1
|
Valdebenito S, Ajasin D, Valerdi K, Liu YR, Rao S, Eugenin EA. Mechanisms of Intracellular Communication in Cancer and Pathogen Spreading. Results Probl Cell Differ 2024; 73:301-326. [PMID: 39242384 DOI: 10.1007/978-3-031-62036-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Cell-to-cell interactions are essential for proper development, homeostasis, and complex syncytia/organ formation and function. Intercellular communication are mediated by multiple mechanisms including soluble mediators, adhesion molecules and specific mechanisms of cell to cell communication such as Gap junctions (GJ), tunneling nanotubes (TNT), and exosomes. Only recently, has been discovered that TNTs and exosomes enable the exchange of large signaling molecules, RNA, viral products, antigens, and organelles opening new avenues of research and therapeutic approaches. The focus of this review is to summarize these recent findings in physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - David Ajasin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Karl Valerdi
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | | | - Samvrit Rao
- Thomas Jefferson High School for Science and Technology, Alexandria, VA, USA
| | - Eliseo A Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA.
| |
Collapse
|
2
|
Garcia R, Zarate S, Srinivasan R. The Role of Astrocytes in Parkinson's Disease : Astrocytes in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2024; 39:319-343. [PMID: 39190081 DOI: 10.1007/978-3-031-64839-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with a complex and multifactorial pathogenesis. This chapter delves into the critical role of astrocytes in PD. Once viewed as supporting cells in the central nervous system, astrocytes have emerged as key players in both maintaining neuronal health and contributing to neurodegeneration in PD. Their functions play a dual role in the progression of PD, ranging from protective functions like secretion of neurotrophic factors and clearance of α-synuclein to detrimental functions like promotion of neuroinflammation. This chapter is structured into three primary sections: the morphological and functional organization of astrocytes, astrocytic calcium signaling, and the role of astrocyte heterogeneity in PD. We provide a detailed exploration of astrocytic organelles, bidirectional astrocyte-neuron interactions, and the impact of astrocytic secretions such as antioxidant molecules and neurotrophic factors. Furthermore, we discuss the influence of astrocytes on non-neuronal cells, including interactions with microglia and the blood-brain barrier (BBB). By examining the multifaceted roles of astrocytes, in this chapter, we aim to bridge basic astrocyte biology with the clinical complexities of PD, offering insights into novel therapeutic strategies. The inclusion of astrocyte biology in our broader research approach will aid in the development of more effective treatment strategies for PD.
Collapse
Affiliation(s)
- Roger Garcia
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Sara Zarate
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA.
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA.
| |
Collapse
|
3
|
Nishimura Y, Masaki K, Matsuse D, Yamaguchi H, Tanaka T, Matsuo E, Hayashida S, Watanabe M, Matsushita T, Sadashima S, Sasagasako N, Yamasaki R, Isobe N, Iwaki T, Kira J. Early and extensive alterations of glial connexins, distal oligodendrogliopathy type demyelination, and nodal/paranodal pathology are characteristic of multiple system atrophy. Brain Pathol 2022; 33:e13131. [PMID: 36368713 PMCID: PMC10154368 DOI: 10.1111/bpa.13131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
The pathological hallmark of multiple system atrophy (MSA) is aberrant accumulation of phosphorylated α-synuclein in oligodendrocytes, forming glial cytoplasmic inclusions (GCIs). Extensive demyelination occurs particularly in the olivopontocerebellar and striatonigral pathways, but its precise mechanism remains elusive. Glial connexins (Cxs), which form gap junction channels between astrocytes and oligodendrocytes, play critical roles in myelin maintenance, and have not been studied in MSA. Therefore, we immunohistochemically investigated glial Cx changes in the cerebellar afferent fibers in 15 autopsied patients with MSA. We classified demyelinating lesions into three stages based on Klüver-Barrera staining: early (Stage I), intermediate (Stage II), and late (Stage III) stages showing subtle, moderate, and severe myelin reduction, respectively. Myelin-associated glycoprotein, but not myelin oligodendrocyte glycoprotein, was preferentially decreased in Stage I, suggesting distal oligodendrogliopathy type demyelination. Accumulation of phosphorylated α-synuclein in oligodendrocytes was frequently seen in Stage I but less frequently observed in Stages II and III. Tubulin polymerization-promoting protein (TPPP/p25α)-positive oligodendrocytes were preserved in Stage I but successively decreased in Stages II and III. Even at Stage I, Cx32 was nearly absent from myelin, despite the relative preservation of other nodal proteins, such as neurofascin, claudin-11/oligodendrocyte-specific protein, and contactin-associated protein 1, which successively decreased in the later stages. Cx32 was re-distributed in the oligodendrocyte cytoplasm and co-localized with GCIs. Cx47 gradually decreased at the oligodendrocyte surface in a stage-dependent manner but was not co-localized with GCIs. Astrocytic Cx43 was down-regulated in Stage I but up-regulated in Stages II and III, reflecting astrogliosis. Cx43/Cx47 gap junctions significantly decreased from Stage I to III. Activated microglia/macrophages and T cells infiltrated in Stage I rather than Stages II and III. Therefore, early and extensive alterations of glial Cxs, particularly Cx32 loss, occur in MSA and may accelerate distal oligodendrogliopathy type demyelination and nodal/paranodal dysfunction through disruption of inter-glial communication.
Collapse
Affiliation(s)
- Yuji Nishimura
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Dai Matsuse
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Hiroo Yamaguchi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Tatsunori Tanaka
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Sumitomo Pharma Osaka Japan
| | - Eriko Matsuo
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Shotaro Hayashida
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Takuya Matsushita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Shoko Sadashima
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Naokazu Sasagasako
- Department of Neurology, Neuro‐Muscular Center National Omuta Hospital Fukuoka Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Toru Iwaki
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Jun‐ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka International University of Health and Welfare Ookawa Japan
- Department of Neurology, Brain and Nerve Center Fukuoka Central Hospital Fukuoka Japan
| |
Collapse
|
4
|
权 会, 徐 卫, 祁 宇, 李 清, 周 辉, 黄 婧. [Inhibition connexin 43 by mimetic peptide Gap27 mediates protective effects on 6-hydroxydopamine induced Parkinson's disease mouse model]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54:421-426. [PMID: 35701117 PMCID: PMC9197703 DOI: 10.19723/j.issn.1671-167x.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To explore whether the using of mimetic peptide Gap27, a selective inhibitor of connexin 43 (Cx43), could block the death of dopamine neurons and influence the expression of Cx43 in 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease mouse models. METHODS Eighteen C57BL/6 mice were randomly divided into control group, 6-OHDA group and 6-OHDA+Gap27 group, with 6 mice in each group. Bilateral substantia nigra stereotactic injection was performed. The control group was injected with ascorbate solution, 6-OHDA group was injected with 6-OHDA solution, and 6-OHDA+Gap27 group was injected with 6-OHDA and Gap27 mixed solution. Immuno-histochemical staining was used to detect the number of dopamine neurons, quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of Cx43 messenger ribonucleic acid (mRNA), immuno-fluorescence staining was used to detect the distribution of Cx43 protein, the contents of Cx43 protein and Cx43 phosphorylation at serine 368 (Cx43-ps368) in mouse midbrain were detected by Western blot. RESULTS After injection of 6-OHDA, numerous dopamine neurons in substantia nigra died as Cx43 content increased, Cx43-ps368 content decreased. Mixing Gap27 while injecting 6-OHDA could reduce the number of death dopamine neurons and weaken the changes of Cx43 and Cx43-ps368 content caused by 6-OHDA. The number of tyrosine hydroxylase (TH) immunoreactive positive neurons in 6-OHDA group decreased to 27.7% ± 0.02% of the control group (P < 0.01); The number of TH immunoreactive positive neurons in 6-OHDA+Gap27 group was (1.64±0.16) times higher than that in 6-OHDA group (P < 0.05); The content of total Cx43 protein in 6-OHDA group was (1.44±0.07) times higher than that in 6-OHDA+Gap27 group (P < 0.05) while (1.68±0.07) times higher than that in control group (P < 0.01). In 6-OHDA group, the content of Cx43-ps368 protein and its proportion in total Cx43 protein were significantly lower than that in 6-OHDA+Gap27 group (P < 0.05). CONCLUSION In 6-OHDA mouse models, mimetic peptide Gap27 played a protective role in reducing the damage to substantia nigra dopamine neurons, which was induced by 6-OHDA. The overexpression of Cx43 protein might have neurotoxicity to dopamine neuron. Meanwhile, decreasing Cx43 protein level and keeping Cx43-ps368 protein level may be the protective mechanisms of Gap27.
Collapse
Affiliation(s)
- 会会 权
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 卫星 徐
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 宇泽 祁
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 清如 李
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 辉 周
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 婧 黄
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| |
Collapse
|
5
|
Choudhury SP, Bano S, Sen S, Suchal K, Kumar S, Nikolajeff F, Dey SK, Sharma V. Altered neural cell junctions and ion-channels leading to disrupted neuron communication in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:66. [PMID: 35650269 PMCID: PMC9160246 DOI: 10.1038/s41531-022-00324-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 05/05/2022] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a neurological disorder that affects the movement of the human body. It is primarily characterized by reduced dopamine levels in the brain. The causative agent of PD is still unclear but it is generally accepted that α-synuclein has a central role to play. It is also known that gap-junctions and associated connexins are complicated structures that play critical roles in nervous system signaling and associated misfunctioning. Thus, our current article emphasizes how, alongside α-synuclein, ion-channels, gap-junctions, and related connexins, all play vital roles in influencing multiple metabolic activities of the brain during PD. It also highlights that ion-channel and gap-junction disruptions, which are primarily mediated by their structural-functional changes and alterations, have a role in PD. Furthermore, we discussed available drugs and advanced therapeutic interventions that target Parkinson's pathogenesis. In conclusion, it warrants creating better treatments for PD patients. Although, dopaminergic replenishment therapy is useful in treating neurological problems, such therapies are, however, unable to control the degeneration that underpins the disease, thereby declining their overall efficacy. This creates an additional challenge and an untapped scope for neurologists to adopt treatments for PD by targeting the ion-channels and gap-junctions, which is well-reviewed in the present article.
