1
|
Wang X, Tazearslan C, Kim S, Guo Q, Contreras D, Yang J, Hudgins AD, Suh Y. In vitro heterochronic parabiosis identifies pigment epithelium-derived factor as a systemic mediator of rejuvenation by young blood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592258. [PMID: 38746475 PMCID: PMC11092633 DOI: 10.1101/2024.05.02.592258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Several decades of heterochronic parabiosis (HCPB) studies have demonstrated the restorative impact of young blood, and deleterious influence of aged blood, on physiological function and homeostasis across tissues, although few of the factors responsible for these observations have been identified. Here we develop an in vitro HCPB system to identify these circulating factors, using replicative lifespan (RLS) of primary human fibroblasts as an endpoint of cellular health. We find that RLS is inversely correlated with serum donor age and sensitive to the presence or absence of specific serum components. Through in vitro HCPB, we identify the secreted protein pigment epithelium-derived factor (PEDF) as a circulating factor that extends RLS of primary human fibroblasts and declines with age in mammals. Systemic administration of PEDF to aged mice reverses age-related functional decline and pathology across several tissues, improving cognitive function and reducing hepatic fibrosis and renal lipid accumulation. Together, our data supports PEDF as a systemic mediator of the effect of young blood on organismal health and homeostasis and establishes our in vitro HCPB system as a valuable screening platform for the identification of candidate circulating factors involved in aging and rejuvenation.
Collapse
Affiliation(s)
- Xizhe Wang
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
- These authors contributed equally
| | - Cagdas Tazearslan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- These authors contributed equally
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Qinghua Guo
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Daniela Contreras
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Jiping Yang
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Adam D. Hudgins
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
- Department of Genetics and Development, Columbia University Medical Center, New York, NY
| |
Collapse
|
2
|
Yeh SI, Yu SH, Chu HS, Huang CT, Tsao YP, Cheng CM, Chen WL. Pigment Epithelium-Derived Factor Peptide Promotes Corneal Nerve Regeneration: An In Vivo and In Vitro Study. Invest Ophthalmol Vis Sci 2021; 62:23. [PMID: 33481984 PMCID: PMC7838554 DOI: 10.1167/iovs.62.1.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose To investigate the potential of a pigment epithelium-derived factor (PEDF) peptide 44-mer to promote nerve regeneration in a rabbit corneal nerve injury model to demonstrate its neurotrophic ability in cultivated mouse trigeminal neuron cells. Methods Subconjunctival or intrastromal injection of 44-mer on the cornea was performed in a rabbit model of corneal nerve injury created by corneal epithelial debridement. Immunocytochemical analysis (44-mer, anti-tubulin III, SMI312, CD11b, and α-SMA) and in vivo confocal microscopy were performed. Corneal sensation was estimated using a Cochet-Bonnet corneal esthesiometer. Primary cultivated mouse trigeminal neurons were used to examine the in vitro neurotrophic ability of 44-mer. The cellular morphology and the immunocytochemical staining with anti-tubulin III and SMI312 in different concentrations of 44-mer were compared, and a quantitative assessment of neurite outgrowth was performed. Results Immunohistochemical staining showed the retention of 44-mer in the corneal stroma for at least 7 days after a single dose of corneal intrastromal injection and promoted corneal nerve regeneration revealed by in vivo confocal microscopy. Corneal esthesiometer demonstrated gradual recovery of the corneal sensation in 44-mer-treated eyes with a lower corneal touch threshold than wounded vehicles and closer to baseline at 3 weeks after corneal injury (P < 0.001). In vitro studies showed a dose-dependent neurotrophic effect of 44-mer in cultivated trigeminal neuron cells. Conclusions The 44-mer showed in vivo and in vitro corneal neurotrophic abilities. Our results suggest that intrastromal injection of 44-mer into the corneal stroma may have a potential role in treating diseases related to corneal nerve damage.
Collapse
Affiliation(s)
- Shu-I Yeh
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Sung-Hsun Yu
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Advanced Ocular Surface and Corneal Nerve Research Center, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Sang Chu
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Advanced Ocular Surface and Corneal Nerve Research Center, National Taiwan University, Taipei, Taiwan
| | - Chin-Te Huang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Advanced Ocular Surface and Corneal Nerve Research Center, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Li Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Advanced Ocular Surface and Corneal Nerve Research Center, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University; Taipei, Taiwan
| |
Collapse
|
3
|
Chen JWE, Lumibao J, Leary S, Sarkaria JN, Steelman AJ, Gaskins HR, Harley BAC. Crosstalk between microglia and patient-derived glioblastoma cells inhibit invasion in a three-dimensional gelatin hydrogel model. J Neuroinflammation 2020; 17:346. [PMID: 33208156 PMCID: PMC7677841 DOI: 10.1186/s12974-020-02026-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioblastoma is the most common and deadly form of primary brain cancer, accounting for more than 13,000 new diagnoses annually in the USA alone. Microglia are the innate immune cells within the central nervous system, acting as a front-line defense against injuries and inflammation via a process that involves transformation from a quiescent to an activated phenotype. Crosstalk between GBM cells and microglia represents an important axis to consider in the development of tissue engineering platforms to examine pathophysiological processes underlying GBM progression and therapy. METHODS This work used a brain-mimetic hydrogel system to study patient-derived glioblastoma specimens and their interactions with microglia. Here, glioblastoma cells were either cultured alone in 3D hydrogels or in co-culture with microglia in a manner that allowed secretome-based signaling but prevented direct GBM-microglia contact. Patterns of GBM cell invasion were quantified using a three-dimensional spheroid assay. Secretome and transcriptome (via RNAseq) were used to profile the consequences of GBM-microglia interactions. RESULTS Microglia displayed an activated phenotype as a result of GBM crosstalk. Three-dimensional migration patterns of patient-derived glioblastoma cells showed invasion was significantly decreased in response to microglia paracrine signaling. Potential molecular mechanisms underlying with this phenotype were identified from bioinformatic analysis of secretome and RNAseq data. CONCLUSION The data demonstrate a tissue engineered hydrogel platform can be used to investigate crosstalk between immune cells of the tumor microenvironment related to GBM progression. Such multi-dimensional models may provide valuable insight to inform therapeutic innovations to improve GBM treatment.
Collapse
Affiliation(s)
- Jee-Wei Emily Chen
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jan Lumibao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Current Address: Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sarah Leary
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - H Rex Gaskins
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
de Diego-Otero Y, Giráldez-Pérez RM, Lima-Cabello E, Heredia-Farfan R, Calvo Medina R, Sanchez-Salido L, Pérez Costillas L. Pigment epithelium-derived factor (PEDF) and PEDF-receptor in the adult mouse brain: Differential spatial/temporal localization pattern. J Comp Neurol 2020; 529:141-158. [PMID: 32427349 DOI: 10.1002/cne.24940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a multifunctional protein which was initially described in the retina, although it is also present in other tissues. It functions as an antioxidant agent promoting neuronal survival. Recently, a PEDF receptor has shown an elevated binding affinity for PEDF. There are no relevant data regarding the distribution of both proteins in the brain, therefore the main goal of this work was to investigate the spatiotemporal presence of PEDF and PEDFR in the adult mouse brain, and to determine the PEDF blood level in mouse and human. The localization of both proteins was analyzed by different experimental methods such as immunohistochemistry, western-blotting, and also by enzyme-linked immunosorbent assay. Differential expression was found in some telencephalic structures and positive signals for both proteins were detected in the cerebellum. The magnitude of the PEDFR labeling pattern was higher than PEDF and included some cortical and subventricular areas. Age-dependent changes in intensity of both protein immunoreactions were found in the cortical and hippocampal areas with greater reactivity between 4 and 8 months of age, whilst others, like the subventricular zones, these differences were more evident for PEDFR. Although ubiquitous presence was not found in the brain for these two proteins, their relevant functions must not be underestimated. It has been described that PEDF plays an important role in neuroprotection and data provided in the present work represents the first extensive study to understand the relevance of these two proteins in specific brain areas.
Collapse
Affiliation(s)
- Yolanda de Diego-Otero
- Research Laboratory, Hospital Civil, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain.,Mental Health Clinic Unit, .Regional University Hospital, Hospital Civil, Málaga, Spain.,Research Unit, International Institute of Innovation and Attention to Neurodevelopment and Language, Málaga, Spain
| | - Rosa María Giráldez-Pérez
- Cellular Biology, Physiology and Immunology Department, University of Cordoba, Edificio Charles Darwin, Córdoba, Spain
| | - Elena Lima-Cabello
- Research Laboratory, Hospital Civil, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - Raúl Heredia-Farfan
- Research Laboratory, Hospital Civil, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - Rocío Calvo Medina
- Pediatric Clinic Unit. Regional University Hospital, Hospital Materno-Infantil Avd, Arroyo de los Angeles, Málaga, Spain
| | - Lourdes Sanchez-Salido
- Research Laboratory, Hospital Civil, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - Lucía Pérez Costillas
- Mental Health Clinic Unit, .Regional University Hospital, Hospital Civil, Málaga, Spain.,Psychiatry and Physiotherapy Department, University of Malaga. Medical School, Málaga, Spain
| |
Collapse
|
5
|
Brook N, Brook E, Dharmarajan A, Chan A, Dass CR. Pigment epithelium-derived factor regulation of neuronal and stem cell fate. Exp Cell Res 2020; 389:111891. [DOI: 10.1016/j.yexcr.2020.111891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 01/25/2023]
|
6
|
Effects of a combinatorial treatment with gene and cell therapy on retinal ganglion cell survival and axonal outgrowth after optic nerve injury. Gene Ther 2019; 27:27-39. [PMID: 31243393 DOI: 10.1038/s41434-019-0089-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/26/2019] [Accepted: 06/10/2019] [Indexed: 11/08/2022]
Abstract
After an injury, axons in the central nervous system do not regenerate over large distances and permanently lose their connections to the brain. Two promising approaches to correct this condition are cell and gene therapies. In the present work, we evaluated the neuroprotective and neuroregenerative potential of pigment epithelium-derived factor (PEDF) gene therapy alone and combined with human mesenchymal stem cell (hMSC) therapy after optic nerve injury by analysis of retinal ganglion cell survival and axonal outgrowth. Overexpression of PEDF by intravitreal delivery of AAV2 vector significantly increased Tuj1-positive cells survival and modulated FGF-2, IL-1ß, Iba-1, and GFAP immunostaining in the ganglion cell layer (GCL) at 4 weeks after optic nerve crush, although it could not promote axonal outgrowth. The combination of AAV2.PEDF and hMSC therapy showed a higher number of Tuj1-positive cells and a pronounced axonal outgrowth than unimodal therapy after optic nerve crush. In summary, our results highlight a synergistic effect of combined gene and cell therapy relevant for future therapeutic interventions regarding optic nerve injury.
