1
|
Scheiblich H, Bicker G. Regulation of microglial migration, phagocytosis, and neurite outgrowth by HO-1/CO signaling. Dev Neurobiol 2014; 75:854-76. [DOI: 10.1002/dneu.22253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/26/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Hannah Scheiblich
- Division of Cell Biology; University of Veterinary Medicine Hannover; Hannover Germany
| | - Gerd Bicker
- Division of Cell Biology; University of Veterinary Medicine Hannover; Hannover Germany
- Center for Systems Neuroscience Hannover; Hannover Germany
| |
Collapse
|
2
|
Mongin AA, Dohare P, Jourd'heuil D. Selective vulnerability of synaptic signaling and metabolism to nitrosative stress. Antioxid Redox Signal 2012; 17:992-1012. [PMID: 22339371 PMCID: PMC3411350 DOI: 10.1089/ars.2012.4559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO) plays diverse physiological roles in the central nervous system, where it modulates neuronal communication, regulates blood flow, and contributes to the innate immune responses. In a number of brain pathologies, the excessive production of NO also leads to the formation of reactive and toxic intermediates generically termed reactive nitrogen species (RNS). RNS cause irreversible or poorly reversible damage to brain cells. RECENT ADVANCES Recent work in the field focused on the ability of NO and RNS to yield protein modifications, including the S-nitrosation of cysteine residues, which, in many instances, impact cellular functions and viability. CRITICAL ISSUES The vast majority of neuropathological studies focus on the loss of cell viability, but nitrosative stress may also strongly impair the functions of neuronal processes: axonal projections and dendritic trees. The functional integrity of axons and dendrites critically depends on local metabolism and effective delivery of metabolic enzymes and organelles. Here, we summarize the existing literature describing the effects of nitrosative stress on the major pathways of energetic metabolism: glycolysis, tricarboxylic acid cycle, and mitochondrial respiration, with the emphasis on modifications of protein thiols. FUTURE DIRECTIONS We propose that axons and dendrites are highly vulnerable to nitrosative stress because of their low glycolytic capacity and high dependence on timely delivery of metabolic enzymes and organelles from the cell body. Thus, supplementation with the end products of glycolysis, pyruvate or lactate, may help preserve metabolism in distal neuronal processes and protect or restore synaptic function in the ailing brain.
Collapse
Affiliation(s)
- Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, New York 12208, USA.
| | | | | |
Collapse
|
3
|
Abstract
Nitric oxide (NO) is a signaling molecule that is synthesized in a range of tissues by the NO synthases (NOSs). In the immature nervous system, the neuronal isoform of NOS (NOS1) is often expressed during periods of axon outgrowth and elaboration. However, there is little direct molecular evidence to suggest that NOS1 influences these processes. Here we address the functional role of NOS1 during in vivo zebrafish locomotor circuit development. We show that NOS1 is expressed in a population of interneurons that lie close to nascent motoneurons of the spinal cord. To determine how this protein regulates spinal network assembly, we perturbed NOS1 expression in vivo with antisense morpholino oligonucleotides. This treatment dramatically increased the number of axon collaterals formed by motoneuron axons, an effect mimicked by pharmacological inhibition of the NO/cGMP signaling pathway. In contrast, exogenous elevation of NO/cGMP levels suppressed motor axon branching. These effects were not accompanied by a change in motoneuron number, suggesting that NOS1 does not regulate motoneuron differentiation. Finally we show that perturbation of NO signaling affects the ontogeny of locomotor performance. Our findings provide evidence that NOS1 is a key regulator of motor axon ontogeny in the developing vertebrate spinal cord.