Collapse
Affiliation(s)
- Saptamita Paul Choudhury
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Sarika Bano
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Srijon Sen
- Indian Institute of Technology-Kharagpur, Kharagpur, 721302, India
| | - Kapil Suchal
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, India
| | - Saroj Kumar
- Deparment of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Fredrik Nikolajeff
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Sanjay Kumar Dey
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| | - Vaibhav Sharma
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden.
| |
Collapse
|
6
|
Köse B, Özkan M, Sur-Erdem İ, Çavdar S. Does astrocyte gap junction protein expression level differ during development in the absence epileptic rats? Synapse 2022; 76:e22225. [PMID: 35137459 DOI: 10.1002/syn.22225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 11/09/2022]
Abstract
Intercellular communication via gap junctions (GJ) has a wide variety of complex and essential functions in the CNS. In the present developmental study, we aimed to quantify the number of astrocytic GJ protein connexin 30 (Cx30) of genetic absence epilepsy rats from Strasbourg (GAERS) at postnatal P10, P30, and P60 days in the epileptic focal areas involved in the cortico-thalamic circuit. We compared the results with Wistar rats using immunohistochemistry and Western Blotting. The number of Cx30 immunopositive astrocytes in per unit area were quantified for the somatosensory cortex (SSCx), ventrobasal (VB), and lateral geniculate (LGN) of the two strains and Cx30 Western Blot was applied to the tissue samples from the same regions. Both immunohistochemical and Western Blot results revealed the presence of Cx30 in all regions studied at P10 in both Wistar and GAERS animals. The SSCx, VB, and LGN of Wistar animals showed progressive increase in the number of Cx30 immunopositive labelled astrocytes from P10 to P30 and reached a peak at P30; then a significant decline was observed from P30 to P60 for the SSCx and VB. However, in GAERS Cx30 immunopositive labelled astrocytes showed a progressive increase from P10 to P60 for all brain regions studied. The immunohistochemical data highly corresponded with Western Blotting results. We conclude that the developmental disproportional expression of Cx30 in the epileptic focal areas in GAERS may be related to the onset of absence seizures or may be related to the neurogenesis of absence epilepsy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Büşra Köse
- Department of Anatomy, Koç University School of Medicine, Istanbul, Turkey
| | - Mazhar Özkan
- Department of Anatomy, Tekirdağ Namık Kemal University School of Medicine, Istanbul, Turkey
| | - İlknur Sur-Erdem
- Department of Molecular Biology, Koç University School of Medicine, Istanbul, Turkey
| | - Safiye Çavdar
- Department of Anatomy, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
7
|
Boal AM, Risner ML, Cooper ML, Wareham LK, Calkins DJ. Astrocyte Networks as Therapeutic Targets in Glaucomatous Neurodegeneration. Cells 2021; 10:1368. [PMID: 34199470 PMCID: PMC8228804 DOI: 10.3390/cells10061368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/22/2022] Open
Abstract
Astrocytes are intimately involved in the response to neurodegenerative stress and have become an attractive target for the development of neuroprotective therapies. However, studies often focus on astrocytes as single-cell units. Astrocytes are densely interconnected by gap junctions that are composed primarily of the protein connexin-43 (Cx43) and can function as a broader network of cells. Such networks contribute to a number of important processes, including metabolite distribution and extracellular ionic buffering, and are likely to play an important role in the progression of neurodegenerative disease. This review will focus on the pro-degenerative and pro-survival influence of astrocyte Cx43 in disease progression, with a focus on the roles of gap junctions and hemichannels in the spread of degenerative stress. Finally, we will highlight the specific evidence for targeting these networks in the treatment of glaucomatous neurodegeneration and other optic neuropathies.
Collapse
Affiliation(s)
- Andrew M. Boal
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| | - Michael L. Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| | - Melissa L. Cooper
- Skirball Institute for Biomolecular Medicine, NYU Langone Medical Center, New York, NY 10016, USA;
- Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Lauren K. Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| | - David J. Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| |
Collapse
|
8
|
Charvériat M, Mouthon F, Rein W, Verkhratsky A. Connexins as therapeutic targets in neurological and neuropsychiatric disorders. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166098. [PMID: 33545299 DOI: 10.1016/j.bbadis.2021.166098] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 12/16/2022]
Abstract
Astrocytes represent the reticular part of the central nervous system; gap junctions formed by connexins Cx43, Cx30- and Cx26 provide for homocellular astrocyte-astrocyte coupling, whereas connexins Cx30, Cx32, Cx43, and Cx47 connect astrocytes and oligodendrocytes. Astroglial networks are anatomically and functionally segregated being homologous to neuronal ensembles. Connexons, gap junctions and hemichannels (unpaired connexons) are affected in various neuropathologies from neuropsychiatric to neurodegenerative diseases. Manipulation of astrocytic connexins modulates the size and outreach of astroglial syncytia thus affecting astroglial homeostatic support. Modulation of astrocytic connexin significantly modifies pharmacological profile of many CNS drugs, which represents an innovative therapeutic approach for CNS disorders; this approach is now actively tested in pre-clinical and clinical studies. Wide combination of connexin modulators with CNS drugs open new promising perspectives for fundamental studies and therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - A Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
9
|
Angeli S, Kousiappa I, Stavrou M, Sargiannidou I, Georgiou E, Papacostas SS, Kleopa KA. Altered Expression of Glial Gap Junction Proteins Cx43, Cx30, and Cx47 in the 5XFAD Model of Alzheimer's Disease. Front Neurosci 2020; 14:582934. [PMID: 33117125 PMCID: PMC7575794 DOI: 10.3389/fnins.2020.582934] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Abstract
Glial gap junction proteins, called connexins (Cxs), form gap junctions in the central nervous system (CNS) to allow the bidirectional cytosolic exchange of molecules between adjacent cells. Their involvement in inheritable diseases and the use of experimental animal models that closely mimic such diseases revealed the critical role of glial GJs in myelination and homeostasis. Cxs are also implicated in acquired demyelinating disorders, such as Multiple Sclerosis (MS) and Alzheimer's disease (AD). Animal and human studies have revealed a role of the astrocytic Cx43 in the progression of AD but the role of Cx47, which is the main partner of Cx43 in the astrocyte-oligodendrocyte GJs is still unknown. The aim of this study was to investigate the astrocytic connexins, Cx43 and Cx30 in relation to oligodendrocytic Cx47 in the cortex and thalamus of the 5XFAD mouse model of AD. The model was characterized by increased Aβ deposition, gliosis, neuronal loss, and memory impairment. Compared to wild-type mice, Cx43 and Cx30 showed increased immunoreactivity in older 5XFAD mice, reflecting astrogliosis, while Cx47 immunoreactivity was reduced. Moreover, Cx47 GJ plaques showed reduced colocalization with Cx43 plaques. Oligodendrocyte precursor cells (OPCs) and mature oligodendrocyte populations were also depleted, and myelin deficits were observed. Our findings indicate reduced astrocyte-oligodendrocyte gap junction connectivity and possibly a shift in Cx43 expression toward astrocyte-astrocyte gap junctions and/or hemichannels, that could impair oligodendrocyte homeostasis and myelination. However, other factors, such as Aβ toxicity, could directly affect oligodendrocyte survival in AD. Our study provides evidence that Cxs might have implications in the progression of AD, although the role of oligodendrocyte Cxs in AD requires further investigation.
Collapse
Affiliation(s)
- Stella Angeli
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Ioanna Kousiappa
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Marios Stavrou
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Cyprus, Nicosia, Cyprus
| | - Irene Sargiannidou
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Elena Georgiou
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Savvas S. Papacostas
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Dementia and Cognitive Disorders Center, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Medical School, University of Nicosia, Nicosia, Cyprus
| | - Kleopas A. Kleopa
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Center for Neuromuscular disorders, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
10
|
Sánchez OF, Rodríguez AV, Velasco-España JM, Murillo LC, Sutachan JJ, Albarracin SL. Role of Connexins 30, 36, and 43 in Brain Tumors, Neurodegenerative Diseases, and Neuroprotection. Cells 2020; 9:E846. [PMID: 32244528 PMCID: PMC7226843 DOI: 10.3390/cells9040846] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Gap junction (GJ) channels and their connexins (Cxs) are complex proteins that have essential functions in cell communication processes in the central nervous system (CNS). Neurons, astrocytes, oligodendrocytes, and microglial cells express an extraordinary repertory of Cxs that are important for cell to cell communication and diffusion of metabolites, ions, neurotransmitters, and gliotransmitters. GJs and Cxs not only contribute to the normal function of the CNS but also the pathological progress of several diseases, such as cancer and neurodegenerative diseases. Besides, they have important roles in mediating neuroprotection by internal or external molecules. However, regulation of Cx expression by epigenetic mechanisms has not been fully elucidated. In this review, we provide an overview of the known mechanisms that regulate the expression of the most abundant Cxs in the central nervous system, Cx30, Cx36, and Cx43, and their role in brain cancer, CNS disorders, and neuroprotection. Initially, we focus on describing the Cx gene structure and how this is regulated by epigenetic mechanisms. Then, the posttranslational modifications that mediate the activity and stability of Cxs are reviewed. Finally, the role of GJs and Cxs in glioblastoma, Alzheimer's, Parkinson's, and Huntington's diseases, and neuroprotection are analyzed with the aim of shedding light in the possibility of using Cx regulators as potential therapeutic molecules.