Collapse
|
7
|
Muniswami DM, Reddy LVK, Venkatesh K, Babu S, Sen D. Neuropotency and Neurotherapeutic Potential of Human Umbilical Cord Stem Cell’s Secretome. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00096-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Yuan Y, Liu X, Miao H, Huang B, Liu Z, Chen J, Quan X, Zhu L, Dong H, Zhang Z. PEDF increases GLUT4-mediated glucose uptake in rat ischemic myocardium via PI3K/AKT pathway in a PEDFR-dependent manner. Int J Cardiol 2019; 283:136-143. [PMID: 30819588 DOI: 10.1016/j.ijcard.2019.02.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/07/2019] [Accepted: 02/18/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Targeted increase in glucose uptake of ischemic myocardium is a potential therapeutic strategy for myocardial ischemia. PEDF presents a profound moderating effect on glucose metabolism of cells, but its role is still controversial. Here, we try to demonstrate the direct effect of PEDF on glucose uptake in ischemic myocyte and to elucidate its underlying mechanism. METHODS AND RESULTS Lentivirus vectors carrying PEDF gene were delivered into the myocardium to locally overexpress PEDF in a myocardial ischemia/reperfusion rat model. PET imaging showed that PEDF local overexpression increased [18F]-FDG uptake of ischemic myocardium. In vitro, PEDF directly increased the glucose uptake in hypoxic cardiomyocytes. The expression of glucose transporter 4 (GLUT4) on plasma membrane of hypoxic cardiomyocytes was significantly upregulated by PEDF, but its total amount was not changed. The increased glucose uptake and cardioprotective effects induced by PEDF were blocked by the GLUT4 inhibitor indinavir. PEDF-mediated GLUT4 translocation and glucose uptake increase in hypoxic cardiomyocytes were prevented by phosphatidyl-inositol-3 kinase (PI3K) inhibitor or AKT inhibitor. The PEDF-mediated glucose uptake was also diminished when PEDF receptor (PEDFR) was downregulated or potent phospholipase A2 enzymatic activity was inhibited. CONCLUSIONS PEDF can increase glucose uptake in ischemic myocardium through a PEDFR-dependent mechanism, involving PI3K/AKT signaling and GLUT4 translocation.
Collapse
Affiliation(s)
- Yanliang Yuan
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Xiucheng Liu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Haoran Miao
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Bing Huang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Zhiwei Liu
- Morphological Research Experiment Center, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Jiali Chen
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Xiaoyu Quan
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Lidong Zhu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Hongyan Dong
- Morphological Research Experiment Center, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Zhongming Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China..
| |
Collapse
|
9
|
Of mice and men: The physiological role of adipose triglyceride lipase (ATGL). Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:880-899. [PMID: 30367950 PMCID: PMC6439276 DOI: 10.1016/j.bbalip.2018.10.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
Adipose triglyceride lipase (ATGL) has been discovered 14 years ago and revised our view on intracellular triglyceride (TG) mobilization – a process termed lipolysis. ATGL initiates the hydrolysis of TGs to release fatty acids (FAs) that are crucial energy substrates, precursors for the synthesis of membrane lipids, and ligands of nuclear receptors. Thus, ATGL is a key enzyme in whole-body energy homeostasis. In this review, we give an update on how ATGL is regulated on the transcriptional and post-transcriptional level and how this affects the enzymes' activity in the context of neutral lipid catabolism. In depth, we highlight and discuss the numerous physiological functions of ATGL in lipid and energy metabolism. Over more than a decade, different genetic mouse models lacking or overexpressing ATGL in a cell- or tissue-specific manner have been generated and characterized. Moreover, pharmacological studies became available due to the development of a specific murine ATGL inhibitor (Atglistatin®). The identification of patients with mutations in the human gene encoding ATGL and their disease spectrum has underpinned the importance of ATGL in humans. Together, mouse models and human data have advanced our understanding of the physiological role of ATGL in lipid and energy metabolism in adipose and non-adipose tissues, and of the pathophysiological consequences of ATGL dysfunction in mice and men. Summary of mouse models with genetic or pharmacological manipulation of ATGL. Summary of patients with mutations in the human gene encoding ATGL. In depth discussion of the role of ATGL in numerous physiological processes in mice and men.
Collapse
|
10
|
Figueira I, Tavares L, Jardim C, Costa I, Terrasso AP, Almeida AF, Govers C, Mes JJ, Gardner R, Becker JD, McDougall GJ, Stewart D, Filipe A, Kim KS, Brites D, Brito C, Brito MA, Santos CN. Blood-brain barrier transport and neuroprotective potential of blackberry-digested polyphenols: an in vitro study. Eur J Nutr 2017; 58:113-130. [PMID: 29151137 DOI: 10.1007/s00394-017-1576-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/31/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE Epidemiological and intervention studies have attempted to link the health effects of a diet rich in fruits and vegetables with the consumption of polyphenols and their impact in neurodegenerative diseases. Studies have shown that polyphenols can cross the intestinal barrier and reach concentrations in the bloodstream able to exert effects in vivo. However, the effective uptake of polyphenols into the brain is still regarded with some reservations. Here we describe a combination of approaches to examine the putative transport of blackberry-digested polyphenols (BDP) across the blood-brain barrier (BBB) and ultimate evaluation of their neuroprotective effects. METHODS BDP was obtained by in vitro digestion of blackberry extract and BDP major aglycones (hBDP) were obtained by enzymatic hydrolysis. Chemical characterization and BBB transport of extracts were evaluated by LC-MSn. BBB transport and cytoprotection of both extracts was assessed in HBMEC monolayers. Neuroprotective potential of BDP was assessed in NT2-derived 3D co-cultures of neurons and astrocytes and in primary mouse cerebellar granule cells. BDP-modulated genes were evaluated by microarray analysis. RESULTS Components from BDP and hBDP were shown to be transported across the BBB. Physiologically relevant concentrations of both extracts were cytoprotective at endothelial level and BDP was neuroprotective in primary neurons and in an advanced 3D cell model. The major canonical pathways involved in the neuroprotective effect of BDP were unveiled, including mTOR signaling and the unfolded protein response pathway. Genes such as ASNS and ATF5 emerged as novel BDP-modulated targets. CONCLUSIONS BBB transport of BDP and hBDP components reinforces the health benefits of a diet rich in polyphenols in neurodegenerative disorders. Our results suggest some novel pathways and genes that may be involved in the neuroprotective mechanism of the BDP polyphenol components.
Collapse
Affiliation(s)
- Inês Figueira
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Lucélia Tavares
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Carolina Jardim
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Inês Costa
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Ana P Terrasso
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Andreia F Almeida
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Coen Govers
- Wageningen Food & Biobased Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Jurriaan J Mes
- Wageningen Food & Biobased Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Rui Gardner
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | | | - Derek Stewart
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK.,School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS, Scotland, UK.,NIBIO, Norwegian Institute of Bioeconomy Research, Pb 115, 1431, Ås, Norway
| | - Augusto Filipe
- Medical Department, Grupo Tecnimede, 2710-089, Sintra, Portugal
| | - Kwang S Kim
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, 600 North Wolfe Street Park 256, Baltimore, MD, 21287, USA
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Catarina Brito
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - M Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Cláudia N Santos
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal. .,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
| |
Collapse
|
11
|
Pires AO, Mendes-Pinheiro B, Teixeira FG, Anjo SI, Ribeiro-Samy S, Gomes ED, Serra SC, Silva NA, Manadas B, Sousa N, Salgado AJ. Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis. Stem Cells Dev 2016; 25:1073-83. [PMID: 27226274 DOI: 10.1089/scd.2016.0048] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The use of human mesenchymal stem cells (hMSCs) has emerged as a possible therapeutic strategy for CNS-related conditions. Research in the last decade strongly suggests that MSC-mediated benefits are closely related with their secretome. Studies published in recent years have shown that the secretome of hMSCs isolated from different tissue sources may present significant variation. With this in mind, the present work performed a comparative proteomic-based analysis through mass spectrometry on the secretome of hMSCs derived from bone marrow (BMSCs), adipose tissue (ASCs), and human umbilical cord perivascular cells (HUCPVCs). The results revealed that BMSCs, ASCs, and HUCPVCs differed in their secretion of neurotrophic, neurogenic, axon guidance, axon growth, and neurodifferentiative proteins, as well as proteins with neuroprotective actions against oxidative stress, apoptosis, and excitotoxicity, which have been shown to be involved in several CNS disorder/injury processes. Although important changes were observed within the secretome of the cell populations that were analyzed, all cell populations shared the capability of secreting important neuroregulatory molecules. The difference in their secretion pattern may indicate that their secretome is specific to a condition of the CNS. Nevertheless, the confirmation that the secretome of MSCs isolated from different tissue sources is rich in neuroregulatory molecules represents an important asset not only for the development of future neuroregenerative strategies but also for their use as a therapeutic option for human clinical trials.
