1
|
González-Lana S, Randelovic T, Ciriza J, López-Valdeolivas M, Monge R, Sánchez-Somolinos C, Ochoa I. Surface modifications of COP-based microfluidic devices for improved immobilisation of hydrogel proteins: long-term 3D culture with contractile cell types and ischaemia model. LAB ON A CHIP 2023; 23:2434-2446. [PMID: 37013698 DOI: 10.1039/d3lc00075c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The tissue microenvironment plays a crucial role in tissue homeostasis and disease progression. However, the in vitro simulation has been limited by the lack of adequate biomimetic models in the last decades. Thanks to the advent of microfluidic technology for cell culture applications, these complex microenvironments can be recreated by combining hydrogels, cells and microfluidic devices. Nevertheless, this advance has several limitations. When cultured in three-dimensional (3D) hydrogels inside microfluidic devices, contractile cells may exert forces that eventually collapse the 3D structure. Disrupting the compartmentalisation creates an obstacle to long-term or highly cell-concentrated assays, which are extremely relevant for multiple applications such as fibrosis or ischaemia. Therefore, we tested surface treatments on cyclic-olefin polymer-based microfluidic devices (COP-MD) to promote the immobilisation of collagen as a 3D matrix protein. Thus, we compared three surface treatments in COP devices for culturing human cardiac fibroblasts (HCF) embedded in collagen hydrogels. We determined the immobilisation efficiency of collagen hydrogel by quantifying the hydrogel transversal area within the devices at the studied time points. Altogether, our results indicated that surface modification with polyacrylic acid photografting (PAA-PG) of COP-MD is the most effective treatment to avoid the quick collapse of collagen hydrogels. As a proof-of-concept experiment, and taking advantage of the low-gas permeability properties of COP-MD, we studied the application of PAA-PG pre-treatment to generate a self-induced ischaemia model. Different necrotic core sizes were developed depending on initial HCF density seeding with no noticeable gel collapse. We conclude that PAA-PG allows long-term culture, gradient generation and necrotic core formation of contractile cell types such as myofibroblasts. This novel approach will pave the way for new relevant in vitro co-culture models where fibroblasts play a key role such as wound healing, tumour microenvironment and ischaemia within microfluidic devices.
Collapse
Affiliation(s)
- Sandra González-Lana
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/ Mariano Esquillor s/n, 500018 Zaragoza, Spain.
- BEONCHIP S.L., CEMINEM, Campus Río Ebro. C/ Mariano Esquillor Gómez s/n, 50018 Zaragoza, Spain
| | - Teodora Randelovic
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/ Mariano Esquillor s/n, 500018 Zaragoza, Spain.
- Institute for Health Research Aragón (IIS Aragón), Paseo de Isabel La Católica 1-3, 50009 Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Jesús Ciriza
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/ Mariano Esquillor s/n, 500018 Zaragoza, Spain.
- Institute for Health Research Aragón (IIS Aragón), Paseo de Isabel La Católica 1-3, 50009 Zaragoza, Spain
| | - María López-Valdeolivas
- Aragón Institute of Nanoscience and Materials (INMA), Department of Condensed Matter Physics (Faculty of Science), CSIC-University of Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Rosa Monge
- BEONCHIP S.L., CEMINEM, Campus Río Ebro. C/ Mariano Esquillor Gómez s/n, 50018 Zaragoza, Spain
| | - Carlos Sánchez-Somolinos
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Aragón Institute of Nanoscience and Materials (INMA), Department of Condensed Matter Physics (Faculty of Science), CSIC-University of Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/ Mariano Esquillor s/n, 500018 Zaragoza, Spain.
- Institute for Health Research Aragón (IIS Aragón), Paseo de Isabel La Católica 1-3, 50009 Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
2
|
Riddle RB, Jennbacken K, Hansson KM, Harper MT. Endothelial inflammation and neutrophil transmigration are modulated by extracellular matrix composition in an inflammation-on-a-chip model. Sci Rep 2022; 12:6855. [PMID: 35477984 PMCID: PMC9046410 DOI: 10.1038/s41598-022-10849-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
Inflammatory diseases are often characterised by excessive neutrophil infiltration from the blood stream to the site of inflammation, which damages healthy tissue and prevents resolution of inflammation. Development of anti-inflammatory drugs is hindered by lack of in vitro and in vivo models which accurately represent the disease microenvironment. In this study, we used the OrganoPlate to develop a humanized 3D in vitro inflammation-on-a-chip model to recapitulate neutrophil transmigration across the endothelium and subsequent migration through the extracellular matrix (ECM). Human umbilical vein endothelial cells formed confluent vessels against collagen I and geltrex mix, a mix of basement membrane extract and collagen I. TNF-α-stimulation of vessels upregulated inflammatory cytokine expression and promoted neutrophil transmigration. Intriguingly, major differences were found depending on the composition of the ECM. Neutrophils transmigrated in higher number and further in geltrex mix than collagen I, and did not require an N-formyl-methionyl-leucyl-phenylalanine (fMLP) gradient for transmigration. Inhibition of neutrophil proteases inhibited neutrophil transmigration on geltrex mix, but not collagen I. These findings highlight the important role of the ECM in determining cell phenotype and response to inhibitors. Future work could adapt the ECM composition for individual diseases, producing accurate models for drug development.
Collapse
Affiliation(s)
- Rebecca B Riddle
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Karin Jennbacken
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Kenny M Hansson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Wu J, Xu J, Huang Y, Tang L, Hong Y. Regional-specific meniscal extracellular matrix hydrogels and their effects on cell-matrix interactions of fibrochondrocytes. Biomed Mater 2021; 17. [PMID: 34883474 DOI: 10.1088/1748-605x/ac4178] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023]
Abstract
Decellularized meniscal extracellular matrix (ECM) material holds great potential for meniscus repair and regeneration. Particularly, injectable ECM hydrogel is highly desirable for the minimally invasive treatment of irregularly shaped defects. Although regional-specific variations of the meniscus are well documented, no ECM hydrogel has been reported to simulate zonally specific microenvironments of the native meniscus. To fill the gap, different (outer, middle, and inner) zones of porcine menisci were separately decellularized. Then the regionally decellularized meniscal ECMs were solubilized by pepsin digestion, neutralized, and then form injectable hydrogels. The hydrogels were characterized in gelation behaviors and mechanical properties and seeded with bovine fibrochondrocytes to evaluate the regionally biochemical effects on the cell-matrix interactions. Our results showed that the decellularized inner meniscal ECM (IM) contained the greatest glycosaminoglycan (GAG) content and the least collagen content compared with the decellularized outer meniscal ECM (OM) and middle meniscal ECM (MM). The IM hydrogel showed lower compressive strength than the OM hydrogel. When encapsulated with fibrochondrocytes, the IM hydrogel accumulated more GAG, contracted to a greater extent and reached higher compressive strength than that of the OM hydrogel at 28 days. Our findings demonstrate that the regionally specific meniscal ECMs present biochemical variation and show various effects on the cell behaviors, thus providing information on how meniscal ECM hydrogels may be utilized to reconstruct the microenvironments of the native meniscus.
Collapse
Affiliation(s)
- Jinglei Wu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Jiazhu Xu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Yihui Huang
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Liping Tang
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Yi Hong
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| |
Collapse
|
4
|
He J, Pang Q, Huang C, Xie J, Hu J, Wang L, Wang C, Meng L, Fan R. Environmental dose of 16 priority-controlled PAHs mixture induce damages of vascular endothelial cells involved in oxidative stress and inflammation. Toxicol In Vitro 2021; 79:105296. [PMID: 34896602 DOI: 10.1016/j.tiv.2021.105296] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022]
Abstract
Epidemiological studies have shown that cardiovascular diseases caused by PM2.5 pollution account for the second death rate in China. Polycyclic aromatic hydrocarbons (PAHs) are one important group of persistent organic pollutants absorbed on PM2.5. Though individual PAH is related to vascular disease, the relationship between environmental PAHs exposure and vascular damages is still unclear. To explore the effect of PAHs on blood vessel, human umbilical vein endothelial cells (HUVECs) are treated with 16 priority-controlled PAHs at various concentrations to study their cytotoxicity and morphological alteration. Results showed that, after 48 h treatment, PAHs mixture generally attenuated the ability of wound healing, transwell migration and tube formation of HUVECs (p < 0.01) except for 1 × PAHs in transwell migration. Moreover, PAHs increased the levels of ROS and 8-hydroxy-2'-deoxyguanosine (p < 0.05), indicating that it exceeded the scavenging ability of superoxide dismutase activity. However, PAHs mixture did not increase apoptosis rate, which may be attribute to the difference of PAH concentration and composition between this study and previous reports. Downstream signaling cascades significantly and generally upregulated the relative expression of proteins in Nrf2/HO-1 and NF-ƙB/TNF-α pathway with the activation of oxidative stress, including HO-, TNF-α and Nrf2. In summary, this study suggests that environmental mixture of 16 priority-controlled PAHs can induce the damages of vascular endothelial cells involved in cellular oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jiaying He
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chengmeng Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiaqi Xie
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jindian Hu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lei Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Congcong Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lingxue Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Mechanical Aspects of Angiogenesis. Cancers (Basel) 2021; 13:cancers13194987. [PMID: 34638470 PMCID: PMC8508205 DOI: 10.3390/cancers13194987] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The formation of new blood vessels from already existing ones is a process of high clinical relevance, since it is of great importance for both physiological and pathological processes. In regard to tumors, the process is crucial, since it ensures the supply with nutrients and the growth of the tumor. The influence of mechanical factors on this biological process is an emerging field. Until now, the shear force of the blood flow has been considered the main mechanical parameter during angiogenesis. This review article provides an overview of further mechanical cues, with particular focus on the surrounding extracellular matrix impacting the cell behavior and, thus, regulating angiogenesis. This underlines the enormous importance of the mechanical properties of the extracellular matrix on cell biological processes and shows how changing the mechanics of the extracellular matrix could be used as a possible therapeutic approach in cancer therapy. Abstract Angiogenesis is of high clinical relevance as it plays a crucial role in physiological (e.g., tissue regeneration) and pathological processes (e.g., tumor growth). Besides chemical signals, such as VEGF, the relationship between cells and the extracellular matrix (ECM) can influence endothelial cell behavior during angiogenesis. Previously, in terms of the connection between angiogenesis and mechanical factors, researchers have focused on shear forces due to blood flow. However, it is becoming increasingly important to include the direct influence of the ECM on biological processes, such as angiogenesis. In this context, we focus on the stiffness of the surrounding ECM and the adhesion of cells to the ECM. Furthermore, we highlight the mechanical cues during the main stages of angiogenesis: cell migration, tip and stalk cells, and vessel stabilization. It becomes clear that the different stages of angiogenesis require various chemical and mechanical cues to be modulated by/modulate the stiffness of the ECM. Thus, changes of the ECM during tumor growth represent additional potential dysregulations of angiogenesis in addition to erroneous biochemical signals. This awareness could be the basis of therapeutic approaches to counteract specific processes in tumor angiogenesis.