Collapse
|
4
|
Moreno-López B, Sunico CR, González-Forero D. NO orchestrates the loss of synaptic boutons from adult "sick" motoneurons: modeling a molecular mechanism. Mol Neurobiol 2010; 43:41-66. [PMID: 21190141 DOI: 10.1007/s12035-010-8159-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 12/02/2010] [Indexed: 12/14/2022]
Abstract
Synapse elimination is the main factor responsible for the cognitive decline accompanying many of the neuropathological conditions affecting humans. Synaptic stripping of motoneurons is also a common hallmark of several motor pathologies. Therefore, knowledge of the molecular basis underlying this plastic process is of central interest for the development of new therapeutic tools. Recent advances from our group highlight the role of nitric oxide (NO) as a key molecule triggering synapse loss in two models of motor pathologies. De novo expression of the neuronal isoform of NO synthase (nNOS) in motoneurons commonly occurs in response to the physical injury of a motor nerve and in the course of amyotrophic lateral sclerosis. In both conditions, this event precedes synaptic withdrawal from motoneurons. Strikingly, nNOS-synthesized NO is "necessary" and "sufficient" to induce synaptic detachment from motoneurons. The mechanism involves a paracrine/retrograde action of NO on pre-synaptic structures, initiating a downstream signaling cascade that includes sequential activation of (1) soluble guanylyl cyclase, (2) cyclic guanosine monophosphate-dependent protein kinase, and (3) RhoA/Rho kinase (ROCK) signaling. Finally, ROCK activation promotes phosphorylation of regulatory myosin light chain, which leads to myosin activation and actomyosin contraction. This latter event presumably contributes to the contractile force to produce ending axon retraction. Several findings support that this mechanism may operate in the most prevalent neurodegenerative diseases.
Collapse
Affiliation(s)
- Bernardo Moreno-López
- Grupo de NeuroDegeneración y NeuroReparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Plaza Falla, 9, 11003 Cádiz, Spain.
| | | | | |
Collapse
|
5
|
Haynes RL, Folkerth RD, Trachtenberg FL, Volpe JJ, Kinney HC. Nitrosative stress and inducible nitric oxide synthase expression in periventricular leukomalacia. Acta Neuropathol 2009; 118:391-9. [PMID: 19415311 DOI: 10.1007/s00401-009-0540-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/14/2009] [Accepted: 04/14/2009] [Indexed: 12/13/2022]
Abstract
Periventricular leukomalacia (PVL) is a lesion of the immature cerebral white matter in the perinatal period and associated predominantly with prematurity and cerebral ischemia/reperfusion as well as inflammation due to maternofetal infection. It consists of focal necrosis in the periventricular region and diffuse gliosis with microglial activation and premyelinating oligodendrocyte (pre-OL) injury in the surrounding white matter. We previously showed nitrotyrosine in pre-OLs in PVL, suggesting involvement of nitrosative stress in this disorder. Here we hypothesize that inducible nitric oxide synthase (iNOS) expression is increased in PVL relative to controls. Using immunocytochemistry in human archival tissue, the density of iNOS-expressing cells was determined in the cerebral white matter of 15 PVL cases [29-51 postconceptional (PC) weeks] and 16 control cases (20-144 PC weeks). Using a standardization score of 0-3, the density of iNOS-positive cells was significantly increased in the diffuse component of PVL (score of 1.8 +/- 0.3) cases compared to controls (score of 0.7 +/- 0.3) (P = 0.01). Intense iNOS expression occurred in reactive astrocytes in acute through chronic stages and in activated microglia primarily in the acute stage, suggesting an early role for microglial iNOS in PVL's pathogenesis. This study supports an important role for iNOS-induced nitrosative stress in the reactive/inflammatory component of PVL.
Collapse
Affiliation(s)
- Robin L Haynes
- Departments of Pathology, Children's Hospital Boston, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
6
|
Abstract
Inflammation can both support and hinder regeneration. In this work, we asked whether regeneration of peripheral nerve axons is facilitated or interrupted when it proceeds through a zone of local but nondirected inflammation. Regeneration was examined in new nerve bridges forming through conduits connecting transected rat sciatic nerves. The conduits, infused with lipopolysaccharide to generate a sterile and nondirected inflammatory response, had substantial rises in inducible nitric oxide (iNOS) mRNA synthesis. iNOS was expressed within macrophages just beyond the zone of axon regrowth. Under these conditions, there was complete interruption of regenerative bridge formation in all instances without axon regrowth across the transection. In a separate cohort, infusion of a broad-spectrum NOS inhibitor (Nomega-nitro-L-arginine-methyl ester) into the conduit salvaged bridge formation in a proportion (3/8) of rats. Our findings indicate that local inflammatory conditions inhibit regenerative events and that nitric oxide may contribute to these events.