Collapse
Affiliation(s)
- Oscar F. Sánchez
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, 110911 Bogota, Colombia; (A.V.R.); (J.M.V.-E.); (L.C.M.); (J.-J.S.)
| | | | | | | | | | - Sonia-Luz Albarracin
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, 110911 Bogota, Colombia; (A.V.R.); (J.M.V.-E.); (L.C.M.); (J.-J.S.)
| |
Collapse
|
11
|
Kim HJ, Kim MJ, Mostafa MN, Park JH, Choi HS, Kim YS, Choi EK. RhoA/ROCK Regulates Prion Pathogenesis by Controlling Connexin 43 Activity. Int J Mol Sci 2020; 21:ijms21041255. [PMID: 32070020 PMCID: PMC7072953 DOI: 10.3390/ijms21041255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 11/16/2022] Open
Abstract
Scrapie infection, which converts cellular prion protein (PrPC) into the pathological and infectious isoform (PrPSc), leads to neuronal cell death, glial cell activation and PrPSc accumulation. Previous studies reported that PrPC regulates RhoA/Rho-associated kinase (ROCK) signaling and that connexin 43 (Cx43) expression is upregulated in in vitro and in vivo prion-infected models. However, whether there is a link between RhoA/ROCK and Cx43 in prion disease pathogenesis is uncertain. Here, we investigated the role of RhoA/ROCK signaling and Cx43 in prion diseases using in vitro and in vivo models. Scrapie infection induced RhoA activation, accompanied by increased phosphorylation of LIM kinase 1/2 (LIMK1/2) at Thr508/Thr505 and cofilin at Ser3 and reduced phosphorylation of RhoA at Ser188 in hippocampal neuronal cells and brains of mice. Scrapie infection-induced RhoA activation also resulted in PrPSc accumulation followed by a reduction in the interaction between RhoA and p190RhoGAP (a GTPase-activating protein). Interestingly, scrapie infection significantly enhanced the interaction between RhoA and Cx43. Moreover, RhoA and Cx43 colocalization was more visible in both the membrane and cytoplasm of scrapie-infected hippocampal neuronal cells than in controls. Finally, RhoA and ROCK inhibition reduced PrPSc accumulation and the RhoA/Cx43 interaction, leading to decreased Cx43 hemichannel activity in scrapie-infected hippocampal neuronal cells. These findings suggest that RhoA/ROCK regulates Cx43 activity, which may have an important role in the pathogenesis of prion disease.
Collapse
Affiliation(s)
- Hee-Jun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea; (H.-J.K.); (M.-J.K.); (M.N.M.); (J.-H.P.); (H.-S.C.); (Y.-S.K.)
| | - Mo-Jong Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea; (H.-J.K.); (M.-J.K.); (M.N.M.); (J.-H.P.); (H.-S.C.); (Y.-S.K.)
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do 24252, Korea
| | - Mohd Najib Mostafa
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea; (H.-J.K.); (M.-J.K.); (M.N.M.); (J.-H.P.); (H.-S.C.); (Y.-S.K.)
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do 24252, Korea
| | - Jeong-Ho Park
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea; (H.-J.K.); (M.-J.K.); (M.N.M.); (J.-H.P.); (H.-S.C.); (Y.-S.K.)
| | - Hong-Seok Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea; (H.-J.K.); (M.-J.K.); (M.N.M.); (J.-H.P.); (H.-S.C.); (Y.-S.K.)
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea; (H.-J.K.); (M.-J.K.); (M.N.M.); (J.-H.P.); (H.-S.C.); (Y.-S.K.)
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Korea
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea; (H.-J.K.); (M.-J.K.); (M.N.M.); (J.-H.P.); (H.-S.C.); (Y.-S.K.)
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do 24252, Korea
- Correspondence: ; Tel.: +82-31-380-1893; Fax: +82-31-388-3427
| |
Collapse
|
12
|
Ahmadian E, Eftekhari A, Samiei M, Maleki Dizaj S, Vinken M. The role and therapeutic potential of connexins, pannexins and their channels in Parkinson's disease. Cell Signal 2019; 58:111-118. [DOI: 10.1016/j.cellsig.2019.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/10/2019] [Accepted: 03/10/2019] [Indexed: 02/07/2023]
|
13
|
Mattii L, Pardini C, Ippolito C, Bianchi F, Sabbatini ARM, Vaglini F. Rho-inhibition and neuroprotective effect on rotenone-treated dopaminergic neurons in vitro. Neurotoxicology 2019; 72:51-60. [PMID: 30769001 DOI: 10.1016/j.neuro.2019.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 10/27/2022]
Abstract
Mesencephalic cell cultures are a good model to study the vulnerability of dopaminergic neurons and reproduce, in vitro, experimental models of Parkinson's disease. Rotenone associated as an environmental neurotoxin related to PD, is able to provoke dopaminergic neuron degeneration by inhibiting complex I of the mitochondrial respiratory chain and by inducing accumulation of α-synuclein. Recently, rotenone has been described to activate RhoA, a GTPase protein. In the present study we evaluated a possible neuroprotective effect of Rho-inhibitor molecules on rotenone-damaged dopaminergic (DA) neurons obtained from mouse primary mesencephalic cell culture. Our results showed that Clostridium Botulinum C3 toxin (C3) and simvastatin, as RhoA inhibitors, were able to protect DA neurons from rotenone damages. In fact, pretreatment with C3 or simvastatin significantly prevented the reduction of [3H]dopamine uptake, neurites injury and the expression patterns of proteins like α-syn, actin and connexin 43.
Collapse
Affiliation(s)
- Letizia Mattii
- Department of Clinical and Experimental Medicine, Unit of Histology, via Roma 55, University of Pisa, 56126 Pisa, Italy; Interdepartmental Research Center Nutraceuticals and Food for Health, University of Pisa, 56124 Pisa, Italy
| | - Carla Pardini
- Department of Translational Research and of New Surgical and Medical Technologies, via Roma 55, University of Pisa, 56126 Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, Unit of Histology, via Roma 55, University of Pisa, 56126 Pisa, Italy
| | - Francesco Bianchi
- Department of Clinical and Experimental Medicine, Unit of Histology, via Roma 55, University of Pisa, 56126 Pisa, Italy
| | | | - Francesca Vaglini
- Department of Translational Research and of New Surgical and Medical Technologies, via Roma 55, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
14
|
Bose A, Basu R, Maulik M, Das Sarma J. Loss of Cx43-Mediated Functional Gap Junction Communication in Meningeal Fibroblasts Following Mouse Hepatitis Virus Infection. Mol Neurobiol 2018; 55:6558-6571. [PMID: 29327203 PMCID: PMC7090783 DOI: 10.1007/s12035-017-0861-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/21/2017] [Indexed: 10/28/2022]
Abstract
Mouse hepatitis virus (MHV) infection causes meningoencephalitis by disrupting the neuro-glial and glial-pial homeostasis. Recent studies suggest that MHV infection alters gap junction protein connexin 43 (Cx43)-mediated intercellular communication in brain and primary cultured astrocytes. In addition to astrocytes, meningeal fibroblasts also express high levels of Cx43. Fibroblasts in the meninges together with the basal lamina and the astrocyte endfeet forms the glial limitans superficialis as part of the blood-brain barrier (BBB). Alteration of glial-pial gap junction intercellular communication (GJIC) in MHV infection has the potential to affect the integrity of BBB. Till date, it is not known if viral infection can modulate Cx43 expression and function in cells of the brain meninges and thus affect BBB permeability. In the present study, we have investigated the effect of MHV infection on Cx43 localization and function in mouse brain meningeal cells and primary meningeal fibroblasts. Our results show that MHV infection reduces total Cx43 levels and causes its intracellular retention in the perinuclear compartments reducing its surface expression. Reduced trafficking of Cx43 to the cell surface in MHV-infected cells is associated with loss functional GJIC. Together, these data suggest that MHV infection can directly affect expression and cellular distribution of Cx43 resulting in loss of Cx43-mediated GJIC in meningeal fibroblasts, which may be associated with altered BBB function observed in acute infection.
Collapse
Affiliation(s)
- Abhishek Bose
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K), Mohanpur, Nadia, West Bengal, 741246, India
| | - Rahul Basu
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K), Mohanpur, Nadia, West Bengal, 741246, India
| | - Mahua Maulik
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K), Mohanpur, Nadia, West Bengal, 741246, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K), Mohanpur, Nadia, West Bengal, 741246, India.
| |
Collapse
|
15
|
Gangoso E, Talaverón R, Jaraíz-Rodríguez M, Domínguez-Prieto M, Ezan P, Koulakoff A, Medina JM, Giaume C, Tabernero A. A c-Src Inhibitor Peptide Based on Connexin43 Exerts Neuroprotective Effects through the Inhibition of Glial Hemichannel Activity. Front Mol Neurosci 2017; 10:418. [PMID: 29326548 PMCID: PMC5737028 DOI: 10.3389/fnmol.2017.00418] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/01/2017] [Indexed: 12/29/2022] Open
Abstract
The non-receptor tyrosine kinase c-Src is an important mediator in several signaling pathways related to neuroinflammation. Our previous study showed that cortical injection of kainic acid (KA) promoted a transient increase in c-Src activity in reactive astrocytes surrounding the neuronal lesion. As a cell-penetrating peptide based on connexin43 (Cx43), specifically TAT-Cx43266–283, inhibits Src activity, we investigated the effect of TAT-Cx43266–283 on neuronal death promoted by cortical KA injections in adult mice. As expected, KA promoted neuronal death, estimated by the reduction in NeuN-positive cells and reactive gliosis, characterized by the increase in glial fibrillary acidic protein (GFAP) expression. Interestingly, TAT-Cx43266–283 injected with KA diminished neuronal death and reactive gliosis compared to KA or KA+TAT injections. In order to gain insight into the neuroprotective mechanism, we used in vitro models. In primary cultured neurons, TAT-Cx43266–283 did not prevent neuronal death promoted by KA, but when neurons were grown on top of astrocytes, TAT-Cx43266–283 prevented neuronal death promoted by KA. These observations demonstrate the participation of astrocytes in the neuroprotective effect of TAT-Cx43266–283. Furthermore, the neuroprotective effect was also present in non-contact co-cultures, suggesting the contribution of soluble factors released by astrocytes. As glial hemichannel activity is associated with the release of several factors, such as ATP and glutamate, that cause neuronal death, we explored the participation of these channels on the neuroprotective effect of TAT-Cx43266–283. Our results confirmed that inhibitors of ATP and NMDA receptors prevented neuronal death in co-cultures treated with KA, suggesting the participation of astrocyte hemichannels in neurotoxicity. Furthermore, TAT-Cx43266–283 reduced hemichannel activity promoted by KA in neuron-astrocyte co-cultures as assessed by ethidium bromide (EtBr) uptake assay. In fact, TAT-Cx43266–283 and dasatinib, a potent c-Src inhibitor, strongly reduced the activation of astrocyte hemichannels. In conclusion, our results suggest that TAT-Cx43266–283 exerts a neuroprotective effect through the reduction of hemichannel activity likely mediated by c-Src in astrocytes. These data unveil a new role of c-Src in the regulation of Cx43-hemichannel activity that could be part of the mechanism by which astroglial c-Src participates in neuroinflammation.