Collapse
|
6
|
Rüdiger D, Kick K, Goychuk A, Vollmar AM, Frey E, Zahler S. Cell-Based Strain Remodeling of a Nonfibrous Matrix as an Organizing Principle for Vasculogenesis. Cell Rep 2021; 32:108015. [PMID: 32783939 DOI: 10.1016/j.celrep.2020.108015] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/21/2020] [Accepted: 07/17/2020] [Indexed: 11/29/2022] Open
Abstract
Endothelial tube formation on a reconstituted basement membrane (Matrigel) is a well-established in vitro model for studying the processes of angiogenesis and vasculogenesis. However, to date, the organizing principles that underlie the morphogenesis of this network and that shape the initial process of cells' finding one another remain elusive. Here, we identify a mechanism that allows cells to form networks by mechanically reorganizing and stiffening their extracellular matrix, independent of chemical guidance cues. Interestingly, we find that this cellular self-organization strongly depends on the connectivity, plasticity, and topology of the surrounding matrix; cell contractility; and cell density. Cells rearrange the matrix and form bridges of matrix material that are stiffer than their surroundings, thus creating a durotactic track for the initiation of cell protrusions and cell-cell contacts. This contractility-based communication via strain stiffening and matrix rearrangement might be a general organizing principle during tissue development or regeneration.
Collapse
Affiliation(s)
- Daniel Rüdiger
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Kerstin Kick
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Andriy Goychuk
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 Munich, Germany
| | - Angelika M Vollmar
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 Munich, Germany
| | - Stefan Zahler
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany.
| |
Collapse
|
7
|
Derakhshan T, Bhowmick R, Meinkoth JH, Ritchey JW, Gappa-Fahlenkamp H. Human Mast Cell Development from Hematopoietic Stem Cells in a Connective Tissue-Equivalent Model. Tissue Eng Part A 2019; 25:1564-1574. [PMID: 30896346 DOI: 10.1089/ten.tea.2018.0347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Mast cells (MCs) play critical roles in the pathogenesis of IgE- and non-IgE-mediated immune responses, as well as host defense against parasites, bacteria, and viruses. Due to the effect of extracellular matrix components on tissue morphogenesis and cell behavior, utilizing a tissue model that mimics MC microenvironmental conditions in vivo has greater relevance for in vitro studies. For this work, MCs were developed within a connective tissue-equivalent model and cell function was examined in response to an allergen. MCs are located in proximity to fibroblasts and endothelial cells (ECs) that play a role in MC development and maturity. Accordingly, MC progenitors isolated from human peripheral blood were co-cultured with human primary fibroblasts in a 3D collagen matrix to represent the connective tissue. The matrix was coated with type IV collagen and fibronectin before seeding with primary human ECs, representing the capillary wall. The stem cell-derived cells demonstrated MC characteristics, including typical MC morphology, and the expression of cytoplasmic granules and phenotypic markers. Also, the generated cells released histamine in IgE-mediated reactions, showing typical MC functional phenotype in an immediate-type allergenic response. The created tissue model is applicable to a variety of research studies and allergy testing. Impact Statement Mast cells (MCs) are key effector and immunoregulatory cells in immune disorders; however, their role is not fully understood. Few studies have investigated human ex vivo MCs in culture, due to the difficulties in isolating large numbers. Our study demonstrates, for the first time, the generation of cells exhibiting MC phenotypic and functional characteristics from hematopoietic stem cells within a connective tissue-equivalent model with ancillary cells. Utilizing the 3D matrix-embedded cells can advance our understanding of MC biological profile and immunoregulatory roles. The tissue model can also be used for studying the mechanism of allergic diseases and other inflammatory disorders.
Collapse
Affiliation(s)
- Tahereh Derakhshan
- School of Chemical Engineering, College of Engineering, Architecture and Technology, Oklahoma State University, Stillwater, Oklahoma
| | - Rudra Bhowmick
- School of Chemical Engineering, College of Engineering, Architecture and Technology, Oklahoma State University, Stillwater, Oklahoma
| | - James H Meinkoth
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Jerry W Ritchey
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Heather Gappa-Fahlenkamp
- School of Chemical Engineering, College of Engineering, Architecture and Technology, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
8
|
Buno KP, Chen X, Weibel JA, Thiede SN, Garimella SV, Yoder MC, Voytik-Harbin SL. In Vitro Multitissue Interface Model Supports Rapid Vasculogenesis and Mechanistic Study of Vascularization across Tissue Compartments. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21848-60. [PMID: 27136321 PMCID: PMC5007191 DOI: 10.1021/acsami.6b01194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A significant challenge facing tissue engineers is the design and development of complex multitissue systems, including vascularized tissue-tissue interfaces. While conventional in vitro models focus on either vasculogenesis (de novo formation of blood vessels) or angiogenesis (vessels sprouting from existing vessels or endothelial monolayers), successful therapeutic vascularization strategies will likely rely on coordinated integration of both processes. To address this challenge, we developed a novel in vitro multitissue interface model in which human endothelial colony forming cell (ECFC)-encapsulated tissue spheres are embedded within a surrounding tissue microenvironment. This highly reproducible approach exploits biphilic surfaces (nanostructured surfaces with distinct superhydrophobic and hydrophilic regions) to (i) support tissue compartments with user-specified matrix composition and physical properties as well as cell type and density and (ii) introduce boundary conditions that prevent the cell-mediated tissue contraction routinely observed with conventional three-dimensional monodispersion cultures. This multitissue interface model was applied to test the hypothesis that independent control of cell-extracellular matrix (ECM) and cell-cell interactions would affect vascularization within the tissue sphere as well as across the tissue-tissue interface. We found that high-cell-density tissue spheres containing 5 × 10(6) ECFCs/mL exhibit rapid and robust vasculogenesis, forming highly interconnected, stable (as indicated by type IV collagen deposition) vessel networks within only 3 days. Addition of adipose-derived stromal cells (ASCs) in the surrounding tissue further enhanced vasculogenesis within the sphere as well as angiogenic vessel elongation across the tissue-tissue boundary, with both effects being dependent on the ASC density. Overall, results show that the ECFC density and ECFC-ASC crosstalk, in terms of paracrine and mechanophysical signaling, are critical determinants of vascularization within a given tissue compartment and across tissue interfaces. This new in vitro multitissue interface model and the associated mechanistic insights it yields provide guiding principles for the design and optimization of multitissue vascularization strategies for research and clinical applications.
Collapse
Affiliation(s)
- Kevin P. Buno
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xuemei Chen
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Justin A. Weibel
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Stephanie N. Thiede
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Suresh V. Garimella
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mervin C. Yoder
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Sherry L. Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Corresponding Author:. Phone: (765) 496-6128. Address: Martin C. Jischke Hall of Biomedical Engineering, Room 3033, 206 South Martin Jischke Drive, West Lafayette, IN 47907-2032, U.S.A
| |
Collapse
|
9
|
Mishra PJ, Mishra PJ, Banerjee D. Keratinocyte Induced Differentiation of Mesenchymal Stem Cells into Dermal Myofibroblasts: A Role in Effective Wound Healing. ACTA ACUST UNITED AC 2016; 2016:5-32. [PMID: 27294075 DOI: 10.13052/ijts2246-8765.2016.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have previously demonstrated that human mesenchymal stem cells (hMSCs) migrate toward human keratinocytes as well as toward conditioned medium from cultured human keratinocytes (KCM) indicating that the hMSCs respond to signals from keratinocytes [1]. Using fluorescently labeled cells we now show that in vitro hMSCs appear to surround keratinocytes, and this organization is recapitulated in vivo. Incubation of hMSCs with KCM induced dermal myofibroblast like differentiation characterized by expression of cytoskeletal markers and increased expression of cytokines including SDF-1, IL-8, IL-6 and CXCL5. Interaction of keratinocytes with hMSCs appears to be important in the wound healing process. Therapeutic efficacy of hMSCs in wound healing was examined in two animal models representing normal and chronic wound healing. Accelerated wound healing was observed when hMSCs and KCM exposed hMSCs (KCMSCs) were injected near wound site in nude and NOD/SCID mice. Long term follow up of wound healing revealed that in the hMSC treated wounds there was little evidence of residual scarring. These dermal myofibroblast like hMSCs add to the wound healing process. Together, the keratinocyte and hMSCs morphed dermal myofibroblast like cells as well as the factors secreted by these cells support wound healing with minimal scarring. The ability of hMSCs to support wound healing process represents another striking example of the importance of keratinocyte and hMSCs interplay in the wound microenvironment resulting in effective wound healing with minimal scarring.
Collapse
Affiliation(s)
- Pravin J Mishra
- Intermountain Precision Genomics, Intermountain Healthcare, Dixie Regional Medical Center 292 South 1470 East, Suite 201 & 301, St. George, UT 84770, USA
| | - Prasun J Mishra
- Department of Biochemical and Cellular Pharmacology, Genentech, 1, DNA Way, South San Francisco, California 94080, USA
| | - Debabrata Banerjee
- Department of Pharmacology, Robert Wood Johnson Medical School, Graduate School of Biomedical Sciences, New Brunswick-Piscataway, Rutgers University, 675 Hoes Lane West, Piscataway, NJ 08854. USA
| |
Collapse
|
10
|
Kang Y, Mochizuki N, Khademhosseini A, Fukuda J, Yang Y. Engineering a vascularized collagen-β-tricalcium phosphate graft using an electrochemical approach. Acta Biomater 2015; 11:449-58. [PMID: 25263031 DOI: 10.1016/j.actbio.2014.09.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 09/16/2014] [Accepted: 09/21/2014] [Indexed: 12/30/2022]
Abstract
Vascularization of three-dimensional large synthetic grafts for tissue regeneration remains a significant challenge. Here we demonstrate an electrochemical approach, named the cell electrochemical detachment (CED) technique, to form an integral endothelium and use it to prevascularize a collagen-β-tricalcium phosphate (β-TCP) graft. The CED technique electrochemically detached an integral endothelium from a gold-coated glass rod to a collagen-infiltrated, channeled, macroporous β-TCP scaffold, forming an endothelium-lined microchannel containing graft upon removal of the rod. The in vitro results from static and perfusion culture showed that the endothelium robustly emanated microvascular sprouting and prevascularized the entire collagen/β-TCP integrated graft. The in vivo subcutaneous implantation studies showed that the prevascularized collagen/β-TCP grafts established blood flow originating from the endothelium-lined microchannel within a week, and the blood flow covered more areas in the graft over time. In addition, many blood vessels invaded the prevascularized collagen/β-TCP graft and the in vitro preformed microvascular networks anastomosed with the host vasculature, while collagen alone without the support of rigid ceramic scaffold showed less blood vessel invasion and anastomosis. These results suggest a promising strategy for effectively vascularizing large tissue-engineered grafts by integrating multiple hydrogel-based CED-engineered endothelium-lined microchannels into a rigid channeled macroporous scaffold.