Collapse
|
7
|
Kapfhammer JP, Xu H, Raper JA. The detection and quantification of growth cone collapsing activities. Nat Protoc 2007; 2:2005-11. [PMID: 17703212 DOI: 10.1038/nprot.2007.295] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Growth cone guidance during development, as well as axonal extension in neural repair and plasticity, is strongly regulated by both attractive (growth-promoting) and repulsive (growth-inhibiting) guidance molecules. The growth cone collapse assay has been widely and successfully used for the identification and purification of molecules that are repulsive to growth cones or inhibit axonal outgrowth. Here we provide a detailed description of the assay, which uses the morphology of the growth cone after exposure to a test protein as the readout. With the modifications detailed in this protocol, this assay can be used for the biochemical enrichment of proteins with a collapsing activity and for the identification of a collapsing activity of a known protein or gene. This assay does not require very specialized equipment and can be established by every lab with experience in neuronal cell culture. It can be completed in 3 d.
Collapse
Affiliation(s)
- Josef P Kapfhammer
- Anatomisches Institut, Universität Basel, Pestalozzistr. 20, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|
8
|
Giraldi-Guimarães A, Batista CM, Carneiro K, Tenório F, Cavalcante LA, Mendez-Otero R. A critical survey on nitric oxide synthase expression and nitric oxide function in the retinotectal system. ACTA ACUST UNITED AC 2007; 56:403-26. [DOI: 10.1016/j.brainresrev.2007.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Revised: 08/31/2007] [Accepted: 09/12/2007] [Indexed: 01/08/2023]
|
9
|
Stroissnigg H, Trancíková A, Descovich L, Fuhrmann J, Kutschera W, Kostan J, Meixner A, Nothias F, Propst F. S-nitrosylation of microtubule-associated protein 1B mediates nitric-oxide-induced axon retraction. Nat Cell Biol 2007; 9:1035-45. [PMID: 17704770 DOI: 10.1038/ncb1625] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 07/26/2007] [Indexed: 02/05/2023]
Abstract
Treatment of cultured vertebrate neurons with nitric oxide leads to growth-cone collapse, axon retraction and the reconfiguration of axonal microtubules. We show that the light chain of microtubule-associated protein (MAP) 1B is a substrate for S-nitrosylation in vivo, in cultured cells and in vitro. S-nitrosylation occurs at Cys 2457 in the COOH terminus. Nitrosylation of MAP1B leads to enhanced interaction with microtubules and correlates with the inhibition of neuroblastoma cell differentiation. We further show, in dorsal root ganglion neurons, that MAP1B is necessary for neuronal nitric oxide synthase control of growth-cone size, growth-cone collapse and axon retraction. These results reveal an S-nitrosylation-dependent signal-transduction pathway that is involved in regulation of the axonal cytoskeleton and identify MAP1B as a major component of this pathway. We propose that MAP1B acts by inhibiting a microtubule- and dynein-based mechanism that normally prevents axon retraction.
Collapse
Affiliation(s)
- Heike Stroissnigg
- Max F. Perutz Laboratories, Department of Molecular Cell Biology, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Huynh P, Boyd SK. Nitric Oxide Synthase and NADPH Diaphorase Distribution in the Bullfrog (Rana catesbeiana) CNS: Pathways and Functional Implications. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:145-63. [PMID: 17595535 DOI: 10.1159/000104306] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 11/07/2006] [Indexed: 11/19/2022]
Abstract
The gas nitric oxide (NO) is emerging as an important regulator of normal physiology and pathophysiology in the central nervous system (CNS). The distribution of cells releasing NO is poorly understood in non-mammalian vertebrates. Nitric oxide synthase immunocytochemistry (NOS ICC) was thus used to identify neuronal cells that contain the enzyme required for NO production in the amphibian brain and spinal cord. NADPH-diaphorase (NADPHd) histochemistry was also used because the presence of NADPHd serves as a reliable indicator of nitrergic cells. Both techniques revealed stained cells in all major structures and pathways in the bullfrog brain. Staining was identified in the olfactory glomeruli, pallium and subpallium of the telencephalon; epithalamus, thalamus, preoptic area, and hypothalamus of the diencephalon; pretectal area, optic tectum, torus semicircularis, and tegmentum of the mesencephalon; all layers of the cerebellum; reticular formation; nucleus of the solitary tract, octaval nuclei, and dorsal column nuclei of the medulla; and dorsal and motor fields of the spinal cord. In general, NADPHd histochemistry provided better staining quality, especially in subpallial regions, although NOS ICC tended to detect more cells in the olfactory bulb, pallium, ventromedial thalamus, and cerebellar Purkinje cell layer. NOS ICC was also more sensitive for motor neurons and consistently labeled them in the vagus nucleus and along the length of the rostral spinal cord. Thus, nitrergic cells were ubiquitously distributed throughout the bullfrog brain and likely serve an essential regulatory function.