Collapse
Affiliation(s)
- Ester Gangoso
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Collège de France, Université Pierre et Marie Curie, Paris, France
| | - Rocío Talaverón
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| | - Myriam Jaraíz-Rodríguez
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| | - Marta Domínguez-Prieto
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| | - Pascal Ezan
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Collège de France, Université Pierre et Marie Curie, Paris, France
| | - Annette Koulakoff
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Collège de France, Université Pierre et Marie Curie, Paris, France
| | - José M Medina
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| | - Christian Giaume
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Collège de France, Université Pierre et Marie Curie, Paris, France
| | - Arantxa Tabernero
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
16
|
Abstract
Neuronal survival, electrical signaling and synaptic activity require a well-balanced micro-environment in the central nervous system. This is achieved by the blood-brain barrier (BBB), an endothelial barrier situated in the brain capillaries, that controls near-to-all passage in and out of the brain. The endothelial barrier function is highly dependent on signaling interactions with surrounding glial, neuronal and vascular cells, together forming the neuro-glio-vascular unit. Within this functional unit, connexin (Cx) channels are of utmost importance for intercellular communication between the different cellular compartments. Connexins are best known as the building blocks of gap junction (GJ) channels that enable direct cell-cell transfer of metabolic, biochemical and electric signals. In addition, beyond their role in direct intercellular communication, Cxs also form unapposed, non-junctional hemichannels in the plasma membrane that allow the passage of several paracrine messengers, complementing direct GJ communication. Within the NGVU, Cxs are expressed in vascular endothelial cells, including those that form the BBB, and are eminent in astrocytes, especially at their endfoot processes that wrap around cerebral vessels. However, despite the density of Cx channels at this so-called gliovascular interface, it remains unclear as to how Cx-based signaling between astrocytes and BBB endothelial cells may converge control over BBB permeability in health and disease. In this review we describe available evidence that supports a role for astroglial as well as endothelial Cxs in the regulation of BBB permeability during development as well as in disease states.
Collapse
|
17
|
Lee GH, Jang B, Choi HS, Kim HJ, Park JH, Jeon YC, Carp RI, Kim YS, Choi EK. Upregulation of Connexin 43 Expression Via C-Jun N-Terminal Kinase Signaling in Prion Disease. J Alzheimers Dis 2016; 49:1005-19. [PMID: 26599051 DOI: 10.3233/jad-150283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Prion infection leads to neuronal cell death, glial cell activation, and the accumulation of misfolded prion proteins. However, the altered cellular environments in animals with prion diseases are poorly understood. In the central nervous system, cells connect the cytoplasm of adjacent cells via connexin (Cx)-assembled gap junction channels to allow the direct exchange of small molecules, including ions, neurotransmitters, and signaling molecules, which regulate the activities of the connected cells. Here, we investigate the role of Cx43 in the pathogenesis of prion diseases. Upregulated Cx43 expression, which was dependent on c-Jun N-Terminal Kinase (JNK)/c-Jun signaling cascades, was found in prion-affected brain tissues and hippocampal neuronal cells. Scrapie infection-induced Cx43 formed aggregated plaques within the cytoplasmic compartments at the cell-cell interfaces. The ethidium bromide (EtBr) uptake assay and scrape-loading dye transfer assay demonstrated that increased Cx43 has functional consequences for the activity of Cx43 hemichannels. Interestingly, blockade of PrPSc accumulation reduced Cx43 expression through the inhibition of JNK signaling, indicating that PrPSc accumulation may be directly involved in JNK activation-mediated Cx43 upregulation. Overall, our findings describe a scrapie infection-mediated novel regulatory signaling pathway of Cx43 expression and may suggest a role for Cx43 in the pathogenesis of prion diseases.
Collapse
Affiliation(s)
- Geon-Hwi Lee
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea.,Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Byungki Jang
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | - Hong-Seok Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea.,Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Hee-Jun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | - Jeong-Ho Park
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea.,Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Yong-Chul Jeon
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | - Richard I Carp
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea.,Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea.,Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|
18
|
Connexin43 in retinal injury and disease. Prog Retin Eye Res 2016; 51:41-68. [DOI: 10.1016/j.preteyeres.2015.09.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/25/2015] [Accepted: 09/27/2015] [Indexed: 12/26/2022]
|
19
|
Kim R, Chang G, Hu R, Phillips A, Douglas R. Connexin gap junction channels and chronic rhinosinusitis. Int Forum Allergy Rhinol 2016; 6:611-7. [PMID: 26919292 DOI: 10.1002/alr.21717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/04/2015] [Accepted: 12/15/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Gap junction channels are formed by connexin (Cx) proteins. These channels facilitate communication between adjacent cells, and some have been implicated in acute and chronic inflammation. We investigated whether altered connexin expression could be associated with the inflammatory changes of the sinonasal mucosa that characterize chronic rhinosinusitis (CRS). Our aims were first to screen normal sinus mucosa to determine the expression profile of the connexin family of genes, and second to compare the level of expression of 3 key connexins (Cx26, Cx30, and Cx43) in CRS and normal sinus mucosa. These 3 connexins have been implicated in lower airway epithelial cell repair, as well as chronic and acute cutaneous wounds. METHODS Sinus mucosa biopsies were taken from 11 patients with CRS undergoing sinus surgery and from 7 controls with normal sinuses undergoing transnasal pituitary surgery. Gene expression study of the connexin family was performed using polymerase chain reaction (PCR). Subsequent targeted quantitative analyses were done using quantitative real-time PCR (qPCR) and fluorescent immunohistochemistry (IHC). RESULTS A total of 16 different connexin genes were expressed in the normal mucosa including Cx26, Cx30, and Cx43. The qPCR demonstrated increased abundance of Cx26 (p = 0.005), Cx30 (p = 0.07), and Cx43 (p = 0.04) in CRS compared to control mucosa. IHC confirmed significantly higher levels of Cx43 in CRS (p < 0.001). CONCLUSION The majority of the connexin family is expressed in normal sinus mucosa. Expression of 3 selected connexins was found elevated in CRS mucosa. Connexin gap junction modulation may offer a novel therapeutic target for CRS.
Collapse
Affiliation(s)
- Raymond Kim
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - George Chang
- Faculty of Medical and Health Science, and School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Rebecca Hu
- Faculty of Medical and Health Science, and School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Anthony Phillips
- Department of Surgery, The University of Auckland, Auckland, New Zealand.,Faculty of Medical and Health Science, and School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,CoDa Therapeutics Inc, Auckland, New Zealand
| | - Richard Douglas
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Kim Y, Davidson JO, Gunn KC, Phillips AR, Green CR, Gunn AJ. Role of Hemichannels in CNS Inflammation and the Inflammasome Pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 104:1-37. [DOI: 10.1016/bs.apcsb.2015.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Fernández-Sánchez L, Lax P, Campello L, Pinilla I, Cuenca N. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa. Front Cell Neurosci 2015; 9:484. [PMID: 26733810 PMCID: PMC4686678 DOI: 10.3389/fncel.2015.00484] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/30/2015] [Indexed: 12/29/2022] Open
Abstract
Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina.
Collapse
Affiliation(s)
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Aragon Institute for Health Research, Lozano Blesa University Hospital Zaragoza, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of AlicanteAlicante, Spain; Institute Ramón Margalef, University of AlicanteAlicante, Spain
| |
Collapse
|
22
|
Mouse Hepatitis Virus Infection Remodels Connexin43-Mediated Gap Junction Intercellular Communication In Vitro and In Vivo. J Virol 2015; 90:2586-99. [PMID: 26676788 DOI: 10.1128/jvi.02420-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/12/2015] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED Gap junctions (GJs) form intercellular channels which directly connect the cytoplasm between neighboring cells to facilitate the transfer of ions and small molecules. GJs play a major role in the pathogenesis of infection-associated inflammation. Mutations of gap junction proteins, connexins (Cxs), cause dysmyelination and leukoencephalopathy. In multiple sclerosis (MS) patients and its animal model experimental autoimmune encephalitis (EAE), Cx43 was shown to be modulated in the central nervous system (CNS). The mechanism behind Cx43 alteration and its role in MS remains unexplored. Mouse hepatitis virus (MHV) infection-induced demyelination is one of the best-studied experimental animal models for MS. Our studies demonstrated that MHV infection downregulated Cx43 expression at protein and mRNA levels in vitro in primary astrocytes obtained from neonatal mouse brains. After infection, a significant amount of Cx43 was retained in endoplasmic reticulum/endoplasmic reticulum Golgi intermediate complex (ER/ERGIC) and GJ plaque formation was impaired at the cell surface, as evidenced by a reduction of the Triton X-100 insoluble fraction of Cx43. Altered trafficking and impairment of GJ plaque formation may cause the loss of functional channel formation in MHV-infected primary astrocytes, as demonstrated by a reduced number of dye-coupled cells after a scrape-loading Lucifer yellow dye transfer assay. Upon MHV infection, a significant downregulation of Cx43 was observed in the virus-infected mouse brain. This study demonstrates that astrocytic Cx43 expression and function can be modulated due to virus stress and can be an appropriate model to understand the basis of cellular mechanisms involved in the alteration of gap junction intercellular communication (GJIC) in CNS neuroinflammation. IMPORTANCE We found that MHV infection leads to the downregulation of Cx43 in vivo in the CNS. In addition, results show that MHV infection impairs Cx43 expression in addition to gap junction communication in primary astrocytes. After infection, Cx43 did not traffic normally to the membrane to form gap junction plaques, and that could be the basis of reduced functional gap junction coupling between astrocytes. This is an important first step toward understanding how viruses affect Cx43 expression and trafficking at the cellular level. This may provide a basis for understanding how structural alterations of astrocytic gap junctions can disrupt gap junction communication between other CNS cells in altered CNS environments due to infection and inflammation. More specifically, alteration of Cx43 may be the basis of the destabilization of Cx47 in oligodendrocytes seen in and around inflammatory demyelinating plaques in MS patients.
Collapse
|
23
|
Ben Haim L, Carrillo-de Sauvage MA, Ceyzériat K, Escartin C. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci 2015; 9:278. [PMID: 26283915 PMCID: PMC4522610 DOI: 10.3389/fncel.2015.00278] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Astrocytes play crucial roles in the brain and are involved in the neuroinflammatory response. They become reactive in response to virtually all pathological situations in the brain such as axotomy, ischemia, infection, and neurodegenerative diseases (ND). Astrocyte reactivity was originally characterized by morphological changes (hypertrophy, remodeling of processes) and the overexpression of the intermediate filament glial fibrillary acidic protein (GFAP). However, it is unclear how the normal supportive functions of astrocytes are altered by their reactive state. In ND, in which neuronal dysfunction and astrocyte reactivity take place over several years or decades, the issue is even more complex and highly debated, with several conflicting reports published recently. In this review, we discuss studies addressing the contribution of reactive astrocytes to ND. We describe the molecular triggers leading to astrocyte reactivity during ND, examine how some key astrocyte functions may be enhanced or altered during the disease process, and discuss how astrocyte reactivity may globally affect ND progression. Finally we will consider the anticipated developments in this important field. With this review, we aim to show that the detailed study of reactive astrocytes may open new perspectives for ND.