Collapse
|
11
|
Visible-light-initiated hydrogels preserving cartilage extracellular signaling for inducing chondrogenesis of mesenchymal stem cells. Acta Biomater 2015; 12:30-41. [PMID: 25462526 DOI: 10.1016/j.actbio.2014.10.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 11/23/2022]
Abstract
Hydrogels have a unique opportunity to regenerate damaged cartilage tissues by introducing mesenchymal stem cells (MSCs) in a highly swollen environment similar to articular cartilage. During cartilage development, collagen-cell interactions play an important role in mediating early mesenchymal condensation and chondrogenesis with transforming growth factor-β1 (TGF-β1) stimulation. Here, a hydrogel environment that can enhance cell-matrix interactions and chondrogenesis by stabilizing type-II collagen (Col II) and TGF-β1 into photopolymerizable (methacrylated) chitosan (MeGC) with simple entrapment and affinity binding is demonstrated. The MeGC hydrogel was designed to gel upon initiation by exposure to visible blue light in the presence of riboflavin, an aqueous initiator from natural vitamin. The incorporation of Col II into MeGC hydrogels increased cellular condensation and deposition of cartilaginous extracellular matrix by encapsulated chondrocytes. MeGC hydrogels containing Col II supported the release of TGF-β1 in a controlled manner over time in chondrogenic medium and the incorporated TGF-β1 further enhanced chondrogenesis of encapsulated chondrocytes and MSCs, especially synovial MSCs. Subcutaneous implantation of hydrogel cultures showed greatly improved neocartilage formation in constructs loaded with TGF-β1 compared with controls. These findings suggest that cartilage mimetic hydrogels have a high potential for cartilage repair.
Collapse
|
12
|
Choi B, Kim S, Lin B, Wu BM, Lee M. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS APPLIED MATERIALS & INTERFACES 2014; 6:20110-21. [PMID: 25361212 DOI: 10.1021/am505723k] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cartilaginous extracellular matrix (ECM) components such as type-II collagen (Col II) and chondroitin sulfate (CS) play a crucial role in chondrogenesis. However, direct clinical use of natural Col II or CS as scaffolds for cartilage tissue engineering is limited by their instability and rapid enzymatic degradation. Here, we investigate the incorporation of Col II and CS into injectable chitosan hydrogels designed to gel upon initiation by exposure to visible blue light (VBL) in the presence of riboflavin. Unmodified chitosan hydrogel supported proliferation and deposition of cartilaginous ECM by encapsulated chondrocytes and mesenchymal stem cells. The incorporation of native Col II or CS into chitosan hydrogels further increased chondrogenesis. The incorporation of Col II, in particular, was found to be responsible for the enhanced cellular condensation and chondrogenesis observed in modified hydrogels. This was mediated by integrin α10 binding to Col II, increasing cell-matrix adhesion. These findings demonstrate the potential of cartilage ECM-modified chitosan hydrogels as biomaterials to promote cartilage regeneration.
Collapse
Affiliation(s)
- Bogyu Choi
- Division of Advanced Prosthodontics, ‡Department of Bioengineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | | | | | | | | |
Collapse
|
13
|
Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis. PLoS One 2014; 9:e85178. [PMID: 24465500 PMCID: PMC3898992 DOI: 10.1371/journal.pone.0085178] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/23/2013] [Indexed: 01/23/2023] Open
Abstract
Angiogenesis is regulated by the local microenvironment, including the mechanical interactions between neovessel sprouts and the extracellular matrix (ECM). However, the mechanisms controlling the relationship of mechanical and biophysical properties of the ECM to neovessel growth during sprouting angiogenesis are just beginning to be understood. In this research, we characterized the relationship between matrix density and microvascular topology in an in vitro 3D organ culture model of sprouting angiogenesis. We used these results to design and calibrate a computational growth model to demonstrate how changes in individual neovessel behavior produce the changes in vascular topology that were observed experimentally. Vascularized gels with higher collagen densities produced neovasculatures with shorter vessel lengths, less branch points, and reduced network interconnectivity. The computational model was able to predict these experimental results by scaling the rates of neovessel growth and branching according to local matrix density. As a final demonstration of utility of the modeling framework, we used our growth model to predict several scenarios of practical interest that could not be investigated experimentally using the organ culture model. Increasing the density of the ECM significantly reduced angiogenesis and network formation within a 3D organ culture model of angiogenesis. Increasing the density of the matrix increases the stiffness of the ECM, changing how neovessels are able to deform and remodel their surroundings. The computational framework outlined in this study was capable of predicting this observed experimental behavior by adjusting neovessel growth rate and branching probability according to local ECM density, demonstrating that altering the stiffness of the ECM via increasing matrix density affects neovessel behavior, thereby regulated vascular topology during angiogenesis.
Collapse
|
14
|
Ma X, Schickel ME, Stevenson MD, Sarang-Sieminski AL, Gooch KJ, Ghadiali SN, Hart RT. Fibers in the extracellular matrix enable long-range stress transmission between cells. Biophys J 2013; 104:1410-8. [PMID: 23561517 DOI: 10.1016/j.bpj.2013.02.017] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/15/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022] Open
Abstract
Cells can sense, signal, and organize via mechanical forces. The ability of cells to mechanically sense and respond to the presence of other cells over relatively long distances (e.g., ∼100 μm, or ∼10 cell-diameters) across extracellular matrix (ECM) has been attributed to the strain-hardening behavior of the ECM. In this study, we explore an alternative hypothesis: the fibrous nature of the ECM makes long-range stress transmission possible and provides an important mechanism for long-range cell-cell mechanical signaling. To test this hypothesis, confocal reflectance microscopy was used to develop image-based finite-element models of stress transmission within fibroblast-seeded collagen gels. Models that account for the gel's fibrous nature were compared with homogenous linear-elastic and strain-hardening models to investigate the mechanisms of stress propagation. Experimentally, cells were observed to compact the collagen gel and align collagen fibers between neighboring cells within 24 h. Finite-element analysis revealed that stresses generated by a centripetally contracting cell boundary are concentrated in the relatively stiff ECM fibers and are propagated farther in a fibrous matrix as compared to homogeneous linear elastic or strain-hardening materials. These results support the hypothesis that ECM fibers, especially aligned ones, play an important role in long-range stress transmission.
Collapse
Affiliation(s)
- Xiaoyue Ma
- The Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Puetzer JL, Bonassar LJ. High density type I collagen gels for tissue engineering of whole menisci. Acta Biomater 2013; 9:7787-95. [PMID: 23669622 DOI: 10.1016/j.actbio.2013.05.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 04/25/2013] [Accepted: 05/01/2013] [Indexed: 02/07/2023]
Abstract
This study investigates the potential of high density type I collagen gels as an injectable scaffold for tissue engineering of whole menisci, and compares these results with previous strategies using alginate as an injectable scaffold. Bovine meniscal fibrochondrocytes were mixed with collagen and injected into micro-computed tomography-based molds to create 10 and 20mgml(-1) menisci that were cultured for up to 4weeks and compared with cultured alginate menisci. Contraction, histological, confocal microscopy, biochemical and mechanical analysis were performed to determine tissue development. After 4weeks culture, collagen menisci had preserved their shape and significantly improved their biochemical and mechanical properties. Both 10 and 20mgml(-1) menisci maintained their DNA content while significantly improving the glycosaminoglycan and collagen content, at values significantly higher than the alginate controls. Collagen menisci matched the alginate control in terms of the equilibrium modulus, and developed a 3- to 6-fold higher tensile modulus than alginate by 4weeks. Further fibrochondrocytes were able to reorganize the collagen gels into a more fibrous appearance similar to native menisci.
Collapse
Affiliation(s)
- Jennifer L Puetzer
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
16
|
|
17
|
Garvin KA, Dalecki D, Hocking DC. Vascularization of three-dimensional collagen hydrogels using ultrasound standing wave fields. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1853-64. [PMID: 21924816 PMCID: PMC3199287 DOI: 10.1016/j.ultrasmedbio.2011.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/08/2011] [Indexed: 05/13/2023]
Abstract
The successful fabrication of large, three-dimensional (3-D) tissues and organs in vitro requires the rapid development of a vascular network to maintain cell viability and tissue function. In this study, we utilized an application of ultrasound standing wave field (USWF) technology to vascularize 3-D, collagen-based hydrogels in vitro. Acoustic radiation forces associated with USWF were used to noninvasively organize human endothelial cells into distinct, multicellular planar bands within 3-D collagen gels. The formation and maturation of capillary-like endothelial cell sprouts were monitored over time and compared with sham-exposed collagen constructs, which were characterized by a homogeneous cell distribution. USWF-induced cell banding accelerated the formation and elongation of capillary-like sprouts, promoted collagen fiber alignment and resulted in the maturation of endothelial cell sprouts into lumen-containing, anastomosing networks found throughout the entire volume of the collagen gel. USWF-induced endothelial cell networks contained large, arteriole-sized lumen areas that branched into smaller, capillary-sized structures indicating the development of vascular tree-like networks. In contrast, sprout formation was delayed in sham-exposed collagen gels and endothelial cell networks were absent from sham gel centers and failed to develop into the vascular tree-like structures found in USWF-exposed constructs. Our results demonstrate that USWF technology leads to rapid and extensive vascularization of 3-D collagen-based engineered tissue and, therefore, provide a new strategy to vascularize engineered tissues in vitro.
Collapse
Affiliation(s)
- Kelley A Garvin
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
18
|
Kaur S, Leszczynska K, Abraham S, Scarcia M, Hiltbrunner S, Marshall CJ, Mavria G, Bicknell R, Heath VL. RhoJ/TCL regulates endothelial motility and tube formation and modulates actomyosin contractility and focal adhesion numbers. Arterioscler Thromb Vasc Biol 2010; 31:657-64. [PMID: 21148427 DOI: 10.1161/atvbaha.110.216341] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE RhoJ/TCL was identified by our group as an endothelial-expressed Rho GTPase. The aim of this study was to determine its tissue distribution, subcellular localization, and function in endothelial migration and tube formation. METHODS AND RESULTS Using in situ hybridization, RhoJ was localized to endothelial cells in a set of normal and cancerous tissues and in the vasculature of mouse embryos; endogenous RhoJ was localized to focal adhesions by immunofluorescence. The proangiogenic factor vascular endothelial growth factor activated RhoJ in endothelial cells. Using either small interfering (si)RNA-mediated knockdown of RhoJ expression or overexpression of constitutively active RhoJ (daRhoJ), RhoJ was found to positively regulate endothelial motility and tubule formation. Downregulating RhoJ expression increased focal adhesions and stress fibers in migrating cells, whereas daRhoJ overexpression resulted in the converse. RhoJ downregulation resulted in increased contraction of a collagen gel and increased phospho-myosin light chain, indicative of increased actomyosin contractility. Pharmacological inhibition of Rho-kinase (which phosphorylates myosin light chain) or nonmuscle myosin II reversed the defective tube formation and migration of RhoJ knockdown cells. CONCLUSIONS RhoJ is endothelial-expressed in vivo, activated by vascular endothelial growth factor, localizes to focal adhesions, regulates endothelial cell migration and tube formation, and modulates actomyosin contractility and focal adhesion numbers.