Collapse
Affiliation(s)
- Phuong Huynh
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
11
|
Abstract
Neuronal motility is a fundamental feature that underlies the development, regeneration, and plasticity of the nervous system. Two major developmental events--directed migration of neuronal precursor cells to the proper positions and guided elongation of axons to their target cells--depend on large-scale neuronal motility. At a finer scale, motility is also manifested in many aspects of neuronal structures and functions, ranging from differentiation and refinement of axonal and dendritic morphology during development to synapse remodeling associated with learning and memory in the adult brain. As a primary second messenger that conveys the cytoplasmic actions of electrical activity and many neuroactive ligands, Ca(2+) plays a central role in the regulation of neuronal motility. Recent studies have revealed common Ca(2+)-dependent signaling pathways that are deployed for regulating cytoskeletal dynamics associated with neuronal migration, axon and dendrite development and regeneration, and synaptic plasticity.
Collapse
Affiliation(s)
- James Q Zheng
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
12
|
Yamada RX, Matsuki N, Ikegaya Y. Nitric oxide/cyclic guanosine monophosphate-mediated growth cone collapse of dentate granule cells. Neuroreport 2006; 17:661-5. [PMID: 16603931 DOI: 10.1097/00001756-200604240-00021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Controlling axon and dendrite elongation is critical in developing precise neural circuits. Using isolated cultures of dentate granule neurons, we established an experimental system that can simultaneously monitor the behaviors of axonal and dendritic outgrowth. Our previous study shows that axons and dendrites respond differentially to manipulated cyclic adenosine monophosphate signaling, but we report here that cyclic guanosine monophosphate exerts similar effects on axons and dendrites; that is, both axonal and dendritic growth cones collapsed after activation of cyclic guanosine monophosphate signaling. In addition, nitric oxide donor-induced growth-cone collapse was prevented by the inhibition of cyclic guanosine monophosphate signaling, and this effect again did not differ between axons and dendrites. Thus, unlike cyclic adenosine monophosphate, cyclic guanosine monophosphate modulates extending axons and dendrites in a similar manner.
Collapse
Affiliation(s)
- Ryuji X Yamada
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
13
|
Mu Y, Poo MM. Spike timing-dependent LTP/LTD mediates visual experience-dependent plasticity in a developing retinotectal system. Neuron 2006; 50:115-25. [PMID: 16600860 DOI: 10.1016/j.neuron.2006.03.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 02/02/2006] [Accepted: 03/01/2006] [Indexed: 01/08/2023]
Abstract
Sensory experience plays an instructive role in the development of the nervous system. Here we showed that visual experience can induce persistent modification of developing retinotectal circuits via spike timing-dependent plasticity (STDP). Pairing light stimuli with spiking of the tectal cell induced persistent enhancement or reduction of light-evoked responses, with a dependence on the relative timing between light stimulus and postsynaptic spiking similar to that for STDP. Using precisely timed sequential three-bar stimulation to mimic a moving bar, we showed that spike timing-dependent LTP/LTD can account for the asymmetric modification of the tectal cell receptive field induced by moving bar. Furthermore, selective inhibition of signaling mediated by brain-derived neurotrophic factor and nitric oxide, which are respectively required for light-induced LTP and LTD, interfered with moving bar-induced temporally specific changes in the tectal cell responses. Together, these findings suggest that STDP can mediate sensory experience-dependent circuit refinement in the developing nervous system.
