation of somitogenesis or, alternatively, could result from defective bone formation and patterning. We discovered that MBTPS1/SKI-1/S1P, which proteolytically activates a class of transmembrane transcription factors, plays a critical role in somitogenesis and the pathogenesis of lumbar/sacral vertebral anomalies. Conditional deletion of Mbtps1 yields a viable mouse with misshapen, fused and reduced number of lumbar and sacral vertebrae, under-developed hind limb bones and a kinky, shortened tail. We show that Mbtps1 is required to (i) maintain the Fgf8 'wavefront' in the presomitic mesoderm that underpins axial elongation, (ii) sustain the Lfng oscillatory 'clock' activity that governs the periodicity of somite formation and (iii) preserve the composition and character of the somitic extracellular matrix containing fibronectin, fibrillin2 and laminin. Based on this spinal phenotype and known functions of MBTPS1, we reason that loss-of-function mutations in Mbtps1 may cause the etiology of caudal regression syndrome.
Collapse
Affiliation(s)
| | - Nichole T Huffman
- Department of Oral and Craniofacial Sciences and the UMKC Center of Excellence in the Study of Dental and Musculoskeletal Tissues, Sch. Dentistry, University of Missouri - Kansas City, Kansas City, MO 64108, USA
| | | | - Nabil G Seidah
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada and
| | - Qian Chen
- Department of Oral and Craniofacial Sciences and the UMKC Center of Excellence in the Study of Dental and Musculoskeletal Tissues, Sch. Dentistry, University of Missouri - Kansas City, Kansas City, MO 64108, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences and the UMKC Center of Excellence in the Study of Dental and Musculoskeletal Tissues, Sch. Dentistry, University of Missouri - Kansas City, Kansas City, MO 64108, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA, Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jeff P Gorski
- Department of Oral and Craniofacial Sciences and the UMKC Center of Excellence in the Study of Dental and Musculoskeletal Tissues, Sch. Dentistry, University of Missouri - Kansas City, Kansas City, MO 64108, USA,
| |
Collapse
|
3
|
Abstract
The permanent cellular constituents of the heart include cardiac fibroblasts, myocytes, endothelial cells, and vascular smooth muscle cells. Previous studies have demonstrated that there are undulating changes in cardiac cell populations during embryonic development, through neonatal development and into the adult. Transient cell populations include lymphocytes, mast cells, and macrophages, which can interact with these permanent cell types to affect cardiac function. It has also been observed that there are marked differences in the makeup of the cardiac cell populations depending on the species, which may be important when examining myocardial remodeling. Current dogma states that the fibroblast makes up the largest cell population of the heart; however, this appears to vary for different species, especially mice. Cardiac fibroblasts play a critical role in maintaining normal cardiac function, as well as in cardiac remodeling during pathological conditions such as myocardial infarct and hypertension. These cells have numerous functions, including synthesis and deposition of extracellular matrix, cell-cell communication with myocytes, cell-cell signaling with other fibroblasts, as well as with endothelial cells. These contacts affect the electrophysiological properties, secretion of growth factors and cytokines, as well as potentiating blood vessel formation. Although a plethora of information is known about several of these processes, relatively little is understood about fibroblasts and their role in angiogenesis during development or cardiac remodeling. In this review, we provide insight into the various properties of cardiac fibroblasts that helps illustrate their importance in maintaining proper cardiac function, as well as their critical role in the remodeling heart.
Collapse
Affiliation(s)
- Colby A. Souders
- Texas A&M Health Science Center College of Medicine, Division of Molecular Cardiology, Temple, TX 76504
| | - Stephanie L.K. Bowers
- Texas A&M Health Science Center College of Medicine, Division of Molecular Cardiology, Temple, TX 76504
| | - Troy A. Baudino
- Texas A&M Health Science Center College of Medicine, Division of Molecular Cardiology, Temple, TX 76504
| |
Collapse
|
4
|
Abstract
Cardiac fibroblasts are the most populous nonmyocyte cell type within the mature heart and are required for extracellular matrix synthesis and deposition, generation of the cardiac skeleton, and to electrically insulate the atria from the ventricles. Significantly, cardiac fibroblasts have also been shown to play an important role in cardiomyocyte growth and expansion of the ventricular chambers during heart development. Although there are currently no cardiac fibroblast-restricted molecular markers, it is generally envisaged that the majority of the cardiac fibroblasts are derived from the proepicardium via epithelial-to-mesenchymal transformation. However, still relatively little is known about when and where the cardiac fibroblasts cells are generated, the lineage of each cell, and how cardiac fibroblasts move to reside in their final position throughout all four cardiac chambers. In this review, we summarize the present understanding regarding the function of Periostin, a useful marker of the noncardiomyocyte lineages, and its role during cardiac morphogenesis. Characterization of the cardiac fibroblast lineage and identification of the signals that maintain, expand and regulate their differentiation will be required to improve our understanding of cardiac function in both normal and pathophysiological states.