Collapse
Affiliation(s)
- Lucile Ben Haim
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département des Sciences du Vivant, Institut d'Imagerie Biomédicale, MIRCen Fontenay-aux-Roses, France ; Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, UMR 9199 Fontenay-aux-Roses, France
| | - Maria-Angeles Carrillo-de Sauvage
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département des Sciences du Vivant, Institut d'Imagerie Biomédicale, MIRCen Fontenay-aux-Roses, France ; Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, UMR 9199 Fontenay-aux-Roses, France
| | - Kelly Ceyzériat
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département des Sciences du Vivant, Institut d'Imagerie Biomédicale, MIRCen Fontenay-aux-Roses, France ; Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, UMR 9199 Fontenay-aux-Roses, France
| | - Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département des Sciences du Vivant, Institut d'Imagerie Biomédicale, MIRCen Fontenay-aux-Roses, France ; Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, UMR 9199 Fontenay-aux-Roses, France
| |
Collapse
|
24
|
Retamal MA, Reyes EP, García IE, Pinto B, Martínez AD, González C. Diseases associated with leaky hemichannels. Front Cell Neurosci 2015; 9:267. [PMID: 26283912 PMCID: PMC4515567 DOI: 10.3389/fncel.2015.00267] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/29/2015] [Indexed: 01/10/2023] Open
Abstract
Hemichannels (HCs) and gap junction channels (GJCs) formed by protein subunits called connexins (Cxs) are major pathways for intercellular communication. While HCs connect the intracellular compartment with the extracellular milieu, GJCs allow the interchange of molecules between cytoplasm of two contacting cells. Under physiological conditions, HCs are mostly closed, but they can open under certain stimuli allowing the release of autocrine and paracrine molecules. Moreover, some pathological conditions, like ischemia or other inflammation conditions, significantly increase HCs activity. In addition, some mutations in Cx genes associated with human diseases, such as deafness or cataracts, lead to the formation of more active HCs or “leaky HCs.” In this article we will revise cellular and molecular mechanisms underlying the appearance of leaky HCs, and the consequences of their expression in different cellular systems and animal models, in seeking a common pattern or pathological mechanism of disease.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Edison P Reyes
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile ; Centro de Investigación Biomédica, Universidad Autónoma de Chile Santiago, Chile
| | - Isaac E García
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Bernardo Pinto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
25
|
Xie HY, Cui Y, Deng F, Feng JC. Connexin: a potential novel target for protecting the central nervous system? Neural Regen Res 2015; 10:659-66. [PMID: 26170830 PMCID: PMC4424762 DOI: 10.4103/1673-5374.155444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2014] [Indexed: 01/11/2023] Open
Abstract
Connexin subunits are proteins that form gap junction channels, and play an important role in communication between adjacent cells. This review article discusses the function of connexins/hemichannels/gap junctions under physiological conditions, and summarizes the findings regarding the role of connexins/hemichannels/gap junctions in the physiological and pathological mechanisms underlying central nervous system diseases such as brain ischemia, traumatic brain and spinal cord injury, epilepsy, brain and spinal cord tumor, migraine, neuroautoimmune disease, Alzheimer's disease, Parkinson's disease, X-linked Charcot-Marie-Tooth disease, Pelizaeus-Merzbacher-like disease, spastic paraplegia and maxillofacial dysplasia. Connexins are considered to be a potential novel target for protecting the central nervous system.
Collapse
Affiliation(s)
- Hong-Yan Xie
- Departmet of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yu Cui
- Department of Neurosurgery, the First People's Hospital of Xianyang, Xianyang, Shaanxi Province, China
| | - Fang Deng
- Departmet of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jia-Chun Feng
- Departmet of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
26
|
Freitas-Andrade M, Naus CC. Astrocytes in neuroprotection and neurodegeneration: The role of connexin43 and pannexin1. Neuroscience 2015; 323:207-21. [PMID: 25913636 DOI: 10.1016/j.neuroscience.2015.04.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 12/26/2022]
Abstract
The World Health Organization has predicted that by 2040 neurodegenerative diseases will overtake cancer to become the world's second leading cause of death after cardiovascular disease. This has sparked the development of several European and American brain research initiatives focusing on elucidating the underlying cellular and molecular mechanisms of neurodegenerative diseases. Connexin (Cx) and pannexin (Panx) membrane channel proteins are conduits through which neuronal, glial, and vascular tissues interact. In the brain, this interaction is highly critical for homeostasis and brain repair after injury. Understanding the molecular mechanisms by which these membrane channels function, in health and disease, might be particularly influential in establishing conceptual frameworks to develop new therapeutics against Cx and Panx channels. This review focuses on current insights and emerging concepts, particularly the impact of connexin43 and pannexin1, under neuroprotective and neurodegenerative conditions within the context of astrocytes.
Collapse
Affiliation(s)
- M Freitas-Andrade
- Department of Cellular and Physiological Sciences, The Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - C C Naus
- Department of Cellular and Physiological Sciences, The Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
27
|
Takeuchi H, Suzumura A. Gap junctions and hemichannels composed of connexins: potential therapeutic targets for neurodegenerative diseases. Front Cell Neurosci 2014; 8:189. [PMID: 25228858 PMCID: PMC4151093 DOI: 10.3389/fncel.2014.00189] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/19/2014] [Indexed: 12/03/2022] Open
Abstract
Microglia are macrophage-like resident immune cells that contribute to the maintenance of homeostasis in the central nervous system (CNS). Abnormal activation of microglia can cause damage in the CNS, and accumulation of activated microglia is a characteristic pathological observation in neurologic conditions such as trauma, stroke, inflammation, epilepsy, and neurodegenerative diseases. Activated microglia secrete high levels of glutamate, which damages CNS cells and has been implicated as a major cause of neurodegeneration in these conditions. Glutamate-receptor blockers and microglia inhibitors (e.g., minocycline) have been examined as therapeutic candidates for several neurodegenerative diseases; however, these compounds exerted little therapeutic benefit because they either perturbed physiological glutamate signals or suppressed the actions of protective microglia. The ideal therapeutic approach would hamper the deleterious roles of activated microglia without diminishing their protective effects. We recently found that abnormally activated microglia secrete glutamate via gap-junction hemichannels on the cell surface. Moreover, administration of gap-junction inhibitors significantly suppressed excessive microglial glutamate release and improved disease symptoms in animal models of neurologic conditions such as stroke, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease. Recent evidence also suggests that neuronal and glial communication via gap junctions amplifies neuroinflammation and neurodegeneration. Elucidation of the precise pathologic roles of gap junctions and hemichannels may lead to a novel therapeutic strategies that can slow and halt the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University Nagoya, Japan
| | - Akio Suzumura
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University Nagoya, Japan
| |
Collapse
|
28
|
Cui Y, Masaki K, Yamasaki R, Imamura S, Suzuki SO, Hayashi S, Sato S, Nagara Y, Kawamura MF, Kira JI. Extensive dysregulations of oligodendrocytic and astrocytic connexins are associated with disease progression in an amyotrophic lateral sclerosis mouse model. J Neuroinflammation 2014; 11:42. [PMID: 24597481 PMCID: PMC4016493 DOI: 10.1186/1742-2094-11-42] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/25/2014] [Indexed: 11/17/2022] Open
Abstract
Background Non-cell-autonomous motor neuronal death is suggested in a mutant Cu/Zn superoxide dismutase 1 (mSOD1)-mediated amyotrophic lateral sclerosis (ALS) model, in which glial cells play significant roles in disease progression. Connexins (Cxs) form homotypic or heterotypic gap junctions (GJs) and allow direct intercellular communications among nervous tissue cells. The role of Cxs in motor neuron disease has never been investigated; therefore, we aimed to evaluate alterations of Cxs in mSOD1-transgenic (mSOD1-Tg) mice in comparison with their non-transgenic (non-Tg) littermates at the same ages. Methods We pathologically evaluated temporal changes to astrocytic Cx43/Cx30 and oligodendrocytic Cx47/Cx32 immunoreactivities at presymptomatic, disease-progressive, and end stages, relative to aquaporin-4 (AQP4), glial fibrillary acidic protein (GFAP), excitatory amino acid transporter-2 (EAAT2), myelin-oligodendrocyte glycoprotein (MOG), and Nogo-A immunoreactivities, and observed neuronal loss by NeuN and neurofilament immunostaining, and microglial response by Iba-1 immunostaining. We also performed quantitative immunoblotting and real-time PCR analyses for Cxs. Results The mSOD1-Tg mice showed neuronal and axonal loss in the anterior horns of the lumbar spinal cord accompanied by increased activation of microglia compared with non-Tg mice at the disease-progressive and end stages. Expression patterns of Cxs were not different between mSOD1-Tg and non-Tg mice at the presymptomatic stage, but immunoreactivities for GFAP, Cx43, Cx30 and AQP4 were increased in the anterior horns of mSOD1-Tg mice at the disease-progressive and end stages. By contrast, Cx47 and Cx32 immunoreactivities were markedly diminished in Nogo-A-positive oligodendrocytes in the anterior horns of mSOD1-Tg mice at the disease-progressive and end stages, especially in oligodendrocytes showing SOD1 accumulation. EAAT2 immunoreactivity was also diminished in the anterior horns of mSOD1-Tg mice at the disease-progressive and end stages. Quantitative immunoblotting revealed a significant reduction in Cx47 and Cx32 protein levels in mSOD1-Tg mice at the disease-progressive and end stages. The levels of Cx47 and Cx32 mRNAs were also decreased at these stages. Conclusions Our findings indicate that oligodendrocytic and astrocytic GJ proteins in the anterior horns of spinal cord in mSOD1-Tg mice are profoundly affected at the disease-progressive and end stages, where disruption of GJs among glial cells may exacerbate motor neuronal death.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jun-ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
29
|
Affiliation(s)
- Hideyuki Takeuchi
- Department of Neuroimmunology; Research Institute of Environmental Medicine; Nagoya University; Nagoya Japan
| |
Collapse
|
30
|
Gao L, Gao H, Zhou H, Xu Y. Gene expression profiling analysis of the putamen for the investigation of compensatory mechanisms in Parkinson's disease. BMC Neurol 2013; 13:181. [PMID: 24256571 PMCID: PMC4225573 DOI: 10.1186/1471-2377-13-181] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/28/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is affecting 5 million people worldwide, but the response mechanisms of the striatum are still unclear. Therefore, identification of gene expression alterations in the striatum will greatly assist the development of novel therapy strategies. METHODS We performed a comprehensive gene expression analysis in 15 PD patients and 15 normal controls to identify differentially expressed genes (DEGs) using the expression profile GSE20291 from Gene Expression Omnibus (GEO). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analysis were used to define functions and pathways altered in PD. Protein-protein interaction network was constructed to find out the modules with close interactions. RESULTS Total715 DEGs including 268 up-regulated and 447 down-regulated genes were obtained. GO functional enrichment analysis indicated that the genes related with neurons function and cell morphogenesis might be changed upon PD. KEGG pathway enrichment analysis showed that most of the genes were enriched in the nodes of Gap junction, calcium signaling pathway, phosphatidylinositol signaling system, long-term potentiation, Alzheimer's disease and GnRH signaling pathway. Protein-protein interaction network and module analysis suggested that some apoptosis related genes, such as PRKCA, CDC42 and BCL2 may play critical roles in striatal neurons growth. CONCLUSION Intrinsic striatal tyrosine hydroxylase interneurons growth may be promoted by changes in several genes expression and thus reduce the functional excitatory synapses.
