1
|
Ismatullah H, Jabeen I, Kiani YS. Structural and functional insight into a new emerging target IP 3R in cancer. J Biomol Struct Dyn 2024; 42:2170-2196. [PMID: 37070253 DOI: 10.1080/07391102.2023.2201332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Calcium signaling has been identified as an important phenomenon in a plethora of cellular processes. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ER-residing intracellular calcium (Ca2+) release channels responsible for cell bioenergetics by transferring calcium from the ER to the mitochondria. The recent availability of full-length IP3R channel structure has enabled the researchers to design the IP3 competitive ligands and reveal the channel gating mechanism by elucidating the conformational changes induced by ligands. However, limited knowledge is available for IP3R antagonists and the exact mechanism of action of these antagonists within a tumorigenic environment of a cell. Here in this review a summarized information about the role of IP3R in cell proliferation and apoptosis has been discussed. Moreover, structure and gating mechanism of IP3R in the presence of antagonists have been provided in this review. Additionally, compelling information about ligand-based studies (both agonists and antagonists) has been discussed. The shortcomings of these studies and the challenges toward the design of potent IP3R modulators have also been provided in this review. However, the conformational changes induced by antagonists for channel gating mechanism still display some major drawbacks that need to be addressed. However, the design, synthesis and availability of isoform-specific antagonists is a rather challenging one due to intra-structural similarity within the binding domain of each isoform. HighlightsThe intricate complexity of IP3R's in cellular processes declares them an important target whereby, the recently solved structure depicts the receptor's potential involvement in a complex network of processes spanning from cell proliferation to cell death.Pharmacological inhibition of IP3R attenuates the proliferation or invasiveness of cancers, thus inducing necrotic cell death.Despite significant advancements, there is a tremendous need to design new potential hits to target IP3R, based upon 3D structural features and pharmacophoric patterns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Humaira Ismatullah
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ishrat Jabeen
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Yusra Sajid Kiani
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
2
|
Zhao X, Yang P. Hydroxychloroquine alleviates the neurotoxicity induced by anti-ribosomal P antibodies. J Neuroimmunol 2021; 358:577648. [PMID: 34229206 DOI: 10.1016/j.jneuroim.2021.577648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/27/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by a wide spectrum of autoantibodies, among which anti-ribosomal P (anti-P) antibodies are considered to be closely related to the neuropsychiatric SLE (NPSLE). Hydroxychloroquine (HCQ) has been proven to be effective against a variety of autoimmune diseases and is an essential drug for the treatment of SLE. In this study, we investigated the effects of anti-ribosomal P (anti-P) antibodies on neural cells and determined whether hydroxychloroquine (HCQ) influenced the anti-P antibodies-induced changes. The results showed that the binding of anti-P antibodies with mouse neuroblastoma- 2a (N2a) cells and rat primary neurons resulted in elevated intracellular calcium levels, inducing decreased cell viability and cell apoptosis. These inhibitory effects were alleviated by HCQ in a concentration-dependent manner by reducing the intracellular calcium levels and modulating the expression of apoptotic proteins. In summary, our study demonstrates that anti-P antibodies induce neural cell damage. HCQ could ease the damage effects and may play a neuroprotective role in NPSLE.
Collapse
Affiliation(s)
- Xinnan Zhao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of China Medical University, Nanjing North Street 155, Heping District, Shenyang, Liaoning, China
| | - Pingting Yang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of China Medical University, Nanjing North Street 155, Heping District, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Vitte J, Michel M, Mezouar S, Diallo AB, Boumaza A, Mege JL, Desnues B. Immune Modulation as a Therapeutic Option During the SARS-CoV-2 Outbreak: The Case for Antimalarial Aminoquinolines. Front Immunol 2020; 11:2159. [PMID: 32983179 PMCID: PMC7484884 DOI: 10.3389/fimmu.2020.02159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
The rapid spread, severity, and lack of specific treatment for COVID-19 resulted in hasty drug repurposing. Conceptually, trials of antivirals were well-accepted, but twentieth century antimalarials sparked an impassioned global debate. Notwithstanding, antiviral and immunomodulatory effects of aminoquinolines have been investigated in vitro, in vivo and in clinical trials for more than 30 years. We review the mechanisms of action of (hydroxy)chloroquine on immune cells and networks and discuss promises and pitfalls in the fight against SARS-CoV-2, the agent of the COVID-19 outbreak.
Collapse
Affiliation(s)
- Joana Vitte
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Moïse Michel
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Soraya Mezouar
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Aïssatou Bailo Diallo
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Asma Boumaza
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Jean-Louis Mege
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Benoit Desnues
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
4
|
Nirk EL, Reggiori F, Mauthe M. Hydroxychloroquine in rheumatic autoimmune disorders and beyond. EMBO Mol Med 2020; 12:e12476. [PMID: 32715647 PMCID: PMC7411564 DOI: 10.15252/emmm.202012476] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Initially used as antimalarial drugs, hydroxychloroquine (HCQ) and, to a lesser extent, chloroquine (CQ) are currently being used to treat several diseases. Due to its cost‐effectiveness, safety and efficacy, HCQ is especially used in rheumatic autoimmune disorders (RADs), such as systemic lupus erythematosus, primary Sjögren's syndrome and rheumatoid arthritis. Despite this widespread use in the clinic, HCQ molecular modes of action are still not completely understood. By influencing several cellular pathways through different mechanisms, CQ and HCQ inhibit multiple endolysosomal functions, including autophagy, as well as endosomal Toll‐like receptor activation and calcium signalling. These effects alter several aspects of the immune system with the synergistic consequence of reducing pro‐inflammatory cytokine production and release, one of the most marked symptoms of RADs. Here, we review the current knowledge on the molecular modes of action of these drugs and the circumstances under which they trigger side effects. This is of particular importance as the therapeutic use of HCQ is expanding beyond the treatment of malaria and RADs.
Collapse
Affiliation(s)
- Eliise Laura Nirk
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mario Mauthe
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Bonegio RG, Lin JD, Beaudette-Zlatanova B, York MR, Menn-Josephy H, Yasuda K. Lupus-Associated Immune Complexes Activate Human Neutrophils in an FcγRIIA-Dependent but TLR-Independent Response. THE JOURNAL OF IMMUNOLOGY 2019; 202:675-683. [PMID: 30610165 DOI: 10.4049/jimmunol.1800300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the presence of autoantibodies against nucleic acids and nucleoproteins. Anti-dsDNA Abs are considered a hallmark of SLE, and previous studies have indicated that nucleic acid-containing immune complexes (ICs) induce B cell and dendritic cell activation in a TLR-dependent process. How ICs containing nucleic acids affect neutrophil function has not been well investigated. In this study, we report that nucleic acid-containing ICs derived from the sera of SLE patients induce human and mouse neutrophil activation through TLR-independent mechanisms. Soluble ICs containing Sm/RNP, an RNA Ag, activate human neutrophils to produce reactive oxygen species (ROS) and IL-8. In contrast, ICs containing DNA have to be immobilized to efficiently activate neutrophils. We found that deleting TLR7 or TLR9, the receptors for RNA and DNA, had no effect on mouse neutrophil activation induced by RNA-containing and immobilized DNA-containing ICs. Binding of ICs are mediated through FcγRIIA and FcγRIIIB. However, neutrophil activation induced by RNA- and DNA-containing ICs requires FcγRIIA, as blocking FcγRIIA inhibited ROS release from neutrophils. RNA-containing ICs induce calcium flux, whereas TLR7/8 ligand R848 do not. Surprisingly, chloroquine inhibits calcium flux induced by RNA-containing ICs, suggesting that this lesser known function of chloroquine is involved in the neutrophil activation induced by ICs. These data indicate the SLE-derived ICs activate neutrophils to release ROS and chemokines in an FcγRIIA-dependent and TLR7- and TLR9-independent manner that likely contributes to local tissue inflammation and damage.