Collapse
Affiliation(s)
- Yangling Mu
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
14
|
Gifondorwa DJ, Leise EM. Programmed cell death in the apical ganglion during larval metamorphosis of the marine mollusc Ilyanassa obsoleta. THE BIOLOGICAL BULLETIN 2006; 210:109-20. [PMID: 16641516 DOI: 10.2307/4134600] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The apical ganglion (AG) of larval caenogastropods, such as Ilyanassa obsoleta, houses a sensory organ, contains five serotonergic neurons, innervates the muscular and ciliary components of the velum, and sends neurites into a neuropil that lies atop the cerebral commissure. During metamorphosis, the AG is lost. This loss had been postulated to occur through some form of programmed cell death (PCD), but it is possible for cells within the AG to be respecified or to migrate into adjacent ganglia. Evidence from histological sections is supported by results from a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, which indicate that cells of the AG degenerate by PCD. PCD occurs after metamorphic induction by serotonin or by inhibition of nitric oxide synthase (NOS) activity. Cellular degeneration and nuclear condensation and loss were observed within 12 h of metamorphic induction by NOS inhibition and occur before loss of the velar lobes, the ciliated tissue used for larval swimming and feeding. Velar disintegration happens more rapidly after metamorphic induction by serotonin than by 7-nitroindazole, a NOS inhibitor. Loss of the AG was complete by 72 h after induction. Spontaneous loss of the AG in older competent larvae may arise from a natural decrease in endogenous NOS activity, giving rise to the tendency of aging larvae to display spontaneous metamorphosis in culture.
Collapse
Affiliation(s)
- David J Gifondorwa
- Department of Biology, University of North Carolina Greensboro, Greensboro, North Carolina 27402-6170, USA
| | | |
Collapse
|
15
|
Welshhans K, Rehder V. Local activation of the nitric oxide/cyclic guanosine monophosphate pathway in growth cones regulates filopodial length via protein kinase G, cyclic ADP ribose and intracellular Ca2+ release. Eur J Neurosci 2006; 22:3006-16. [PMID: 16367767 DOI: 10.1111/j.1460-9568.2005.04490.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) is a gaseous messenger that has been shown to affect growth cone motility and neurite outgrowth in several model systems, but how NO brings about its effects is not understood. We have previously demonstrated that global and long-term application of NO to Helisoma trivolvis B5 neurons results in a transient increase in filopodial length, decrease in filopodial number and decrease in neurite outgrowth, all of which are mediated via soluble guanylyl cyclase (sGC) and involve an increase in the intracellular Ca2+ concentration [S. Van Wagenen & V. Rehder (1999)Journal of Neurobiology, 39, 168-185; K.R. Trimm & V. Rehder (2004) European Journal of Neuroscience, 19, 809-818]. The goal of the current study was twofold: to investigate the effects of short-term NO exposure on individual growth cones and to further elucidate the downstream pathway through which NO exerts its effects. Local application of the NO donor NOC-7 for 10-20 ms via puffer micropipette resulted in a transient increase in filopodial length and a small decrease in filopodial number. We show evidence that these effects of NO are mediated via sGC, protein kinase G and cyclic ADP ribose, resulting in the release of Ca2+ from intracellular stores, probably of the ryanodine-sensitive type. These results suggest that growth cones expressing sGC are highly sensitive to local and short-term exposure to NO, which they may experience during pathfinding, and that the stereotyped response of transient filopodial elongation seen in B5 neurons in response to NO requires intracellular Ca2+ release.
