1
|
Tutusaus A, Morales A, García de Frutos P, Marí M. GAS6/TAM Axis as Therapeutic Target in Liver Diseases. Semin Liver Dis 2024; 44:99-114. [PMID: 38395061 PMCID: PMC11027478 DOI: 10.1055/a-2275-0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
TAM (TYRO3, AXL, and MERTK) protein tyrosine kinase membrane receptors and their vitamin K-dependent ligands GAS6 and protein S (PROS) are well-known players in tumor biology and autoimmune diseases. In contrast, TAM regulation of fibrogenesis and the inflammation mechanisms underlying metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and, ultimately, liver cancer has recently been revealed. GAS6 and PROS binding to phosphatidylserine exposed in outer membranes of apoptotic cells links TAMs, particularly MERTK, with hepatocellular damage. In addition, AXL and MERTK regulate the development of liver fibrosis and inflammation in chronic liver diseases. Acute hepatic injury is also mediated by the TAM system, as recent data regarding acetaminophen toxicity and acute-on-chronic liver failure have uncovered. Soluble TAM-related proteins, mainly released from activated macrophages and hepatic stellate cells after hepatic deterioration, are proposed as early serum markers for disease progression. In conclusion, the TAM system is becoming an interesting pharmacological target in liver pathology and a focus of future biomedical research in this field.
Collapse
Affiliation(s)
- Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Cardiovasculares (CIBERCV), Barcelona, Comunidad de Madrid, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| |
Collapse
|
2
|
Mohammadzadeh P, Amberg GC. AXL/Gas6 signaling mechanisms in the hypothalamic-pituitary-gonadal axis. Front Endocrinol (Lausanne) 2023; 14:1212104. [PMID: 37396176 PMCID: PMC10310921 DOI: 10.3389/fendo.2023.1212104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
AXL is a receptor tyrosine kinase commonly associated with a variety of human cancers. Along with its ligand Gas6 (growth arrest-specific protein 6), AXL is emerging as an important regulator of neuroendocrine development and function. AXL signaling in response to Gas6 binding impacts neuroendocrine structure and function at the level of the brain, pituitary, and gonads. During development, AXL has been identified as an upstream inhibitor of gonadotropin receptor hormone (GnRH) production and also plays a key role in the migration of GnRH neurons from the olfactory placode to the forebrain. AXL is implicated in reproductive diseases including some forms of idiopathic hypogonadotropic hypogonadism and evidence suggests that AXL is required for normal spermatogenesis. Here, we highlight research describing AXL/Gas6 signaling mechanisms with a focus on the molecular pathways related to neuroendocrine function in health and disease. In doing so, we aim to present a concise account of known AXL/Gas6 signaling mechanisms to identify current knowledge gaps and inspire future research.
Collapse
|
3
|
Gui S, Zhou S, Liu M, Zhang Y, Gao L, Wang T, Zhou R. Elevated Levels of Soluble Axl (sAxl) Regulates Key Angiogenic Molecules to Induce Placental Endothelial Dysfunction and a Preeclampsia-Like Phenotype. Front Physiol 2021; 12:619137. [PMID: 34326776 PMCID: PMC8314645 DOI: 10.3389/fphys.2021.619137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Preeclampsia (PE), a severe pregnancy-specific syndrome, is characterized by impaired placental angiogenesis. Although the pathogenesis of this condition remains largely unclear, vascular systemic endothelial injury is thought to be the common contributing factor. Soluble Axl (sAxl), a biomarker of endothelial dysfunction, is known to be abnormally increased in a variety of diseases associated with vascular injury. In a previous study, we found that the plasma levels of sAxl were significantly higher in PE with severe features (sPE) than in pregnant women who did not have PE. The current study aimed to further explore the potential role of sAxl in vascular injury in patients with sPE. We found that the upregulation of sAxl in maternal plasma was positively correlated with the plasma levels of sFlt-1 and negatively correlated with placental NO synthase (eNOS) in women with sPE. Furthermore, elevated levels of sAxl suppressed proliferation and endothelial tube formation and promoted cytotoxicity in human umbilical vein endothelial cells (HUVECs) through the downregulation of p-Akt, p-p70S6K, p-mTOR, and Grb2. Subsequently, we established a pregnant rat model with PE-like characteristics by injecting pregnant rats with an adenovirus expressing sAxl. These rats exhibited a typical PE-like phenotype, including increased blood pressure, proteinuria, and fetal growth restriction, along with abnormal placental and fetal renal morphology. In conclusion, our study demonstrated the role of sAxl in systemic vascular injury through the regulation of the expression of key molecules of angiogenesis and described its potential contribution to the development of sPE.
Collapse
Affiliation(s)
- Shunping Gui
- Department of Obstetrics and Gynecology, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shengping Zhou
- Department of Obstetrics and Gynecology, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Min Liu
- Department of Obstetrics and Gynecology, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yanping Zhang
- Department of Obstetrics and Gynecology, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Linbo Gao
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tao Wang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Zhou Y, Yao Y, Deng Y, Shao A. Regulation of efferocytosis as a novel cancer therapy. Cell Commun Signal 2020; 18:71. [PMID: 32370748 PMCID: PMC7199874 DOI: 10.1186/s12964-020-00542-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
Efferocytosis is a physiologic phagocytic clearance of apoptotic cells, which modulates inflammatory responses and the immune environment and subsequently facilitates immune escape of cancer cells, thus promoting tumor development and progression. Efferocytosis is an equilibrium formed by perfect coordination among “find-me”, “eat-me” and “don’t-eat-me” signals. These signaling pathways not only affect the proliferation, invasion, metastasis, and angiogenesis of tumor cells but also regulate adaptive responses and drug resistance to antitumor therapies. Therefore, efferocytosis-related molecules and pathways are potential targets for antitumor therapy. Besides, supplementing conventional chemotherapy, radiotherapy and other immunotherapies with efferocytosis-targeted therapy could enhance the therapeutic efficacy, reduce off-target toxicity, and promote patient outcome. Video abstract
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer 2019; 18:153. [PMID: 31684958 PMCID: PMC6827209 DOI: 10.1186/s12943-019-1090-3] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023] Open
Abstract
Molecular targeted therapy for cancer has been a research hotspot for decades. AXL is a member of the TAM family with the high-affinity ligand growth arrest-specific protein 6 (GAS6). The Gas6/AXL signalling pathway is associated with tumour cell growth, metastasis, invasion, epithelial-mesenchymal transition (EMT), angiogenesis, drug resistance, immune regulation and stem cell maintenance. Different therapeutic agents targeting AXL have been developed, typically including small molecule inhibitors, monoclonal antibodies (mAbs), nucleotide aptamers, soluble receptors, and several natural compounds. In this review, we first provide a comprehensive discussion of the structure, function, regulation, and signalling pathways of AXL. Then, we highlight recent strategies for targeting AXL in the treatment of cancer.AXL-targeted drugs, either as single agents or in combination with conventional chemotherapy or other small molecule inhibitors, are likely to improve the survival of many patients. However, future investigations into AXL molecular signalling networks and robust predictive biomarkers are warranted to select patients who could receive clinical benefit and to avoid potential toxicities.
Collapse
|
6
|
Alhajj N, Chee CF, Wong TW, Rahman NA, Abu Kasim NH, Colombo P. Lung cancer: active therapeutic targeting and inhalational nanoproduct design. Expert Opin Drug Deliv 2018; 15:1223-1247. [DOI: 10.1080/17425247.2018.1547280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nasser Alhajj
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | - Chin Fei Chee
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- Wellness Research Cluster, Institute of Research Management & Monitoring, University of Malaya, Kuala Lumpur, Malaysia
| | - Paolo Colombo
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| |
Collapse
|
7
|
The Dual Role of TAM Receptors in Autoimmune Diseases and Cancer: An Overview. Cells 2018; 7:cells7100166. [PMID: 30322068 PMCID: PMC6210017 DOI: 10.3390/cells7100166] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) regulate cellular processes by converting signals from the extracellular environment to the cytoplasm and nucleus. Tyro3, Axl, and Mer (TAM) receptors form an RTK family that plays an intricate role in tissue maintenance, phagocytosis, and inflammation as well as cell proliferation, survival, migration, and development. Defects in TAM signaling are associated with numerous autoimmune diseases and different types of cancers. Here, we review the structure of TAM receptors, their ligands, and their biological functions. We discuss the role of TAM receptors and soluble circulating TAM receptors in the autoimmune diseases systemic lupus erythematosus (SLE) and multiple sclerosis (MS). Lastly, we discuss the effect of TAM receptor deregulation in cancer and explore the therapeutic potential of TAM receptors in the treatment of diseases.