Collapse
Affiliation(s)
- Ramon G Bonegio
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118.,Renal Section, VA Boston Healthcare System, Boston, MA 02130; and
| | - Jessica D Lin
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | | | - Michael R York
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Hanni Menn-Josephy
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Kei Yasuda
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118;
| |
Collapse
|
6
|
Willebrords J, Maes M, Crespo Yanguas S, Vinken M. Inhibitors of connexin and pannexin channels as potential therapeutics. Pharmacol Ther 2017; 180:144-160. [PMID: 28720428 PMCID: PMC5802387 DOI: 10.1016/j.pharmthera.2017.07.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While gap junctions support the exchange of a number of molecules between neighboring cells, connexin hemichannels provide communication between the cytosol and the extracellular environment of an individual cell. The latter equally holds true for channels composed of pannexin proteins, which display an architecture reminiscent of connexin hemichannels. In physiological conditions, gap junctions are usually open, while connexin hemichannels and, to a lesser extent, pannexin channels are typically closed, yet they can be activated by a number of pathological triggers. Several agents are available to inhibit channels built up by connexin and pannexin proteins, including alcoholic substances, glycyrrhetinic acid, anesthetics and fatty acids. These compounds not always strictly distinguish between gap junctions, connexin hemichannels and pannexin channels, and may have effects on other targets as well. An exception lies with mimetic peptides, which reproduce specific amino acid sequences in connexin or pannexin primary protein structure. In this paper, a state-of-the-art overview is provided on inhibitors of cellular channels consisting of connexins and pannexins with specific focus on their mode-of-action and therapeutic potential.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium.
| |
Collapse
|
7
|
Lautenschläger I, Wong YL, Sarau J, Goldmann T, Zitta K, Albrecht M, Frerichs I, Weiler N, Uhlig S. Signalling mechanisms in PAF-induced intestinal failure. Sci Rep 2017; 7:13382. [PMID: 29042668 PMCID: PMC5645457 DOI: 10.1038/s41598-017-13850-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
Capillary leakage syndrome, vasomotor disturbances and gut atony are common clinical problems in intensive care medicine. Various inflammatory mediators and signalling pathways are involved in these pathophysiological alterations among them platelet-activating factor (PAF). The related signalling mechanisms of the PAF-induced dysfunctions are only poorly understood. Here we used the model of the isolated perfused rat small intestine to analyse the role of calcium (using calcium deprivation, IP-receptor blockade (2-APB)), cAMP (PDE-inhibition plus AC activator), myosin light chain kinase (inhibitor ML-7) and Rho-kinase (inhibitor Y27632) in the following PAF-induced malfunctions: vasoconstriction, capillary and mucosal leakage, oedema formation, malabsorption and atony. Among these, the PAF-induced vasoconstriction and hyperpermeability appear to be governed by similar mechanisms that involve IP3 receptors, extracellular calcium and the Rho-kinase. Our findings further suggest that cAMP-elevating treatments - while effective against hypertension and oedema - bear the risk of dysmotility and reduced nutrient uptake. Agents such as 2-APB or Y27632, on the other hand, showed no negative side effects and improved most of the PAF-induced malfunctions suggesting that their therapeutic usefulness should be explored.
Collapse
Affiliation(s)
- Ingmar Lautenschläger
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Yuk Lung Wong
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jürgen Sarau
- Division of Mucosal Immunology and Diagnostic, Research Centre Borstel, Leibniz-Centre for Medicine and Biosciences, Borstel, Germany
| | - Torsten Goldmann
- Division of Clinical and Experimental Pathology, Research Centre Borstel, Leibniz-Centre for Medicine and Biosciences, Borstel, Germany
| | - Karina Zitta
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Martin Albrecht
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inéz Frerichs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Norbert Weiler
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
8
|
Factor Xa Mediates Calcium Flux in Endothelial Cells and is Potentiated by Igg From Patients With Lupus and/or Antiphospholipid Syndrome. Sci Rep 2017; 7:10788. [PMID: 28883515 PMCID: PMC5589732 DOI: 10.1038/s41598-017-11315-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/22/2017] [Indexed: 11/11/2022] Open
Abstract
Factor (F) Xa reactive IgG isolated from patients with antiphospholipid syndrome (APS) display higher avidity binding to FXa with greater coagulant effects compared to systemic lupus erythematosus (SLE) non APS IgG. FXa signalling via activation of protease-activated receptors (PAR) leads to increased intracellular calcium (Ca2+). Therefore, we measured alterations in Ca2+ levels in human umbilical vein endothelial cells (HUVEC) following FXa-mediated PAR activation and investigated whether FXa reactive IgG from patients with APS or SLE/APS- alter these responses. We observed concentration-dependent induction of Ca2+ release by FXa that was potentiated by APS-IgG and SLE/APS- IgG compared to healthy control subjects’ IgG, and FXa alone. APS-IgG and SLE/APS- IgG increased FXa mediated NFκB signalling and this effect was fully-retained in the affinity purified anti-FXa IgG sub-fraction. Antagonism of PAR-1 and PAR-2 reduced FXa-induced Ca2+ release. Treatment with a specific FXa inhibitor, hydroxychloroquine or fluvastatin significantly reduced FXa-induced and IgG-potentiated Ca2+ release. In conclusion, PAR-1 and PAR-2 are involved in FXa-mediated intracellular Ca2+ release in HUVEC and FXa reactive IgG from patients with APS and/or SLE potentiate this effect. Further work is required to explore the potential use of IgG FXa reactivity as a novel biomarker to stratify treatment with FXa inhibitors in these patients.
Collapse
|
9
|
Boisseau RP, Vogel D, Dussutour A. Habituation in non-neural organisms: evidence from slime moulds. Proc Biol Sci 2016; 283:20160446. [PMID: 27122563 PMCID: PMC4855389 DOI: 10.1098/rspb.2016.0446] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/06/2016] [Indexed: 11/12/2022] Open
Abstract
Learning, defined as a change in behaviour evoked by experience, has hitherto been investigated almost exclusively in multicellular neural organisms. Evidence for learning in non-neural multicellular organisms is scant, and only a few unequivocal reports of learning have been described in single-celled organisms. Here we demonstrate habituation, an unmistakable form of learning, in the non-neural organism Physarum polycephalum In our experiment, using chemotaxis as the behavioural output and quinine or caffeine as the stimulus, we showed that P. polycephalum learnt to ignore quinine or caffeine when the stimuli were repeated, but responded again when the stimulus was withheld for a certain time. Our results meet the principle criteria that have been used to demonstrate habituation: responsiveness decline and spontaneous recovery. To distinguish habituation from sensory adaptation or motor fatigue, we also show stimulus specificity. Our results point to the diversity of organisms lacking neurons, which likely display a hitherto unrecognized capacity for learning, and suggest that slime moulds may be an ideal model system in which to investigate fundamental mechanisms underlying learning processes. Besides, documenting learning in non-neural organisms such as slime moulds is centrally important to a comprehensive, phylogenetic understanding of when and where in the tree of life the earliest manifestations of learning evolved.