Collapse
Affiliation(s)
- Lianbo Gao
- Department of Neurology, the Fourth Affiliated Hospital of China Medical University, NO,4 chongshan Road, huanggu Area, Shenyang 110032, Liaoning, China.
| | | | | | | |
Collapse
|
31
|
Gap junction channels and hemichannels in the CNS: regulation by signaling molecules. Neuropharmacology 2013; 75:567-82. [PMID: 23499663 DOI: 10.1016/j.neuropharm.2013.02.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 02/08/2013] [Accepted: 02/26/2013] [Indexed: 11/20/2022]
Abstract
Coordinated interaction among cells is critical to develop the extremely complex and dynamic tasks performed by the central nervous system (CNS). Cell synchronization is in part mediated by connexins and pannexins; two different protein families that form gap junction channels and hemichannels. Whereas gap junction channels connect the cytoplasm of contacting cells and coordinate electric and metabolic activities, hemichannels communicate intra- and extra-cellular compartments and serve as diffusional pathways for ions and small molecules. Cells in the CNS depend on paracrine/autocrine communication via several extracellular signaling molecules, such as, cytokines, growth factors, transmitters and free radical species to sense changes in microenvironment as well as to adapt to them. These signaling molecules modulate crucial processes of the CNS, including, cellular migration and differentiation, synaptic transmission and plasticity, glial activation, cell viability and microvascular blood flow. Gap junction channels and hemichannels are affected by different signaling transduction pathways triggered by these paracrine/autocrine signaling molecules. Most of the modulatory effects induced by these signaling molecules are specific to the cell type and the connexin and pannexin subtype expressed in different brain areas. In this review, we summarized and discussed most of the relevant and recently published information on the effects of signaling molecules on connexin or pannexin based channels and their possible relevance in CNS physiology and pathology. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.
Collapse
|
32
|
Eugenin EA, Basilio D, Sáez JC, Orellana JA, Raine CS, Bukauskas F, Bennett MVL, Berman JW. The role of gap junction channels during physiologic and pathologic conditions of the human central nervous system. J Neuroimmune Pharmacol 2012; 7:499-518. [PMID: 22438035 PMCID: PMC3638201 DOI: 10.1007/s11481-012-9352-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 02/28/2012] [Indexed: 12/15/2022]
Abstract
Gap junctions (GJs) are expressed in most cell types of the nervous system, including neuronal stem cells, neurons, astrocytes, oligodendrocytes, cells of the blood brain barrier (endothelial cells and astrocytes) and under inflammatory conditions in microglia/macrophages. GJs connect cells by the docking of two hemichannels, one from each cell with each hemichannel being formed by 6 proteins named connexins (Cx). Unapposed hemichannels (uHC) also can be open on the surface of the cells allowing the release of different intracellular factors to the extracellular space. GJs provide a mechanism of cell-to-cell communication between adjacent cells that enables the direct exchange of intracellular messengers, such as calcium, nucleotides, IP(3), and diverse metabolites, as well as electrical signals that ultimately coordinate tissue homeostasis, proliferation, differentiation, metabolism, cell survival and death. Despite their essential functions in physiological conditions, relatively little is known about the role of GJs and uHC in human diseases, especially within the nervous system. The focus of this review is to summarize recent findings related to the role of GJs and uHC in physiologic and pathologic conditions of the central nervous system.
Collapse
Affiliation(s)
- Eliseo A Eugenin
- Department of Pathology, F727, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Glial connexin expression and function in the context of Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:2048-57. [PMID: 22008509 DOI: 10.1016/j.bbamem.2011.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 09/20/2011] [Accepted: 10/03/2011] [Indexed: 01/26/2023]
Abstract
A hallmark of neurodegenerative diseases is the reactive gliosis characterized by a phenotypic change in astrocytes and microglia. This glial response is associated with modifications in the expression and function of connexins (Cxs), the proteins forming gap junction channels and hemichannels. Increased Cx expression is detected in most reactive astrocytes located at amyloid plaques, the histopathological lesions typically present in the brain of Alzheimer's patients and animal models of the disease. The activity of Cx channels analyzed in vivo as well as in vitro after treatment with the amyloid β peptide is also modified and, in particular, hemichannel activation may contribute to neuronal damage. In this review, we summarize and discuss recent data that suggest glial Cx channels participate in the neurodegenerative process of Alzheimer's disease. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
|
34
|
Choi YG, Yeo S, Hong YM, Lim S. Neuroprotective changes of striatal degeneration-related gene expression by acupuncture in an MPTP mouse model of Parkinsonism: microarray analysis. Cell Mol Neurobiol 2011; 31:377-91. [PMID: 21107677 DOI: 10.1007/s10571-010-9629-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/02/2010] [Indexed: 01/02/2023]
Abstract
Acupuncture at acupoints GB34 and LR3 has been reported to inhibit nigrostriatal degeneration in Parkinsonism models, yet the genes related to this preventive effect of acupuncture on the nigrostriatal dopaminergic system remain elusive. This study investigated gene expression profile changes in the striatal region of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism models after acupuncture at the acupoints GB34 and LR3 using a whole transcript genechip microarray (Affymetrix genechip mouse gene 1.0 ST array). It was confirmed that acupuncture at these acupoints could inhibit the decrease of tyrosine hydroxylase and dopamine transporter in the nigrostriatal region of the MPTP model while acupuncture at the non-acupoints could not counteract this decrease. Genechip gene array analysis (fold change cutoff 1.3 and P < 0.05) showed that 12 of the 69 probes up-regulated in MPTP when compared to the control were down-regulated by acupuncture at the acupoints. Of these 12 probes, 11 probes (nine annotated genes) were exclusively down-regulated by acupuncture only at the acupoints; the Gfral gene was excluded because it was commonly down-regulated by acupuncture at both the acupoints and the non-acupoints. In addition, 28 of the 189 probes down-regulated in MPTP when compared to the control were up-regulated by acupuncture at the acupoints. Of these 28 probes, 19 probes (seven annotated genes) were exclusively up-regulated by acupuncture only at the acupoints while nine probes were commonly up-regulated by acupuncture at both the acupoints and the non-acupoints. The regulation patterns of representative genes in real-time RT-PCR correlated with those of the genes in the microarray. These results suggest that the 30 probes (16 annotated genes), which are affected by MPTP and acupuncture only at the acupoints, are responsible for exerting in the striatal regions the inhibitory effect of acupuncture at the acupoints on MPTP-induced striatal degeneration.
Collapse
Affiliation(s)
- Yeong-Gon Choi
- Research Group of Pain and Neuroscience, WHO Collaborating Center for Traditional Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
35
|
Abstract
In the mammalian retina, excitatory and inhibitory circuitries enable retinal ganglion cells (RGCs) to signal the occurrence of visual features to higher brain areas. This functionality disappears in certain diseases of retinal degeneration because of the progressive loss of photoreceptors. Recent work in a mouse model of retinal degeneration (rd1) found that, although some intraretinal circuitry is preserved and RGCs maintain characteristic physiological properties, they exhibit increased and aberrant rhythmic activity. Here, extracellular recordings were made to assess the degree of aberrant activity in adult rd1 retinas and to investigate the mechanism underlying such behavior. A multi-transistor array with thousands of densely packed sensors allowed for simultaneous recordings of spiking activity in populations of RGCs and of local field potentials (LFPs). The majority of identified RGCs displayed rhythmic (7-10 Hz) but asynchronous activity. The spiking activity correlated with the LFPs, which reflect an average synchronized excitatory input to the RGCs. LFPs initiated from random positions and propagated across the retina. They disappeared when ionotrophic glutamate receptors or electrical synapses were blocked. They persisted in the presence of other pharmacological blockers, including TTX and inhibitory receptor antagonists. Our results suggest that excitation-transmitted laterally through a network of electrically coupled interneurons-leads to large-scale retinal network oscillations, reflected in the rhythmic spiking of most rd1 RGCs. This result may explain forms of photopsias reported by blind patients, while the mechanism involved should be considered in future treatment strategies targeting the disease of retinitis pigmentosa.