Collapse
Affiliation(s)
- Ana O Pires
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Barbara Mendes-Pinheiro
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Fábio G Teixeira
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Sandra I Anjo
- 3 Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra , Coimbra, Portugal .,4 CNC-Center for Neurosciences and Cell Biology, University of Coimbra , Coimbra, Portugal
| | - Silvina Ribeiro-Samy
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Eduardo D Gomes
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Sofia C Serra
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Nuno A Silva
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Bruno Manadas
- 4 CNC-Center for Neurosciences and Cell Biology, University of Coimbra , Coimbra, Portugal
| | - Nuno Sousa
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Antonio J Salgado
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| |
Collapse
|
12
|
Halbgebauer S, Öckl P, Wirth K, Steinacker P, Otto M. Protein biomarkers in Parkinson's disease: Focus on cerebrospinal fluid markers and synaptic proteins. Mov Disord 2016; 31:848-60. [PMID: 27134134 DOI: 10.1002/mds.26635] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/06/2016] [Accepted: 03/09/2016] [Indexed: 01/06/2023] Open
Abstract
Despite extensive research, to date, no validated biomarkers for PD have been found. This review seeks to summarize studies approaching the detection of biomarker candidates for PD and introduce promising ones in more detail, with special attention to synaptic proteins. To this end, we performed a PubMed search and included studies using proteomic tools (2-dimensional difference in gel electrophoresis and/or mass spectrometry) for the comparison of samples from PD and control patients. We found 27 studies reporting more than 500 differentially expressed proteins in which a total of 28 were detected in 2 and 17 in 3 or more independent studies, including posttranslationally modified proteins. In addition, of these 500 proteins, 25 were found to be brain specific, and 14 were enriched in synapses. Special attention was given to the applicability of the biomarker regarding sampling procedures, that is, using CSF/serum material for diagnosis. Furthermore, presynaptic proteins involved in vesicle membrane fusion seem to be interesting candidates for future analyses. Nonetheless, even though such promising biomarker candidates for PD exist, validation of these biomarkers in large-scale clinical studies is necessary to evaluate the diagnostic potential. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Patrick Öckl
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
13
|
Secretome of Olfactory Mucosa Mesenchymal Stem Cell, a Multiple Potential Stem Cell. Stem Cells Int 2016; 2016:1243659. [PMID: 26949398 PMCID: PMC4753338 DOI: 10.1155/2016/1243659] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/05/2015] [Accepted: 12/24/2015] [Indexed: 12/19/2022] Open
Abstract
Nasal olfactory mucosa mesenchymal stem cells (OM-MSCs) have the ability to promote regeneration in the nervous system in vivo. Moreover, with view to the potential for clinical application, OM-MSCs have the advantage of being easily accessible from patients and transplantable in an autologous manner, thus eliminating immune rejection and contentious ethical issues. So far, most studies have been focused on the role of OM-MSCs in central nervous system replacement. However, the secreted proteomics of OM-MSCs have not been reported yet. Here, proteins secreted by OM-MSCs cultured in serum-free conditions were separated on SDS-PAGE and identified by LC-MS/MS. As a result, a total of 274 secreted proteins were identified. These molecules are known to be important in neurotrophy, angiogenesis, cell growth, differentiation, and apoptosis, and inflammation which were highly correlated with the repair of central nervous system. The proteomic profiling of the OM-MSCs secretome might provide new insights into their nature in the neural recovery. However, proteomic analysis for clinical biomarkers of OM-MSCs needs to be further studied.
Collapse
|
14
|
Pigment Epithelium-Derived Factor (PEDF) is a Determinant of Stem Cell Fate: Lessons from an Ultra-Rare Disease. J Dev Biol 2015; 3:112-128. [PMID: 27239449 PMCID: PMC4883593 DOI: 10.3390/jdb3040112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PEDF is a secreted glycoprotein that is widely expressed by multiple organs. Numerous functional contributions have been attributed to PEDF with antiangiogenic, antitumor, anti-inflammatory, and neurotrophic properties among the most prominent. The discovery that null mutations in the PEDF gene results in Osteogenesis Imperfecta Type VI, a rare autosomal recessive bone disease characterized by multiple fractures, highlights a critical developmental function for this protein. This ultra-rare orphan disease has provided biological insights into previous studies that noted PEDF’s effects on various stem cell populations. In addition to bone development, PEDF modulates resident stem cell populations in the brain, muscle, and eye. Functional effects on human embryonic stem cells have also been demonstrated. An overview of recent advances in our understanding by which PEDF regulates stem cells and their potential clinical applications will be evaluated in this review.
Collapse
|
15
|
Conti A, Alessio M. Comparative Proteomics for the Evaluation of Protein Expression and Modifications in Neurodegenerative Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 121:117-52. [PMID: 26315764 DOI: 10.1016/bs.irn.2015.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Together with hypothesis-driven approaches, high-throughput differential proteomic analysis performed primarily not only in human cerebrospinal fluid and serum but also on protein content of other tissues (blood cells, muscles, peripheral nerves, etc.) has been used in the last years to investigate neurodegenerative diseases. Even if the goal for these analyses was mainly the discovery of neurodegenerative disorders biomarkers, the characterization of specific posttranslational modifications (PTMs) and the differential protein expression resulted in being very informative to better define the pathological mechanisms. In this chapter are presented and discussed the positive aspects and challenges of the outcomes of some of our investigations on neurological and neurodegenerative disease, in order to highlight the important role of protein PTMs studies in proteomics-based approaches.
Collapse
Affiliation(s)
- Antonio Conti
- Proteome Biochemistry, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Massimo Alessio
- Proteome Biochemistry, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
16
|
Elahy M, Baindur-Hudson S, Cruzat VF, Newsholme P, Dass CR. Mechanisms of PEDF-mediated protection against reactive oxygen species damage in diabetic retinopathy and neuropathy. J Endocrinol 2014; 222:R129-39. [PMID: 24928938 DOI: 10.1530/joe-14-0065] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a pluripotent glycoprotein belonging to the serpin family. PEDF can stimulate several physiological processes such as angiogenesis, cell proliferation, and survival. Oxidative stress plays an important role in the occurrence of diabetic retinopathy (DR), which is the major cause of blindness in young diabetic adults. PEDF plays a protective role in DR and there is accumulating evidence of the neuroprotective effect of PEDF. In this paper, we review the role of PEDF and the mechanisms involved in its antioxidative, anti-inflammatory, and neuroprotective properties.
Collapse
Affiliation(s)
- Mina Elahy
- College of Health and BiomedicineVictoria University, St Albans, Victoria 3021, AustraliaSchool of Biomedical SciencesBiosciences Research PrecinctSchool of PharmacyCurtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Swati Baindur-Hudson
- College of Health and BiomedicineVictoria University, St Albans, Victoria 3021, AustraliaSchool of Biomedical SciencesBiosciences Research PrecinctSchool of PharmacyCurtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Vinicius F Cruzat
- College of Health and BiomedicineVictoria University, St Albans, Victoria 3021, AustraliaSchool of Biomedical SciencesBiosciences Research PrecinctSchool of PharmacyCurtin University, Bentley, Perth, Western Australia 6102, AustraliaCollege of Health and BiomedicineVictoria University, St Albans, Victoria 3021, AustraliaSchool of Biomedical SciencesBiosciences Research PrecinctSchool of PharmacyCurtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Philip Newsholme
- College of Health and BiomedicineVictoria University, St Albans, Victoria 3021, AustraliaSchool of Biomedical SciencesBiosciences Research PrecinctSchool of PharmacyCurtin University, Bentley, Perth, Western Australia 6102, AustraliaCollege of Health and BiomedicineVictoria University, St Albans, Victoria 3021, AustraliaSchool of Biomedical SciencesBiosciences Research PrecinctSchool of PharmacyCurtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Crispin R Dass
- College of Health and BiomedicineVictoria University, St Albans, Victoria 3021, AustraliaSchool of Biomedical SciencesBiosciences Research PrecinctSchool of PharmacyCurtin University, Bentley, Perth, Western Australia 6102, AustraliaCollege of Health and BiomedicineVictoria University, St Albans, Victoria 3021, AustraliaSchool of Biomedical SciencesBiosciences Research PrecinctSchool of PharmacyCurtin University, Bentley, Perth, Western Australia 6102, Australia
| |
Collapse
|
17
|
Subramanian P, Locatelli-Hoops S, Kenealey J, DesJardin J, Notari L, Becerra SP. Pigment epithelium-derived factor (PEDF) prevents retinal cell death via PEDF Receptor (PEDF-R): identification of a functional ligand binding site. J Biol Chem 2013; 288:23928-42. [PMID: 23818523 DOI: 10.1074/jbc.m113.487884] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular pigment epithelium-derived factor (PEDF) displays retina survival activity by interacting with receptor proteins on cell surfaces. We have previously reported that PEDF binds and stimulates PEDF receptor (PEDF-R), a transmembrane phospholipase. However, the PEDF binding site of PEDF-R and its involvement in survival activity have not been identified. The purpose of this work is to identify a biologically relevant ligand-binding site on PEDF-R. PEDF bound the PEDF-R ectodomain L4 (Leu(159)-Met(325)) with affinity similar to the full-length PEDF-R (Met(1)-Leu(504)). Binding assays using synthetic peptides spanning L4 showed that PEDF selectively bound E5b (Ile(193)-Leu(232)) and P1 (Thr(210)-Leu(249)) peptides. Recombinant C-terminal truncated PEDF-R4 (Met(1)-Leu(232)) and internally truncated PEDF-R and PEDF-R4 (ΔHis(203)-Leu(232)) retained phospholipase activity of the full-length PEDF-R. However, PEDF-R polypeptides without the His(203)-Leu(232) region lost the PEDF affinity that stimulated their enzymatic activity. Cell surface labeling showed that PEDF-R is present in the plasma membranes of retina cells. Using siRNA to selectively knock down PEDF-R in retina cells, we demonstrated that PEDF-R is essential for PEDF-mediated cell survival and antiapoptotic activities. Furthermore, preincubation of PEDF with P1 and E5b peptides blocked the PEDF·PEDF-R-mediated retina cell survival activity, implying that peptide binding to PEDF excluded ligand-receptor interactions on the cell surface. Our findings establish that PEDF-R is required for the survival and antiapoptotic effects of PEDF on retina cells and has determinants for PEDF binding within its L4 ectodomain that are critical for enzymatic stimulation.