Collapse
Affiliation(s)
- Romain P Boisseau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 31062 Toulouse, France Ecole Normale Supérieure, 75005 Paris, France
| | - David Vogel
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 31062 Toulouse, France Unit of Social Ecology, Université Libre de Bruxelles, 1050 Bruxelles, France
| | - Audrey Dussutour
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
10
|
Larsson OJ, Manson ML, Starkhammar M, Fuchs B, Adner M, Kumlien Georén S, Cardell LO. The TLR7 agonist imiquimod induces bronchodilation via a nonneuronal TLR7-independent mechanism: a possible role for quinoline in airway dilation. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1121-9. [PMID: 27084847 DOI: 10.1152/ajplung.00288.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/07/2016] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptor (TLR) 7 agonists are known to reduce allergic airway inflammation. Their recently reported ability to rapidly relax airways has further increased their interest in the treatment of pulmonary disease. However, the mechanisms behind this effect are not fully understood. The present study, therefore, aimed to determine whether airway smooth muscle (ASM)-dependent mechanisms could be identified. TLR7 agonists were added to guinea pig airways following precontraction with carbachol in vitro or histamine in vivo. Pharmacological inhibitors were used to dissect conventional pathways of bronchodilation; tetrodotoxin was used or bilateral vagotomy was performed to assess neuronal involvement. Human ASM cells (HASMCs) were employed to determine the effect of TLR7 agonists on intracellular Ca(2+) ([Ca(2+)]i) mobilization. The well-established TLR7 agonist imiquimod rapidly relaxed precontracted airways in vitro and in vivo. This relaxation was demonstrated to be independent of nitric oxide, carbon monoxide, and cAMP signaling, as well as neuronal activity. A limited role for prostanoids could be detected. Imiquimod induced [Ca(2+)]i release from endoplasmic reticulum stores in HASMCs, inhibiting histamine-induced [Ca(2+)]i The TLR7 antagonist IRS661 failed to inhibit relaxation, and the structurally dissimilar agonist CL264 did not relax airways or inhibit [Ca(2+)]i This study shows that imiquimod acts directly on ASM to induce bronchorelaxation, via a TLR7-independent release of [Ca(2+)]i The effect is paralleled by other bronchorelaxant compounds, like chloroquine, which, like imiquimod, but unlike CL264, contains the chemical structure quinoline. Compounds with quinoline moieties may be of interest in the development of multifunctional drugs to treat pulmonary disease.
Collapse
Affiliation(s)
- Olivia J Larsson
- Division of ENT Diseases, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Martijn L Manson
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden; and Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Starkhammar
- Division of ENT Diseases, CLINTEC, Karolinska Institutet, Stockholm, Sweden; Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden; and
| | - Barbara Fuchs
- Division of ENT Diseases, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Adner
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden; and Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Kumlien Georén
- Division of ENT Diseases, CLINTEC, Karolinska Institutet, Stockholm, Sweden; Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden; and
| | - Lars-Olaf Cardell
- Division of ENT Diseases, CLINTEC, Karolinska Institutet, Stockholm, Sweden; Department of ENT Disease, Karolinska University Hospital, Stockholm, Sweden;
| |
Collapse
|
11
|
Ren GR, Folke J, Hauser F, Li S, Grimmelikhuijzen CJ. The A- and B-type muscarinic acetylcholine receptors from Drosophila melanogaster couple to different second messenger pathways. Biochem Biophys Res Commun 2015; 462:358-64. [DOI: 10.1016/j.bbrc.2015.04.141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
|
12
|
Lautenschläger I, Frerichs I, Dombrowsky H, Sarau J, Goldmann T, Zitta K, Albrecht M, Weiler N, Uhlig S. Quinidine, but not eicosanoid antagonists or dexamethasone, protect the gut from platelet activating factor-induced vasoconstriction, edema and paralysis. PLoS One 2015; 10:e0120802. [PMID: 25793535 PMCID: PMC4368623 DOI: 10.1371/journal.pone.0120802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/06/2015] [Indexed: 12/28/2022] Open
Abstract
Intestinal circulatory disturbances, atony, edema and swelling are of great clinical relevance, but the related mechanisms and possible therapeutic options are poorly characterized, in part because of the difficulties to comprehensively analyze these conditions. To overcome these limitations we have developed a model of the isolated perfused rat small intestine where all of these symptoms can be studied simultaneously. Here we used this model to study the role of eicosanoids, steroids and quinidine in platelet-activating factor (PAF)-induced intestinal disorders. A vascular bolus of PAF (0.5 nmol) triggered release of thromboxane and peptidoleukotrienes into the vascular bed (peak concentration 35 nM and 0.8 nM) and reproduced all symptoms of intestinal failure: mesenteric vasoconstriction, translocation of fluid and macromolecules from the vasculature to the lumen and lymphatics, intestinal edema formation, loss of intestinal peristalsis and decreased galactose uptake. All effects of PAF were abolished by the PAF-receptor antagonist ABT491 (2.5 μM). The COX and LOX inhibitors ASA and AA861 (500 μM, 10 μM) did not exhibit barrier-protective effects and the eicosanoid antagonists SQ29548 and MK571 (10 μM, each) only moderately attenuated the loss of vascular fluid, the redistribution to the lumen and the transfer of FITC dextran to the lumen. The steroid dexamethasone (10 μM) showed no barrier-protective properties and failed to prevent edema formation. Quinidine (100 μM) inhibited the increase in arterial pressure, stabilized all the intestinal barriers, and reduced lymph production and the transfer of FITC dextran to the lymph. While quinidine by itself reduced peristalsis, it also obviated paralysis, preserved intestinal functions and prevented edema formation. We conclude that quinidine exerts multiple protective effects against vasoconstriction, edema formation and paralysis in the intestine. The therapeutic use of quinidine for intestinal ailments deserves further study.
Collapse
Affiliation(s)
- Ingmar Lautenschläger
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Division of Barrier Integrity, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
- * E-mail:
| | - Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Heike Dombrowsky
- Division of Barrier Integrity, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Jürgen Sarau
- Division of Barrier Integrity, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
- Division of Mucosal Immunology and Diagnostic, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Torsten Goldmann
- Division of Clinical and Experimental Pathology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Norbert Weiler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
13
|
Tan X, Sanderson MJ. Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity. Br J Pharmacol 2014; 171:646-62. [PMID: 24117140 DOI: 10.1111/bph.12460] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 09/09/2013] [Accepted: 09/21/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE While selective, bitter tasting, TAS2R agonists can relax agonist-contracted airway smooth muscle (ASM), their mechanism of action is unclear. However, ASM contraction is regulated by Ca²⁺ signalling and Ca²⁺ sensitivity. We have therefore investigated how the TAS2R10 agonists chloroquine, quinine and denotonium regulate contractile agonist-induced Ca²⁺ signalling and sensitivity. EXPERIMENTAL APPROACH Airways in mouse lung slices were contracted with either methacholine (MCh) or 5HT and bronchodilation assessed using phase-contrast microscopy. Ca²⁺ signalling was measured with 2-photon fluorescence microscopy of ASM cells loaded with Oregon Green, a Ca²⁺-sensitive indicator (with or without caged-IP₃). Effects on Ca²⁺ sensitivity were assessed on lung slices treated with caffeine and ryanodine to permeabilize ASM cells to Ca²⁺ . KEY RESULTS The TAS2R10 agonists dilated airways constricted by either MCh or 5HT, accompanied by inhibition of agonist-induced Ca²⁺ oscillations. However, in non-contracted airways, TAS2R10 agonists, at concentrations that maximally dilated constricted airways, did not evoke Ca²⁺ signals in ASM cells. Ca²⁺ increases mediated by the photolysis of caged-IP₃ were also attenuated by chloroquine, quinine and denotonium. In Ca²⁺-permeabilized ASM cells, the TAS2R10 agonists dilated MCh- and 5HT-constricted airways. CONCLUSIONS AND IMPLICATIONS TAS2R10 agonists reversed bronchoconstriction by inhibiting agonist-induced Ca²⁺ oscillations while simultaneously reducing the Ca²⁺ sensitivity of ASM cells. Reduction of Ca²⁺ oscillations may be due to inhibition of Ca²⁺ release through IP₃ receptors. Further characterization of bronchodilatory TAS2R agonists may lead to the development of novel therapies for the treatment of bronchoconstrictive conditions.