Collapse
Affiliation(s)
- Kristy Welshhans
- Department of Biology, Georgia State University, PO Box 4010, Atlanta, GA 30302-4010, USA
| | | |
Collapse
|
16
|
Moreno-López B, González-Forero D. Nitric Oxide and Synaptic Dynamics in the Adult Brain: Physiopathological Aspects. Rev Neurosci 2006; 17:309-57. [PMID: 16878402 DOI: 10.1515/revneuro.2006.17.3.309] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The adult brain retains the capacity to rewire mature neural circuits in response to environmental changes, brain damage or sensory and motor experiences. Two plastic processes, synaptic remodeling and neurogenesis, have been the subject of numerous studies due to their involvement in the maturation of the nervous system, their prevalence and re-activation in adulthood, and therapeutic relevance. However, most of the research looking for the mechanistic and molecular events underlying synaptogenic phenomena has been focused on the extensive synaptic reorganization occurring in the developing brain. In this stage, a vast number of synapses are initially established, which subsequently undergo a process of activity-dependent refinement guided by target-derived signals that act as synaptotoxins or synaptotrophins, promoting either loss or consolidation of pre-existing synaptic contacts, respectively. Nitric oxide (NO), an autocrine and/or paracrine-acting gaseous molecule synthesized in an activity-dependent manner, has ambivalent actions. It can act by mediating synapse formation, segregation of afferent inputs, or growth cone collapse and retraction in immature neural systems. Nevertheless, little information exists about the role of this ambiguous molecule in synaptic plasticity processes occurring in the adult brain. Suitable conditions for elucidating the role of NO in adult synaptic rearrangement include physiopathological conditions, such as peripheral nerve injury. We have recently developed a crush lesion model of the XIIth nerve that induces a pronounced stripping of excitatory synaptic boutons from the cell bodies of hypoglossal motoneurons. The decline in synaptic coverage was concomitant with de novo expression of the neuronal isoform of NO synthase in motoneurons. We have demonstrated a synaptotoxic action of NO mediating synaptic withdrawal and preventing synapse formation by cyclic GMP (cGMP)-dependent and, probably, S-nitrosylation-mediated mechanisms, respectively. This action possibly involves the participation of other signaling molecules working together with NO. Brain-derived neurotrophic factor (BDNF), a target-derived synaptotrophin synthesized and released postsynaptically in an activity-dependent form, is a potential candidate for effecting such a concerted action. Several items of evidence support an interrelationship between NO and BDNF in the regulation of synaptic remodeling processes in adulthood: i) BDNF and its receptor TrkB are expressed by motoneurons and upregulated by axonal injury; ii) they promote axon arborization and synaptic formation, and modulate the structural dynamics of excitatory synapses; iii) NO and BDNF each control the production and activity of the other at the level of individual synapses; iv) the NO/cGMP pathway inhibits BDNF secretion; and finally, v) BDNF protects F-actin from depolymerization by NO, thus preventing the collapsing and retracting effects of NO on growth cones. Therefore, we propose a mechanism of action in which the NO/BDNF ratio regulates synapse dynamics after peripheral nerve lesion. This hypothesis also raises the possibility that variations in this NO/BDNF balance constitute a common hallmark leading to synapse loss in the progression of diverse neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases.
Collapse
|
17
|
Shin SJ, Qi WN, Cai Y, Rizzo M, Goldner RD, Nunley JA, Chen LE. Inhibition of inducible nitric oxide synthase promotes recovery of motor function in rats after sciatic nerve ischemia and reperfusion. J Hand Surg Am 2005; 30:826-35. [PMID: 16039380 DOI: 10.1016/j.jhsa.2005.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 03/08/2005] [Accepted: 03/08/2005] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate the effects of inhibition of inducible nitric oxide synthase (iNOS) on the recovery of motor function in the rat sciatic nerve after ischemia and reperfusion injury. METHODS A 10-mm segment of the sciatic nerve from 169 rats had 2 hours of ischemia followed by up to 42 days of reperfusion. The animals were divided into 2 groups that received either iNOS inhibitor 1400W or the same volume of sterile water subcutaneously. A walking track test was used to evaluate the motor functional recovery during reperfusion. Statistical analysis was performed for the measurements of the sciatic functional index (SFI) by using 2-way analysis of variance; 1-way analysis of variance was used for the post hoc analysis of specific values at each time point of the SFI measurement. RESULTS 1400W-treated rats had earlier motor functional recovery than controls, with a significantly improved SFI between days 11 and 28. Histology showed less axonal degeneration and earlier regeneration of nerve fibers in the 1400W group than in the controls. Inducible NOS messenger RNA and protein were up-regulated during the first 3 days of reperfusion but there was a down-regulation of neuronal NOS and up-regulation of endothelial NOS in control animals. 1400W treatment attenuated the increase of iNOS but had no effect on neuronal NOS and endothelial NOS. CONCLUSIONS Our results indicate that early inhibition of iNOS appears to be critical for reducing or preventing ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Sang-Jin Shin