Collapse
Affiliation(s)
- Preeti Subramanian
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, NEI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
18
|
Vigneswara V, Berry M, Logan A, Ahmed Z. Pigment epithelium-derived factor is retinal ganglion cell neuroprotective and axogenic after optic nerve crush injury. Invest Ophthalmol Vis Sci 2013; 54:2624-33. [PMID: 23513062 DOI: 10.1167/iovs.13-11803] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate neuroprotective and axogenic properties of pigment epithelium-derived factor (PEDF) in retinal ganglion cells (RGC) in vitro and in vivo. METHODS Adult rat retinal cultures were treated with combinations of PBS and PEDF with or without a cell permeable analogue of cAMP, and RGC survival and neurite lengths quantified. The optic nerves of anesthetised rats were also crushed intraorbitally to transect all RGC axons followed by intravitreal injections of either PBS, PEDF, or cAMP+PEDF every 7 days. RGC were back filled with FluoroGold to quantify RGC survival and longitudinal optic nerve sections were stained with GAP43 antibodies to detect regenerating RGC axons. RESULTS An optimal dose of 2.5 × 10(-5) μg/μL, promoted 65% more RGC survival than controls in vitro, increasing by 4.4- and 5-fold the number of RGC with neurites and the mean neurite length, respectively. Addition of cAMP with or without PEDF did not potentiate RGC survival or the mean number of RGC with neurites, but enhanced RGC neurite length by 1.4-fold, compared with PEDF alone. After optic nerve crush (ONC), PEDF protected RGC from apoptosis and increased the numbers of regenerating RGC axons in the optic nerve by 4.6- and 3.4-fold, respectively when compared with controls. cAMP did not enhance PEDF-induced RGC neuroprotection, but potentiated its neuroregenerative effects by 2- to 3-fold, increasing the number of RGC axons regenerating at 500 and 1000 μm from the lesions site. CONCLUSIONS This study is the first to demonstrate that PEDF enhances both RGC survival and axon regeneration in vitro and in vivo.
Collapse
Affiliation(s)
- Vasanthy Vigneswara
- Neurotrauma and Neurodegeneration Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | |
Collapse
|
19
|
Kenchegowda S, He J, Bazan H. Involvement of pigment epithelium-derived factor, docosahexaenoic acid and neuroprotectin D1 in corneal inflammation and nerve integrity after refractive surgery. Prostaglandins Leukot Essent Fatty Acids 2013; 88:27-31. [PMID: 22579364 PMCID: PMC3431458 DOI: 10.1016/j.plefa.2012.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 01/05/2023]
Abstract
Alterations in corneal innervations result in impaired corneal sensation, severe dry eye and damage to the epithelium that may in turn lead to corneal ulcers, melting and perforation. These alterations can occur after refractive surgery. We have discovered that pigment epithelium-derived factor (PEDF) plus docosahexaenoic acid (DHA or the docosanoid bioactive neuroprotectin D1 (NPD1)) induces nerve regeneration after corneal surgery that damages the stromal nerves. We found that PEDF is released from corneal epithelial cells after injury, and when DHA is provided to the cells it stimulates the biosynthesis of NPD1 by an autocrine mechanism. The combination of PEDF plus DHA also decreased the production of leukotriene B4 (LTB4), a neutrophil chemotactic factor, thereby decreasing the inflammation induced after corneal damage. These studies suggest that PEDF plus DHA and its derivative NPD1 hold promise as a future treatment to restore a healthy cornea after nerve damage.
Collapse
Affiliation(s)
| | | | - H.E.P Bazan
- Corresponding author: Haydee E.P.Bazan, LSU Eye Center and Neuroscience center, 2020 Gravier Street, Suite D, New Orleans, LA 70112, USA; , Ph: 504- 599- 0877, FAX: 504- 568- 0977
| |
Collapse
|
20
|
The intrinsic PEDF is regulated by PPARγ in permanent focal cerebral ischemia of rat. Neurochem Res 2012; 37:2099-107. [PMID: 22714093 DOI: 10.1007/s11064-012-0831-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/17/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
Inflammatory damage plays a pivotal role in cerebral ischemia and may represent a target for treatment. Pigment epithelium-derived factor (PEDF) is proven to possess neuroprotective property. But there is little known about the intrinsic PEDF after cerebral ischemia. This study evaluated the time course expression of the intrinsic PEDF and its underlying regulation mechanisms after cerebral ischemia. Male Sprague-Dawley rats were subjected to permanent middle cerebral artery occlusion. Telmisartan (PPARγ agonist) and GW9662 (PPARγ antagonist) were systemically administered to explore the effect on PPARγ, PEDF, NF-κB and MMP-9 expression at 24 h after cerebral ischemia by western blot and qRT-PCR. The neurological deficits, brain water content and infarct volume were measured. Compared with normal group, the expressions of PEDF and PPARγ decreased, and the expression of NF-κB and MMP-9 increased at early stage after ischemia (P < 0.05). Compared with the vehicle group, the decrease of PEDF and PPARγ was significantly up-regulated and the increase of NF-κB and MMP-9 was down-regulated by telmisartan at 24 h (P < 0.05). The neurological deficits, brain water content and infarct volume were dramatically alleviated by telmisartan (P < 0.05). Telmisartan's effects were reversed by GW9662 co-administration (P < 0.05). The expression of intrinsic PEDF was down-regulated at the early stage of cerebral ischemia. The protective effects of intrinsic PEDF by activating PPARγ pathway may be one of the strategic targets for cerebral ischemic therapies.
Collapse
|
21
|
Role of pigment epithelium-derived factor in stem/progenitor cell-associated neovascularization. J Biomed Biotechnol 2012; 2012:871272. [PMID: 22685380 PMCID: PMC3364713 DOI: 10.1155/2012/871272] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/26/2012] [Indexed: 11/18/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF) was first identified in retinal pigment epithelium cells. It is an endogenously produced protein that is widely expressed throughout the human body such as in the eyes, liver, heart, and adipose tissue; it exhibits multiple and varied biological activities. PEDF is a multifunctional protein with antiangiogenic, antitumorigenic, antioxidant, anti-inflammatory, antithrombotic, neurotrophic, and neuroprotective properties. More recently, PEDF has been shown to be the most potent inhibitor of stem/progenitor cell-associated neovascularization. Neovascularization is a complex process regulated by a large, interacting network of molecules from stem/progenitor cells. PEDF is also involved in the pathogenesis of angiogenic eye disease, tumor growth, and cardiovascular disease. Novel antiangiogenic agents with tolerable side effects are desired for the treatment of patients with various diseases. Here, we review the value of PEDF as an important endogenous antiangiogenic molecule; we focus on the recently identified role of PEDF as a possible new target molecule to influence stem/progenitor cell-related neovascularization.
Collapse
|
22
|
Skaper SD. Culture of rat retina pigmented epithelial cells. Methods Mol Biol 2012; 846:159-66. [PMID: 22367809 DOI: 10.1007/978-1-61779-536-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Retinal pigment epithelium cells play a key role in maintaining the normal function of retina and can express several neurotrophic factors, which support the neurosensory retina and may also provide trophic signals to the host dopaminergic neurons. The following chapter describes a protocol for the purification and culture of retinal pigmented epithelial cells from postnatal rat.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmacology and Anesthesiology, University of Padova, Padova, Italy.
| |
Collapse
|
23
|
Subramanian P, Crawford SE, Becerra SP. Assays for the antiangiogenic and neurotrophic serpin pigment epithelium-derived factor. Methods Enzymol 2011; 499:183-204. [PMID: 21683255 DOI: 10.1016/b978-0-12-386471-0.00010-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a secreted serpin that exhibits a variety of interesting biological activities. The multifunctional PEDF has neurotrophic and antiangiogenic properties, and acts in retinal differentiation, survival, and maintenance. It is also antitumorigenic and antimetastatic, and has stem cell self-renewal properties. It is widely distributed in the human body and exists in abundance in the eye as a soluble extracellular glycoprotein. Its levels are altered in diseases characterized by retinopathies and angiogenesis. Its mechanisms of neuroprotection and angiogenesis are associated with receptor interactions at cell-surface interfaces and changes in protein expression. This serpin lacks demonstrable serine protease inhibitory activity, but has binding affinity to extracellular matrix components and cell-surface receptors. Here we describe purification protocols, methods to quantify PEDF, and determine interactions with specific molecules, as well as neurotrophic and angiogenesis assays for this multifunctional protein.