Collapse
Affiliation(s)
- Xiahui Tan
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
14
|
Gees M, Alpizar YA, Luyten T, Parys JB, Nilius B, Bultynck G, Voets T, Talavera K. Differential Effects of Bitter Compounds on the Taste Transduction Channels TRPM5 and IP3 Receptor Type 3. Chem Senses 2014; 39:295-311. [DOI: 10.1093/chemse/bjt115] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
15
|
Karch CM, Jeng AT, Goate AM. Extracellular Tau levels are influenced by variability in Tau that is associated with tauopathies. J Biol Chem 2012; 287:42751-62. [PMID: 23105105 DOI: 10.1074/jbc.m112.380642] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases marked by intracellular aggregates of hyperphosphorylated Tau. These diseases may occur by sporadic mechanisms in which genetic variants represent risk factors for disease, as is the case in Alzheimer disease (AD). In AD, cerebrospinal fluid (CSF) levels of soluble Tau/pTau-181 are higher in cases compared with controls. A subset of frontotemporal dementia (FTD) cases occur by a familial mechanism in which MAPT, the gene that encodes Tau, mutations are dominantly inherited. In symptomatic FTD patients expressing a MAPT mutation, CSF Tau levels are slightly elevated but are significantly lower than in AD patients. We sought to model CSF Tau changes by measuring extracellular Tau in cultured cells. Full-length, monomeric extracellular total Tau and pTau-181 were detectable in human neuroblastoma cells expressing endogenous Tau, in human non-neuronal cells overexpressing wild-type Tau, and in mouse cortical neurons. Tau isoforms influence the rate of Tau release, whereby the N terminus (exons 2/3) and microtubule binding repeat length contribute to Tau release from the cell. Compared with cells overexpressing wild-type Tau, cells overexpressing FTD-associated MAPT mutations produce significantly less extracellular total Tau without altering intracellular total Tau levels. This study demonstrates that cells actively release Tau in the absence of disease or toxicity, and Tau release is modified by changes in the Tau protein that are associated with tauopathies.
Collapse
Affiliation(s)
- Celeste M Karch
- Department of Psychiatry and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
16
|
Impairment of lysosomal functions by azithromycin and chloroquine contributes to anti-inflammatory phenotype. Cell Immunol 2012; 279:78-86. [PMID: 23099154 DOI: 10.1016/j.cellimm.2012.09.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 11/23/2022]
Abstract
Azithromycin and chloroquine have been shown to exhibit anti-inflammatory activities in a number of cellular systems, but the mechanisms of these activities have still not been clarified unequivocally. Since both drugs are cationic, accumulate in acidic cellular compartments and bind to phospholipids with a consequent increase in lysosomal pH and induce phospholipidosis, we examined the relevance of these common properties to their anti-inflammatory activities. We compared also these effects with effects of concanamycin A, compound which inhibits acidification of lysosomes. All three compounds increased lysosomal pH, accumulation of autophagic vacuoles and ubiquitinated proteins and impaired recycling of TLR4 receptor with consequences in downstream signaling in LPS-stimulated J774A.1 cells. Azithromycin and chloroquine additionally inhibited arachidonic acid release and prostaglandin E2 synthesis. Therefore, impairment of lysosomal functions by azithromycin and chloroquine deregulate TLR4 recycling and signaling and phospholipases activation and lead to anti-inflammatory phenotype in LPS-stimulated J774A.1 cells.
Collapse
|
17
|
Prole DL, Taylor CW. Identification of intracellular and plasma membrane calcium channel homologues in pathogenic parasites. PLoS One 2011; 6:e26218. [PMID: 22022573 PMCID: PMC3194816 DOI: 10.1371/journal.pone.0026218] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/22/2011] [Indexed: 11/29/2022] Open
Abstract
Ca2+ channels regulate many crucial processes within cells and their abnormal activity can be damaging to cell survival, suggesting that they might represent attractive therapeutic targets in pathogenic organisms. Parasitic diseases such as malaria, leishmaniasis, trypanosomiasis and schistosomiasis are responsible for millions of deaths each year worldwide. The genomes of many pathogenic parasites have recently been sequenced, opening the way for rational design of targeted therapies. We analyzed genomes of pathogenic protozoan parasites as well as the genome of Schistosoma mansoni, and show the existence within them of genes encoding homologues of mammalian intracellular Ca2+ release channels: inositol 1,4,5-trisphosphate receptors (IP3Rs), ryanodine receptors (RyRs), two-pore Ca2+ channels (TPCs) and intracellular transient receptor potential (Trp) channels. The genomes of Trypanosoma, Leishmania and S. mansoni parasites encode IP3R/RyR and Trp channel homologues, and that of S. mansoni additionally encodes a TPC homologue. In contrast, apicomplexan parasites lack genes encoding IP3R/RyR homologues and possess only genes encoding TPC and Trp channel homologues (Toxoplasma gondii) or Trp channel homologues alone. The genomes of parasites also encode homologues of mammalian Ca2+influx channels, including voltage-gated Ca2+ channels and plasma membrane Trp channels. The genome of S. mansoni also encodes Orai Ca2+ channel and STIM Ca2+ sensor homologues, suggesting that store-operated Ca2+ entry may occur in this parasite. Many anti-parasitic agents alter parasite Ca2+ homeostasis and some are known modulators of mammalian Ca2+ channels, suggesting that parasite Ca2+ channel homologues might be the targets of some current anti-parasitic drugs. Differences between human and parasite Ca2+ channels suggest that pathogen-specific targeting of these channels may be an attractive therapeutic prospect.