Collapse
|
8
|
Tong LS, Shao AW, Ou YB, Guo ZN, Manaenko A, Dixon BJ, Tang J, Lou M, Zhang JH. Recombinant Gas6 augments Axl and facilitates immune restoration in an intracerebral hemorrhage mouse model. J Cereb Blood Flow Metab 2017; 37:1971-1981. [PMID: 27389179 PMCID: PMC5464693 DOI: 10.1177/0271678x16658490] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Axl, a tyrosine kinase receptor, was recently identified as an essential component regulating innate immune response. Suppressor of cytokine signaling 1 and suppressor of cytokine signaling 3 are potent Axl-inducible negative inflammatory regulators. This study investigated the role of Axl signaling pathway in immune restoration in an autologous blood-injection mouse model of intracerebral hemorrhage. Recombinant growth arrest-specific 6 (Gas6) and R428 were administrated as specific agonist and antagonist. In vivo knockdown of Axl or suppressor of cytokine signaling 1 and suppressor of cytokine signaling 3 by siRNA was applied. After intracerebral hemorrhage, the expression of endogenous Axl, soluble Axl, and Gas6 was increased, whereas the expression of suppressor of cytokine signaling 1 and suppressor of cytokine signaling 3 was inhibited. Recombinant growth arrest-specific 6 administration alleviated brain edema and improved neurobehavioral performances. Moreover, enhanced Axl phosphorylation with cleavage of soluble Axl (sAxl), and an upregulation of suppressor of cytokine signaling 1 and suppressor of cytokine signaling 3 were observed. In vivo knockdown of Axl and R428 administration both abolished the effect of recombinant growth arrest-specific 6 on brain edema and also decreased the expression suppressor of cytokine signaling 1 and suppressor of cytokine signaling 3. In vivo knockdown of suppressor of cytokine signaling 1 and suppressor of cytokine signaling 3 aggravated cytokine releasing despite of recombinant growth arrest-specific 6. In conclusion, Axl plays essential role in immune restoration after intracerebral hemorrhage. And recombinant growth arrest-specific 6 attenuated brain injury after intracerebral hemorrhage, probably by enhancing Axl phosphorylation and production of suppressor of cytokine signaling 1 and suppressor of cytokine signaling 3.
Collapse
Affiliation(s)
- Lu-Sha Tong
- 1 Department of Anesthesiology, School of Medicine, Loma Linda University, CA, USA.,2 Department of Neurology, School of Medicine, the 2nd Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - An-Wen Shao
- 1 Department of Anesthesiology, School of Medicine, Loma Linda University, CA, USA.,3 Department of Neurosurgery, School of Medicine, the 2nd Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yi-Bo Ou
- 1 Department of Anesthesiology, School of Medicine, Loma Linda University, CA, USA.,4 Department of Neurosurgery, Tong-ji Hospital, Wuhan, China
| | - Zhen-Ni Guo
- 1 Department of Anesthesiology, School of Medicine, Loma Linda University, CA, USA.,5 Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Anatol Manaenko
- 1 Department of Anesthesiology, School of Medicine, Loma Linda University, CA, USA
| | - Brandon J Dixon
- 1 Department of Anesthesiology, School of Medicine, Loma Linda University, CA, USA
| | - Jiping Tang
- 2 Department of Neurology, School of Medicine, the 2nd Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Min Lou
- 2 Department of Neurology, School of Medicine, the 2nd Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - John H Zhang
- 1 Department of Anesthesiology, School of Medicine, Loma Linda University, CA, USA
| |
Collapse
|
9
|
Davra V, Kimani SG, Calianese D, Birge RB. Ligand Activation of TAM Family Receptors-Implications for Tumor Biology and Therapeutic Response. Cancers (Basel) 2016; 8:cancers8120107. [PMID: 27916840 PMCID: PMC5187505 DOI: 10.3390/cancers8120107] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/16/2016] [Accepted: 11/26/2016] [Indexed: 12/21/2022] Open
Abstract
The TAM family of receptors (i.e., Tyro3, Axl, and Mertk), and their ligands Growth arrest specific factor 6 (Gas6) and Protein S (Pros1) contribute to several oncogenic processes, such as cell survival, invasion, migration, chemo-resistance, and metastasis, whereby expression often correlates with poor clinical outcomes. In recent years, there has been great interest in the study of TAM receptors in cancer, stemming both from their roles as oncogenic signaling receptors, as well as their roles in tumor immunology. As a result, several classes of TAM inhibitors that include small molecule tyrosine kinase inhibitors, monoclonal antibodies, decoy receptors, as well as novel strategies to target TAM ligands are being developed. This paper will review the biology of TAM receptors and their ligands with a focus on cancer, as well as evidence-based data for the continued pursuit of TAM/Gas6 inhibitors in clinical practice.
Collapse
Affiliation(s)
- Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| | - Stanley G Kimani
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| | - David Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
10
|
Bansal N, Mishra PJ, Stein M, DiPaola RS, Bertino JR. Axl receptor tyrosine kinase is up-regulated in metformin resistant prostate cancer cells. Oncotarget 2016; 6:15321-31. [PMID: 26036314 PMCID: PMC4558154 DOI: 10.18632/oncotarget.4148] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 03/10/2015] [Indexed: 01/09/2023] Open
Abstract
Recent epidemiological studies showed that metformin, a widely used anti-diabetic drug might prevent certain cancers. Metformin also has an anti-proliferative effect in preclinical studies of both hematologic malignancies as well as solid cancers and clinical studies testing metformin as an anti-cancer drug are in progress. However, all cancer types do not respond to metformin with the same effectiveness or acquire resistance. To understand the mechanism of acquired resistance and possibly its mechanism of action as an anti-proliferative agent, we developed metformin resistant LNCaP prostate cancer cells. Metformin resistant LNCaP cells had an increased proliferation rate, increased migration and invasion ability as compared to the parental cells, and expressed markers of epithelial-mesenchymal transition (EMT). A detailed gene expression microarray comparing the resistant cells to the wild type cells revealed that Edil2, Ereg, Axl, Anax2, CD44 and Anax3 were the top up-regulated genes and calbindin 2 and TPTE (transmembrane phosphatase with tensin homology) and IGF1R were down regulated. We focused on Axl, a receptor tyrosine kinase that has been shown to be up regulated in several drug resistance cancers. Here, we show that the metformin resistant cell line as well as castrate resistant cell lines that over express Axl were more resistant to metformin, as well as to taxotere compared to androgen sensitive LNCaP and CWR22 cells that do not overexpress Axl. Forced overexpression of Axl in LNCaP cells decreased metformin and taxotere sensitivity and knockdown of Axl in resistant cells increased sensitivity to these drugs. Inhibition of Axl activity by R428, a small molecule Axl kinase inhibitor, sensitized metformin resistant cells that overexpressed Axl to metformin. Inhibitors of Axl may enhance tumor responses to metformin and other chemotherapy in cancers that over express Axl.
Collapse
Affiliation(s)
- Nitu Bansal
- Rutgers Cancer Institute of New Jersey, Rutgers The State University of New Jersey, New Brunswick, NJ, USA
| | - Prasun J Mishra
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Fransisco, CA, USA
| | - Mark Stein
- Rutgers Cancer Institute of New Jersey, Rutgers The State University of New Jersey, New Brunswick, NJ, USA
| | - Robert S DiPaola
- Rutgers Cancer Institute of New Jersey, Rutgers The State University of New Jersey, New Brunswick, NJ, USA
| | - Joseph R Bertino
- Rutgers Cancer Institute of New Jersey, Rutgers The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
11
|
Axl and Mer Receptor Tyrosine Kinases: Distinct and Nonoverlapping Roles in Inflammation and Cancer? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 930:113-32. [PMID: 27558819 DOI: 10.1007/978-3-319-39406-0_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The receptor tyrosine kinases Axl and Mer subserve the process of termination of proinflammatory signaling and have key roles in both the resolution of inflammation and restoration of homeostasis. Axl functions prominently under conditions of tissue stress or in response to infection, whereas Mer has a major role in maintenance of homeostasis within tissues. Distinct patterns of expression of Axl and Mer underlie their clearly defined functional roles during the initiation and progression of inflammation. Axl and Mer are expressed by tumor cells and by infiltrating inflammatory cells and the regulation of cellular function via Axl and Mer signaling is also important for tumorigenesis, tumor progression, and metastasis. In this review, we consider the divergent functions of Axl and Mer in the context of inflammatory processes within tumors and the implications for development of therapeutic agents targeting these receptors.