Collapse
Affiliation(s)
- Sukhbir Kaur
- CRUK Molecular Angiogenesis Laboratory, Institute for Biomedical Research, The Medical School, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Garvin KA, Hocking DC, Dalecki D. Controlling the spatial organization of cells and extracellular matrix proteins in engineered tissues using ultrasound standing wave fields. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:1919-32. [PMID: 20870341 PMCID: PMC3043642 DOI: 10.1016/j.ultrasmedbio.2010.08.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/30/2010] [Accepted: 08/13/2010] [Indexed: 05/20/2023]
Abstract
Tissue engineering holds great potential for saving the lives of thousands of organ transplant patients who die each year while waiting for donor organs. However, to successfully fabricate tissues and organs in vitro, methodologies that recreate appropriate extracellular microenvironments to promote tissue regeneration are needed. In this study, we have developed an application of ultrasound standing wave field (USWF) technology to the field of tissue engineering. Acoustic radiation forces associated with USWF were used to noninvasively control the spatial distribution of mammalian cells and cell-bound extracellular matrix proteins within three-dimensional (3-D) collagen-based engineered tissues. Cells were suspended in unpolymerized collagen solutions and were exposed to a continuous wave USWF, generated using a 1 MHz source, for 15 min at room temperature. Collagen polymerization occurred during USWF exposure resulting in the formation of 3-D collagen gels with distinct bands of aggregated cells. The density of cell bands was dependent on both the initial cell concentration and the pressure amplitude of the USWF. Importantly, USWF exposure did not decrease cell viability but rather enhanced cell function. Alignment of cells into loosely clustered, planar cell bands significantly increased levels of cell-mediated collagen gel contraction and collagen fiber reorganization compared with sham-exposed samples with a homogeneous cell distribution. Additionally, the extracellular matrix protein, fibronectin, was localized to cell banded areas by binding the protein to the cell surface prior to USWF exposure. By controlling cell and extracellular organization, this application of USWF technology is a promising approach for engineering tissues in vitro.
Collapse
Affiliation(s)
- Kelley A. Garvin
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627
- Rochester Center for Biomedical Ultrasound, University of Rochester, Rochester, NY, 14627
| | - Denise C. Hocking
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14627
- Rochester Center for Biomedical Ultrasound, University of Rochester, Rochester, NY, 14627
| | - Diane Dalecki
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, 14627
- Rochester Center for Biomedical Ultrasound, University of Rochester, Rochester, NY, 14627
| |
Collapse
|
20
|
Stevenson MD, Sieminski AL, McLeod CM, Byfield FJ, Barocas VH, Gooch KJ. Pericellular conditions regulate extent of cell-mediated compaction of collagen gels. Biophys J 2010; 99:19-28. [PMID: 20655829 DOI: 10.1016/j.bpj.2010.03.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 02/19/2010] [Accepted: 03/18/2010] [Indexed: 02/06/2023] Open
Abstract
Cell-mediated compaction of the extracellular matrix (ECM) plays a critical role in tissue engineering, wound healing, embryonic development, and many disease states. The ECM is compacted as a result of cellular traction forces. We hypothesize that a cell mechanically remodels the nearby ECM until some target conditions are obtained, and then the cell stops compacting. A key feature of this hypothesis is that ECM compaction primarily occurs in the pericellular region and the properties of the ECM in the pericellular region govern cellular force generation. We developed a mathematical model to describe the amount of macroscopic compaction of cell-populated collagen gels in terms of the initial cell and collagen densities, as well as the final conditions of the pericellular environment (defined as the pericellular volume where the collagen is compacted (V(*)) and the mass of collagen within this volume (m(*))). This model qualitatively predicts the effects of varying initial cell and collagen concentrations on the extent of gel compaction, and by fitting V(*) and m(*), provides reasonable quantitative agreement with the extent of gel compaction observed in experiments with endothelial cells and fibroblasts. Microscopic analysis of compacted gels supports the assumption that collagen compaction occurs primarily in the pericellular environment.
Collapse
Affiliation(s)
- Mark D Stevenson
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | |
Collapse
|
21
|
Cross VL, Zheng Y, Won Choi N, Verbridge SS, Sutermaster BA, Bonassar LJ, Fischbach C, Stroock AD. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials 2010; 31:8596-607. [PMID: 20727585 DOI: 10.1016/j.biomaterials.2010.07.072] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 07/21/2010] [Indexed: 11/27/2022]
Abstract
Type I collagen is a favorable substrate for cell adhesion and growth and is remodelable by many tissue cells; these characteristics make it an attractive material for the study of dynamic cellular processes. Low mass fraction (1.0-3.0 mg/ml), hydrated collagen matrices used for three-dimensional cell culture permit cellular movement and remodeling, but their microstructure and mechanics fail to mimic characteristics of many extracellular matrices in vivo and limit the definition of fine-scale geometrical features (<1 mm) within scaffolds. In this study, we worked with hydrated type I collagen at mass fractions between 3.0 and 20 mg/ml to define the range of densities over which the matrices support both microfabrication and cellular remodeling. We present pore and fiber dimensions based on confocal microscopy and longitudinal modulus and hydraulic permeability based on confined compression. We demonstrate faithful reproduction of simple pores of 50 μm-diameter over the entire range and formation of functional microfluidic networks for mass fractions of at least 10.0 mg/ml. We present quantitative characterization of the rate and extent of cellular remodelability using human umbilical vein endothelial cells. Finally, we present a co-culture with tumor cells and discuss the implications of integrating microfluidic control within scaffolds as a tool to study spatial and temporal signaling during tumor angiogenesis and vascularization of tissue engineered constructs.
Collapse
Affiliation(s)
- Valerie L Cross
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Feng Z, Seya D, Kitajima T, Kosawada T, Nakamura T, Umezu M. Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes. J Artif Organs 2010; 13:139-44. [PMID: 20614226 DOI: 10.1007/s10047-010-0508-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 06/10/2010] [Indexed: 10/19/2022]
Abstract
The viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes were investigated by uniaxial tensile testing. Rat type I collagen-Dulbecco's modified Eagle's medium solution (each 2 ml in volume, 0.5 mg/ml collagen concentration) containing 2.0 million rat fibroblasts or cardiomyocytes were cast in a circular shape. After gelation and culture for 10 days the contracted gels were first stretched to a tensile strain of approximately 0.20 at 4.6 × 10(-3)/s strain rate, and then the strain was kept unchanged for 3 min. The tensile stress in the gels was recorded. The results were regressed against the equations of the Kelvin viscoelastic model. It was found that the two elastic coefficients in the model were 6.5 ± 1.7 and 10.2 ± 3.2 kPa, respectively, for gels with cardiomyocytes and 5.1 ± 1.6 and 4.5 ± 0.9 kPa for those with fibroblasts; the values for gels with cardiomyocytes were significantly higher than those for gels with fibroblasts. The viscous coefficient was 169.6 ± 60.7 kPa s for the cardiomyocytes and 143.6 ± 44.7 kPa s for the fibroblasts. The relaxation time constant for gels with cardiomyocytes was 19.6 ± 10.6 s, significantly smaller than for gels with fibroblasts (36.4 ± 13.3 s). This study is the first to obtain viscoelastic data for living cell-contracted collagen gels. These data show that the viscous effect has a vital effect on the mechanical behavior of the gels and cannot be neglected in the culture and function of artificial substitutes based on contracted collagen gels. Furthermore, the data may imply that viscous coefficient of the gels might be closely related to collagen density rather than to cross linking among collagen fibrils.
Collapse
Affiliation(s)
- Zhonggang Feng
- Graduate School of Science and Engineering, Yamagata University, Johnan 4-3-16, Yonezawa, Yamagata, 992-8510, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Shentu TP, Titushkin I, Singh DK, Gooch KJ, Subbaiah PV, Cho M, Levitan I. oxLDL-induced decrease in lipid order of membrane domains is inversely correlated with endothelial stiffness and network formation. Am J Physiol Cell Physiol 2010; 299:C218-29. [PMID: 20410437 DOI: 10.1152/ajpcell.00383.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oxidized low-density lipoprotein (oxLDL) is a major factor in development of atherosclerosis. Our earlier studies have shown that exposure of endothelial cells (EC) to oxLDL increases EC stiffness, facilitates the ability of the cells to generate force, and facilitates EC network formation in three-dimensional collagen gels. In this study, we show that oxLDL induces a decrease in lipid order of membrane domains and that this effect is inversely correlated with endothelial stiffness, contractility, and network formation. Local lipid packing of cell membrane domains was assessed by Laurdan two-photon imaging, endothelial stiffness was assessed by measuring cellular elastic modulus using atomic force microscopy, cell contractility was estimated by measuring the ability of the cells to contract collagen gels, and EC angiogenic potential was estimated by visualizing endothelial networks within the same gels. The impact of oxLDL on endothelial biomechanics and network formation is fully reversed by supplying the cells with a surplus of cholesterol. Furthermore, exposing the cells to 7-keto-cholesterol, a major oxysterol component of oxLDL, or to another cholesterol analog, androstenol, also results in disruption of lipid order of membrane domains and an increase in cell stiffness. On the basis of these observations, we suggest that disruption of lipid packing of cholesterol-rich membrane domains plays a key role in oxLDL-induced changes in endothelial biomechanics.
Collapse
Affiliation(s)
- Tzu Pin Shentu
- Pulmonary, Critical Care and Sleep Medicine, Dept. of Medicine, University of Illinois, Chicago, Illinois 60612-7323, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Damodarasamy M, Vernon RB, Karres N, Chang CH, Bianchi-Frias D, Nelson PS, Reed MJ. Collagen extracts derived from young and aged mice demonstrate different structural properties and cellular effects in three-dimensional gels. J Gerontol A Biol Sci Med Sci 2010; 65:209-18. [PMID: 20080876 DOI: 10.1093/gerona/glp202] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Three-dimensional (3D) type I collagen gels are increasingly utilized to simulate extracellular matrix (ECM) in vivo, but little is known about the effects of age on this model. Collagen was extracted from young (4-6 months) and aged (20-24 months) mice tails and compared. The collagens appeared similar by electrophoresis. However, relative to young, aged collagen formed fibrils slower and generated 3D gels with smaller diameter, less dense fibrils (75 vs 34 nm diameter and 8 vs 3.5% area, for young and aged respectively, p < 0.02). Correspondingly, aged collagen gels were more malleable and contractible (5% vs 19% compression, p < .02, and 73% vs 15.5% area, p < .01, for young and aged, respectively). Fibroblasts cultured within young and aged collagen gels had differential expression of a limited number of genes and proteins corresponding to specific integrins and matrix components. In summary, collagen extracted from young and aged mice is an effective means to examine the influence of aging on functional properties of ECM that are relevant in vivo.