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
18
|
Juszczak GR, Swiergiel AH. Properties of gap junction blockers and their behavioural, cognitive and electrophysiological effects: animal and human studies. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:181-98. [PMID: 19162118 DOI: 10.1016/j.pnpbp.2008.12.014] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 12/22/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
Gap junctions play an important role in brain physiology. They synchronize neuronal activity and connect glial cells participating in the regulation of brain metabolism and homeostasis. Gap junction blockers (GJBs) include various chemicals that impair gap junction communication, disrupt oscillatory neuronal activity over a wide range of frequencies, and decrease epileptic discharges. The behavioural and clinical effects of GJBs suggest that gap junctions can be involved in the regulation of locomotor activity, arousal, memory, and breathing. Severe neuropsychiatric side effects suggest the involvement of gap junctions in mechanisms of consciousness. Unfortunately, the available GJBs are not selective and can bind to targets other than gap junctions. Other problems in behavioural studies include the possible adverse effects of GJBs, for example, retinal toxicity and hearing disturbances, changes in blood-brain transport, and the metabolism of other drugs. Therefore, it is necessary to design experiments properly to avoid false, misleading or uninterpretable results. We review the pharmacological properties and electrophysiological, behavioural and cognitive effects of the available gap junction blockers, such as carbenoxolone, glycyrrhetinic acid, quinine, quinidine, mefloquine, heptanol, octanol, anandamide, fenamates, 2-APB, several anaesthetics, retinoic acid, oleamide, spermine, aminosulfonates, and sodium propionate. It is concluded that despite a number of different problems, the currently used gap junction blockers could be useful tools in pharmacology and neuroscience.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 1, 05-552 Wolka Kosowska, Poland.
| | | |
Collapse
|
19
|
Martin C, Göggel R, Ressmeyer AR, Uhlig S. Pressor responses to platelet-activating factor and thromboxane are mediated by Rho-kinase. Am J Physiol Lung Cell Mol Physiol 2004; 287:L250-7. [PMID: 15064228 DOI: 10.1152/ajplung.00420.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Platelet-activating factor (PAF) contracts smooth muscle of airways and vessels primarily via release of thromboxane. Contraction of smooth muscle is thought to be mediated either by calcium and inositol trisphosphate (IP(3))-dependent activation of the myosin light chain kinase or, alternatively, via the recently discovered Rho-kinase pathway. Here we investigated the contribution of these two pathways to PAF and thromboxane receptor-mediated broncho- and vasoconstriction in two different rat models: the isolated perfused lung (IPL) and precision-cut lung slices. Inhibition of the IP(3) receptor (1-10 microM xestospongin C) or inhibition of phosphatidylinositol-specific PLC (30 microM L-108) did not affect bronchoconstriction but attenuated the sustained vasoconstriction by PAF. Inhibition of myosin light chain kinase (35 microM ML-7) or of calmodulin kinase kinase (26 microM STO609), which regulates the phosphorylation of the myosin light chain, had only a small effect on PAF- or thromboxane-induced pressor responses. Similarly, calmidazolium (10 microM), which inhibits calmodulin-dependent proteins, only weakly reduced the airway responses. In contrast, Y-27632 (10 microM), a Rho-kinase inhibitor, attenuated the thromboxane release triggered by PAF and provided partial or complete inhibition against PAF- and thromboxane-induced pressor responses, respectively. Together, our data indicate that PAF- and thus thromboxane receptor-mediated smooth muscle contraction depends largely on the Rho-kinase pathway.
Collapse
Affiliation(s)
- C Martin
- Division of Pulmonary Pharmacology, Research Center Borstel, 23845 Borstel, Germany
| | | | | | | |
Collapse
|
20
|
Khan MT, Joseph SK. Proteolysis of type I inositol 1,4,5-trisphosphate receptor in WB rat liver cells. Biochem J 2003; 375:603-11. [PMID: 12927021 PMCID: PMC1223733 DOI: 10.1042/bj20030828] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Revised: 08/12/2003] [Accepted: 08/20/2003] [Indexed: 11/17/2022]
Abstract
A comparison of the basal degradation of type I Ins P3Rs [L- myo -inositol 1,4,5-trisphosphate receptor], measured by pulse-chase analysis or by analysis of immunoreactive Ins P3Rs after cycloheximide addition, indicated that the small pool of newly synthesized radioactive Ins P3Rs degraded relatively rapidly compared with the large pool of mature Ins P3Rs. An antibody (Ab) against a peptide sequence within the IL-3 (third intraluminal loop) of the receptor (IL-3 Ab) was used to identify protected proteolytic fragments that may accumulate in cells. The IL-3 Ab recognized a 56 kDa fragment in both WB rat liver cells and A7R5 smooth-muscle cells. Gel filtration experiments indicated that the 56 kDa fragment was monomeric and, based on reactivity to other Abs, was missing the cytosol-exposed N- and C-terminal segments of the receptor. The addition of the lysosomal protease inhibitor chloroquine resulted in the rapid disappearance of the 56 kDa band. This effect was mimicked by the cysteine protease inhibitors leupeptin, N -acetyl-L-leucyl-L-leucyl-L-methioninal and N -acetyl-leucyl-leucyl-norleucinal. Lactacystin and NH4Cl were less effective. A second fragment of 16 kDa containing the C-terminus accumulated only when the cells were treated with NH4Cl, and not with any of the other inhibitors tested. No N-terminal-reactive fragments were observed. We propose that mature Ins P3R tetramers dissociate into monomers and that the 56 kDa fragment is a cleavage intermediate of the monomer representing the six transmembrane domains. Angiotensin-II-stimulated down-regulation of Ins P3Rs in WB cells has been shown to involve the ubiquitin/proteasome pathway. Angiotensin-II treatment of WB cells neither resulted in the accumulation of any new fragments nor increased the levels of the 56 or 16 kDa fragments. We conclude that basal and agonist-stimulated degradations of Ins P3Rs occur by different pathways. The agonist-mediated pathway involves the concerted removal and proteolysis of the entire receptor molecule from the endoplasmic reticulum membrane without the appearance of intermediate intraluminal fragments.
Collapse
Affiliation(s)
- M Tariq Khan
- Department of Pathology & Cell Biology, Thomas Jefferson University School of Medicine, Philadelphia, PA 19107, USA
| | | |
Collapse
|
21
|
Nakamura T, Akiyoshi T, Tanaka N, Shinozuka K, Matzno S, Nakabayashi T, Matsuyama K, Kashiwayanagi M, Uchida T. Effect of Quinine Solutions on Intracellular Ca2+ Levels in Neuro-2a Cells-Conventional Physiological Method for the Evaluation of Bitterness-. Biol Pharm Bull 2003; 26:1637-40. [PMID: 14600419 DOI: 10.1248/bpb.26.1637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of the present study was to examine the effect of quinine on intracellular Ca2+ ([Ca2+]i) levels in cultured neuro-2a cells, and to investigate the possibility of using [Ca2+]i levels to predict the bitterness of quinine solutions. [Ca2+]i levels in neuro-2a cells increased following stimulation by quinine in a concentration-related manner. There was a good linear correlationship between the quinine-induced increase in [Ca2+]i levels increase and the bitterness scores of the quinine solutions as assessed in human gustatory sensation tests (r2=0.918). The quinine-induced increase in [Ca2+]i levels was inhibited by thapsigargin (an inhibitor of the Ca2+ pump into intracellular stores), U73122 (an inhibitor of phospholipase C) and omega-conotoxin (an N-type Ca2+-channel blocker), but not by nifedipine (an L-type Ca2+-channel blocker).