Collapse
Affiliation(s)
- Preeti Subramanian
- Section of Protein Structure and Function, National Eye Institute, NIH, Bethesda, Maryland, USA
| | | | | |
Collapse
|
24
|
The yin and yang of VEGF and PEDF: multifaceted neurotrophic factors and their potential in the treatment of Parkinson's Disease. Int J Mol Sci 2010; 11:2875-900. [PMID: 21152280 PMCID: PMC2996745 DOI: 10.3390/ijms11082875] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/25/2010] [Accepted: 07/30/2010] [Indexed: 01/01/2023] Open
Abstract
Over the last few decades, vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF) have emerged as multifaceted players in not only the pathogenesis, but potential treatment, of numerous diseases. They activate diverse intracellular signaling cascades known to have extensive crosstalk, and have been best studied for their effects in cardiology and cancer biology. Recent work with the two factors indicates that the activity of one growth factor is often directly related to the action of the other. Their respective neuroprotective effects, in particular, raise important questions regarding the treatment of neurodegenerative disorders, including Parkinson’s disease.
Collapse
|
25
|
Filleur S, Nelius T, de Riese W, Kennedy RC. Characterization of PEDF: a multi-functional serpin family protein. J Cell Biochem 2009; 106:769-75. [PMID: 19180572 DOI: 10.1002/jcb.22072] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a 50 kDa secreted glycoprotein that belongs to the non-inhibitory serpin family group. PEDF has been described as a natural angiogenesis inhibitor with neurotrophic and immune-modulation properties; it balances angiogenesis in the eye and blocks tumor progression. The mechanisms underlying most of these events are not completely clear; however, it appears that PEDF acts via multiple high affinity ligands and cell receptors. In this review article, we will summarize the current knowledge on the biochemical properties of PEDF and its receptors, the multimodal activities of PEDF and finally address the therapeutic potential of PEDF in treating angiogenesis-, neurodegeneration- and inflammation-related diseases.
Collapse
Affiliation(s)
- S Filleur
- Department of Urology, Texas Tech University Health Sciences Center, 3601 4th Street, MS 6591, Lubbock, Texas 79430-6591, USA.
| | | | | | | |
Collapse
|
26
|
Pigment epithelium derived factor (PEDF) is neuroprotective in two in vitro models of Parkinson's disease. Neurosci Lett 2009; 458:49-52. [PMID: 19442875 DOI: 10.1016/j.neulet.2009.04.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 04/08/2009] [Indexed: 01/07/2023]
Abstract
Transplantation of retinal pigment epithelial (RPE) cells in the basal ganglia has been proposed as a novel cell-based therapy for Parkinson's disease (PD), by providing a constant source of dopamine replacement via the melanin synthetic pathway enzyme tyrosinase. We have demonstrated previously that human RPE cells also produce a neurotrophic effect on primary cultures of rat striata mesencephalic (dopaminergic) neurons and showed that pigment epithelium derived factor (PEDF) accounted for a major portion of the neurotrophic effect. We now have also begun studies that demonstrate that the neurotrophic effect of PEDF corresponds to neuroprotection against toxins used to produce experimental PD. This was shown in (1) rotenone and (2) 6-hydroxydopamine (6-OHDA) in vitro models. The toxins were added at day 10 in culture, PEDF was added 1h prior. The cultures were fixed and analyzed after tyrosine hydroxylase (TH) immunocytochemical staining. Cell count of TH+ neurons clearly shows the neuroprotective potential of PEDF in both neurotoxin models. The neurotoxic effect of rotenone (25nM) on dopaminergic neurons is reversed by addition of PEDF. At a concentration of 1ng/ml PEDF the neurotoxic effect of rotenone is completely counteracted. PEDF (1ng/ml) has also a neuroprotective effect in the 6-OHDA midbrain in vitro model. The effect is most pronounced at concentrations of 25microM and 50microM 6-OHDA. We conclude that the neurotrophic factor PEDF, produced from RPE cells, can improve neuronal survival in models of PD, and plan to test if this effect can be observed using in vivo models of PD following RPE transplantation.
Collapse
|
27
|
PEDF and GDNF are key regulators of photoreceptor development and retinal neurogenesis in reaggregates from chick embryonic retina. J Ocul Biol Dis Infor 2009; 2:1-11. [PMID: 20072641 PMCID: PMC2802504 DOI: 10.1007/s12177-009-9014-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 01/12/2009] [Indexed: 10/26/2022] Open
Abstract
Here, role(s) of pigment epithelial-derived factor (PEDF) and glial-derived neurotrophic factor (GDNF) on photoreceptor development in three-dimensional reaggregates from the retinae of the E6 chick embryo (rosetted spheroids) was investigated. Fully dispersed cells were reaggregated under serum-reduced conditions and supplemented with 50 ng/ml PEDF alone or in combination with 50 ng/ml GDNF. The spheroids were analyzed for cell growth, differentiation, and death using proliferating cell nuclear antigen, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling, and other immunocytochemical stainings and semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) methods. PEDF strongly promoted synthesis of the messenger RNAs for blue and violet cone opsins and to a lesser extent on the red and green cone opsins. This correlated with an increase in the number of cone photoreceptors, as determined by the cone cell marker CERN906. Likewise, PEDF nearly completely inhibited rod differentiation, as detected by immunostaining with anti-rho4D2 and RT-PCR. Furthermore, PEDF accelerated proliferation of cells in the spheroids and inhibited apoptosis. As negative effects, PEDF inhibited the normal histotypic tissue formation of retinal aggregates and reduced the frequency of photoreceptor rosettes and IPL-like areas. Noticeably, supplementation of PEDF-treated cultures with GDNF reversed the effects of PEDF on spheroid morphology and on rod differentiation. This study establishes that PEDF strongly affects three-dimensional retinogenesis in vitro, most notably by inhibiting rod development and supporting proliferation and differentiation of cones, effects which are partially counteracted by GDNF.
Collapse
|
28
|
Kang Y, Nagy JM, Polak JM, Mantalaris A. Proteomic Characterization of the Conditioned Media Produced by the Visceral Endoderm-Like Cell Lines HepG2 and END2: Toward a Defined Medium for the Osteogenic/Chondrogenic Differentiation of Embryonic Stem Cells. Stem Cells Dev 2009; 18:77-91. [DOI: 10.1089/scd.2008.0026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yunyi Kang
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Tissue Engineering & Regenerative Medicine Centre, Imperial College London, London, United Kingdom
| | - Judit M. Nagy
- Institute of Biomedical Engineering, Tissue Engineering & Regenerative Medicine Centre, Imperial College London, London, United Kingdom
| | - Julia M. Polak
- Department of Chemical Engineering, Tissue Engineering & Regenerative Medicine Centre, Imperial College London, London, United Kingdom
| | - Anthanasios Mantalaris
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Tissue Engineering & Regenerative Medicine Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
Miyazaki M, Ikeda Y, Yonemitsu Y, Goto Y, Kohno RI, Murakami Y, Inoue M, Ueda Y, Hasegawa M, Tobimatsu S, Sueishi K, Ishibashi T. Synergistic neuroprotective effect via simian lentiviral vector-mediated simultaneous gene transfer of human pigment epithelium-derived factor and human fibroblast growth factor-2 in rodent models of retinitis pigmentosa. J Gene Med 2008; 10:1273-81. [DOI: 10.1002/jgm.1257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
30
|
Sanagi T, Yabe T, Yamada H. Gene transfer of PEDF attenuates ischemic brain damage in the rat middle cerebral artery occlusion model. J Neurochem 2008; 106:1841-54. [DOI: 10.1111/j.1471-4159.2008.05529.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Protein expression of pigment-epithelium-derived factor in rat cochlea. Cell Tissue Res 2008; 332:565-71. [PMID: 18418629 DOI: 10.1007/s00441-008-0608-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 02/22/2008] [Indexed: 12/26/2022]
Abstract
Pigment-epithelium-derived factor (PEDF) is a 50-kDa glycoprotein with well-recognised expression in various mammalian organs showing diverse (e.g. anti-angiogenic and neuroprotective) activities. However, at present, no information is available regarding the potential function of this cytokine in the inner ear. As a first approach to investigating whether PEDF is involved in cochlear function, we have explored its protein expression in the rat cochlea by immunocytochemistry. Our results show that PEDF expression in the cochlea is most prominent in the basilar membrane below the organ of Corti, in the lateral wall (especially in the stria vascularis), in ganglion neurons, and in the endothelia of blood vessels. Our findings on its distribution in the cochlea suggest that PEDF in the basilar membrane prevents blood vessel formation that would disturb cochlear micromechanics and would interfere with the mechano-electrical transduction in the organ of Corti. In cochlear ganglion neurons, PEDF might serve a neuroprotective function possibly protecting these neurons from excessive glutamate released by the inner hair cells. Our data constitute the first report on the morphological protein distribution of this multifunctional molecule in the rat cochlea and suggest its role in important functions of the internal ear.
Collapse
|
32
|
Barnstable CJ, Tombran-Tink J. Molecular mechanisms of neuroprotection in the eye. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 572:291-5. [PMID: 17249586 DOI: 10.1007/0-387-32442-9_40] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Colin J Barnstable
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
33
|
Sanagi T, Yabe T, Yamada H. Changes in pigment epithelium-derived factor expression following kainic acid induced cerebellar lesion in rat. Neurosci Lett 2007; 424:66-71. [PMID: 17709187 DOI: 10.1016/j.neulet.2007.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 06/16/2007] [Accepted: 07/15/2007] [Indexed: 11/16/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a potent and broad-acting neurotrophic factor that protects various types of cultured neurons against glutamate excitotoxicity and induced apoptosis. The expression pattern and functions of PEDF in the central nervous system (CNS) remain largely undetermined. In this study, we analyzed the spatial and temporal expression of PEDF in normal and kainic acid (KA)-induced lesioned rat cerebellum using immunoblotting, immunohistochemistry and fluorescent in situ hybridization techniques. In normal rat cerebellum, PEDF protein and mRNA were mostly confined and co-localized with calbindin-positive cells in the Purkinje cell layer of the cerebellum, but not with glial fibrillary acidic protein (GFAP)-, 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase)-, and isolectin B4-positive cells. Injection of KA into the right cellebellum caused severe loss of calbindin-positive Purkinje neurons, and an increased number of GFAP-positive astrocytes and isolectin B4-positive microglia was observed on the ipsilateral side of the lesioned cerebellum. Although the PEDF level on the ipsilateral side of the cerebellum was dramatically decreased 2 days after KA treatment, significantly elevation of PEDF levels was observed at 7 days. In agreement with these results, PEDF protein and PEDF mRNA expression were co-localized with GFAP-positive reactive astrocytes in the ipsilateral side 7 days after KA treatment. Although the mechanism by which PEDF is induced in reactive astrocytes remains unclear, the increase in PEDF expression in injured brain may form part of a compensation mechanism against neuronal degeneration.