Collapse
Affiliation(s)
- Mamatha Damodarasamy
- Department of Medicine, Harborview Medical Center, University of Washington, Box 359625, 325 Ninth Avenue, Seattle, WA 98104, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Dye J, Lawrence L, Linge C, Leach L, Firth J, Clark P. Distinct Patterns of Microvascular Endothelial Cell Morphology Are Determined by Extracellular Matrix Composition. ACTA ACUST UNITED AC 2009; 11:151-67. [PMID: 15370292 DOI: 10.1080/10623320490512093] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Endothelial interactions with the extracellular matrix (ECM) play important roles in angiogenesis but whether specific ECM signals can determine specific cellular morphologies is unclear. The authors compared in vitro ECM-induced morphological responses of the phenotypically distinct human placental microvascular endothelial cells (HPMECs) with large vessel endothelial cells (HUVECs). HPMECs showed distinct patterns of reorganization in response to collagen-I or collagen-IV (monolayer disruption, sprouting, migration) and Matrigel or laminin-A (intussusception, cord formation, tubulogenesis), and an intermediate response to fibrin; whereas HUVECs responded similarly to collagen-1 and Matrigel (elongation, lattice formation, vacuolation) and showed little response to fibrin. Although the extent of collagen and Matrigel responses of HPMECs were increased by serum, acidic or basic fibroblast growth factor (aFGF, bFGF), or vascular endothelial growth factor (VEGF), and varied with matrix protein concentration, the basic patterns were matrix specific, and were independent of fibronectin. The collagen responses correlated with disruption of adherens and tight junctions and the formation of filopodial protrusions. Matrigel responses were associated with up-regulated junctional localization of VE-cadherin, and tubulogenesis developed mainly through paracellular remodeling rather than intracellular vacuolation. Overall, these findings suggest that distinct ECM interactions stimulate specific morphological responses. These signals may regulate morphological behaviour in the angiogenesis cycle, switching endothelial cells between migratory and vasculogenic phenotypes.
Collapse
Affiliation(s)
- J Dye
- RAFT Institute of Plastic and Reconstructive Surgery, Mount Vernon Hospital NHS Trust, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
26
|
Krishnan L, Underwood CJ, Maas S, Ellis BJ, Kode TC, Hoying JB, Weiss JA. Effect of mechanical boundary conditions on orientation of angiogenic microvessels. Cardiovasc Res 2008; 78:324-32. [PMID: 18310100 DOI: 10.1093/cvr/cvn055] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIM Mechanical forces are important regulators of cell and tissue phenotype. We hypothesized that mechanical loading and boundary conditions would influence neovessel activity during angiogenesis. METHODS AND RESULTS Using an in vitro model of angiogenesis sprouting and a mechanical loading system, we evaluated the effects of boundary conditions and applied loading. The model consisted of rat microvessel fragments cultured in a 3D collagen gel, previously shown to recapitulate angiogenic sprouting observed in vivo. We examined changes in neovascular growth in response to four different mechanical conditions. Neovessel density, diameter, length and orientation were measured from volumetric confocal images of cultures exposed to no external load (free-floating shape control), intrinsic loads (fixed ends, no stretch), static external load (static stretch), or cyclic external load (cyclic stretch). Neovessels sprouted and grew by the third day of culture and continued to do so during the next 3 days of loading. The numbers of neovessels and branch points were significantly increased in the static stretch group when compared with the free-floating shape control group. In all mechanically loaded cultures, neovessel diameter and length distributions were heterogeneous, whereas they were homogeneous in shape control cultures. Neovessels were significantly more oriented along the direction of mechanical loading than those in the shape controls. Interestingly, collagen fibrils were organized parallel and adjacent to growing neovessels. CONCLUSION Externally applied boundary conditions regulate neovessel sprouting and elongation during angiogenesis, affecting both neovessel growth characteristics and network morphometry. Furthermore, neovessels align parallel to the direction of stress/strain or internally generated traction, and this may be because of collagen fibril alignment induced by the growing neovessels themselves.
Collapse
Affiliation(s)
- Laxminarayanan Krishnan
- Department of Bioengineering, University of Utah, 50 South Central Campus Drive, Room 2480, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Krishnan L, Hoying JB, Nguyen H, Song H, Weiss JA. Interaction of angiogenic microvessels with the extracellular matrix. Am J Physiol Heart Circ Physiol 2007; 293:H3650-8. [PMID: 17933969 DOI: 10.1152/ajpheart.00772.2007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The extracellular matrix (ECM) plays a critical role in angiogenesis by providing biochemical and positional cues, as well as by mechanically influencing microvessel cell behavior. Considerable information is known concerning the biochemical cues relevant to angiogenesis, but less is known about the mechanical dynamics during active angiogenesis. The objective of this study was to characterize changes in the material properties of a simple angiogenic tissue before and during angiogenesis. During sprouting, there was an overall decrease in tissue stiffness followed by an increase during neovessel elongation. The fall in matrix stiffness coincided with peak matrix metalloproteinase mRNA expression and elevated proteolytic activity. An elevated expression of genes for ECM components and cell-ECM interaction molecules and a subsequent drop in proteolytic activity (although enzyme levels remained elevated) coincided with the subsequent stiffening. The results of this study show that the mechanical properties of a scaffold tissue may be actively modified during angiogenesis by the growing microvasculature.
Collapse
Affiliation(s)
- Laxminarayanan Krishnan
- Bioengineering Department, University of Utah, 50 South Central Campus Drive, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
28
|
Gentleman E, Dee KC, Livesay GA, Nauman EA. Operating curves to characterize the contraction of fibroblast-seeded collagen gel/collagen fiber composite biomaterials: effect of fiber mass. Plast Reconstr Surg 2007; 119:508-16. [PMID: 17230083 DOI: 10.1097/01.prs.0000246316.87802.b4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Collagen is a well-established and important biomaterial that could be used to help meet significant medical needs for various soft-tissue replacements. Many efforts to create engineered soft-tissue constructs by seeding cells within collagen gels have been hampered because constituent cells contract collagen gels over time, resulting in a construct that is only a fraction of the original size and that contains a cell population that has suffered a large degree of cell death. However, the presence of embedded short collagen fibers has been shown to significantly limit contraction and dramatically enhance permeability in fibroblast-seeded collagen gels. METHODS Five volume fractions of short collagen fibers were embedded in fibroblast-seeded collagen gels. Collagen gel contraction (n > or = 4 for all groups) and cell viability (n > or = 3 for all groups) were examined after up to 2 weeks in culture. RESULTS The present study demonstrated that increasing the volume fraction of short collagen fibers in fibroblast-seeded collagen gels correspondingly reduced the amount of gel contraction without negatively impacting cell viability after 2 weeks of culture. Furthermore, operating curves that describe the quantitative relationships between the contraction of fibroblast-seeded collagen gel/collagen fiber composite biomaterials, time in culture, and volume fraction of embedded fibers were obtained. CONCLUSION The resulting operating curves enable investigators to tailor initial fabrication procedures to ultimately yield cell-seeded collagen composites of specifically desired sizes-a critical step toward developing clinically useful engineered soft-tissue constructs.
Collapse
|
29
|
Feng Z, Ishibashi M, Nomura Y, Kitajima T, Nakamura T. Constraint Stress, Microstructural Characteristics, and Enhanced Mechanical Properties of a Special Fibroblast-embedded Collagen Construct. Artif Organs 2006; 30:870-7. [PMID: 17062110 DOI: 10.1111/j.1525-1594.2006.00314.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell-contracted collagen gels could provide rejection-free biomaterials for tissue engineering, but their application is limited by relatively low mechanical strength. We developed a special type I collagen construct (based on embedded fibroblasts) that was formed into a gel thread by using two anchors to constrain gel contraction in one direction. Each gel thread contained 2 mg of type I collagen and 1.0 x 10(6) fibroblasts, and had an initial volume of 3 mL. After 9 days in culture, this preparation was transformed into a thread-like construct measuring 26 x 2.3 x 0.21 mm. Investigation of the microstructure showed that the collagen fibrils longitudinally between two cells had most aligned with the direction of the constraint stress and had assumed higher density than those in the freely contracted controls. During culturing, the constraint stress first increased then decreased, with implications for the nature of the interaction between the embedded cells and collagen matrix. Under uniaxial tensile testing, the ultimate stress and material modulus increased by factors of 6 and 16, respectively, compared with controls, while the maximal strain decreased by 590%. Compared with the similar constructs in the literature, the thread gel was fabricated by means of a novel mold configuration so that it contracted to thread shape much faster, and more importantly, the constraint force was firstly reported in this article. The improved mechanical properties show that the gel thread could be an effective biomaterial for such tissue engineering applications as the fabrication of blood vessels, ligaments, and tendon grafts.
Collapse
Affiliation(s)
- Zhonggang Feng
- Department of Bio-System Engineering, Yamagata University, Yonezawa, Japan.
| | | | | | | | | |
Collapse
|
30
|
Huang GTJ, Sonoyama W, Chen J, Park SH. In vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell Tissue Res 2006; 324:225-36. [PMID: 16440193 DOI: 10.1007/s00441-005-0117-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2005] [Accepted: 11/04/2005] [Indexed: 01/09/2023]
Abstract
Our purpose was to characterize human dental pulp cells isolated by various methods and to examine the behavior of cells grown under various conditions for the purpose of pulp/dentin tissue engineering and regeneration. We compared the growth of human pulp cells isolated by either enzyme digestion or the outgrowth method. Expression of dentin sialophosphoprotein, Cbfa1, and two types of collagen (I and III) in these cells was examined by Western blot or reverse transcription/polymerase chain reaction. Growth of pulp cells on dentin and in collagen gel was also characterized. We found that different isolation methods give rise to different populations or lineages of pulp cells during in vitro passage based on their collagen gene expression patterns. Cells isolated by enzymedigestion had a higher proliferation rate than those isolated by outgrowth. Pulp cells did not proliferate or grew minimally on chemically and mechanically treated dentin surface and appeared to establish an odontoblast-like morphology with a cytoplasmic process extending into a dentinal tubule as revealed by scanning electron microscopy. The contraction of the collagen matrix caused by pulp cells was dramatic: down to 34% on day 14. Our data indicate that (1) the choice of the pulp cell isolation method may affect the distribution of the obtained cell populations, (2) a treated dentin surface might still promote odontoblast differentiation, and (3) a collagen matrix may not be a suitable scaffold for pulp tissue regeneration because of the marked contraction caused by pulp cells in the matrix. The present study thus provides important information and a basis for further investigations pre-requisite to establishing pulp tissue engineering/regeneration protocols.