Collapse
Affiliation(s)
- Tomoko Nakamura
- School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Adegunloye B, Lamarre E, Moreland RS. Quinine inhibits vascular contraction independent of effects on calcium or myosin phosphorylation. J Pharmacol Exp Ther 2003; 304:294-300. [PMID: 12490604 DOI: 10.1124/jpet.102.042101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This report contains results of studies designed to determine whether quinine has direct effects on myofilament Ca2+ sensitization in addition to effects on Ca2+. Quinine decreased the EC50 value and maximal contraction of intact arterial strips to histamine. Incubation of arterial strips with indomethacin or 1H-[1,2,4]oxadiazole[4,3-alpha]quinoxalin-1-one did not alter quinine inhibition, suggesting that the effect is not mediated via cyclooxygenase or cGMP. Pretreatment of strips with quinine had no effect on the histamine-dependent increases in myosin light chain phosphorylation levels. Quinine inhibited Ca2+-induced contraction in alpha-toxin permeabilized strips, but not the Ca2+-induced contraction in Triton X-100 permeabilized strips. Pretreatment of the alpha-toxin permeabilized strips with quinine before stimulation with guanosine-5'-O-(3-thio)triphosphate (GTPgammaS) did not have any effect on the response. In conclusion, quinine inhibited Ca2+-dependent contractions of the alpha-toxin permeabilized strips, which retain modulatory pathways both upstream and downstream from the contractile proteins but did not inhibit GTPgammaS-dependent contraction of the alpha-toxin permeabilized preparation important in upstream modulation of the contraction. Moreover, quinine did not inhibit the Ca2+-dependent contractions of the Triton X-100 permeabilized strips, which are devoid of all modulatory pathways. This suggests that quinine does not act upstream from or directly on the contractile proteins. A more likely site of action may be downstream of the contractile proteins and specifically at the coupling of the contractile proteins with the physiological endpoint of force development.
Collapse
Affiliation(s)
- Banji Adegunloye
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | |
Collapse
|
23
|
Melkoumian ZK, Martirosyan AR, Strobl JS. Myc protein is differentially sensitive to quinidine in tumor versus immortalized breast epithelial cell lines. Int J Cancer 2002; 102:60-9. [PMID: 12353235 DOI: 10.1002/ijc.10648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Quinidine regulates growth and differentiation in human breast tumor cells, but the immortalized mammary epithelial MCF-10A cell line is insensitive to quinidine. We found that a morphologically similar differentiation response was evoked by quinidine and c-myc antisense oligonucleotides in MCF-7 cells and this prompted us to investigate the actions of quinidine on c-myc gene expression. Myc protein levels were suppressed in human breast tumor cell lines, but not in MCF-10A cells, an observation that supports the hypothesis that suppression of c-myc gene expression is involved in the preferential growth and differentiation response of breast tumor cells to quinidine. Quinidine reduced c-myc mRNA levels in MCF-7 cells. Acute induction of c-myc mRNA by estradiol, as well as the c-myc response to sub-cultivation in fresh serum and H-ras driven elevations in c-myc mRNA were depressed by 50-60% in the presence of quinidine. Quinidine decreased c-myc promoter activity in MCF-7 cells in a transient reporter gene assay and a 168 bp region of human c-myc promoter (-100 to +68 with respect to the P1 promoter) was sufficient to confer responsiveness to quinidine. Quinidine is a potential lead compound for developing pharmacological agents to regulate Myc. In addition, the study of quinidine-regulated events is a promising approach to unravel differentiation control pathways that become disrupted in breast cancer.
Collapse
Affiliation(s)
- Zaroui K Melkoumian
- Department of Biochemistry and Molecular Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| | | | | |
Collapse
|
24
|
Jancinová V, Nosál R, Drábiková K, Danihelováa E. Cooperation of chloroquine and blood platelets in inhibition of polymorphonuclear leukocyte chemiluminescence. Biochem Pharmacol 2001; 62:1629-36. [PMID: 11755116 DOI: 10.1016/s0006-2952(01)00811-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Effect of activated blood platelets and chloroquine on concentration of reactive oxygen species produced by polymorphonuclear leukocytes (PMNL) stimulated with Ca(2+)-ionophore A23187 was investigated. Oxygen metabolites localized outside PMNL were visualized by isoluminol enhanced chemiluminescence, whereas chemiluminescence, enhanced with luminol and measured in the presence of the extracellular scavengers superoxide dismutase and catalase, was used for the detection of radicals originated intracellularly. Significant reduction of chemiluminescence was observed in the presence of platelets (added to PMNL in the physiological cell ratio 50:1) and of chloroquine (10 and 100 micromol/L). Although chloroquine decreased effectively both the extra- as well as the intracellular part of the chemiluminescence signal, the activity of platelets occurred largely outside PMNL. Serotonin liberated from platelets by A23187 appeared to be involved in inhibition of chemiluminescence; its concentrations achieved in platelet supernatants were found to be sufficient for elimination of PMNL-derived oxygen metabolites. The presented results indicated that chloroquine and blood platelets cooperate in inhibition of chemiluminescence because their common effect was found to be much more extensive than reduction induced by these inhibitors separately. Therefore, for accurate prediction of drug effect in the whole organism, the use of multicellular test systems seems to be pertinent.
Collapse
Affiliation(s)
- V Jancinová
- Institute of Experimental Pharmacology, Slovak Academy of Sciences and Institute of Haematology and Transfusiology, Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
25
|
Weber SM, Levitz SM. Chloroquine interferes with lipopolysaccharide-induced TNF-alpha gene expression by a nonlysosomotropic mechanism. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1534-40. [PMID: 10903761 DOI: 10.4049/jimmunol.165.3.1534] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chloroquine (CQ) is a lysosomotropic weak base with over 60 years of clinical use for the treatment of malaria and rheumatologic disorders. Consistent with its anti-inflammatory properties, CQ has been shown to interfere with TNF-alpha release from mononuclear phagocytes. Because it is unclear how CQ mediates these immunomodulatory effects, we set out to elucidate its mechanism of action. CQ exhibited dose-dependent inhibition of LPS-induced TNF-alpha release from human PBMC at therapeutically attainable concentrations. Additional studies to determine the specificity of this effect showed that although CQ reduced IL-1beta and IL-6 release, secretion of RANTES was unaffected. CQ acted by reducing TNF-alpha mRNA accumulation without destabilizing its mRNA or interfering with NF-kappaB nuclear translocation or p50/p65 isoform composition of DNA-binding complexes. Intracellular cytokine staining indicated that CQ reduced TNF-alpha production pretranslationally without interfering with TNF-alpha processing or release. We utilized bafilomycin A1 pretreatment to block the pH-dependent trapping of CQ in endosomes and lysosomes. Although bafilomycin A1 alone did not interfere with TNF-alpha expression, preincubation augmented the ability of CQ to reduce TNF-alpha mRNA levels, suggesting that CQ did not act by a lysosomotropic mechanism. Using confocal microscopy, we showed that bafilomycin A1 pretreatment resulted in a dramatic redistribution of quinacrine, a fluorescent congener of CQ, from cytoplasmic vacuoles to the nucleus. These data indicate that CQ inhibits TNF-alpha gene expression without altering translocation of NF-kappaB p50/p65 heterodimers. This dose-dependent effect occurs over a pharmacologically relevant concentration range and does not require pH-dependent lysosomotropic accumulation of CQ.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Biological Transport/drug effects
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Chemokine CCL5/metabolism
- Chloroquine/pharmacology
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Dose-Response Relationship, Immunologic
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Humans
- Hydrogen-Ion Concentration
- Immunosuppressive Agents/pharmacology
- Interleukin-1/antagonists & inhibitors
- Interleukin-1/metabolism
- Interleukin-6/antagonists & inhibitors
- Interleukin-6/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lipopolysaccharides/antagonists & inhibitors
- Lipopolysaccharides/immunology
- Lysosomes/drug effects
- Lysosomes/immunology
- Lysosomes/metabolism
- Macrolides
- NF-kappa B/metabolism
- NF-kappa B p50 Subunit
- Protein Biosynthesis/drug effects
- Protein Biosynthesis/immunology
- Protein Processing, Post-Translational/drug effects
- Protein Processing, Post-Translational/immunology
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/metabolism
- Transcription Factor RelA
- Transcription, Genetic/drug effects
- Transcription, Genetic/immunology
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- S M Weber
- Department of Microbiology, Evans Memorial Department of Clinical Research, and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
26
|
Hydroxychloroquine inhibits calcium signals in T cells: a new mechanism to explain its immunomodulatory properties. Blood 2000. [DOI: 10.1182/blood.v95.11.3460.011k26_3460_3466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydroxychloroquine (HCQ), a lysosomotropic amine, is an immunosuppressive agent presently being evaluated in bone marrow transplant patients to treat graft-versus-host disease. While its immunosuppressive properties have been attributed primarily to its ability to interfere with antigen processing, recent reports demonstrate HCQ also blocks T-cell activation in vitro. To more precisely define the T-cell inhibitory effects of HCQ, the authors evaluated T-cell antigen receptor (TCR) signaling events in a T-cell line pretreated with HCQ. In a concentration-dependent manner, HCQ inhibited anti-TCR–induced up-regulation of CD69 expression, a distal TCR signaling event. Proximal TCR signals, including inductive protein tyrosine phosphorylation, tyrosine phosphorylation of phospholipase C γ1, and total inositol phosphate production, were unaffected by HCQ. Strikingly, anti-TCR-crosslinking–induced calcium mobilization was significantly inhibited by HCQ, particularly at the highest concentrations tested (100 μmol/L) in both T-cell lines and primary T cells. HCQ, in a dose-dependent fashion, also reduced a B-cell antigen receptor calcium signal, indicating this effect may be a general property of HCQ. Inhibition of the calcium signal correlated directly with a reduction in the size of thapsigargin-sensitive intracellular calcium stores in HCQ-treated cells. Together, these findings suggest that disruption of TCR-crosslinking–dependent calcium signaling provides an additional mechanism to explain the immunomodulatory properties of HCQ.