Collapse
|
36
|
Kerr NM, Johnson CS, Green CR, Danesh-Meyer HV. Gap junction protein connexin43 (GJA1) in the human glaucomatous optic nerve head and retina. J Clin Neurosci 2010; 18:102-8. [PMID: 20934339 DOI: 10.1016/j.jocn.2010.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 06/09/2010] [Indexed: 11/19/2022]
Abstract
Primary open angle glaucoma is characterised by the progressive and irreversible death of retinal ganglion cells. Experimental evidence suggests that the initial site of injury to the retinal ganglion cell is at or near the lamina cribrosa or in the peripapillary retina. However, the mediators of axonal injury remain poorly understood. The purpose of this study was to investigate the expression of the gap junction protein connexin43 (GJA1) in the human glaucomatous optic nerve head and retina as a potential mediator of axonal injury. Using affinity isolated polyclonal antibodies to the C-terminal segment of human connexin43, the expression of connexin43 was determined in post-mortem human eyes with primary open angle glaucoma and age-matched controls. In normal eyes, connexin43 was present on glial fibrillary acidic protein (GFAP)-positive astrocytes in the retinal ganglion cell layer and optic nerve head. In glaucomatous eyes, increased connexin43 immunoreactivity was observed at the level of the lamina cribrosa and in the peripapillary and mid-peripheral retina in association with glial activation. This novel finding may suggest that gap junction communication is a potential mediator of retinal ganglion cell injury in glaucoma.
Collapse
Affiliation(s)
- Nathan M Kerr
- Department of Ophthalmology, University of Auckland, Faculty of Medical and Health Sciences, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | |
Collapse
|
37
|
Yurek DM, Fletcher AM, Peters LE, Cass WA. Strain difference in the up-regulation of FGF-2 protein following a neurotoxic lesion of the nigrostriatal pathway. Neurochem Res 2010; 35:531-9. [PMID: 19921430 PMCID: PMC3032212 DOI: 10.1007/s11064-009-0093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
Lesions of the nigrostriatal pathway are known to induce a compensatory up-regulation of various neurotrophic factors. In this study we examined protein content of basic fibroblast growth factor (FGF-2) in tissue samples taken from the ventral midbrain and striatum at two different time points following a neurotoxic lesion of the nigrostriatal pathway in two different rat strains, the outbred Sprague-Dawley (SD) and inbred F344 9 Brown Norway F1 hybrid (F344BNF1). Despite both rat strains having comparable lesions of the nigrostriatal pathway, we observed a difference in the temporal up-regulation of FGF-2 in ventral midbrain samples taken from the side ipsilateral to the lesion. Basic FGF was significantly upregulated in ventral midbrain in SD rats 1 week post-lesion while we did not observe an up-regulation of FGF-2 in the lesioned ventral midbrain of F344BNF1 at this same time point. However, both strains showed a significant up-regulation of FGF-2 in the lesioned ventral midbrain 3 weeks post-lesion. Sprague-Dawley rats also appeared to be more sensitive to the lesion in terms of up-regulating FGF-2 expression. The differences reported here suggest currently unknown genetic differences between these two strains may be important factors for regulating the compensatory release of neurotrophic factors, such as FGF-2, in response to a neurotoxic lesion of the nigrostriatal pathway.
Collapse
Affiliation(s)
- David M Yurek
- Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, KY 40536-0305, USA.
| | | | | | | |
Collapse
|
38
|
Modulation of connexin 43 in rotenone-induced model of Parkinson's disease. Neuroscience 2009; 160:61-8. [DOI: 10.1016/j.neuroscience.2009.01.080] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 01/28/2009] [Accepted: 01/31/2009] [Indexed: 12/21/2022]
|
39
|
Orellana JA, Sáez PJ, Shoji KF, Schalper KA, Palacios-Prado N, Velarde V, Giaume C, Bennett MVL, Sáez JC. Modulation of brain hemichannels and gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration. Antioxid Redox Signal 2009; 11:369-99. [PMID: 18816186 PMCID: PMC2713807 DOI: 10.1089/ars.2008.2130] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In normal brain, neurons, astrocytes, and oligodendrocytes, the most abundant and active cells express pannexins and connexins, protein subunits of two families forming membrane channels. Most available evidence indicates that in mammals endogenously expressed pannexins form only hemichannels and connexins form both gap junction channels and hemichannels. Whereas gap junction channels connect the cytoplasm of contacting cells and coordinate electric and metabolic activity, hemichannels communicate the intra- and extracellular compartments and serve as a diffusional pathway for ions and small molecules. A subthreshold stimulation by acute pathological threatening conditions (e.g., global ischemia subthreshold for cell death) enhances neuronal Cx36 and glial Cx43 hemichannel activity, favoring ATP release and generation of preconditioning. If the stimulus is sufficiently deleterious, microglia become overactivated and release bioactive molecules that increase the activity of hemichannels and reduce gap junctional communication in astroglial networks, depriving neurons of astrocytic protective functions, and further reducing neuronal viability. Continuous glial activation triggered by low levels of anomalous proteins expressed in several neurodegenerative diseases induce glial hemichannel and gap junction channel disorders similar to those of acute inflammatory responses triggered by ischemia or infectious diseases. These changes are likely to occur in diverse cell types of the CNS and contribute to neurodegeneration during inflammatory process.
Collapse
Affiliation(s)
- Juan A Orellana
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
von Bohlen O, Unsicker K. Neurotrophic Support of Midbrain Dopaminergic Neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 651:73-80. [DOI: 10.1007/978-1-4419-0322-8_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Cummings DM, Yamazaki I, Cepeda C, Paul DL, Levine MS. Neuronal coupling via connexin36 contributes to spontaneous synaptic currents of striatal medium-sized spiny neurons. J Neurosci Res 2008; 86:2147-58. [PMID: 18381762 DOI: 10.1002/jnr.21674] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Gap junctions provide a means for electrotonic coupling between neurons, allowing for the generation of synchronous activity, an important contributor to learning and memory. Connexin36 (Cx36) is largely neuron specific and provides a target for genetic manipulation to determine the physiological relevance of neuronal coupling. Within the striatum, Cx36 is more specifically localized to the interneuronal population, which provides the main inhibitory input to the principal projection medium-sized spiny neurons. In the present study, we examined the impact of genetic ablation of Cx36 on striatal spontaneous synaptic activity. Patch-clamp recordings were performed from medium-sized spiny neurons, the primary target of interneurons. In Cx36 knockout mice, the frequencies of both excitatory and inhibitory spontaneous postsynaptic currents were reduced. We also showed that activation of dopamine receptors differentially modulated the frequency of GABAergic currents in Cx36 knockout mice compared with their wild-type littermates, suggesting that dopamine plays a role in altering the coupling of interneurons. Taken together, the present findings demonstrate that electrical coupling of neuronal populations is important for the maintenance of normal chemical synaptic interactions within the striatum.
Collapse
Affiliation(s)
- Damian M Cummings
- Mental Retardation Research Center, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
42
|
Sung JY, Lee HJ, Jeong EI, Oh Y, Park J, Kang KS, Chung KC. Alpha-synuclein overexpression reduces gap junctional intercellular communication in dopaminergic neuroblastoma cells. Neurosci Lett 2007; 416:289-93. [PMID: 17337120 DOI: 10.1016/j.neulet.2007.02.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/03/2007] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
Alpha-synuclein has been implicated in the pathology of certain neurodegenerative diseases, including Parkinson disease (PD) and dementia with Lewy bodies (LBs). Overexpression of human alpha-synuclein in neuronal cells reduces cell viability, but the precise cellular and molecular mechanisms remain poorly understood. Gap junctional intercellular communication (GJIC) is thought to be essential for maintaining cellular homeostasis and growth control. In the present study, the effect of alpha-synuclein overexpression on GJIC in human dopaminergic neuroblastoma SH-SY5Y cells was investigated. Cells overexpressing wild-type alpha-synuclein were more vulnerable to hydrogen peroxide and 6-hydroxydopamine. GJIC was decreased in cells overexpressing alpha-synuclein. In addition, alpha-synuclein binds directly to connexin-32 (Cx32). As such, the post-translational modification of Cx32 was enhanced in cells overexpressing alpha-synuclein. These findings suggest that alpha-synuclein can modulate GJIC in a dopaminergic neuronal cell line through specific binding to Cx32.
Collapse
Affiliation(s)
- Jee Young Sung
- Department of Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
Adermark L, Lovinger DM. Ethanol effects on electrophysiological properties of astrocytes in striatal brain slices. Neuropharmacology 2006; 51:1099-108. [PMID: 16938316 DOI: 10.1016/j.neuropharm.2006.05.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 05/02/2006] [Accepted: 05/25/2006] [Indexed: 11/24/2022]
Abstract
Ethanol (EtOH) is known to alter neuronal physiology, but much less is known about the actions of this drug on glial function. To this end, we examined acute effects of ethanol on resting and voltage-activated membrane currents in striatal astrocytes using rat brain slices. Ten minutes exposure to 50mM EtOH reduced slope conductance by 20%, increased input resistance by 25% and decreased capacitance by 38% but did not affect resting membrane potential. Current generated by a hyperpolarizing pulse was inhibited in a concentration dependent manner in passive astrocytes, while no significant EtOH effect was observed in complex astrocytes or neurons. The EtOH effect was blocked when intracellular KCl was replaced with CsCl, but not during chelation of intracellular calcium with BAPTA. During blockage of gap junction coupling with high intracellular CaCl(2) or extracellular carbenoxolone the EtOH effect persisted but was reduced. Interestingly, EtOH effects were largely irreversible when gap junctions were open, but were fully reversible when gap junctions were closed. Ethanol also reduced the spread to other cells of Lucifer Yellow dye from individual glia filled via the patch pipette. These data suggest that EtOH inhibits a calcium-insensitive potassium channel, most likely a passive potassium channel, but also affects gap junction coupling in a way that is sustained after ethanol withdrawal. Astrocytes play a critical role in brain potassium homeostasis, and therefore EtOH effects on astrocytic function could influence neuronal activity.