Collapse
Affiliation(s)
- Tomomi Sanagi
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | | | | |
Collapse
|
34
|
Yasuda T, Fukuda-Tani M, Nihira T, Wada K, Hattori N, Mizuno Y, Mochizuki H. Correlation between levels of pigment epithelium-derived factor and vascular endothelial growth factor in the striatum of patients with Parkinson's disease. Exp Neurol 2007; 206:308-17. [PMID: 17604022 DOI: 10.1016/j.expneurol.2007.05.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 05/07/2007] [Accepted: 05/13/2007] [Indexed: 01/15/2023]
Abstract
Parkinson's disease (PD) is caused by progressive degeneration of nigrostriatal dopaminergic neurons and can potentially be treated by intrastriatal delivery of neurotrophic factors. Pigment epithelium-derived factor (PEDF), which exhibits protective effects on various neuronal populations, is up-/down-regulated in the cerebrospinal fluid in some neurodegenerative conditions. Here we investigated the level of PEDF protein in the striatum and immunoreactivity for PEDF in the substantia nigra (SN) of patients with PD to assess its role in the pathophysiology of PD. We also studied changes in PEDF expression in the striatum of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. We found a transient and rapid up-regulation of PEDF transcripts and a marked increase in immunoreactivity for PEDF protein in response to MPTP administration in mice. However, there were no significant changes in striatal levels of PEDF and immunoreactivity for PEDF in the SN of PD patients compared with age-matched non-PD patients. Intriguingly, the striatal levels of PEDF and vascular endothelial growth factor (VEGF), which has opposite functions to PEDF in terms of angiogenesis and vascular permeability, correlated positively in PD patients. Our results suggest up-regulation of PEDF in response to acute insult to the dopaminergic pathway, but such response might be disturbed in patients with advanced PD. The correlation between PEDF and VEGF striatal levels in PD patients suggests that concerted neurotrophic functions of these factors or structural changes in blood vessel walls play an important role in the pathophysiology of PD.
Collapse
Affiliation(s)
- Toru Yasuda
- Research Institute for Diseases of Old Ages, Juntendo University, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Pang IH, Zeng H, Fleenor DL, Clark AF. Pigment epithelium-derived factor protects retinal ganglion cells. BMC Neurosci 2007; 8:11. [PMID: 17261189 PMCID: PMC1794249 DOI: 10.1186/1471-2202-8-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 01/29/2007] [Indexed: 11/20/2022] Open
Abstract
Background Retinal ganglion cells (RGCs) are responsible for the transmission of visual signals to the brain. Progressive death of RGCs occurs in glaucoma and several other retinal diseases, which can lead to visual impairment and blindness. Pigment epithelium-derived factor (PEDF) is a potent antiangiogenic, neurotrophic and neuroprotective protein that can protect neurons from a variety of pathologic insults. We tested the effects of PEDF on the survival of cultured adult rat RGCs in the presence of glaucoma-like insults, including cytotoxicity induced by glutamate or withdrawal of trophic factors. Results Cultured adult rat RGCs exposed to glutamate for 3 days showed signs of cytotoxicity and death. The toxic effect of glutamate was concentration-dependent (EC50 = 31 μM). In the presence of 100 μM glutamate, RGC number decreased to 55 ± 4% of control (mean ± SEM, n = 76; P < 0.001). The glutamate effect was completely eliminated by MK801, an NMDA receptor antagonist. Trophic factor withdrawal also caused a similar loss of RGCs (54 ± 4%, n = 60, P < 0.001). PEDF protected against both insults with EC50 values of 13.6 ng/mL (glutamate) and 3.4 ng/mL (trophic factor withdrawal), respectively. At 100 ng/mL, PEDF completely protected the cells from both insults. Inhibitors of the nuclear factor κB (NFκB) and extracellular signal-regulated kinases 1/2 (ERK1/2) significantly reduced the protective effects of PEDF. Conclusion We demonstrated that PEDF potently and efficaciously protected adult rat RGCs from glutamate- and trophic factor withdrawal-mediated cytotoxicity, via the activation of the NFκB and ERK1/2 pathways. The neuroprotective effect of PEDF represents a novel approach for potential treatment of retinopathies, such as glaucoma.
Collapse
Affiliation(s)
- Iok-Hou Pang
- Alcon Research, Ltd., 6201 South Freeway, R3-24, Fort Worth, TX 76134, USA
| | - Hong Zeng
- Alcon Research, Ltd., 6201 South Freeway, R3-24, Fort Worth, TX 76134, USA
| | - Debra L Fleenor
- Alcon Research, Ltd., 6201 South Freeway, R3-24, Fort Worth, TX 76134, USA
| | - Abbot F Clark
- Alcon Research, Ltd., 6201 South Freeway, R3-24, Fort Worth, TX 76134, USA
| |
Collapse
|
36
|
Fernandez-Garcia NI, Volpert OV, Jimenez B. Pigment epithelium-derived factor as a multifunctional antitumor factor. J Mol Med (Berl) 2006; 85:15-22. [PMID: 17106733 DOI: 10.1007/s00109-006-0111-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 07/14/2006] [Accepted: 08/11/2006] [Indexed: 01/03/2023]
Abstract
The design of new therapeutic strategies for cancer treatment is based on the combination of drugs directed against different tumor compartments, including the tumor cells themselves and components of the stroma, such as the tumor vasculature. Indeed, several antiangiogenic compounds have entered clinical trials for use alone or in combination with conventional cytotoxic drugs. Pigment epithelium-derived factor (PEDF) is a multifunctional natural peptide with complex neurotrophic, neuroprotective, antiangiogenic, and proapoptotic biological activities, any of which could potentially be exploited for therapeutic purposes. This review summarizes recent studies that reveal the antitumor potential of PEDF based on its antiangiogenic properties and its newly discovered direct antitumor effects, which involve the induction of differentiation or apoptosis in tumor cells. We also discuss possible therapeutic applications of PEDF, based on these mechanistic insights and on the identification of functional domains that retain specific biological activities.
Collapse
Affiliation(s)
- N I Fernandez-Garcia
- Departamento de Bioquimica, Facultad de Medicina, Instituto de Investigaciones Biomedicas CSIC-UAM, Arturo Duperier 4, 28029, Madrid, Spain
| | | | | |
Collapse
|
37
|
Notari L, Baladron V, Aroca-Aguilar JD, Balko N, Heredia R, Meyer C, Notario PM, Saravanamuthu S, Nueda ML, Sanchez-Sanchez F, Escribano J, Laborda J, Becerra SP. Identification of a lipase-linked cell membrane receptor for pigment epithelium-derived factor. J Biol Chem 2006; 281:38022-37. [PMID: 17032652 DOI: 10.1074/jbc.m600353200] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF) is an extracellular multifunctional protein belonging to the serpin superfamily with demonstrable neurotrophic, gliastatic, neuronotrophic, antiangiogenic, and antitumorigenic properties. We have previously provided biochemical evidence for high affinity PEDF-binding sites and proteins in plasma membranes of retina, retinoblastoma, and CNS cells. This study was designed to reveal a receptor involved in the biological activities of PEDF. Using a yeast two-hybrid screening, we identified a novel gene from pigment epithelium of the human retina that codes for a PEDF-binding partner, which we term PEDF-R. The derived polypeptide has putative transmembrane, intracellular and extracellular regions, and a phospholipase domain. Recently, PEDF-R (TTS-2.2/independent phospholipase A(2) (PLA(2))zeta and mouse desnutrin/ATGL) has been described in adipose cells as a member of the new calcium-independent PLA(2)/nutrin/patatin-like phospholipase domain-containing 2 (PNPLA2) family that possesses triglyceride lipase and acylglycerol transacylase activities. Here we describe the PEDF-R gene expression in the retina and its heterologous expression by bacterial and eukaryotic systems, and we demonstrate that its protein product has specific and high binding affinity for PEDF, has a potent phospholipase A(2) activity that liberates fatty acids, and is associated with eukaryotic cell membranes. Most importantly, PEDF binding stimulates the enzymatic phospholipase A(2) activity of PEDF-R. In conclusion, we have identified a novel PEDF-R gene in the retina for a phospholipase-linked membrane protein with high affinity for PEDF, suggesting a molecular pathway by which ligand/receptor interaction on the cell surface could generate a cellular signal.
Collapse
Affiliation(s)
- Luigi Notari
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kojima T, Nakahama KI, Yamamoto K, Uematsu H, Morita I. Age- and cell cycle-dependent changes in EPC-1/PEDF promoter activity in human diploid fibroblast-like (HDF) cells. Mol Cell Biochem 2006; 293:63-9. [PMID: 16896539 DOI: 10.1007/s11010-006-2680-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 09/01/2005] [Indexed: 11/24/2022]
Abstract
The changes in gene expression during senescence are very interesting. Early population doubling cDNA-1 (EPC-1, also known as pigment epithelial derived factor, PEDF) is one of the genes whose expression decreases dramatically during cellular aging. We examined whether or not EPC-1/PEDF promoter activity was affected by the cellular ageing using human diploid lung fibroblast cells in culture. Here we showed the promoter/enhancer region of EPC-1/PEDF existed at more than 1760 bp upstream from the transcriptional initiation site of the gene, and was regulated by both aging and cell cycle. These findings suggest that the expression of the EPC-1/PEDF gene is, at least in part, regulated transcriptionally in the cells. The analysis of the promoter region of the EPC-1/PEDF gene in this paper suggests the age- and cell cycle-dependent expression of specific transcriptional factor(s).