- Department of Orthopaedic Surgery, Ewha Women's University Mokdong Hospital, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Bicker G. STOP and GO with NO: nitric oxide as a regulator of cell motility in simple brains. Bioessays 2005; 27:495-505. [PMID: 15832386 DOI: 10.1002/bies.20221] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
During the formation of the brain, neuronal cell migration and neurite extension are controlled by extracellular guidance cues. Here, I discuss experiments showing that the messenger nitric oxide (NO) is an additional regulator of cell motility. NO is a membrane permeant molecule, which activates soluble guanylyl cyclase (sGC) and leads to the formation of cyclic GMP (cGMP) in target cells. The analysis of specific cells types in invertebrate models such as molluscs, insects and the medicinal leech provides insight how NO and cyclic nucleotides affect the wiring of nervous systems by regulating cell and growth-cone motility. Inhibition of the NOS and sGC enzymes combined with rescue experiments show that NO signalling orchestrates neurite outgrowth and filopodial dynamics, cell migration of enteric neurons, glial migration and axonogenesis of pioneer fibers. Cultured insect embryos are accessible model systems in which cellular mechanisms of NO-induced cytoskeletal reorganizations can be analyzed in natural settings. Finally, I will outline some indications that NO may also regulate cell motility in the developing and regenerating vertebrate nervous system.
Collapse
Affiliation(s)
- Gerd Bicker
- School of Veterinary Medicine Hannover, Cell Biology, Institute of Physiology Bischofsholer Damm 15, D-30173 Hannover, Germany.
| |
Collapse
|
19
|
Contestabile A, Ciani E. Role of nitric oxide in the regulation of neuronal proliferation, survival and differentiation. Neurochem Int 2004; 45:903-14. [PMID: 15312985 DOI: 10.1016/j.neuint.2004.03.021] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nitric oxide (NO), an important cellular messenger, has been linked to both neurodegenerative and neuroprotective actions. In the present review, we focus on recent data establishing a survival and differentiation role for NO in several neural in vitro and in vivo models. Nitric oxide has been found to be essential for survival of neuronal cell lines and primary neurons in culture under various death challenges. Furthermore, its lack may aggravate some neuropathological conditions in experimental animals. Several cellular pathways and signaling systems subserving this neuroprotective role of NO are considered in the review. Survey of recent data related to the developmental role of NO mainly focus on its action as a negative regulator of neuronal precursor cells proliferation and on its role of promotion of neuronal differentiation. Discussion on discrepancies arising from the literature is focused on the Janus-faced properties of the molecule and it is proposed that most controversial results are related to the intrinsic property of NO to compensate among functionally opposed effects. As an example, the increased proliferation of neural cell precursors under conditions of NO shortage may be, later on in the development, compensated by increased elimination through programmed cell death as a consequence of the lack of the survival-promoting action of the molecule. To elucidate these complex, and possibly contrasting, effects of NO is indicated as an important task for future researches.
Collapse
Affiliation(s)
- Antonio Contestabile
- Department of Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | | |
Collapse
|
20
|
Hua JY, Smith SJ. Neural activity and the dynamics of central nervous system development. Nat Neurosci 2004; 7:327-32. [PMID: 15048120 DOI: 10.1038/nn1218] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 01/21/2004] [Indexed: 11/09/2022]
Abstract
Recent imaging studies show that the formation of neural connections in the central nervous system is a highly dynamic process. The iterative formation and elimination of synapses and neuronal branches result in the formation of a much larger number of trial connections than is maintained in the mature brain. Neural activity modulates development through biasing this process of formation and elimination, promoting the formation and stabilization of appropriate synaptic connections on the basis of functional activity patterns.