Collapse
|
12
|
Rothlin CV, Carrera-Silva EA, Bosurgi L, Ghosh S. TAM receptor signaling in immune homeostasis. Annu Rev Immunol 2015; 33:355-91. [PMID: 25594431 DOI: 10.1146/annurev-immunol-032414-112103] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The TAM receptor tyrosine kinases (RTKs)-TYRO3, AXL, and MERTK-together with their cognate agonists GAS6 and PROS1 play an essential role in the resolution of inflammation. Deficiencies in TAM signaling have been associated with chronic inflammatory and autoimmune diseases. Three processes regulated by TAM signaling may contribute, either independently or collectively, to immune homeostasis: the negative regulation of the innate immune response, the phagocytosis of apoptotic cells, and the restoration of vascular integrity. Recent studies have also revealed the function of TAMs in infectious diseases and cancer. Here, we review the important milestones in the discovery of these RTKs and their ligands and the studies that underscore the functional importance of this signaling pathway in physiological immune settings and disease.
Collapse
|
13
|
Johansson G, Peng PC, Huang PY, Chien HF, Hua KT, Kuo ML, Chen CT, Lee MJ. Soluble AXL: a possible circulating biomarker for neurofibromatosis type 1 related tumor burden. PLoS One 2014; 9:e115916. [PMID: 25551830 PMCID: PMC4281253 DOI: 10.1371/journal.pone.0115916] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 11/29/2014] [Indexed: 12/22/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is the most common tumor predisposition disorder affecting 1/3500 worldwide. Patients are at risk of developing benign (neurofibromas) and malignant peripheral nerve sheath tumors (MPNST). The AXL receptor tyrosine kinase has been implicated in several kinds of cancers, but so far no studies have investigated the role of AXL in NF1 related tumorigenesis. Recently, the soluble fraction from the extracellular domain of AXL (sAXL) has been found in human plasma, and its level was correlated to poor prognosis in patients with renal cancer. Compared to normal human Schwann cells, a significantly high expression level of AXL was found in three of the four MPNST cell lines and two of the three primary MPNST tissues. Similarly, the level of sAXL in conditioned media corresponded to the protein and mRNA levels of AXL in the MPNST cell lines. Furthermore, in two different human MPNST xenograft models, the human sAXL could be detected in the mouse plasma. Its level was proportionate to the size of the xenograft tumors, while no human sAXL was detect prior to the formation of the tumors. Treatment with a newly developed photodynamic therapy, prevented further tumor growth and resulted in drastically reduced the levels of sAXL compared to that of the control group. Finally, the level of sAXL was significantly increased in patients with plexiform tumors compared to patients with only dermal neurofibromas, further supporting the role of sAXL as a marker for NF1 related tumor burden.
Collapse
Affiliation(s)
- Gunnar Johansson
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Chun Peng
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Po-Yuan Huang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiung-Fei Chien
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Min-Liang Kuo
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Biochemical Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chin-Tin Chen
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Ming-Jen Lee
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Genetics National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
14
|
Law AL, Parinot C, Chatagnon J, Gravez B, Sahel JA, Bhattacharya SS, Nandrot EF. Cleavage of Mer tyrosine kinase (MerTK) from the cell surface contributes to the regulation of retinal phagocytosis. J Biol Chem 2014; 290:4941-4952. [PMID: 25538233 DOI: 10.1074/jbc.m114.628297] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phagocytosis of apoptotic cells by macrophages and spent photoreceptor outer segments (POS) by retinal pigment epithelial (RPE) cells requires several proteins, including MerTK receptors and associated Gas6 and protein S ligands. In the retina, POS phagocytosis is rhythmic, and MerTK is activated promptly after light onset via the αvβ5 integrin receptor and its ligand MFG-E8, thus generating a phagocytic peak. The phagocytic burst is limited in time, suggesting a down-regulation mechanism that limits its duration. Our previous data showed that MerTK helps control POS binding of integrin receptors at the RPE cell surface as a negative feedback loop. Our present results show that a soluble form of MerTK (sMerTK) is released in the conditioned media of RPE-J cells during phagocytosis and in the interphotoreceptor matrix of the mouse retina during the morning phagocytic peak. In contrast to macrophages, the two cognate MerTK ligands have an opposite effect on phagocytosis and sMerTK release, whereas the integrin ligand MFG-E8 markedly increases both phagocytosis and sMerTK levels. sMerTK acts as a decoy receptor blocking the effect of both MerTK ligands. Interestingly, stimulation of sMerTK release decreases POS binding. Conversely, blocking MerTK cleavage increased mostly POS binding by RPE cells. Therefore, our data suggest that MerTK cleavage contributes to the acute regulation of RPE phagocytosis by limiting POS binding to the cell surface.
Collapse
Affiliation(s)
- Ah-Lai Law
- INSERM, U968; Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, Institut de la Vision; CNRS, UMR_7210, 17 Rue Moreau, Paris, F-75012, France
| | - Célia Parinot
- INSERM, U968; Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, Institut de la Vision; CNRS, UMR_7210, 17 Rue Moreau, Paris, F-75012, France
| | - Jonathan Chatagnon
- INSERM, U968; Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, Institut de la Vision; CNRS, UMR_7210, 17 Rue Moreau, Paris, F-75012, France
| | - Basile Gravez
- INSERM, U968; Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, Institut de la Vision; CNRS, UMR_7210, 17 Rue Moreau, Paris, F-75012, France
| | - José-Alain Sahel
- INSERM, U968; Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, Institut de la Vision; CNRS, UMR_7210, 17 Rue Moreau, Paris, F-75012, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-Direction de l'Hospitalisation et de l'Offre de Soins Centre d'Investigation Clinique 1423, Paris, F-75012, France
| | - Shomi S Bhattacharya
- INSERM, U968; Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, Institut de la Vision; CNRS, UMR_7210, 17 Rue Moreau, Paris, F-75012, France; Institute of Ophthalmology, University College London, WC1E 6BT London, United Kingdom; Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), 41092 Sevilla, Spain
| | - Emeline F Nandrot
- INSERM, U968; Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, Institut de la Vision; CNRS, UMR_7210, 17 Rue Moreau, Paris, F-75012, France.
| |
Collapse
|
15
|
Abstract
The control of cellular growth and proliferation is key to the maintenance of homeostasis. Survival, proliferation, and arrest are regulated, in part, by Growth Arrest Specific 6 (Gas6) through binding to members of the TAM receptor tyrosine kinase family. Activation of the TAM receptors leads to downstream signaling through common kinases, but the exact mechanism within each cellular context varies and remains to be completely elucidated. Deregulation of the TAM family, due to its central role in mediating cellular proliferation, has been implicated in multiple diseases. Axl was cloned as the first TAM receptor in a search for genes involved in the progression of chronic to acute-phase leukemia, and has since been established as playing a critical role in the progression of cancer. The oncogenic nature of Axl is demonstrated through its activation of signaling pathways involved in proliferation, migration, inhibition of apoptosis, and therapeutic resistance. Despite its recent discovery, significant progress has been made in the development of effective clinical therapeutics targeting Axl. In order to accurately define the role of Axl in normal and diseased processes, it must be analyzed in a cell type-specific context.