Collapse
Affiliation(s)
- Louise Adermark
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, NIAAA/NIH, 5625 Fishers Lane, TS-13, Bethesda, MD 20892, USA
| | | |
Collapse
|
44
|
Zechel S, Jarosik J, Kiprianova I, Schober A, Unsicker K, von Bohlen und Halbach O. FGF-2 deficiency does not alter vulnerability of the dopaminergic nigrostriatal system towards MPTP intoxication in mice. Eur J Neurosci 2006; 23:1671-5. [PMID: 16553632 DOI: 10.1111/j.1460-9568.2006.04700.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fibroblast growth factor 2 (FGF-2) was the first growth factor discovered that exerted prominent protective and regenerative effects in an animal model of Parkinson's disease, the MPTP-lesioned dopaminergic nigrostriatal system. To address the putative physiological relevance of endogenous FGF-2 for midbrain dopaminergic neurons, we have analysed densities of tyrosine hydroxylase (TH)-positive cells in the substantia nigra (SN) and TH-positive fibers in the striatum and amygdala of adult FGF-2-deficient mice. We found that densities of TH-immunoreactive (ir) cells in the SN as well as densities of TH-ir fibers in the striatum and amygdala were unaltered as compared with wild-type littermates. There is evidence to suggest that growth factor deficits do not become apparent unless a system is challenged in a lesioning paradigm. We therefore tested the ability of the nigrostriatal system with respect to its ability to cope with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) intoxication. Treatment with 20 mg/kg MPTP on three consecutive days reduced dopamine levels in the striatum by about 80%. Densities of TH-positive neurons in the SN were reduced by 71%. However, both parameters did not significantly differ between FGF-2(-/-) mice and wild-type littermates. Our results therefore suggest that FGF-2, despite its prominent pharmacological potency as a neurotrophic factor for the dopaminergic nigrostriatal system, is not crucial for maintaining its structural integrity and ability to cope with MPTP intoxication.
Collapse
Affiliation(s)
- S Zechel
- Interdisciplinary Center for Neurosciences (IZN), Department of Neuroanatomy, University of Heidelberg, Im Neuenheimer Feld 307, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Song J, Tanouye MA. Seizure suppression by shakB2, a gap junction mutation in Drosophila. J Neurophysiol 2005; 95:627-35. [PMID: 16192342 DOI: 10.1152/jn.01059.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gap junction proteins mediate electrical synaptic transmission. In Drosophila, flies carrying null mutations in the shakB locus, such as shakB2, have behavioral and electrophysiological defects in the giant fiber (GF) system neurocircuit consistent with a loss of transmission at electrical synapses. The shakB2 mutation also affects seizure susceptibility. Mutant flies are especially seizure-resistant and have a high threshold to evoked seizures. In addition, in some double mutant combinations with "epilepsy" mutations, shakB2 appears to act as a seizure-suppressor mutation: shakB2 restores seizure susceptibility to the wild-type range in the double mutant. In double mutant combinations, shakB2 completely suppresses seizures caused by slamdance (sda), knockdown (kdn), and jitterbug (jbug) mutations. Seizures caused by easily shocked (eas) and technical knockout (tko) mutations are partially suppressed by shakB2. Seizures caused by bang-sensitive (bas2) and bang-senseless (bss1, bss2 alleles) mutations are not suppressed by shakB2. These results show the use of Drosophila as a model system for studying the kinds of genetic interactions responsible for seizure susceptibility, bringing us closer to unraveling the complexity of seizure disorders in humans.
Collapse
Affiliation(s)
- Juan Song
- Department of Environmental Science, Policy and Management, Division of Insect Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
46
|
Van Bockstaele EJ, Garcia-Hernandez F, Fox K, Alvarez VA, Williams JT. Expression of connexins during development and following manipulation of afferent input in the rat locus coeruleus. Neurochem Int 2004; 45:421-8. [PMID: 15145556 DOI: 10.1016/j.neuint.2003.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Revised: 08/25/2003] [Accepted: 08/28/2003] [Indexed: 10/26/2022]
Abstract
Synchronous activity of locus coeruleus (LC) neurons during early postnatal development is regulated, in part, by electrotonic coupling. Connexin (Cx) proteins that make up gap junction channels are localized to both neurons and glia in the LC during this period. In adult rats, however, synchrony exists only under certain experimental conditions. The expression of Cx proteins was examined using western blot analysis at several developmental time points. Immunoblot analysis revealed little to no expression of Cx26 while Cx32, Cx43 and Cx36 were present at all time points examined. A progressive increase in Cx43 was identified from the first postnatal week through adulthood. Immunocytochemical detection of Cx36 and Cx43 in adult LC showed that Cx36 was associated with neuronal processes while Cx43 was localized to glia. In adult LC, in vitro intracellular recordings combined with neurobiotin injections confirmed the presence of gap junctional communication albeit to a lesser extent than in early postnatal periods. The degree to which synaptic inputs to LC neurons impact on Cx protein expression was also evaluated. Samples of the LC from rats that received an electrolytic lesion of the amygdala were processed for western blot analysis of Cx36 and Cx43. The predominantly neuronal Cx36 exhibited an increase in expression while the glial Cx43 was unchanged. The present results indicate that, despite subtype-specific changes during development, several Cx proteins are expressed in the adult LC. In addition, manipulating afferent input to the LC, in adult rats, results in increases in neuronal Cx protein levels but not in glial Cx levels suggesting that altering synaptic inputs to the LC may alter synchronous activity in noradrenergic neurons.
Collapse
Affiliation(s)
- E J Van Bockstaele
- Department of Neurosurgery, Farber Institute of Neurosciences, Thomas Jefferson University, 1020 Locust Street, Suite 520, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
47
|
Nakase T, Naus CCG. Gap junctions and neurological disorders of the central nervous system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1662:149-58. [PMID: 15033585 DOI: 10.1016/j.bbamem.2004.01.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 01/14/2004] [Accepted: 01/22/2004] [Indexed: 11/26/2022]
Abstract
Gap junctions are intercellular channels which directly connect the cytoplasm between neighboring cells. In the central nervous system (CNS) various kinds of cells are coupled by gap junctions, which play an important role in maintaining normal function. Neuronal gap junctions are involved in electrical coupling and may also contribute to the recovery of function after cell injury. Astrocytes are involved in the pathology of most neuronal disorders, including brain ischemia, Alzheimer's disease and epilepsy. In the pathology of brain tumors, gap junctions may be related to the degree of malignancy and metastasis. However, the role of connexins, gap junctions and hemichannels in the pathology of the diseases in the CNS is still ambiguous. Of increasing importance is the unraveling of the function of gap junctions in the neural cell network, involving neurons, astrocytes, microglia and oligodendrocytes. A better understanding of the role of gap junctions may contribute to the development of new therapeutic approaches to treating diseases of the CNS.
Collapse
Affiliation(s)
- Taizen Nakase
- Department of Anatomy and Cell Biology, University of British Columbia, 313-2177 Wesbrook Mall, Vancouver BC, Canada V6T 1Z3
| | | |
Collapse
|
48
|
Krieglstein K, Reuss B, Maysinger D, Unsicker K. Transforming growth factor-β mediates the neurotrophic effect of fibroblast growth factor-2 on midbrain dopaminergic neurons. Eur J Neurosci 2003. [DOI: 10.1046/j.1460-9568.1998.00324.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Rideout HJ, Dietrich P, Savalle M, Dauer WT, Stefanis L. Regulation of alpha-synuclein by bFGF in cultured ventral midbrain dopaminergic neurons. J Neurochem 2003; 84:803-13. [PMID: 12562524 DOI: 10.1046/j.1471-4159.2003.01574.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alpha-synuclein is a neuronal protein that is implicated in the control of synaptic vesicle function and in Parkinson's disease (PD). Consequently, alterations of alpha-synuclein levels may play a role in neurotransmission and in PD pathogenesis. However, the factors that regulate alpha-synuclein levels are unknown. Growth factors mediate neurotrophic and plasticity effects in CNS neurons, and may play a role in disease states. Here we examine the regulation of alpha-synuclein levels in primary CNS neurons, with particular emphasis on dopaminergic neurons. E18 rat cortical neurons and dopaminergic neurons of E14 rat ventral midbrain showed an induction of alpha-synuclein protein levels with maturation in culture. Application of basic Fibroblast growth factor (bFGF) promoted alpha-synuclein expression selectively within dopaminergic, and not GABAergic or cortical neurons. This induction was blocked by actinomycin D, but not by inhibition of bFGF-induced glial proliferation. alpha-Synuclein levels were not altered by glial-derived neurotrophic factor (GDNF), or by apoptotic stimuli. We conclude that bFGF promotes alpha-synuclein expression in cultured ventral midbrain dopaminergic neurons through a direct transcriptional effect. These results suggest that distinct growth factors may thus mediate plasticity responses or influence disease states in ventral midbrain dopaminergic neurons.
Collapse
Affiliation(s)
- Hardy J Rideout
- Department of Neurology, Columbia University, Black Building Room 326, 650 W. 168th Street, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
50
|
Palomo T, Beninger RJ, Kostrzewa RM, Archer T. Brain sites of movement disorder: genetic and environmental agents in neurodevelopmental perturbations. Neurotox Res 2003; 5:1-26. [PMID: 12832221 DOI: 10.1007/bf03033369] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In assessing and assimilating the neurodevelopmental basis of the so-called movement disorders it is probably useful to establish certain concepts that will modulate both the variation and selection of affliction, mechanisms-processes and diversity of disease states. Both genetic, developmental and degenerative aberrations are to be encompassed within such an approach, as well as all deviations from the necessary components of behaviour that are generally understood to incorporate "normal" functioning. In the present treatise, both conditions of hyperactivity/hypoactivity, akinesia and bradykinesia together with a constellation of other symptoms and syndromes are considered in conjunction with the neuropharmacological and brain morphological alterations that may or may not accompany them, e.g. following neonatal denervation. As a case in point, the neuroanatomical and neurochemical points of interaction in Attention Deficit and Hyperactivity disorder (ADHD) are examined with reference to both the perinatal metallic and organic environment and genetic backgrounds. The role of apoptosis, as opposed to necrosis, in cell death during brain development necessitates careful considerations of the current explosion of evidence for brain nerve growth factors, neurotrophins and cytokines, and the processes regulating their appearance, release and fate. Some of these processes may possess putative inherited characteristics, like alpha-synuclein, others may to greater or lesser extents be endogenous or semi-endogenous (in food), like the tetrahydroisoquinolines, others exogenous until inhaled or injested through environmental accident, like heavy metals, e.g. mercury. Another central concept of neurodevelopment is cellular plasticity, thereby underlining the essential involvement of glutamate systems and N-methyl-D-aspartate receptor configurations. Finally, an essential assimilation of brain development in disease must delineate the relative merits of inherited as opposed to environmental risks not only for the commonly-regarded movement disorders, like Parkinson's disease, Huntington's disease and epilepsy, but also for afflictions bearing strong elements of psychosocial tragedy, like ADHD, autism and Savantism.
Collapse
Affiliation(s)
- T Palomo
- Servicio de Psiquiatria, Hospital 12 de Octobre, Ctra. Andalucia Km. 5,400, 28041 Madrid, Spain.
| | | | | | | |
Collapse
|