Collapse
|
27
|
Hydroxychloroquine inhibits calcium signals in T cells: a new mechanism to explain its immunomodulatory properties. Blood 2000. [DOI: 10.1182/blood.v95.11.3460] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHydroxychloroquine (HCQ), a lysosomotropic amine, is an immunosuppressive agent presently being evaluated in bone marrow transplant patients to treat graft-versus-host disease. While its immunosuppressive properties have been attributed primarily to its ability to interfere with antigen processing, recent reports demonstrate HCQ also blocks T-cell activation in vitro. To more precisely define the T-cell inhibitory effects of HCQ, the authors evaluated T-cell antigen receptor (TCR) signaling events in a T-cell line pretreated with HCQ. In a concentration-dependent manner, HCQ inhibited anti-TCR–induced up-regulation of CD69 expression, a distal TCR signaling event. Proximal TCR signals, including inductive protein tyrosine phosphorylation, tyrosine phosphorylation of phospholipase C γ1, and total inositol phosphate production, were unaffected by HCQ. Strikingly, anti-TCR-crosslinking–induced calcium mobilization was significantly inhibited by HCQ, particularly at the highest concentrations tested (100 μmol/L) in both T-cell lines and primary T cells. HCQ, in a dose-dependent fashion, also reduced a B-cell antigen receptor calcium signal, indicating this effect may be a general property of HCQ. Inhibition of the calcium signal correlated directly with a reduction in the size of thapsigargin-sensitive intracellular calcium stores in HCQ-treated cells. Together, these findings suggest that disruption of TCR-crosslinking–dependent calcium signaling provides an additional mechanism to explain the immunomodulatory properties of HCQ.
Collapse
|
28
|
Falk S, Göggel R, Heydasch U, Brasch F, Müller KM, Wendel A, Uhlig S. Quinolines attenuate PAF-induced pulmonary pressor responses and edema formation. Am J Respir Crit Care Med 1999; 160:1734-42. [PMID: 10556149 DOI: 10.1164/ajrccm.160.5.9902033] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the present study we have investigated the mechanisms of pulmonary edema caused by platelet-activating factor (PAF) in isolated rat lungs as well as in mice in vivo. In blood-free perfused and ventilated rat lungs, PAF increased lung weight by 0.59 +/- 0.18 g. The cyclooxygenase inhibitor aspirin (500 microM) blocked this response by one-third, and the quinolines quinine (330 microM), quinidine (100 microM), and chloroquine (100 microM) by two-thirds. Lipoxygenase inhibition (10 microM AA861) alone or in combination with thromboxane receptor antagonism (10 microM SQ29548) had no effect on PAF-induced weight gain. In combination with aspirin, quinine or quinidine completely prevented PAF-induced weight gain and the concomitant increase of the capillary filtration coefficient (K(f,c)). Pretreatment with quinine in vivo prevented not only PAF-, but also endotoxin-induced edema formation as assessed by Evans Blue extravasation. In addition, in vivo quinine prevented the endotoxin-induced release of tumor neurosis factor (TNF). Furthermore, in perfused lungs quinine reduced the PAF-induced increases in airway and vascular resistance, as well as thromboxane release. These findings demonstrate the following anti-inflammatory properties of quinolines: reduction of thromboxane and TNF formation; reduction of PAF-induced vasoconstriction and bronchoconstriction; and attenuation of PAF- and lipopolysaccharide (LPS)-induced edema formation. We conclude that the PAF- induced edema consists of two separate mechanisms, one dependent on an unknown cyclooxygenase metabolite, the other one sensitive to quinolines.
Collapse
Affiliation(s)
- S Falk
- Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Misra UK, Gawdi G, Pizzo SV. Cyclosporin A Inhibits Inositol 1,4,5-Trisphosphate Binding to Its Receptors and Release of Calcium from Intracellular Stores in Peritoneal Macrophages. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.11.6122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We have studied the effects of the immunosuppressive drug cyclosporin A (CsA) on the generation of inositol 1,4,5-trisphosphate (IP3) and intracellular Ca2+ levels elicited upon ligation of murine macrophage receptors for α2-macroglobulin, bradykinin, epidermal growth factor, and platelet-derived growth factor. Preincubation of cells with CsA (500 ng/ml), either alone or with the various ligands, did not inhibit the synthesis of IP3. However, we observed 70–80% inhibition of the binding of [3H]IP3 to IP3 receptors on macrophage membranes isolated from CsA-treated macrophages. Preincubation of macrophages with CsA abolished IP3-mediated release of Ca2+ from intracellular stores and Ca2+ entry from the extracellular medium observed when macrophage receptors were stimulated with ligands in the absence of CsA. Preincubation of macrophages with CsA also significantly inhibited DNA synthesis induced by ligands for all four receptors studied. Thus in macrophages, as in T cells, CsA blocks receptor-activated signal transmission pathways characterized by an initial increase in intracellular Ca2+ concentration. This inhibition appears to result from a drug effect on IP3 receptors.