Collapse
|
16
|
Lew ED, Oh J, Burrola PG, Lax I, Zagórska A, Través PG, Schlessinger J, Lemke G. Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities. eLife 2014; 3. [PMID: 25265470 PMCID: PMC4206827 DOI: 10.7554/elife.03385] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/28/2014] [Indexed: 12/22/2022] Open
Abstract
The TAM receptor tyrosine kinases Tyro3, Axl, and Mer regulate key features of cellular physiology, yet the differential activities of the TAM ligands Gas6 and Protein S are poorly understood. We have used biochemical and genetic analyses to delineate the rules for TAM receptor–ligand engagement and find that the TAMs segregate into two groups based on ligand specificity, regulation by phosphatidylserine, and function. Tyro3 and Mer are activated by both ligands but only Gas6 activates Axl. Optimal TAM signaling requires coincident TAM ligand engagement of both its receptor and the phospholipid phosphatidylserine (PtdSer): Gas6 lacking its PtdSer-binding ‘Gla domain’ is significantly weakened as a Tyro3/Mer agonist and is inert as an Axl agonist, even though it binds to Axl with wild-type affinity. In two settings of TAM-dependent homeostatic phagocytosis, Mer plays a predominant role while Axl is dispensable, and activation of Mer by Protein S is sufficient to drive phagocytosis. DOI:http://dx.doi.org/10.7554/eLife.03385.001 Cells send out and receive signals to communicate with other cells. Detecting these signals is largely carried out by proteins called receptors that span the cell surface membrane. These proteins typically have extracellular domains outside of the cell that can bind to specific signaling molecules and an intracellular domain inside the cell that relays the information inwards to trigger a response. Three such receptor proteins are collectively known as the TAM receptors. Each day, many billions of cells in the human body die and are engulfed by other cells and broken down so that their building blocks can be reused. TAM receptors are required for this process; and the TAM receptors also help prevent the immune system from going out of control, which would damage the body's own tissues. Two different signaling proteins, called Gas6 and Protein S, can bind to and activate TAM receptors. Both of the signaling proteins can also bind to a phospholipid molecule that is found on the surface membrane of dead cells. However, it is not known if all three TAM receptors bind to both signaling proteins equally, and the importance of the phospholipid-binding domain in the signaling proteins remains unclear. To shed light on the workings of these receptors, Lew et al. created mouse cells that each only express one out of the three TAM receptors. These cells were then exposed to intact Gas6 and Protein S, or shortened versions that lacked the phospholipid-binding domain. Lew et al. found that Gas6 could trigger a response through all three TAM receptors but that Protein S was specific for only two out of the three receptors. Signaling proteins with or without their phospholipid-binding domains bound equally well to the receptors, but the maximum level of response was only triggered when both signaling proteins were intact and the phospholipid molecule was present. This is important since the phospholipid can be thought of as an ‘eat-me’ signal by which the dead cells are recognized by the TAM receptor-expressing cells that will engulf them. Using mice that only produce a TAM receptor called Mer, Lew et al. show that Protein S alone can trigger the process that engulfs and breaks down cells in a living organism. These data and previous work suggest that two TAM receptors—including Mer—are involved in the daily engulfment of dying cells, whereas the third mediates this process during infection and tissue damage. Molecules that inhibit or activate the function of TAM receptors are currently being developed to treat cancer and other diseases. By revealing which receptors respond to which signaling molecules, the findings of Lew et al. will serve to guide these efforts. DOI:http://dx.doi.org/10.7554/eLife.03385.002
Collapse
Affiliation(s)
- Erin D Lew
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Jennifer Oh
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Patrick G Burrola
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Irit Lax
- Department of Pharmacology, Yale University School of Medicine, New Haven, United States
| | - Anna Zagórska
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Paqui G Través
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, United States
| | - Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| |
Collapse
|
17
|
Zagórska A, Través PG, Lew ED, Dransfield I, Lemke G. Diversification of TAM receptor tyrosine kinase function. Nat Immunol 2014; 15:920-8. [PMID: 25194421 PMCID: PMC4169336 DOI: 10.1038/ni.2986] [Citation(s) in RCA: 308] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/05/2014] [Indexed: 12/12/2022]
Abstract
The clearance of apoptotic cells is critical for both tissue homeostasis and the resolution of inflammation. We found that the TAM receptor tyrosine kinases Axl and Mer had distinct roles as phagocytic receptors in these two settings, in which they exhibited divergent expression, regulation and activity. Mer acted as a tolerogenic receptor in resting macrophages and during immunosuppression. In contrast, Axl was an inflammatory response receptor whose expression was induced by proinflammatory stimuli. Axl and Mer differed in their ligand specificities, ligand-receptor complex formation in tissues, and receptor shedding upon activation. These differences notwithstanding, phagocytosis by either protein was strictly dependent on receptor activation triggered by bridging of TAM receptor-ligand complexes to the 'eat-me' signal phosphatidylserine on the surface of apoptotic cells.
Collapse
Affiliation(s)
- Anna Zagórska
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Paqui G Través
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Erin D Lew
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Ian Dransfield
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Greg Lemke
- 1] Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Immunobiology and Microbial Pathogenesis Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
18
|
Salian-Mehta S, Xu M, Knox AJ, Plummer L, Slavov D, Taylor M, Bevers S, Hodges RS, Crowley WF, Wierman ME. Functional consequences of AXL sequence variants in hypogonadotropic hypogonadism. J Clin Endocrinol Metab 2014; 99:1452-60. [PMID: 24476074 PMCID: PMC3973777 DOI: 10.1210/jc.2013-3426] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Prior studies showed that Axl /Tyro3 null mice have delayed first estrus and abnormal cyclicity due to developmental defects in GnRH neuron migration and survival. OBJECTIVE The objective of the study was to test whether the absence of Axl would alter reproductive function in mice and that mutations in AXL are present in patients with Kallmann syndrome (KS) or normosmic idiopathic hypogonadotropic hypogonadism (nIHH). DESIGN AND SETTING The sexual maturation of Axl null mice was examined. The coding region of AXL was sequenced in 104 unrelated, carefully phenotyped KS or nIHH subjects. Frequency of mutations was compared with other causes of GnRH deficiency. Functional assays were performed on the detected mutations. RESULTS Axl null mice demonstrated delay in first estrus and the interval between vaginal opening and first estrus. Three missense AXL mutations (p.L50F, p.S202C, and p.Q361P) and one intronic variant 6 bp upstream from the start of exon 5 (c.586-6 C>T) were identified in two KS and 2 two nIHH subjects. Comparison of the frequencies of AXL mutations with other putative causes of idiopathic hypogonadotropic hypogonadism confirmed they are rare variants. Testing of the c.586-6 C>T mutation revealed no abnormal splicing. Surface plasmon resonance analysis of the p.L50F, p.S202C, and p.Q361P mutations showed no altered Gas6 ligand binding. In contrast, GT1-7 GnRH neuronal cells expressing p.S202C or p.Q361P demonstrated defective ligand dependent receptor processing and importantly aberrant neuronal migration. In addition, the p.Q361P showed defective ligand independent chemotaxis. CONCLUSIONS Functional consequences of AXL sequence variants in patients with idiopathic hypogonadotropic hypogonadism support the importance of AXL and the Tyro3, Axl, Mer (TAM) family in reproductive development.
Collapse
Affiliation(s)
- S Salian-Mehta
- Division of Endocrinology, Metabolism, and Diabetes (S.S.-M., M.X., A.J.K., M.E.W.), Division of Cardiology (D.S., M.T.), and Department of Biochemistry and Molecular Genetics (S.B., R.S.H.), University of Colorado School of Medicine, Aurora, Colorado 80045; Veterans Affairs Research Service (M.E.W.), Veterans Affairs Medical Center, Denver, Colorado 80220; and Harvard Reproductive Endocrine Science Center and the Reproductive Endocrine Unit (L.P., W.F.C.), Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Taichman RS, Patel LR, Bedenis R, Wang J, Weidner S, Schumann T, Yumoto K, Berry JE, Shiozawa Y, Pienta KJ. GAS6 receptor status is associated with dormancy and bone metastatic tumor formation. PLoS One 2013; 8:e61873. [PMID: 23637920 PMCID: PMC3634826 DOI: 10.1371/journal.pone.0061873] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 03/17/2013] [Indexed: 12/16/2022] Open
Abstract
Disseminated tumor cells (DTCs) are believed to lie dormant in the marrow before they can be activated to form metastases. How DTCs become dormant in the marrow and how dormant DTCs escape dormancy remains unclear. Recent work has shown that prostate cancer (PCa) cell lines express the growth-arrest specific 6 (GAS6) receptors Axl, Tyro3, and Mer, and become growth arrested in response to GAS6. We therefore hypothesized that GAS6 signaling regulates the proliferative activity of DTCs in the marrow. To explore this possibility, in vivo studies were performed where it was observed that when Tyro3 expression levels exceed Axl expression, the PCa cells exhibit rapid growth. When when Axl levels predominate, PCa cells remain largely quiescent. These findings suggest that a balance between the expression of Axl and Tyro3 is associated with a molecular switch between a dormant and a proliferative phenotype in PCa metastases.