Collapse
Affiliation(s)
- Toshihiko Kojima
- Department of Cellular Physiological Chemistry, Graduated School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | | | |
Collapse
|
39
|
Li H, Tran VV, Hu Y, Mark Saltzman W, Barnstable CJ, Tombran-Tink J. A PEDF N-terminal peptide protects the retina from ischemic injury when delivered in PLGA nanospheres. Exp Eye Res 2006; 83:824-33. [PMID: 16822505 DOI: 10.1016/j.exer.2006.04.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 04/06/2006] [Accepted: 04/09/2006] [Indexed: 01/26/2023]
Abstract
The neuroprotective effects of small pigment epithelium-derived factor (PEDF) peptides injected intravitreally as free peptides or delivered in poly(lactide-co-glycolide) (PLGA) nanospheres, were tested in retinal ischemic injury. We induced transient ischemia in C57BL/6 mice by elevating the intraocular pressure to the equivalent of 120 mmHg for 60 min, then injected these eyes with one of the following: PBS, full-length native PEDF, N-terminal peptides-PEDF(136-155) and PEDF(82-121), blank PLGA nanospheres or PLGA loaded with PEDF(82-121) (PLGA-PEDF(82-121)). Morphometric analysis and TUNEL assays were used to determine the extent of retinal damage. Transient ischemia caused a rapid reduction in the number of viable cells in the retinal ganglion cell (RGC) layer over 48h as compared to non-ischemic retinas. About 76% surviving cells in the RGC layer were observed in the full-length PEDF protein treated group, whereas only 32% of cells survived in the PBS group. Thus, PEDF prevented approximately 44% of the cell death in the RGC layer resulting from transient ischemia. PEDF(82-121) peptide was as effective as full-length PEDF when injected as either a free peptide or delivered in PLGA nanospheres. PLGA-PEDF(82-121) showed longer-term protection of the RGC layer with no noticeable side effects at 7days. PEDF and PEDF(82-121) lessened damage to the IPL as measured by layer thickness. PEDF and PEDF(82-121) also delayed retinal responses to ischemic injury as measured by GFAP immunolabeling in Müller cells. PEDF(82-121) is an effective neuroprotective peptide in retinal ischemia. PLGA-PEDF(82-121) offers greater protection to the retina suggesting that this peptide and the method of delivering therapeutically active drugs have potential clinical advantages for longer-term treatments of retinal diseases.
Collapse
Affiliation(s)
- Hong Li
- Department of Ophthalmology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
40
|
McKay BS, Goodman B, Falk T, Sherman SJ. Retinal pigment epithelial cell transplantation could provide trophic support in Parkinson's disease: results from an in vitro model system. Exp Neurol 2006; 201:234-43. [PMID: 16764861 DOI: 10.1016/j.expneurol.2006.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 03/24/2006] [Accepted: 04/01/2006] [Indexed: 01/13/2023]
Abstract
Transplantation of retinal pigment epithelial (RPE) cells in the basal ganglia could provide a novel cell-based therapy for Parkinson's disease by providing a constant source of dopamine replacement via the melanin synthetic pathway enzyme tyrosinase. We now demonstrate that human RPE cells also produce a neurotrophic effect on primary cultures of rat striatal (enkephalinergic) and mesencephalic (dopaminergic) neurons. Differentiation of RPE cells to a pigmented monolayer using a Ca(++)-switch protocol increased the potency of the neurotrophic effect on dopaminergic neurons. Conditioned medium derived from differentiated RPE cells increased neurite outgrowth in dopaminergic neurons by 125% compared to 25% for undifferentiated RPE cells. The neurotrophic effect was not due to tyrosinase activity. Differentiation of RPE cells doubled the production of pigment-derived epithelial factor (PEDF). However, PEDF accounted for only a portion of the neurotrophic effect as determined by depletion experiments and dose-response comparisons with purified PEDF, indicating that differentiation increased the production of other trophic factors as well. Conditioned medium from differentiated RPE cells also provided a neurotrophic effect on a subset of enkephalinergic striatal neurons increasing neurite outgrowth by 78%. Survival of enkephalinergic neurons in vitro was increased by RPE conditioned medium. In untreated cultures the number of enkephalinergic neurons declined 62% over a 2-week period compared to a 29% decline in RPE-treated cultures. These results indicate that transplantation RPE cells could potentially provide a dual benefit in Parkinson's disease producing both dopamine and neurotrophic support of the basal ganglia.
Collapse
Affiliation(s)
- Brian S McKay
- Department of Ophthalmology and Vision Science, Cell Biology and Anatomy, The University of Arizona, Tucson, AZ, USA
| | | | | | | |
Collapse
|
41
|
Takanohashi A, Yabe T, Schwartz JP. Pigment epithelium-derived factor induces the production of chemokines by rat microglia. Glia 2006. [DOI: 10.1002/glia.20351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
42
|
Conti A, Ricchiuto P, Iannaccone S, Sferrazza B, Cattaneo A, Bachi A, Reggiani A, Beltramo M, Alessio M. Pigment epithelium-derived factor is differentially expressed in peripheral neuropathies. Proteomics 2005; 5:4558-67. [PMID: 16196102 DOI: 10.1002/pmic.200402088] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peripheral neuropathies are characterized by asymmetrical slowly progressive weakness with no upper motor neuron signs, and can occur either with or without pain. Due to poor knowledge of the disease mechanisms, available pain treatment is very limited. Because of the difficulties and invasiveness involved when performing direct analysis on peripheral and CNS, pathological markers can be searched for in the cerebrospinal fluid (CSF) as an alternative. To investigate pain mechanisms in peripheral neuropathy and find diagnostic markers, CSF samples were analyzed by a differential expression proteomic approach. We studied CSF from: neuropathic patients with pain (PN), without pain (NPN) and healthy controls (CN). 2-DE analysis showed ten protein spots differentially expressed, and six of these were identified by MS. In NPN patients we found an expression level decrease of three pigment epithelium-derived factor (PEDF) protein isoforms. Immunoblot with a specific antibody revealed the presence of additional PEDF isoforms not highlighted by differential expression analysis. Fucose residues on the oligosaccharide chain were found only in the isoforms down regulated in NPN patients. Considered as PEDF has important neurobiological effects, it might be considered an interesting pathology marker.
Collapse
Affiliation(s)
- Antonio Conti
- Proteome Biochemistry, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Takanohashi A, Yabe T, Schwartz JP. Pigment epithelium-derived factor induces the production of chemokines by rat microglia. Glia 2005; 51:266-78. [PMID: 15816038 DOI: 10.1002/glia.20203] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many studies have shown that pigment epithelium-derived factor (PEDF) has neurotrophic effects on retinal cells and hippocampal, spinal cord, and cerebellar granule cell neurons, but much less work has examined the effects of PEDF on glia. In this study, we show that PEDF changes microglial morphology within 1 h of exposure, to a more deactivated form, while having no effect on the expression of such activation markers as OX-42 and ED-1. In contrast, urea activates acid phosphatase, and PEDF blocks that activation. PEDF also activates NFkappaB, accompanied by the induction of mRNAs and proteins for the chemokines macrophage inflammatory protein-1alpha (MIP-1alpha, MIP-2, and MIP-3alpha. All the chemokines stimulate acid phosphatase activity, and high doses of MIP-2 and MIP-3alpha), alter the morphology of the microglia at 1 h after treatment. These results suggest that the use of PEDF for clinical treatments, such as for retinal neovascularization, brain injury, or ischemia, should be undertaken with caution because of the possibility of induction of inflammation caused by microglial or other immune cell migration in response to the chemokines induced by PEDF.
Collapse
Affiliation(s)
- Asako Takanohashi
- Neurotrophic Factors Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-0151, USA
| | | | | |
Collapse
|
44
|
Yabe T, Sanagi T, Schwartz JP, Yamada H. Pigment epithelium-derived factor induces pro-inflammatory genes in neonatal astrocytes through activation of NF-?B and CREB. Glia 2005; 50:223-34. [PMID: 15739190 DOI: 10.1002/glia.20171] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pigment epithelium-derived factor (PEDF) is a potent and broadly acting neurotrophic factor that protects neurons in various types of cultured neurons against glutamate excitotoxicity and induced-apoptosis. Some of the effects of PEDF reflect specific changes in gene expression, mediated via activation of the transcription factor NF-kappa B in neurons. To investigate whether PEDF also modulates gene expression in astrocytes, we employed the use of RT-PCR to analyze the gene expression of certain pro-inflammatory genes and found that genes such as IL-1 beta, IL-6, TNF-alpha, MIP1 alpha, and MIP3 alpha were induced in PEDF-treated cultured neonatal astrocytes, but not in adult astrocytes. Electrophoresis mobility shift assay (EMSA) revealed that a time- and dose-dependent increase of NF-kappa B- and AP-1-DNA binding activity was observed in PEDF-treated neonatal astrocytes. Furthermore, rapid phosphorylation of CREB protein had occurred in PEDF-treated neonatal astrocytes. Upregulation of pro-inflammatory and AP-1-related genes by PEDF was blocked by overexpression of dominant negative CREB or a mutated form of I kappa B alpha. These results suggest that the induction of pro-inflammatory genes is mediated via activation of NF-kappa B, AP-1, and CREB in neonatal astrocytes. Taken together, these results demonstrate that PEDF is a multipotent factor, capable of affecting not only neurons, but also neonatal astrocytes, and suggests that it may act as a neuroimmune modulator in the developmental brain.