Collapse
Affiliation(s)
| | | | | | - Mohamad Azhar
- BIO5 Institute, University of Arizona, Tucson, AZ 85724
| | | | - Simon J. Conway
- Address for correspondence: Simon J. Conway, 1044 West Walnut Street, Room R4 W379, Indiana University School of Medicine, Indianapolis, IN 46202, USA. phone: (317) 278-8781; fax: (317) 278-5413;
| |
Collapse
|
5
|
Justice SS, Lauer SR, Hultgren SJ, Hunstad DA. Maturation of intracellular Escherichia coli communities requires SurA. Infect Immun 2006; 74:4793-800. [PMID: 16861667 PMCID: PMC1539609 DOI: 10.1128/iai.00355-06] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli is the most common cause of community-acquired urinary tract infection (UTI). During murine cystitis, uropathogenic E. coli (UPEC) utilizes type 1 pili to bind and invade superficial bladder epithelial cells. UPEC then replicates within to form intracellular bacterial communities (IBCs), a process whose genetic determinants are as yet undefined. In this study, we investigated the role of SurA in the UPEC pathogenic cascade. SurA is a periplasmic prolyl isomerase/chaperone that facilitates outer membrane protein biogenesis and pilus assembly in E. coli. Invasion into bladder epithelial cells was disproportionately reduced when surA was genetically disrupted in the UPEC strain UTI89, demonstrating that binding alone is not sufficient for invasion. In a murine cystitis model, UTI89 surA::kan was unable to persist in the urinary tract. Complementation of UTI89 surA::kan with a plasmid (pDH15) containing surA under the control of an arabinose-inducible promoter restored in vivo binding and invasion events. However, the absence of arabinose within the mouse bladder resulted in depletion of SurA after invasion of the bacteria into the superficial epithelial cells. Under these conditions, invasion by UTI89/pDH15 surA::kan was normal, but in contrast to UTI89, UTI89/pDH15 surA::kan formed intracellular collections that contained fewer bacteria, were loosely organized, and lacked the normal transition to a densely packed, coccoid morphology. Our data argue that SurA is required within bladder epithelial cells for UPEC to undergo the morphological changes that underlie IBC maturation and completion of the UTI pathogenic cascade.
Collapse
Affiliation(s)
- Sheryl S Justice
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
6
|
Buttitta L, Tanaka TS, Chen AE, Ko MSH, Fan CM. Microarray analysis of somitogenesis reveals novel targets of different WNT signaling pathways in the somitic mesoderm. Dev Biol 2003; 258:91-104. [PMID: 12781685 DOI: 10.1016/s0012-1606(03)00116-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
WNT signaling plays a major role in patterning the dermomyotome of the somitic mesoderm. However, knowledge of downstream target genes and their regulation is limited. To identify new genes involved in the development and early patterning of the somite, we performed a comparison of gene expression by microarray between the presomitic mesoderm and the 5 most recently formed somites of the mouse at embryonic day 9.5. We identified 207 genes upregulated and 120 genes downregulated in somite formation. Expression analysis and functional categorization of these genes demonstrate this to be a diverse pool that provides a valuable resource for studying somite development. Thus far, we have found three genes expressed in the dermomyotome of the early somite. Consistent with their expression patterns, these genes are transcriptional targets of WNT signals, but display differential activation by different WNTs. We further demonstrate that 1 of these genes, Troy, is a direct target of canonical WNT signaling, while the other 2 genes, Selp and Arl4, are not. Thus, our microarray study using microdissected tissues not only provides global information on gene expression during somite development, it also provides novel targets to study the inductive signaling pathways that direct somite patterning.
Collapse
Affiliation(s)
- Laura Buttitta
- Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210, USA
| | | | | | | | | |
Collapse
|