Collapse
Affiliation(s)
- Russell S. Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
- * E-mail: (RST); (KJP)
| | - Lalit R. Patel
- Departments of Internal Medicine and Urology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Rachel Bedenis
- Departments of Internal Medicine and Urology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Jingcheng Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - Savannah Weidner
- Departments of Internal Medicine and Urology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Taibriana Schumann
- Departments of Internal Medicine and Urology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Kenji Yumoto
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - Janice E. Berry
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - Yusuke Shiozawa
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - Kenneth J. Pienta
- Departments of Internal Medicine and Urology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
- Departments of Urology, Oncology, Pharmacology and Molecular Sciences, Brady Urological Institute, Baltimore, Maryland, United States of America
- * E-mail: (RST); (KJP)
| |
Collapse
|
20
|
Axl/Gas6/NFκB signalling in schwannoma pathological proliferation, adhesion and survival. Oncogene 2013; 33:336-46. [PMID: 23318455 DOI: 10.1038/onc.2012.587] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/02/2012] [Accepted: 10/29/2012] [Indexed: 01/01/2023]
Abstract
TAM family receptor tyrosine kinases comprising Tyro3 (Sky), Axl, and Mer are overexpressed in some cancers, correlate with multidrug resistance and contribute to tumourigenesis by regulating invasion, angiogenesis, cell survival and tumour growth. Mutations in the gene coding for a tumour suppressor merlin cause development of multiple tumours of the nervous system such as schwannomas, meningiomas and ependymomas occurring spontaneously or as part of a hereditary disease neurofibromatosis type 2. The benign character of merlin-deficient tumours makes them less responsive to chemotherapy. We previously showed that, amongst other growth factor receptors, TAM family receptors (Tyro3, Axl and Mer) are significantly overexpressed in schwannoma tissues. As Axl is negatively regulated by merlin and positively regulated by E3 ubiquitin ligase CRL4DCAF1, previously shown to be a key regulator in schwannoma growth we hypothesized that Axl is a good target to study in merlin-deficient tumours. Moreover, Axl positively regulates the oncogene Yes-associated protein, which is known to be under merlin regulation in schwannoma and is involved in increased proliferation of merlin-deficient meningioma and mesothelioma. Here, we demonstrated strong overexpression and activation of Axl receptor as well as its ligand Gas6 in human schwannoma primary cells compared to normal Schwann cells. We show that Gas6 is mitogenic and increases schwannoma cell-matrix adhesion and survival acting via Axl in schwannoma cells. Stimulation of the Gas6/Axl signalling pathway recruits Src, focal adhesion kinase (FAK) and NFκB. We showed that NFκB mediates Gas6/Axl-mediated overexpression of survivin, cyclin D1 and FAK, leading to enhanced survival, cell-matrix adhesion and proliferation of schwannoma. We conclude that Axl/FAK/Src/NFκB pathway is relevant in merlin-deficient tumours and is a potential therapeutic target for schwannoma and other merlin-deficient tumours.
Collapse
|
21
|
Thorp E, Vaisar T, Subramanian M, Mautner L, Blobel C, Tabas I. Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cδ, and p38 mitogen-activated protein kinase (MAPK). J Biol Chem 2011; 286:33335-44. [PMID: 21828049 DOI: 10.1074/jbc.m111.263020] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mer tyrosine kinase (MerTK) is an integral membrane protein that is preferentially expressed by phagocytic cells, where it promotes efferocytosis and inhibits inflammatory signaling. Proteolytic cleavage of MerTK at an unidentified site leads to shedding of its soluble ectodomain (soluble MER; sMER), which can inhibit thrombosis in mice and efferocytosis in vitro. Herein, we show that MerTK is cleaved at proline 485 in murine macrophages. Site-directed deletion of 6 amino acids spanning proline 485 rendered MerTK resistant to proteolysis and suppression of efferocytosis by cleavage-inducing stimuli. LPS is a known inducer of MerTK cleavage, and the intracellular signaling pathways required for this action are unknown. LPS/TLR4-mediated generation of sMER required disintegrin and metalloproteinase ADAM17 and was independent of Myd88, instead requiring TRIF adaptor signaling. LPS-induced cleavage was suppressed by deficiency of NADPH oxidase 2 (Nox2) and PKCδ. The addition of the antioxidant N-acetyl cysteine inhibited PKCδ, and silencing of PKCδ inhibited MAPK p38, which was also required. In a mouse model of endotoxemia, we discovered that LPS induced plasma sMER, and this was suppressed by Adam17 deficiency. Thus, a TRIF-mediated pattern recognition receptor signaling cascade requires NADPH oxidase to activate PKCδ and then p38, culminating in ADAM17-mediated proteolysis of MerTK. These findings link innate pattern recognition receptor signaling to proteolytic inactivation of MerTK and generation of sMER and uncover targets to test how MerTK cleavage affects efferocytosis efficiency and inflammation resolution in vivo.
Collapse
Affiliation(s)
- Edward Thorp
- Departments of Medicine, Pathology and Cell Biology, and Physiology, and Cellular Biophysics, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Pierce A, Xu M, Bliesner B, Liu Z, Richards J, Tobet S, Wierman ME. Hypothalamic but not pituitary or ovarian defects underlie the reproductive abnormalities in Axl/Tyro3 null mice. Mol Cell Endocrinol 2011; 339:151-8. [PMID: 21539887 PMCID: PMC3124083 DOI: 10.1016/j.mce.2011.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/09/2011] [Accepted: 04/13/2011] [Indexed: 11/25/2022]
Abstract
AXL and TYRO3, members of the TYRO3, AXL and MER (TAM) family of tyrosine kinase receptors, modulate GnRH neuronal cell migration, survival and gene expression. Axl/Tyro3 null mice exhibit a selective loss of GnRH neurons, delayed sexual maturation and irregular estrous cycles. Here we determined whether the defects were due to direct ovarian defects, altered pituitary sensitivity to GnRH and/or an impaired LH surge mechanism. Ovarian histology and markers of folliculogenesis and atresia as well as corpora luteal development and ovarian response to superovulation were not impaired. Axl/Tryo3 null mice exhibited a robust LH response to exogenous GnRH, suggesting no altered pituitary sensitivity. Ovariectomized Axl/Tyro3 null mice, however, demonstrated an impaired ability to mount a steroid-induced LH surge. Loss of GnRH neurons in Axl/Tyro3 null mice impairs the sex hormone-induced gonadotropin surge resulting in estrous cycle abnormalities confirming that TAM family members contribute to normal female reproductive function.
Collapse
Affiliation(s)
- Angela Pierce
- Department of Medicine, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
PMA up-regulates the transcription of Axl by AP-1 transcription factor binding to TRE sequences via the MAPK cascade in leukaemia cells. Biol Cell 2011; 103:21-33. [PMID: 20977427 DOI: 10.1042/bc20100094] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Axl is a receptor tyrosine kinase promoting anti-apoptosis, invasion and mitogenesis, and is highly expressed in different solid cancers. Axl basal transcriptional activity is driven by Sp1/Sp3, and overexpression of MZF-1 (myeloid zinc-finger 1) induces Axl transcription and gene expression. Furthermore, Axl expression is epigenetically controlled by CpG hypermethylation; however, little is known about inducible Axl gene expression and Axl regulation in haematopoetic malignancies. RESULTS In the present study, we studied Axl transcriptional regulation under PMA-stimulated conditions in leukaemia cells. Luciferase analysis with sequential 5'-deletion constructs revealed that the -660/-580 region of the Axl promoter is indispensable for induced promoter activity under PMA stimulation. This region includes AP-1 (activator protein 1)/CREB [CRE (cAMP-response-element)-binding protein] motifs, five times partially overlapping TGCGTG repeats and multiple GT repeats. Mutational, supershift and ChIP (chromatin immunoprecipitation) analysis determined that AP-1 family members bind to AP-1 motifs and to the 5 × TGCGTG overlapping repeats, thus transactivating Axl promoter activity. Furthermore, specific inhibitors of PKC (protein kinase C), ERK1/2 (extracellular-signal-regulated kinase 1/2) and p38 reduced Axl expression. Additionally, mithramycin treatment abolished constitutive and PMA-induced Axl expression. CONCLUSIONS Taken together the results of the present study suggest that PMA-induced Axl gene expression in leukaemia cells is mediated by AP-1 motifs and 5 × TGCGTG repeats within the promoter region -660/-580, and through the PKC/ERK1/2/AP-1 or PKC/p-38/AP-1 signalling axis.