Collapse
Affiliation(s)
- Takeshi Yabe
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo 108-8641, Japan.
| | | | | | | |
Collapse
|
45
|
Lertsburapa T, De Vries GH. In vitro studies of pigment epithelium-derived factor in human Schwann cells after treatment with axolemma-enriched fraction. J Neurosci Res 2004; 75:624-31. [PMID: 14991838 DOI: 10.1002/jnr.20002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a multifunctional protein with known anti-angiogenic and trophic properties, capable of promoting the survival and growth of Schwann cells (SC). Normal rat SCs and ganglioneuroma-derived human SCs secrete PEDF. The ability of normal SC to secrete a number of trophic factors is controlled by axonal contact. Normal human Schwann cells (HSC) and malignant peripheral nerve sheath tumors (MPNST) cell lines synthesize and secrete PEDF as determined by reverse transcription PCR analysis for PEDF mRNA, immunocytochemistry, and Western blot analysis for PEDF protein. Two MPNST cell lines secreted higher levels of PEDF than did HSC. A 90.3% decrease in PEDF mRNA and a 29.3% decrease in secreted PEDF were observed after treatment of HSC with axolemma-enriched fraction (AEF, 100 microg/ml), a neuronal membrane fraction of the axonal plasma membrane used with cultured SC to mimic axonal contact in vitro. PEDF levels remained unchanged, however, in MPNST-derived SC conditioned media under the same treatment paradigm. These results suggest that MPNST SC lose the ability to downregulate PEDF upon axonal contact, which is characteristic of HSC. The elevated PEDF levels expressed by MPNST cell lines may serve to promote their proliferation and survival.
Collapse
Affiliation(s)
- Terakeith Lertsburapa
- Department of Cell Biology, Neurobiology and Anatomy, Loyola University of Chicago, Maywood, Illinois, USA
| | | |
Collapse
|
46
|
Francis MK, Appel S, Meyer C, Balin SJ, Balin AK, Cristofalo VJ. Loss of EPC-1/PEDF expression during skin aging in vivo. J Invest Dermatol 2004; 122:1096-105. [PMID: 15140209 DOI: 10.1111/j.0022-202x.2004.22510.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
EPC-1/PEDF (early population doubling level cDNA-1/retinal pigmented epithelium-derived factor) is a single-copy, quiescence-specific gene that is transcribed into a 1.5 kb mRNA and then translated into a 50 kDa secreted protein that is a potent inhibitor of angiogenesis. EPC-1 expression has been detected in a number of cultured cell lines, including lung and skin fibroblasts, retinal pigmented epithelial cells, and endometrial stromal fibroblasts. Furthermore, its expression has been shown to decline during replicative aging of these cells in culture. In this report, we describe our examination of the age-related changes in EPC-1 expression in situ in skin sections from donors of different ages. EPC-1 mRNA is detected primarily in the dermal layer of the skin and its expression declines with increasing donor age. This decline is statistically significant between young (less than 31 years old) and middle-aged (between 30 and 60 years old) donors, with the decline becoming less dramatic at older ages. This age-related decline in the expression of an angiogenic inhibitor contributes to the imbalance of angiogenic modulators that is observed during aging. In fact, this decline may reflect a compensatory change to help reverse the decline of angiogenesis marked by reduced abundance of microvessels. This downregulation of an angiogenesis inhibitor may, in turn, play a critical role in the development of diseases caused by abnormal vascularization. The potential role of the age-associated decline in EPC-1 expression in tissue remodeling and in the development of skin diseases with excessive angiogenesis may provide new insights into disease prevention.
Collapse
Affiliation(s)
- Mary Kay Francis
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Yamagishi S, Inagaki Y, Takeuchi M, Sasaki N. Is pigment epithelium-derived factor level in cerebrospinal fluid a promising biomarker for early diagnosis of Alzheimer's disease? Med Hypotheses 2004; 63:115-7. [PMID: 15193361 DOI: 10.1016/j.mehy.2004.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 02/02/2004] [Indexed: 10/26/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in Western countries and in Japan. Early diagnosis and treatment is needed to slow down the degenerative process and dementia in AD. The main histopathological characteristics of AD are senile plaques and neurofibrillary tangles. Based on the disease pathology, numerous blood and cerebrospinal fluid (CSF) tests have been proposed for early detection of AD. However, there is no definite clinical method to determine in which patients with mild cognitive impairment will progress to AD with dementia. Since pigment epithelium-derived factor (PEDF) has been recently shown to protect various types of cells including neuronal cells against oxidative stress- or glutamate-induced injury through its anti-oxidative properties, we examined here the expression levels of PEDF in AD's brain. PEDF was found to have the strong immunoreactivity in cortical neurons and astrocytes in the brains of AD. Further, the distribution of PEDF proteins was good concordance with RAGE proteins, one of the receptors for amyloid beta peptides, which are involved in neuronal cell death and microglial activation in AD. These results suggest that PEDF overexpression may indicate a compensation mechanism to fight against neuronal cell injury in AD. Our present observations suggest that PEDF in CSF might reflect cerebral PEDF turnover and provide a means for monitoring neuronal perturbation induced by oxidative stress in the early stage of AD. Clinical use of CSF-PEDF as a biomarker for AD might enable more effective diagnosis and treatment of patients with this disorder.
Collapse
Affiliation(s)
- S Yamagishi
- Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
| | | | | | | |
Collapse
|
48
|
Yabe T, Herbert JT, Takanohashi A, Schwartz JP. Treatment of cerebellar granule cell neurons with the neurotrophic factor pigment epithelium-derived factor in vitro enhances expression of other neurotrophic factors as well as cytokines and chemokines. J Neurosci Res 2004; 77:642-52. [PMID: 15352210 DOI: 10.1002/jnr.20196] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microarray analyses demonstrated that a variety of genes was affected by treatment of cerebellar granule cell neurons with the neurotrophic factor pigment epithelium-derived factor (PEDF). The genes for neurotrophins, glial cell-derived neurotrophic factor (GDNF), and their receptors were regulated differentially in immature versus mature neurons; however, nerve growth factor (NGF), neurotrophin (NT)-3, and GDNF did not contribute to the protective effect of PEDF. Brain-derived neurotrophic factor (BDNF) seemed capable of inducing apoptosis, because a blocking antibody enhanced the protective effect of PEDF. In addition, PEDF exposure also stimulated expression of several cytokine and chemokine genes. Removal of the less than 1% of microglia in the cultures by treatment with L-leucine methyl ester, combined with enzyme-linked immunosorbent assays (ELISAs), demonstrated that the cerebellar granule cells constitutively produce three chemokines, macrophage inflammatory protein (MIP)-1alpha, MIP-2, and MIP-3alpha, whose production is enhanced further by treatment with PEDF. Blocking antibodies to each of the chemokines was protective under control conditions, suggesting that they may contribute to the "natural" apoptosis occurring in the cultures, and enhanced the effects of PEDF. Although PEDF enhanced production of all three chemokines, the blocking antibodies did not increase its protective effect against induced apoptosis. These results suggest that although PEDF enhances expression of other neurotrophic factors or chemokines, it does not exert its neuroprotective effect on cerebellar granule cells through their production.
Collapse
Affiliation(s)
- Takeshi Yabe
- Neurotrophic Factors Section, NINDS, NIH, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
49
|
Imai D, Yoneya S, Gehlbach PL, Wei LL, Mori K. Intraocular gene transfer of pigment epithelium-derived factor rescues photoreceptors from light-induced cell death. J Cell Physiol 2004; 202:570-8. [PMID: 15316929 DOI: 10.1002/jcp.20155] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this study, we investigated whether intraocular gene transfer of pigment epithelium-derived factor (PEDF) ameliorates the extent of light-induced photoreceptor cell death. Lewis rats received intravitreous injection of 3 x 10(9) particles of adenoviral vector expressing PEDF (AdPEDF.11) in one eye and 3 x 10(9) particles of empty adenoviral vector (AdNull.11) in the contralateral eye. The rats were then dark-adapted for 3 days after which they were continuously exposed to fluorescent light (2,500 lux) for 0, 6, 24, 96, and 168 h. Both eyes were then enucleated and processed for morphometric analysis. Cell death in the retina was examined using TUNEL staining with a propidium iodide counterstain. The photoreceptor cell counts in each of the three groups were significantly different (P < 0.001). Eyes that received intravitreous injection of AdNull.11 or no injection showed a greater number of pyknotic photoreceptor cells and a reduced photoreceptor cell density as compared to eyes treated with intravitreous AdPEDF.11 injection. AdNull.11 treated eyes showed a lesser but still significant protection of photoreceptor cells when compared to untreated eyes. Fewer TUNEL-positive photoreceptor cells were present in AdPEDF.11 treated eyes than in AdNull.11 treated or untreated eyes (P = 0.004). The amplitudes of the ERG a-wave, b-wave, and oscillatory potentials (OPs) were increased significantly by treatment (P < 0.05). These data suggest that adenovirus vector-mediated intraocular expression of PEDF significantly increases photoreceptor cell survival following excessive light exposure. Neuroprotection may result from inhibition of light-induced apoptotic processes. This study provides proof of concept for a gene transfer approach to modulating retinal cell death resulting from photo-oxidative damage and supports the hypothesis that gene transfer of PEDF is broadly applicable to modulating apoptosis in the retina.
Collapse
Affiliation(s)
- Daisuke Imai
- Department of Ophthalmology, Saitama Medical School, Iruma, Saitama, Japan
| | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Joyce Tombran-Tink
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, 5005 Rockhill Road, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|