Collapse
Affiliation(s)
- George T-J Huang
- Division of Associated Clinical Specialties, Section of Endodontics, UCLA School of Dentistry, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
31
|
Sieminski AL, Hebbel RP, Gooch KJ. Improved microvascular network in vitro by human blood outgrowth endothelial cells relative to vessel-derived endothelial cells. ACTA ACUST UNITED AC 2005; 11:1332-45. [PMID: 16259589 DOI: 10.1089/ten.2005.11.1332] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Evidence suggests that bone marrow-derived cells circulating in adult blood, sometimes called endothelial progenitor cells, contribute to neovascularization in vivo and give rise to cells expressing endothelial markers in culture. To explore the utility of blood-derived cells expressing an endothelial phenotype for creating tissue-engineered microvascular networks, we employed a three-dimensional in vitro angiogenesis model to compare microvascular network formation by human blood outgrowth endothelial cells (HBOECs) with three human vessel-derived endothelial cell (EC) types: human umbilical vein ECs (HUVECs), and adult and neonatal human microvascular ECs. Under every condition investigated, HBOECs within collagen gels elongated significantly more than any other cell type. Under all conditions investigated, gel contraction and cell elongation were correlated, with HBOECs demonstrating the largest generation of force. HBOECs did not exhibit a survival advantage, nor did they enhance elongation of HUVECs when the two cell types were cocultured. Network formation of both HBOECs and HUVECs was inhibited by blocking antibodies to alpha2beta1, but not alpha(v)beta3, integrins. Taken together, these data suggest that superior network exhibited by HBOECs relative to vessel-derived endothelial cells is not due to a survival advantage, use of different integrins, or secretion of an autocrine/paracrine factor, but may be related to increased force generation.
Collapse
Affiliation(s)
- A L Sieminski
- Department of Bioengineering and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6392, USA
| | | | | |
Collapse
|
32
|
Abstract
The process of sprouting angiogenesis requires that the endothelial cells degrade the basement membrane matrix and migrate into the interstitial matrix. Matrix metalloproteinases are enzymes capable of cleaving numerous extracellular matrix proteins. Increased production and activity of matrix metalloproteinases in any cell type is associated with a more migratory and invasive phenotype. This paper describes results of recent in-vitro studies of the regulation of transcription and activation of MMP-2 and MT1-MMP in endothelial cells, as well as studies that examined roles of matrix metalloproteinases in activity-induced angiogenesis.
Collapse
Affiliation(s)
- Tara L Haas
- School of Kinesiology and Health Sciences, York University, Toronto, ON, Canada.
| |
Collapse
|
33
|
Kaufman LJ, Brangwynne CP, Kasza KE, Filippidi E, Gordon VD, Deisboeck TS, Weitz DA. Glioma expansion in collagen I matrices: analyzing collagen concentration-dependent growth and motility patterns. Biophys J 2005; 89:635-50. [PMID: 15849239 PMCID: PMC1366562 DOI: 10.1529/biophysj.105.061994] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We study the growth and invasion of glioblastoma multiforme (GBM) in three-dimensional collagen I matrices of varying collagen concentration. Phase-contrast microscopy studies of the entire GBM system show that invasiveness at early times is limited by available collagen fibers. At early times, high collagen concentration correlates with more effective invasion. Conversely, high collagen concentration correlates with inhibition in the growth of the central portion of GBM, the multicellular tumor spheroid. Analysis of confocal reflectance images of the collagen matrices quantifies how the collagen matrices differ as a function of concentration. Studying invasion on the length scale of individual invading cells with a combination of confocal and coherent anti-Stokes Raman scattering microscopy reveals that the invasive GBM cells rely heavily on cell-matrix interactions during invasion and remodeling.
Collapse
Affiliation(s)
- L J Kaufman
- Division of Engineering and Applied Sciences, and Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Boyd PJ, Doyle J, Gee E, Pallan S, Haas TL. MAPK signaling regulates endothelial cell assembly into networks and expression of MT1-MMP and MMP-2. Am J Physiol Cell Physiol 2004; 288:C659-68. [PMID: 15509661 DOI: 10.1152/ajpcell.00211.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microvascular endothelial cells embedded within three-dimensional (3D) type I collagen matrixes assemble into cellular networks, a process that requires the upregulation of membrane type 1 (MT1) matrix metalloproteinase (MMP) and MMP-2. The purpose of this study was to identify the signaling pathways responsible for the transcriptional activation of MT1-MMP and MMP-2 in endothelial cells in 3D collagen lattices. We hypothesized that the 3D type I collagen induction of MT1-MMP and MMP-2 is mediated by the mitogen-activated protein kinase family of enzymes. Here, we show that 3D type I collagen elicits a persistent increase in ERK1/2 and JNK activation and a decrease in p38 activation. Inhibition of ERK1/2 or JNK disrupted endothelial network formation in 3D type I collagen lattices, whereas inhibition of p38 promoted network formation. mRNA levels of both MT1-MMP and MMP-2 were attenuated by ERK1/2 inhibition but unaffected by either JNK or p38 inhibition. By contrast, expression of constitutively active MEK was sufficient to stimulate MMP-2 production in a monolayer of endothelial cells cultured on type I collagen. These results provide evidence that signaling through both ERK1/2 and JNK regulates endothelial assembly into cellular networks but that the ERK1/2 signaling cascade specifically regulates network formation and the production of both MT1-MMP and MMP-2 genes in response to 3D type I collagen.
Collapse
Affiliation(s)
- Pamela J Boyd
- School of Kinesiology and Health Sciences, Farquharson Bldg., Rm. 341, York University, 4700 Keele St., Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | |
Collapse
|
35
|
Sieminski AL, Hebbel RP, Gooch KJ. The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp Cell Res 2004; 297:574-84. [PMID: 15212957 DOI: 10.1016/j.yexcr.2004.03.035] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 03/01/2004] [Indexed: 01/07/2023]
Abstract
When suspended in collagen gels, endothelial cells elongate and form capillary-like networks containing lumens. Human blood outgrowth endothelial cells (HBOEC) suspended in relatively rigid 3 mg/ml floating collagen gels, formed in vivo-like, thin, branched multi-cellular structures with small, thick-walled lumens, while human umbilical vein endothelial cells (HUVEC) formed fewer multi-cellular structures, had a spread appearance, and had larger lumens. HBOEC exert more traction on collagen gels than HUVEC as evidenced by greater contraction of floating gels. When the stiffness of floating gels was decreased by decreasing the collagen concentration from 3 to 1.5 mg/ml, HUVEC contracted gels more and formed thin, multi-cellular structures with small lumens, similar in appearance to HBOEC in floating 3 mg/ml gels. In contrast to floating gels, traction forces exerted by cells in mechanically constrained gels encounter considerable resistance. In constrained collagen gels (3 mg/ml), both cell types appeared spread, formed structures with fewer cells, had larger, thinner-walled lumens than in floating gels, and showed prominent actin stress fibers, not seen in floating gels. These results suggest that the relative magnitudes of cellular force generation and apparent matrix stiffness modulate capillary morphogenesis in vitro and that this balance may play a role in regulating angiogenesis in vivo.
Collapse
Affiliation(s)
- A L Sieminski
- Department of Bioengineering and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6392, USA
| | | | | |
Collapse
|
36
|
Jakab K, Neagu A, Mironov V, Markwald RR, Forgacs G. Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc Natl Acad Sci U S A 2004; 101:2864-9. [PMID: 14981244 PMCID: PMC365711 DOI: 10.1073/pnas.0400164101] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2003] [Indexed: 01/28/2023] Open
Abstract
Self-assembly is a fundamental process that drives structural organization in both inanimate and living systems. It is in the course of self-assembly of cells and tissues in early development that the organism and its parts eventually acquire their final shape. Even though developmental patterning through self-assembly is under strict genetic control it is clear that ultimately it is physical mechanisms that bring about the complex structures. Here we show, both experimentally and by using computer simulations, how tissue liquidity can be used to build tissue constructs of prescribed geometry in vitro. Spherical aggregates containing many thousands of cells, which form because of tissue liquidity, were implanted contiguously into biocompatible hydrogels in circular geometry. Depending on the properties of the gel, upon incubation, the aggregates either fused into a toroidal 3D structure or their constituent cells dispersed into the surrounding matrix. The model simulations, which reproduced the experimentally observed shapes, indicate that the control parameter of structure evolution is the aggregate-gel interfacial tension. The model-based analysis also revealed that the observed toroidal structure represents a metastable state of the cellular system, whose lifetime depends on the magnitude of cell-cell and cell-matrix interactions. Thus, these constructs can be made long-lived. We suggest that spherical aggregates composed of organ-specific cells may be used as "bio-ink" in the evolving technology of organ printing.
Collapse
Affiliation(s)
- Karoly Jakab
- Department of Physics, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
37
|
Puolakkainen P, Bradshaw AD, Kyriakides TR, Reed M, Brekken R, Wight T, Bornstein P, Ratner B, Sage EH. Compromised production of extracellular matrix in mice lacking secreted protein, acidic and rich in cysteine (SPARC) leads to a reduced foreign body reaction to implanted biomaterials. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:627-35. [PMID: 12547720 PMCID: PMC1851143 DOI: 10.1016/s0002-9440(10)63856-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SPARC (secreted protein, acidic and rich in cysteine), a matricellular glycoprotein, modulates the interaction of cells with the extracellular matrix (ECM). Recently, accelerated cutaneous wound closure and altered deposition of collagen were reported in SPARC-null mice. Herein we asked whether SPARC might influence the foreign body reaction to biomaterial implants. Polydimethylsiloxane (silicone rubber) disks and cellulose Millipore filters were implanted into wild-type and SPARC-null mice. In wild-type animals, significant levels of SPARC were observed in the cells and the ECM comprising the capsules around the implants. After 4 weeks, SPARC-null mice exhibited a significant decrease in the thickness of the foreign body capsule, as compared to that observed in wild-type mice. A significant reduction in capsular vascular density was also associated with the silicone implants in the SPARC-null animals. Electron microscopy revealed that collagen fibers in the capsules produced by SPARC-null mice were smaller and more uniform in size than those in wild-type animals. Furthermore, staining with picrosirius-red showed that the collagen fibers were less mature in SPARC-null than in wild-type mice. The altered ECM resulting in decreased capsular thickness, indicative of an altered foreign body reaction in SPARC-null mice, implicates SPARC as an important modulator of the encapsulation of implanted biomaterials.