Collapse
|
24
|
Scutera S, Fraone T, Musso T, Cappello P, Rossi S, Pierobon D, Orinska Z, Paus R, Bulfone-Paus S, Giovarelli M. Survival and migration of human dendritic cells are regulated by an IFN-alpha-inducible Axl/Gas6 pathway. THE JOURNAL OF IMMUNOLOGY 2009; 183:3004-13. [PMID: 19657094 DOI: 10.4049/jimmunol.0804384] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Axl, a prototypic member of the transmembrane tyrosine kinase receptor family, is known to regulate innate immunity. In this study, we show that Axl expression is induced by IFN-alpha during human dendritic cell (DC) differentiation from monocytes (IFN/DC) and that constitutively Axl-negative, IL-4-differentiated DC (IL-4/DC) can be induced to up-regulate Axl by IFN-alpha. This effect is inhibited by TLR-dependent maturation stimuli such as LPS, poly(I:C), TLR7/8 ligand, and CD40L. LPS-induced Axl down-regulation on the surface of human IFN-alpha-treated DC correlates with an increased proteolytic cleavage of Axl and with elevated levels of its soluble form. GM6001 and TAPI-1, general inhibitors of MMP and ADAM family proteases, restored Axl expression on the DC surface and diminished Axl shedding. Furthermore, stimulation of Axl by its ligand, Gas6, induced chemotaxis of human DC and rescued them from growth factor deprivation-induced apoptosis. Our study provides the first evidence that Gas6/Axl-mediated signaling regulates human DC activities, and identifies Gas6/Axl as a new DC chemotaxis pathway. This encourages one to explore whether dysregulation of this novel pathway in human DC biology is involved in autoimmunity characterized by high levels of IFN-alpha.
Collapse
Affiliation(s)
- Sara Scutera
- Department of Public Health and Microbiology, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ekman C, Site DF, Gottsäter A, Lindblad B, Dahlbäck B. Plasma concentrations of growth arrest specific protein 6 and the soluble form of its tyrosine kinase receptor Axl as markers of large abdominal aortic aneurysms. Clin Biochem 2009; 43:110-4. [PMID: 19660445 DOI: 10.1016/j.clinbiochem.2009.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 07/28/2009] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The tyrosine kinase receptor Axl is expressed in the vasculature and Gas6 is the ligand. The extracellular part of Axl (sAxl) can be found in circulation. The aim of this study was to determine plasma concentrations of Gas6 and sAxl in patients with abdominal aortic aneurysms (AAA) and to evaluate if Gas6 and sAxl can be used as biomarkers. DESIGN AND METHODS Immunoassays for sAxl and Gas6 were used to investigate plasma from AAA patients. Patients with large (n=123) or small AAA (n=122) were compared with healthy controls (n=141). RESULTS Gas6 correlated positively and sAxl correlated negatively with AAA size. As a consequence, the calculated Gas6/sAxl ratios correlated even better to AAA size. Forty percent of all patients with a large AAA had higher Gas6/sAxl ratio than any in the control group. DISCUSSION The Gas6/Axl system might be involved in AAA pathogenesis, and the Gas6/sAxl ratio may be useful as a biomarker.
Collapse
Affiliation(s)
- Carl Ekman
- Lund University, Department of Laboratory Medicine, Clinical Chemistry, Wallenberg Laboratory, Malmö Universitary Hospital, Entrance 46, Floor 6, SE-20502 Malmö, Sweden
| | | | | | | | | |
Collapse
|
26
|
Linger RMA, Keating AK, Earp HS, Graham DK. TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res 2008; 100:35-83. [PMID: 18620092 DOI: 10.1016/s0065-230x(08)00002-x] [Citation(s) in RCA: 539] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tyro-3, Axl, and Mer constitute the TAM family of receptor tyrosine kinases (RTKs) characterized by a conserved sequence within the kinase domain and adhesion molecule-like extracellular domains. This small family of RTKs regulates an intriguing mix of processes, including cell proliferation/survival, cell adhesion and migration, blood clot stabilization, and regulation of inflammatory cytokine release. Genetic or experimental alteration of TAM receptor function can contribute to a number of disease states, including coagulopathy, autoimmune disease, retinitis pigmentosa, and cancer. In this chapter, we first provide a comprehensive review of the structure, regulation, biologic functions, and downstream signaling pathways of these receptors. In addition, we discuss recent evidence which suggests a role for TAM receptors in oncogenic mechanisms as family members are overexpressed in a spectrum of human cancers and have prognostic significance in some. Possible strategies for targeted inhibition of the TAM family in the treatment of human cancer are described. Further research will be necessary to evaluate the full clinical implications of TAM family expression and activation in cancer.
Collapse
Affiliation(s)
- Rachel M A Linger
- Department of Pediatrics, University of Colorado at Denver and Health Sciences Center, Aurora, CO, USA
| | | | | | | |
Collapse
|
27
|
Wilhelm I, Nagyoszi P, Farkas AE, Couraud PO, Romero IA, Weksler B, Fazakas C, Dung NTK, Bottka S, Bauer H, Bauer HC, Krizbai IA. Hyperosmotic stress induces Axl activation and cleavage in cerebral endothelial cells. J Neurochem 2008; 107:116-26. [PMID: 18673450 DOI: 10.1111/j.1471-4159.2008.05590.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Because of the relative impermeability of the blood-brain barrier (BBB), many drugs are unable to reach the CNS in therapeutically relevant concentration. One method to deliver drugs to the CNS is the osmotic opening of the BBB using mannitol. Hyperosmotic mannitol induces a strong phosphorylation on tyrosine residues in a broad spectrum of proteins in cerebral endothelial cells, the principal components of the BBB. Previously, we have shown that among targets of tyrosine phosphorylation are beta-catenin, extracellular signal-regulated kinase 1/2 and the non-receptor tyrosine kinase Src. The aim of this study was to identify new signalling pathways activated by hypertonicity in cerebral endothelial cells. Using an antibody array and immunoprecipitation we identified the receptor tyrosine kinase Axl to become tyrosine phosphorylated in response to hyperosmotic mannitol. Besides activation, Axl was also cleaved in response to osmotic stress. Degradation of Axl proved to be metalloproteinase- and proteasome-dependent and resulted in 50-55 kDa C-terminal products which remained phosphorylated even after degradation. Specific knockdown of Axl increased the rate of apoptosis in hyperosmotic mannitol-treated cells; therefore, we assume that activation of Axl may be a protective mechanism against hypertonicity-induced apoptosis. Our results identify Axl as an important element of osmotic stress-induced signalling.
Collapse
Affiliation(s)
- Imola Wilhelm
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sather S, Kenyon KD, Lefkowitz JB, Liang X, Varnum BC, Henson PM, Graham DK. A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood 2006; 109:1026-33. [PMID: 17047157 PMCID: PMC1785151 DOI: 10.1182/blood-2006-05-021634] [Citation(s) in RCA: 245] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Membrane-bound receptors generate soluble ligand-binding domains either by proteolytic cleavage of the extracellular domain or alternative mRNA splicing yielding a secreted protein. Mertk (Mer) is in a receptor tyrosine kinase family with Axl and Tyro-3, and all 3 receptors share the Gas6 ligand. Mer regulates macrophage activation, promotes apoptotic cell engulfment, and supports platelet aggregation and clot stability in vivo. We have found that the membrane-bound Mer protein is cleaved in the extracellular domain via a metalloproteinase. The cleavage results in the production of a soluble Mer protein released in a constitutive manner from cultured cells. Significant amounts of the soluble Mer protein were also detected in human plasma, suggesting its physiologic relevance. Cleavage of Mer was enhanced by treatment with LPS and PMA and was specifically inhibited by a tumor necrosis factor alpha-converting enzyme metalloproteinase inhibitor. As a decoy receptor for Gas6, soluble Mer prevented Gas6-mediated stimulation of membrane-bound Mer. The inhibition of Gas6 activity by soluble Mer led to defective macrophage-mediated engulfment of apoptotic cells. Furthermore, soluble Mer decreased platelet aggregation in vitro and prevented fatal collagen/epinephrine-induced thromboembolism in mice, suggesting a potential therapeutic use for soluble Mer in the treatment of clotting disorders.