Collapse
Affiliation(s)
- Uma K. Misra
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Govind Gawdi
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Salvatore V. Pizzo
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
30
|
Misra UK, Gawdi G, Lewis JG, Pizzo SV. Alterations in calcium metabolism in murine macrophages by the benzene metabolite 1,4-benzoquinone. Toxicol Appl Pharmacol 1998; 151:1-8. [PMID: 9705881 DOI: 10.1006/taap.1998.8415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure of murine peritoneal macrophages to very low concentrations of 1,4-benzoquinone (BQ) induced immediate increases in intracellular Ca2+ concentrations ([Ca2+]i). Increases in [Ca2+]i were induced by concentrations as low as 5 nM and the response was dose dependent and linear up to 1 microM. The sources of Ca2+ were from both internal inositol triphosphate (IP3)-sensitive and -insensitive sites and from the external medium. BQ did not induce IP3 formation and did not affect binding to its receptors. 1, 4-Hydroquinone had no effect on [Ca2+]i. Catechol did elicit some increases in [Ca2+]i, but did so only at much higher concentrations (5 microM). The action of BQ was almost identical to that of the established Ca2+-ATPase inhibitor thapsigargin except that there were some intracellular stores of Ca2+ released by thapsigargin that were not released by BQ. BQ also was mitogenic for macrophages in conjunction with phorbol myristate acetate. These data suggest that BQ raises [Ca2+]i by inhibition of Ca2+-ATPases, is a comitogen, and does so at concentrations that could be achieved in vivo in the general urban population.
Collapse
MESH Headings
- Animals
- Benzoquinones/toxicity
- Calcium/metabolism
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium-Transporting ATPases/antagonists & inhibitors
- Carcinogens/toxicity
- Catechols/toxicity
- Cells, Cultured
- Dithiothreitol/pharmacology
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/toxicity
- Glutathione/pharmacology
- Hydroquinones/toxicity
- Inositol 1,4,5-Trisphosphate/analysis
- Inositol 1,4,5-Trisphosphate/biosynthesis
- Inositol 1,4,5-Trisphosphate Receptors
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred C57BL
- Mutagens/toxicity
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Sulfhydryl Reagents/pharmacology
- Tetradecanoylphorbol Acetate/toxicity
- Thapsigargin/toxicity
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | | | | | | |
Collapse
|
31
|
Li L, Paakkari I, Vapaatalo H. Effects of K+ channel inhibitors on the basal tone and KCl- or methacholine-induced contraction of mouse trachea. Eur J Pharmacol 1998; 346:255-60. [PMID: 9652367 DOI: 10.1016/s0014-2999(98)00074-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present study examined the effects of K+ channel inhibitors on the basal tone and on KCl- or methacholine-induced contraction of the mouse-isolated trachea. Glibenclamide and iberiotoxin, procaine, quinine and tetraethylammonium did not induce any contraction of the indomethacin-treated mouse trachea. 4-Aminopyridine induced concentration-dependent contraction. This action of 4-aminopyridine was abolished by atropine and reduced by tetrodotoxin and nifedipine. Glibenclamide failed to modify KCl- or methacholine-induced contraction. Iberiotoxin and 4-aminopyridine potentiated KCl- and methacholine-induced contractions. Nifedipine, procaine, quinine and tetraethylammonium inhibited KCl- and methacholine-induced contractions. These data suggest that the closure of large Ca2+-dependent K+ channels can potentiate KCI- and methacholine-induced contraction. The effects of 4-aminopyridine on the mouse trachea reflect chiefly activation of muscarinic receptors. Procaine, quinine and tetraethylammonium inhibit depolarization-induced and receptor-mediated contractions of the mouse-isolated trachea.
Collapse
Affiliation(s)
- L Li
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Helsinki, Finland
| | | | | |
Collapse
|
32
|
Macfarlane DE, Manzel L. Antagonism of Immunostimulatory CpG-Oligodeoxynucleotides by Quinacrine, Chloroquine, and Structurally Related Compounds. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.3.1122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Phosphorothioate oligodeoxynucleotides containing CpG (CpG-ODN) activate immune responses. We report that quinacrine, chloroquine, and structurally related compounds completely inhibit the antiapoptotic effect of CpG-ODN on WEHI 231 murine B lymphoma cells and inhibit CpG-ODN-induced secretion of IL-6 by WEHI 231. They also inhibit IL-6 synthesis and thymidine uptake by human unfractionated PBMC induced by CpG-ODN. The compounds did not inhibit LPS-induced responses. Half-maximal inhibition required 10 nM quinacrine or 100 nM chloroquine. Inhibition was noncompetitive with respect to CpG-ODN. Quinine, quinidine, and primaquine were much less powerful. Quinacrine was effective even when added after the CpG-ODN. Near-toxic concentrations of ammonia plus bafilomycin A1 (used to inhibit vesicular acidification) did not reduce the efficacy of the quinacrine, but the effects of both quinacrine and chloroquine were enhanced by inhibition of the multidrug resistance efflux pump by verapamil. Agents that bind to DNA, including propidium iodide, Hoechst dye 33258, and coralyne chloride did not inhibit CpG-ODN effect, nor did 4-bromophenacyl bromide, an inhibitor of phospholipase A2. Examination of the structure-activity relationship of seventy 4-aminoquinoline and 9-aminoacridine analogues reveals that increased activity was conferred by bulky hydrophobic substituents on positions 2 and 6 of the quinoline nucleus. No correlation was found between published antimalarial activity and ability to block CpG-ODN-induced effects. These results are discussed in the light of the ability of quinacrine and chloroquine to induce remission of rheumatoid arthritis and lupus erythematosus.
Collapse
Affiliation(s)
- Donald E. Macfarlane
- Department of Medicine, Veterans Affairs Medical Center and University of Iowa, Iowa City, IA 52242
| | - Lori Manzel
- Department of Medicine, Veterans Affairs Medical Center and University of Iowa, Iowa City, IA 52242
| |
Collapse
|
33
|
Levitz SM, Harrison TS, Tabuni A, Liu X. Chloroquine induces human mononuclear phagocytes to inhibit and kill Cryptococcus neoformans by a mechanism independent of iron deprivation. J Clin Invest 1997; 100:1640-6. [PMID: 9294133 PMCID: PMC508346 DOI: 10.1172/jci119688] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Infections due to Cryptococcus neoformans are common in AIDS patients. We investigated the effect of chloroquine, which raises the pH of phagolysosomes, on the anticryptococcal activity of mononuclear phagocytes. C. neoformans multiplied within monocyte-derived macrophages (MDM) in the absence of chloroquine but were killed with the addition of chloroquine. Ammonium chloride was also beneficial, suggesting that effects were mediated by alkalinizing the phagolysosome. Chloroquine inhibits growth of other intracellular pathogens by limiting iron availability. However, chloroquine-induced augmentation of MDM anticryptococcal activity was unaffected by iron nitriloacetate, demonstrating that chloroquine worked by a mechanism independent of iron deprivation. There was an inverse correlation between growth of C. neoformans in cell-free media and pH, suggesting that some of the effect of chloroquine on the anticryptococcal activity of MDM could be explained by relatively poor growth at higher pH. Chloroquine enhanced MDM anticryptococcal activity against all tested cryptococcal strains except for one large-capsule strain which was not phagocytosed. Positive effects of chloroquine were also seen in monocytes from both HIV-infected and -uninfected donors. Finally, chloroquine was therapeutic in experimental cryptococcosis in outbred and severe combined immunodeficient mice. Thus, chloroquine enhances the activity of mononuclear phagocytes against C. neoformans by iron-independent, pH-dependent mechanisms and is therapeutic in murine models of cryptococcosis. Chloroquine might have clinical utility for the prophylaxis and treatment of human cryptococcosis.
Collapse
Affiliation(s)
- S M Levitz
- The Evans Memorial Department of Clinical Research and the Department of Medicine, Boston Medical Center, Boston, Massachusetts 02118, USA.
| | | | | | | |
Collapse
|