Collapse
Affiliation(s)
- Pauli Puolakkainen
- Department of Vascular Biology, The Hope Heart Institute, University of Washington, Seattle, Washington 98104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Feng Z, Yamato M, Akutsu T, Nakamura T, Okano T, Umezu M. Investigation on the mechanical properties of contracted collagen gels as a scaffold for tissue engineering. Artif Organs 2003; 27:84-91. [PMID: 12534718 DOI: 10.1046/j.1525-1594.2003.07187.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this article the mechanical properties of contracted collagen gels were investigated thoroughly by means of uniaxial tensile test. Large type I collagen-Dulbecco's Modified Eagle Medium (DMEM) gels (each was 26 ml in volume, 1.67 mg/ml collagen concentration), each populated with about 2.5 x 106 human fibroblasts, were made in 100 mm diameter plastic dishes precoated with albumin for floating the gels in DMEM. Such identically treated gels were divided into three groups for the mechanical measurements at different culture periods (2, 4, and 10 weeks). Rapid contraction occurred within the first 3 days and then the contraction went slowly in the rest period until it reached about 13% of its original size. The stress-strain curve of the contracted collagen gels demonstrated an exponential behavior at low stress region, followed by linear region, a point of yielding, and finally an ultimate stress point at which the maximum stress was reached. The mechanical strength increased in the first few weeks and then decreased as the culture went on. It is obvious that the collagen fibrils formed and were forced to orientate to the tensile direction after the test. The stress relaxation and cyclic creep phenomena were observed. Based on the morphological analysis of transmission electron microscopy (TEM) of the gels, a nonlinear visco-elastic-plastic constitutive formula was proposed, which was able to reproduce the rheological phenomena of the gels. This experiment shows that the human fibroblasts significantly contracted collagen gels so as to achieve certain mechanical strength, which makes it possible to be a scaffold for tissue engineering. However, a further method to reinforce the mechanical strength by several folds must be considered. Meanwhile, the rheological phenomena should be taken into account in the fabrication and application of the structure.
Collapse
Affiliation(s)
- Z Feng
- Department of Bio-System Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Mujumdar VS, Tummalapalli CM, Aru GM, Tyagi SC. Mechanism of constrictive vascular remodeling by homocysteine: role of PPAR. Am J Physiol Cell Physiol 2002; 282:C1009-15. [PMID: 11940516 DOI: 10.1152/ajpcell.00353.2001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test the hypothesis that homocysteine induces constrictive vascular remodeling by inactivating peroxisome proliferator-activated receptor (PPAR), aortic endothelial cells (ECs) and smooth muscle cells (SMCs) were isolated. Collagen gels were prepared, and ECs or SMCs (10(5)) or SMCs + ECs (10(4)) were incorporated into the gels. To characterize PPAR, agonists of PPAR-alpha [ciprofibrate (CF)] and PPAR-gamma [15-deoxy-12,14-prostaglandin J(2) (PGJ(2))] were used. To determine the role of disintegrin metalloproteinase (DMP), cardiac inhibitor of metalloproteinase (CIMP) was used in collagen gels. Gel diameter at 0 h was 14.1 +/- 0.2 mm and was unchanged up to 24 h as measured by a digital micrometer. SMCs reduce gel diameter to 10.5 +/- 0.4 mm at 24 h. Addition of homocysteine to SMCs reduces further the gel diameter to 8.0 +/- 0.2 mm, suggesting that SMCs induce contraction and that the contraction is further enhanced by homocysteine. Addition of ECs and SMCs reduces gel diameter to 12.0 +/- 0.3 mm, suggesting that ECs play a role in collagen contraction. Only PGJ(2), not CF, inhibits SMC contraction. However, both PGJ(2) and CF inhibit contraction of ECs and SMCs + ECs. Addition of anti-DMP blocks SMC- as well as homocysteine-mediated contraction. However, CIMP inhibits only homocysteine-mediated contraction. The results suggest that homocysteine may enhance vascular constrictive remodeling by inactivating PPAR-alpha and -gamma in ECs and PPAR-gamma in SMCs.
Collapse
Affiliation(s)
- Vibhas S Mujumdar
- Department of Physiology and Biophysics, School of Medicine, The University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The collagen gel contraction (CGC) assay is used frequently to study the cell-mediated reorganization of the extracellular natrix. In a typical CGC assay, cells embedded in a disk-shaped lattice (gel) of native type I collagen fibers compress the fibers and, consequently, reduce the diameter of the collagen disk within h or d. The degree to which the collagen is contracted is usually quantified by measurement of the diameter or the area of the disk. During CCC assays, friction or adhesion (or both) between gels and their culture containers can cause gels to be incompletely contracted or to acquire distorted shapes. Such occurrences degrade the reproducibility and reliability of measurements of gel dimensions. To address these problems, we developed an oil-supported collagen retraction (OSCR) assay that creates an environment of low friction and adhesion around the contracting collagen gel. The OSCR assay is accomplished with simple equipment and is easily performed, sensitive, and consistently yields fully contracted gels with minimal distortion.
Collapse
|
41
|
Abstract
Expression of SPARC (secreted protein acidic and rich in cysteine; osteonectin, BM-40), an extracellular matrix (ECM) associated protein, is coincident with matrix remodeling. To further identify the functions of SPARC in vivo, we have made excisional wounds on the dorsa of SPARC-null and wild-type mice and monitored closure over time. A significant decrease in the size of the SPARC-null wounds, in comparison to that of wild-type, was observed at Day 4 and was maximal at Day 7. Although substantial differences in the percentage of proliferating cells were not apparent in SPARC-null relative to wild-type wounds, primary cultures of SPARC-null dermal fibroblasts displayed accelerated migration, relative to wild-type fibroblasts, in wound assays in vitro. Although the expression of collagen I mRNA in wounds, as measured by in situ hybridization (ISH), was not significantly different in SPARC-null vs wild-type mice, the collagen content of unwounded skin appeared to be substantially lower in the SPARC-null animals. By hydroxyproline analysis, the concentration of collagen in SPARC-null skin was found to be half that of wild-type skin. Moreover, we found an inverse correlation between the efficiency of collagen gel contraction by dermal fibroblasts and the concentration of collagen within the gel itself. We propose that the accelerated wound closure seen in SPARC-null dermis results from its decreased collagen content, a condition contributing to enhanced contractibility.
Collapse
Affiliation(s)
- Amy D Bradshaw
- Department of Vascular Biology, The Hope Heart Institute, Seattle, Washington 98104, USA
| | | | | |
Collapse
|
42
|
Semler EJ, Moghe PV. Engineering hepatocyte functional fate through growth factor dynamics: the role of cell morphologic priming. Biotechnol Bioeng 2001; 75:510-20. [PMID: 11745126 DOI: 10.1002/bit.10113] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have reported previously that cellular stimulation induced by variable mechanochemical properties of the extracellular microenvironment can significantly alter liver-specific function in cultured hepatocytes (Semler et al., Biotech Bioeng 69:359-369, 2000). Cell activation via time-invariant presentation of biochemical growth factors was found to either enhance or repress cellular differentiation of cultured hepatocytes depending on the mechanical properties of the underlying substrate. In this work, we investigated the effects of dynamic growth factor stimulation on the cell growth and differentiation behavior of hepatocytes cultured on either compliant or rigid substrates. Specifically, hepatotrophic growth factors (epidermal and hepatocyte) were either temporally added or withdrawn from hepatocyte cultures on Matrigel that was crosslinked to yield differential degrees of mechanical compliance. We determined that the functional responsiveness of hepatocytes to fluctuations in GF stimulation is substrate specific but only in conditions in which the initial mechanochemical environment induced significant cell morphogenesis. Our studies indicate that in conditions under which hepatocytes adopted a "rounded" phenotype, they exhibited increased levels of differentiated function upon soluble stimulation and markedly decreased function upon the depletion of GF stimulation. In contrast, hepatocytes that assumed a "spread" phenotype exhibited slightly increased function upon the depletion of GF stimulation. By examining the functional responsiveness of hepatocytes of differential morphology to varied fluctuations in GF activation, insights into the ability of cell shape to "prime" hepatocyte behavior in dynamic microenvironments were elucidated. We report on the possibility of uncoupling and, thus, selectively manipulating, the concerted contributions of GF-induced cellular activation and substrate- and GF-induced cell morphogenesis toward induction of cell function.
Collapse
Affiliation(s)
- E J Semler
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
43
|
Uyeno LA, Newman-Keagle JA, Cheung I, Hunt TK, Young DM, Boudreau N. Hox D3 expression in normal and impaired wound healing. J Surg Res 2001; 100:46-56. [PMID: 11516204 DOI: 10.1006/jsre.2001.6174] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND We have previously shown that Hox D3 and Hox B3 can promote angiogenesis. As angiogenesis is essential for wound healing, we examined expression of these genes in the vasculature following wounding in normal and genetically diabetic adult mice with impaired healing. METHODS In situ hybridization was performed on tissues taken 0, 1, 4, 7, and 14 days following administration of linear wounds in wild-type and genetically diabetic mice. Expression of Hox D3 and Hox B3, angiogenesis, and synthesis of type I collagen were assessed in the wound. RESULTS Hox B3 was expressed in endothelial cells (ECs) of both medium and small vessels in unwounded tissue, whereas little Hox D3 was detected in resting ECs. Hox D3 expression was significantly upregulated by 1 day after wounding in ECs of vessels immediately adjacent to the wound site, and expression was maintained for at least 7 days. In the diabetic mice, expression of Hox B3 was similar to that of wild-type mice. In contrast, expression of Hox D3 in ECs was significantly lower and delayed during wound repair in diabetic mice. In cultured microvascular ECs, Hox D3 selectively induced high levels of collagen I mRNA expression. Hox D3-deficient wounds of diabetic animals also displayed a reduction in expression and deposition of type I collagen. CONCLUSIONS These results suggest that reduced angiogenesis and type I collagen in diabetic mice with impaired wound healing may be related to deficient Hox D3 expression, and restoring Hox D3 expression may enhance angiogenesis and wound repair.
Collapse
Affiliation(s)
- L A Uyeno
- Surgical Research Laboratory, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | |
Collapse
|
44
|
Reed MJ, Ferara NS, Vernon RB. Impaired migration, integrin function, and actin cytoskeletal organization in dermal fibroblasts from a subset of aged human donors. Mech Ageing Dev 2001; 122:1203-20. [PMID: 11389933 DOI: 10.1016/s0047-6374(01)00260-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Deficits in the motility of fibroblasts contribute to age-related impairment of wound healing. We analyzed 'young' fibroblasts from four healthy donors 22-30 years old and 'aged' fibroblasts from six healthy donors 81-92 years old for migratory ability on type I collagen, secretion of matrix metalloproteases (MMPs), attachment to matrices and, expression and function of integrin alpha2beta1. Cells from each donor were analyzed separately in each experiment. Whereas migration of young fibroblasts was uniformly robust, three aged lines migrated well and three migrated poorly. Synthesis of MMP1 and TIMP1, but not MMP2 or MMP9, was increased in the aged fibroblasts relative to the young fibroblast lines irrespective of their motility. All lines of young and aged fibroblasts attached to plastic or collagen with similar efficiency. Although young and aged fibroblasts expressed comparable levels of the alpha2 integrin; the lines of aged fibroblasts that were poor migrators exhibited a significant reduction in alpha2beta1 function relative to fibroblasts with normal migratory capacities. Moreover, the lines of aged fibroblasts that exhibited poor migration demonstrated a disordered actin cytoskeleton and a reduced ability to contract collagen gels. In conclusion, aged fibroblasts, unlike young fibroblasts, displayed variable migratory capacities. Deficient migration by specific lines of aged fibroblasts was not related to the capacity to attach, express alpha2 integrin, or secrete MMPs and TIMP1, but was characterized by disorganized cytoskeletal actin and reduced alpha2beta1 function.