Collapse
Affiliation(s)
- Susan Sather
- Department of Pediatrics, University of Colorado at Denver, and Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Budagian V, Bulanova E, Orinska Z, Duitman E, Brandt K, Ludwig A, Hartmann D, Lemke G, Saftig P, Bulfone-Paus S. Soluble Axl is generated by ADAM10-dependent cleavage and associates with Gas6 in mouse serum. Mol Cell Biol 2005; 25:9324-39. [PMID: 16227584 PMCID: PMC1265819 DOI: 10.1128/mcb.25.21.9324-9339.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Axl receptor tyrosine kinase exists as a transmembrane protein and as a soluble molecule. We show that constitutive and phorbol 12-myristate 13-acetate-induced generation of soluble Axl (sAxl) involves the activity of disintegrin-like metalloproteinase 10 (ADAM10). Spontaneous and inducible Axl cleavage was inhibited by the broad-spectrum metalloproteinase inhibitor GM6001 and by hydroxamate GW280264X, which is capable of blocking ADAM10 and ADAM17. Furthermore, murine fibroblasts deficient in ADAM10 expression exhibited a significant reduction in constitutive and inducible Axl shedding, whereas reconstitution of ADAM10 restored sAxl production, suggesting that ADAM10-mediated proteolysis constitutes a major mechanism for sAxl generation in mice. Partially overlapping 14-amino-acid stretch deletions in the membrane-proximal region of Axl dramatically affected sAxl generation, indicating that these regions are involved in regulating the access of the protease to the cleavage site. Importantly, relatively high circulating levels of sAxl are present in mouse sera in a heterocomplex with Axl ligand Gas6. Conversely, two other family members, Tyro3 and Mer, were not detected in mouse sera and conditioned medium. sAxl is constitutively released by murine primary cells such as dendritic and transformed cell lines. Upon immobilization, sAxl promoted cell migration and induced the phosphorylation of Axl and phosphatidylinositol 3-kinase. Thus, ADAM10-mediated generation of sAxl might play an important role in diverse biological processes.
Collapse
Affiliation(s)
- Vadim Budagian
- Department of Immunology and Cell Biology, Research Center Borstel, Parkallee 22, D-23845 Borstel, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Budagian V, Bulanova E, Orinska Z, Thon L, Mamat U, Bellosta P, Basilico C, Adam D, Paus R, Bulfone-Paus S. A promiscuous liaison between IL-15 receptor and Axl receptor tyrosine kinase in cell death control. EMBO J 2005; 24:4260-70. [PMID: 16308569 PMCID: PMC1356322 DOI: 10.1038/sj.emboj.7600874] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 10/24/2005] [Indexed: 11/08/2022] Open
Abstract
Discrimination between cytokine receptor and receptor tyrosine kinase (RTK) signaling pathways is a central paradigm in signal transduction research. Here, we report a 'promiscuous liaison' between both receptors that enables interleukin (IL)-15 to transactivate the signaling pathway of a tyrosine kinase. IL-15 protects murine L929 fibroblasts from tumor necrosis factor alpha (TNFalpha)-induced cell death, but fails to rescue them upon targeted depletion of the RTK, Axl; however, Axl-overexpressing fibroblasts are TNFalpha-resistant. IL-15Ralpha and Axl colocalize on the cell membrane and co-immunoprecipitate even in the absence of IL-15, whereby the extracellular part of Axl proved to be essential for Axl/IL-15Ralpha interaction. Most strikingly, IL-15 treatment mimics stimulation by the Axl ligand, Gas6, resulting in a rapid tyrosine phosphorylation of both Axl and IL-15Ralpha, and activation of the phosphatidylinositol 3-kinase/Akt pathway. This is also seen in mouse embryonic fibroblasts from wild-type but not Axl-/- or IL-15Ralpha-/- mice. Thus, IL-15-induced protection from TNFalpha-mediated cell death involves a hitherto unknown IL-15 receptor complex, consisting of IL-15Ralpha and Axl RTK, and requires their reciprocal activation initiated by ligand-induced IL-15Ralpha.
Collapse
Affiliation(s)
| | | | | | - Lutz Thon
- Institute of Immunology, University of Kiel, Kiel, Germany
| | - Uwe Mamat
- Research Center Borstel, Borstel, Germany
| | | | - Claudio Basilico
- Department of Microbiology, School of Medicine, New York, NY, USA
| | - Dieter Adam
- Institute of Immunology, University of Kiel, Kiel, Germany
| | - Ralf Paus
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Silvia Bulfone-Paus
- Research Center Borstel, Borstel, Germany
- Department of Immunology & Cell Biology, Research Center Borstel, Parkallee 22, 23845 Borstel, Germany. Tel.: +49 4537 188200; Fax: +49 4537 188403; E-mail:
| |
Collapse
|
31
|
Sainaghi PP, Castello L, Bergamasco L, Galletti M, Bellosta P, Avanzi GC. Gas6 induces proliferation in prostate carcinoma cell lines expressing the Axl receptor. J Cell Physiol 2005; 204:36-44. [PMID: 15605394 DOI: 10.1002/jcp.20265] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Axl is a tyrosine kinase receptor and although it is expressed in malignancy such as leukemia, colon cancer, melanoma, endometrial, prostate and thyroid cancers, its role has not been completely elucidated yet and appears to be complex. The ligand of Axl, Gas6, is a 75 KDa multimodular protein with an N-terminal gamma-carboxy-glutamic acid that is essential for binding. Gas6 has a mitogenic effect on several normal cell lines. The receptor Axl is expressed in primary prostate carcinoma and in prostate cancer cell lines as such as PC-3 and DU 145. We demonstrated a mitogenic activity determined by Gas6/Axl interaction in these undifferentiated metastatic human prostatic cancer cell lines. This effect is proportional to Axl expression, not due to inhibition of apoptosis, and induces AKT and MAPK phosphorylation. However, only MEK phosphorylation seems to be essential for growth signaling. Our results suggest that Axl overexpression and activation by Gas6 could be involved in progression of prostate neoplastic disease.
Collapse
Affiliation(s)
- Pier Paolo Sainaghi
- Department of Medical Sciences, Università del Piemonte Orientale "A. Avogadro," Novara, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Yanagita M. The role of the vitamin K-dependent growth factor Gas6 in glomerular pathophysiology. Curr Opin Nephrol Hypertens 2004; 13:465-70. [PMID: 15199298 DOI: 10.1097/01.mnh.0000133981.63053.e9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The product of growth arrest-specific gene 6 (gas6) is a unique vitamin K-dependent growth-potentiating factor for vascular smooth muscle cells, and anticoagulant warfarin inhibits the activation process of the protein. It has been reported that Gas6 is also a mitogen for mesangial cells, and that warfarin inhibits mesangial cell proliferation by blocking the activation of Gas6. A recent series of studies has revealed the in-vivo roles of Gas6 and its receptor Axl in the progression of various kidney diseases. This review summarizes these studies and discusses the possible interventions targeting the Gas6/Axl pathway to prevent the progression of kidney diseases. RECENT FINDINGS The expression of Gas6 and Axl is upregulated in an acute model of glomerulonephritis in rats, and the interference of the Gas6/Axl pathway by warfarin or the extracellular domain of Axl inhibits the progression of diseases. Induction of chronic glomerulonephritis in Gas6 mice results in less mortality, proteinuria, and histological changes of kidneys compared to wild-type mice. Administration of recombinant Gas6 reverses these phenotypes. Expression of Gas6 is also upregulated in streptozotocin-induced diabetic nephropathy, and administration of low-dose warfarin decreases albuminuria and hypertrophy of glomeruli. Possible roles of Gas6 are also reported in renal allograft dysfunction of rats and humans. SUMMARY The importance of the Gas6/Axl pathway has been implicated in many types of kidney disease. Further investigations on the role of the Gas6/Axl pathway in human kidney diseases and the development of specific antagonists targeting the pathway are warranted.