Collapse
Affiliation(s)
- M J Reed
- Division of Gerontology and Geriatric Medicine, Box 359755, Department of Medicine, University of Washington, Seattle, WA 98104, USA.
| | | | | |
Collapse
|
45
|
Lijnen PJ, Petrov VV, Jackson KC, Fagard RH. Effect of telmisartan on angiotensin II-mediated collagen gel contraction by adult rat cardiac fibroblasts. J Cardiovasc Pharmacol 2001; 38:39-48. [PMID: 11444501 DOI: 10.1097/00005344-200107000-00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The possible contributions of the angiotensin receptor subtypes 1 and 2 on the angiotensin II-induced collagen gel contraction by adult rat cardiac fibroblasts were studied using the specific angiotensin receptor type 1 and 2 antagonists telmisartan and P-186, respectively. Cardiac fibroblasts (from normal male adult rats) from passage 2 were cultured to confluency and added to a hydrated collagen gel, with or without angiotensin II, angiotensin II plus telmisartan, or angiotensin II plus P-186 in Dulbecco's Modified Eagle's Medium containing 5% fetal bovine serum for 1, 2, or 3 days. Control gels containing adult rat cardiac fibroblasts showed a significant amount of contraction after 3 days of incubation, causing a contraction to 67.9 +/- 7.1% of the area after 1 day. Angiotensin II (10(-7) M) stimulated (p < or = 0.05) the contraction of collagen mediated by cardiac fibroblasts after 1, 2, or 3 days. Telmisartan (10(-7) M) completely blocked the angiotensin II-induced collagen contraction by cardiac fibroblasts. P-186 (10(-7) M) had no effect on the angiotensin II-induced collagen contraction by cardiac fibroblasts. Addition of telmisartan and P-186 alone did not affect the collagen gel contraction by cardiac fibroblasts. Our data demonstrate that the effects of angiotensin II on the collagen gel contraction by adult rat cardiac fibroblasts are angiotensin II type 1 receptor mediated because they were abolished by the specific angiotensin II type 1 receptor antagonist telmisartan but not by the specific angiotensin II type 2 receptor antagonist P-186.
Collapse
Affiliation(s)
- P J Lijnen
- Department of Molecular and Cardiovascular Research, Faculty of Medicine, University of Leuven (Katholieke Universiteit Leuven), Belgium.
| | | | | | | |
Collapse
|
46
|
Davis GE, Pintar Allen KA, Salazar R, Maxwell SA. Matrix metalloproteinase-1 and -9 activation by plasmin regulates a novel endothelial cell-mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices. J Cell Sci 2001; 114:917-30. [PMID: 11181175 DOI: 10.1242/jcs.114.5.917] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we describe a new function for plasmin and matrix metalloproteinases (MMPs), which is to regulate the regression of capillary tubes in three-dimensional extracellular matrix environments. Using a well-described capillary morphogenesis system in three-dimensional collagen matrices, a new model of capillary regression has been established by adding plasminogen to the culture medium. Plasminogen is converted to plasmin by endothelial cell plasminogen activators which then induces matrix metalloproteinase-dependent collagen gel contraction and capillary regression. Plasminogen addition results in activation of MMP-1 and MMP-9, which then results in collagen proteolysis followed by capillary regression. The endothelial cells undergo apoptosis following gel contraction as detected by flow cytometric analysis as well as by detectable caspase-3 cleavage and caspase-dependent cleavage of the actin cytoskeletal regulatory protein, gelsolin. In addition, directly correlating with the contraction response, tyrosine phosphorylation of p130cas, an adapter protein in the focal adhesion complex, is observed followed by disappearance of the protein. Proteinase inhibitors that block MMPs (TIMP-1 or TIMP-2), plasminogen activators (PAI-1) or plasmin (aprotinin) completely block the gel contraction and regression process. In addition, chemical inhibitors of MMPs that block capillary regression also block MMP-1 and MMP-9 activation suggesting that a key element in this regression response is the molecular control of MMP activation by endothelial cells. Blocking antibodies directed to MMP-1 or MMP-9 interfere with capillary regression while blocking antibodies directed to PAI-1 accelerate capillary regression suggesting that endogenous synthesis of PAI-1 negatively regulates this process. These data present a novel system to study a new mechanism that may regulate regression of capillary tubes, namely, plasmin and MMP-mediated degradation of extracellular matrix.
Collapse
Affiliation(s)
- G E Davis
- Department of Pathology and Laboratory Medicine, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA.
| | | | | | | |
Collapse
|
47
|
Travis JA, Hughes MG, Wong JM, Wagner WD, Geary RL. Hyaluronan enhances contraction of collagen by smooth muscle cells and adventitial fibroblasts: Role of CD44 and implications for constrictive remodeling. Circ Res 2001; 88:77-83. [PMID: 11139477 DOI: 10.1161/01.res.88.1.77] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Remodeling contributes to restenosis when cells shrink the artery wall at sites of injury. This may be analogous to wound healing, where tissue remodeling achieves wound contraction. Hyaluronan (HA) is prominent in wound matrix and inhibits fetal scarring. HA is also produced in the artery wall after angioplasty, where it may inhibit constrictive remodeling. This hypothesis was tested in vitro using a model of matrix contraction. Primate aortic smooth muscle cells and adventitial fibroblasts were seeded into collagen I gels containing increasing amounts of HA (0% to 50%, wt/wt). Both cell types reduced the diameter of collagen alone approximately 65% at 18 hours. HA significantly increased gel contraction (diameter in mm: 0% HA, 7. 7+/-0.9; 2%, 7.1+/-0.7; 10%, 6.7+/-0.5; 50%, 5.6+/-0.9; P<0.05 for >/=10%), cell spreading and telopodia, and pericellular accumulation of collagen fibrils. These effects were mediated in part by cellular HA binding, because an antibody against CD44 receptors blocked pericellular collagen accumulation and enhanced gel contraction without altering cell shape. The role of CD44 was specific, because inhibiting receptor for hyaluronic acid-mediated motility (RHAMM) had no effect. Blocking ss(1)-integrins completely inhibited contraction of collagen, but gels containing HA required CD44 and ss(1)-integrin blockade for complete inhibition. Enhanced collagen reorganization and contraction were not attributable to increased collagenase activity, because the metalloproteinase inhibitor batimastat had no effect. In summary, HA enhanced collagen reorganization by the cell types most likely to mediate constrictive remodeling after angioplasty. These effects were CD44-dependent, thus providing a potential target for therapies to prevent constrictive remodeling and restenosis.
Collapse
Affiliation(s)
- J A Travis
- Department of Surgery, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | |
Collapse
|
48
|
Okamoto H, Yatomi Y, Ohmori T, Satoh K, Matsumoto Y, Ozaki Y. Sphingosine 1-phosphate stimulates G(i)- and Rho-mediated vascular endothelial cell spreading and migration. Thromb Res 2000; 99:259-65. [PMID: 10942792 DOI: 10.1016/s0049-3848(00)00251-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sphingosine 1-phosphate (Sph-1-P) is a bioactive lipid released from activated platelets, which may be involved in angiogenesis. We, hence, investigated Sph-1-P effects on human umbilical vein endothelial cells (HUVECs) from a viewpoint of angiogenesis. Sph-1-P facilitated HUVEC spreading on the basement membrane component Matrigel, at concentrations ranging from 10 to 250 nM. This stimulatory response induced by Sph-1-P was blocked by pertussis toxin and C3 transferase (from Clostridium botulinum), which inactivate G(i)-type heterotrimeric G protein and Rho, respectively. Furthermore, Sph-1-P, in the modified Boyden's chamber assay, stimulated HUVEC migration in a concentration-dependent manner, up to 250 nM. Checkerboard analysis revealed that Sph-1-P markedly induces directional migration (chemotaxis), but a random motility (chemokinesis) was also enhanced. The stimulatory effect of Sph-1-P on HUVEC migration was much stronger than that of other bioactive lipids, and again inhibited by pertussis toxin and by C3 transferase. Our present results that Sph-1-P induces endothelial spreading and migration through G(i)-coupled cell surface receptor(s) and Rho are consistent with a recent report on the role of this platelet-derived sphingolipid as a novel regulator of angiogenesis.
Collapse
Affiliation(s)
- H Okamoto
- First Department of Surgery, Yamanashi Medical University, Nakakoma, 409-3898, Yamanashi, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Cooke ME, Sakai T, Mosher DF. Contraction of collagen matrices mediated by alpha2beta1A and alpha(v)beta3 integrins. J Cell Sci 2000; 113 ( Pt 13):2375-83. [PMID: 10852817 DOI: 10.1242/jcs.113.13.2375] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The (beta)1-null fibroblastic cell line GD25 and its derivatives were studied to gain an understanding of the roles of (beta)1 and (beta)3 integrins in the initial (1-hour) contraction of collagen gels. Stable transfectants of GD25 cells expressing the (beta)1A splice variant of (beta)1 ((beta)1A-GD25) did not express (alpha)2(beta)1A and did not adhere to collagen. After transfection of (alpha)2 into (beta)1A-GD25 cells, the (alpha)2(beta)1A-GD25 transfectants contracted collagen gels in the presence of serum, whereas (beta)1A-GD25 cells did not. The GD25 parental cells, however, also contracted collagen gels. Collagen gel contraction by GD25 cells was blocked by antibodies to (alpha)v(beta)3 or a RGD-containing peptide, indicating that (alpha)v(beta)3 is the integrin responsible for mediation of contraction by GD25 cells. Collagen gel contraction by (alpha)2(beta)1A-GD25 cells was not inhibited by antibodies to (alpha)v(beta)3 or RGD-containing peptide, but was inhibited by anti-(alpha)2 antibody. Flow cytometry demonstrated negligible expression of (alpha)v(beta)3 by (beta)1A-GD25 and (alpha)2(beta)1A-GD25 cells when compared to GD25 cells. Platelet derived growth factor (PDGF) and sphingosine-1-phosphate (S1P) enabled gel contraction by (alpha)2(beta)1A-GD25 and GD25 cells, respectively, in the absence of serum. PDGF-stimulated contraction by (alpha)2(beta)1A-GD25 cells was attenuated in the presence of inhibitors of phosphatidylinositol-3-kinase whereas such inhibitors had no effect on S1P-stimulated contraction by GD25 cells. These experiments using the (beta)1-null GD25 cells and (beta)1A and (alpha)2(beta)1A transfectants demonstrate that (alpha)2(beta)1A and (alpha)v(beta)3 independently mediate collagen gel contraction and are regulated by different serum factors and signaling pathways.
Collapse
Affiliation(s)
- M E Cooke
- Department of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
50
|
Cellular mechanisms for focal proteolysis and the regulation of the microenvironment. ACTA ACUST UNITED AC 2000. [DOI: 10.1054/fipr.2000.0068] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|