Collapse
Affiliation(s)
- Motoko Yanagita
- Yanagisawa Orphan Receptor Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, National Museum of Emerging Science and Innovation, Tokyo, Japan.
| |
Collapse
|
33
|
Collett G, Wood A, Alexander MY, Varnum BC, Boot-Handford RP, Ohanian V, Ohanian J, Fridell YW, Canfield AE. Receptor tyrosine kinase Axl modulates the osteogenic differentiation of pericytes. Circ Res 2003; 92:1123-9. [PMID: 12730092 DOI: 10.1161/01.res.0000074881.56564.46] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vascular pericytes undergo osteogenic differentiation in vivo and in vitro and may, therefore, be involved in diseases involving ectopic calcification and osteogenesis. The purpose of this study was to identify factors that inhibit the entry of pericytes into this differentiation pathway. RNA was prepared from pericytes at confluence and after their osteogenic differentiation (mineralized nodules). Subtractive hybridization was conducted on polyA PCR-amplified RNA to isolate genes expressed by confluent pericytes that were downregulated in the mineralized nodules. The subtraction product was used to screen a pericyte cDNA library and one of the positive genes identified was Axl, the receptor tyrosine kinase. Northern and Western blotting confirmed that Axl was expressed by confluent cells and was downregulated in mineralized nodules. Western blot analysis demonstrated that confluent pericytes also secrete the Axl ligand, Gas6. Immunoprecipitation of confluent cell lysates with an anti-phosphotyrosine antibody followed by Western blotting using an anti-Axl antibody, demonstrated that Axl was active in confluent pericytes and that its activity could not be further enhanced by incubating the cells with recombinant Gas6. The addition of recombinant Axl-extracellular domain (ECD) to pericyte cultures inhibited the phosphorylation of Axl by endogenous Gas6 and enhanced the rate of nodule mineralization. These effects were inhibited by coincubation of pericytes with Axl-ECD and recombinant Gas6. Together these results demonstrate that activation of Axl inhibits the osteogenic differentiation of vascular pericytes.
Collapse
Affiliation(s)
- Georgina Collett
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, 2.205, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wimmel A, Glitz D, Kraus A, Roeder J, Schuermann M. Axl receptor tyrosine kinase expression in human lung cancer cell lines correlates with cellular adhesion. Eur J Cancer 2001; 37:2264-74. [PMID: 11677117 DOI: 10.1016/s0959-8049(01)00271-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Axl is a receptor tyrosine kinase (RTK) with oncogenic potential and transforming activity. Since Axl bears structural similarities to cell adhesion molecules such as neural cell adhesion molecule (NCAM) (FNIII domains), it is thought that Axl might play a role in adhesion. In this study, we have analysed the expression of the Axl protein and its ligand, Gas6, in human lung cancer cell lines of different histological origin. Axl expression occurred in approximately 60% of non-small cell lung cancer (NSCLC) cell lines, which grow adherently, and in normal bronchial epithelial cells (NHBE), but not in cell lines of small cell lung cancer origin (SCLC), which grow in suspension. A number of SCLC sublines, which could be selected spontaneously or after oncogene transfection for adherent growth, all expressed Axl protein. Overexpression of Axl per se, however, did not induce any change in the adhesion phenotype. All Axl-expressing cell lines demonstrated a membrane-bound 140 kD form, as well as a soluble 85 kD form, detectable in supernatant, of Axl-RTK. Expression of the Axl ligand Gas6 was detected in approximately 80% of all cell lines investigated. We conclude from these data that loss of Axl expression is a feature of SCLC tumour cells. Axl expression appears to be a consequence of cellular adhesion and possibly influences differentiation in human lung cancers.
Collapse
MESH Headings
- Blotting, Western
- Carcinoma, Non-Small-Cell Lung/enzymology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Small Cell/enzymology
- Carcinoma, Small Cell/metabolism
- Carcinoma, Small Cell/pathology
- Cell Adhesion/physiology
- Cell Division/physiology
- Gene Expression
- Humans
- Intercellular Signaling Peptides and Proteins
- Lung Neoplasms/enzymology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Neoplasm Proteins/biosynthesis
- Oncogene Proteins/metabolism
- Protein Processing, Post-Translational
- Proteins/genetics
- Proteins/metabolism
- Proto-Oncogene Proteins
- RNA, Messenger/genetics
- RNA, Neoplasm/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Axl Receptor Tyrosine Kinase
Collapse
Affiliation(s)
- A Wimmel
- Klinik für Innere Medizin, Sp. Hämatologie, Klinikum der Philipps-Universität, Baldinger Str., D-35033 Marburg, Germany
| | | | | | | | | |
Collapse
|
35
|
Berclaz G, Altermatt HJ, Rohrbach V, Kieffer I, Dreher E, Andres AC. Estrogen dependent expression of the receptor tyrosine kinase axl in normal and malignant human breast. Ann Oncol 2001; 12:819-24. [PMID: 11484958 DOI: 10.1023/a:1011126330233] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Axl, a member of a family of receptor tyrosine kinases characterized by an extracellular domain resembling cell adhesion molecules and an intracellular conserved tyrosine kinase domain has been reported to induce cell proliferation and transformation. In mice, axl is expressed in the normal mammary gland and over-expressed in aggressive mammary tumors. PATIENTS AND METHODS We have investigated the expression of axl immunohistochemically in 23 normal human breast samples and in 111 consecutive breast carcinomas. Expression of axl was correlated with tumour characteristics (lymph node involvement, stage, grade) and immunohistochemical expression of ER, PR, Ki-67 and c-erbB-2. RESULTS In normal tissue, axl localizes to the membrane of breast epithelial cells. Axl protein shows membrane associated staining in high correlation (P = 0.004) with the expression of the estrogen receptor (ER). Axl expression was found in a subset of breast carcinomas and was also correlated with high significance (P < 0.0001) with the presence of ER. CONCLUSION Our results suggest that axl may serve as a mediator of estrogen stimulation preventing the completion of the breast epithelial life cycle and that estrogen induced axl expression may give a survival signal to cancerous cells, preventing them from dying through apoptosis.
Collapse
Affiliation(s)
- G Berclaz
- Department of Obstetrics and Gynecology, University Hospital, Berne, Switzerland.
| | | | | | | | | | | |
Collapse
|
36
|
Prieto AL, Weber JL, Lai C. Expression of the receptor protein-tyrosine kinases Tyro-3, Axl, and Mer in the developing rat central nervous system. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20000918)425:2<295::aid-cne11>3.0.co;2-g] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
37
|
Augustine KA, Rossi RM, Van G, Housman J, Stark K, Danilenko D, Varnum B, Medlock E. Noninsulin-dependent diabetes mellitus occurs in mice ectopically expressing the human Axl tyrosine kinase receptor. J Cell Physiol 1999; 181:433-47. [PMID: 10528229 DOI: 10.1002/(sici)1097-4652(199912)181:3<433::aid-jcp7>3.0.co;2-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The axl tyrosine kinase receptor is aberrantly expressed on myeloid cells of many individuals afflicted with chronic myelogenous leukemia (CML) and other myeloid leukemias. Although previous studies demonstrated this kinase to have oncogenic potential, it is not known whether axl actively participates in the onset and/or progression of CML. We addressed this question by generating transgenic mice possessing constitutive ectopic expression of human axl throughout cells of the myeloid hematopoietic lineage through the use of the granulocyte colony-stimulating factor (GCSF) receptor promoter. The transgenics did not exhibit hematopoietic malignancies, but did exhibit phenotypic characteristics associated with noninsulin-dependent diabetes mellitus (NIDDM) including hyperglycemia and hyperinsulinemia, severe insulin resistance, progressive obesity, hepatic lipidosis, and pancreatic islet dysplasia. The obese-diabetes phenotype was similar to that observed in the agouti and melanocortin-4(-/-) mutants, however the axl transgenics were not hyperphagic. Axl transgenic animals expressed elevated serum tumor necrosis factor (TNF)-alpha levels that were further enhanced upon in vitro lipopolysaccharide (LPS) stimulation of peripheral blood. Administration of the axl ligand, gas6, to peripheral transgenic blood samples eliminated excessive TNF-alpha production in response to LPS stimulation. As a means to better understand axl-gas6 biology, transgenic animals were produced which systemically expressed the gas6-binding axl proteolytic cleavage product. A more severe NIDDM phenotype occurred in these mice. The observed phenotypes may be related to the axl receptor or proteolytic cleavage product competing with related axl family receptors for binding of the gas6 ligand. We conclude that axl expression in myeloid cells in itself does not lead to the onset or progression of leukemia and suggest that ectopic axl expression affects endogenous modulation of TNF-alpha production indirectly resulting in the NIDDM phenotype.
Collapse
Affiliation(s)
- K A Augustine
- Department of Cell Biology, Amgen, Inc., Thosand Oaks, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|