Collapse
Affiliation(s)
- Jackie Yuanyuan Hua
- Department of Molecular and Cellular Physiology, Beckman Center B141, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
21
|
Chen J, Tu Y, Moon C, Matarazzo V, Palmer AM, Ronnett GV. The localization of neuronal nitric oxide synthase may influence its role in neuronal precursor proliferation and synaptic maintenance. Dev Biol 2004; 269:165-82. [PMID: 15081365 DOI: 10.1016/j.ydbio.2004.01.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 12/29/2003] [Accepted: 01/20/2004] [Indexed: 10/26/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) is implicated in some developmental processes, including neuronal survival, differentiation, and precursor proliferation. To define the roles of nNOS in neuronal development, we utilized the olfactory system as a model. We hypothesized that the role of nNOS may be influenced by its localization. nNOS expression was developmentally regulated in the olfactory system. During early postnatal development, nNOS was expressed in developing neurons in the olfactory epithelium (OE), while in the adult its expression was restricted to periglomerular (PG) cells in the olfactory bulb (OB). At postnatal week 1 (P1W), loss of nNOS due to targeted gene deletion resulted in a decrease in immature neurons in the OE due to decreased proliferation of neuronal precursors. While the pool of neuronal precursors and neurogenesis normalized in the nNOS null mouse by P6W, there was an overgrowth of mitral or tufted cells dendrites and a decreased number of active synapses in the OB. Cyclic GMP (cGMP) immunostaining was reduced in the OE and in the glomeruli of the OB at early postnatal and adult ages, respectively. Our results suggest that nNOS appears necessary for neurogenesis in the OE during early postnatal development and for glomerular organization in the OB in the adult. Thus, the location of nNOS, either within cell bodies or perisynaptically, may influence its developmental role.
Collapse
Affiliation(s)
- Jijun Chen
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
22
|
Schmidt JT. Activity-driven sharpening of the retinotectal projection: the search for retrograde synaptic signaling pathways. ACTA ACUST UNITED AC 2004; 59:114-33. [PMID: 15007831 DOI: 10.1002/neu.10343] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Patterned visual activity, acting via NMDA receptors, refines developing retinotectal maps by shaping individual retinal arbors. Because NMDA receptors are postsynaptic but the retinal arbors are presynaptic, there must be retrograde signals generated downstream of Ca(++) entry through NMDA receptors that direct the presynaptic retinal terminals to stabilize and grow or to withdraw. This review defines criteria for retrograde synaptic messengers, and then applies them to the leading candidates: nitric oxide (NO), brain-derived neurotrophic factor (BDNF), and arachidonic acid (AA). NO is not likely to be a general mechanism, as it operates only in selected projections of warm blooded vertebrates to speed up synaptic refinement, but is not essential. BDNF is a neurotrophin with strong growth promoting properties and complex interactions with activity both in its release and receptor signaling, but may modulate rather than mediate the retrograde signaling. AA promotes growth and stabilization of synaptic terminals by tapping into a pre-existing axonal growth-promoting pathway that is utilized by L1, NCAM, N-cadherin, and FGF and acts via PKC, GAP43, and F-actin stabilization, and it shares some overlap with BDNF pathways. The actions of both are consistent with recent demonstrations that activity-driven stabilization includes directed growth of new synaptic contacts. Certain nondiffusible factors (synapse-specific CAMs, ephrins, neurexin/neuroligin, and matrix molecules) may also play a role in activity-driven synapse stabilization. Interactions between these pathways are discussed.
Collapse
Affiliation(s)
- John T Schmidt
- Department of Biological Sciences and Center for Neuroscience Research, University at Albany-SUNY, 1400 Washington Avenue, Albany, New York 12222, USA.
| |
Collapse
|
23
|
Schmidt JT, Fleming MR, Leu B. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening. ACTA ACUST UNITED AC 2004; 58:328-40. [PMID: 14750146 DOI: 10.1002/neu.10286] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Visual activity refines developing retinotectal maps and shapes individual retinal arbors via an NMDA receptor-dependent mechanism. As retinal axons grow into tectum, they slow markedly and emit many transient side branches behind the tip, assuming a "bottlebrush" morphology. Some branches are stabilized and branch further, giving rise to a compact arbor. The dynamic rate of branch addition and deletion is increased twofold when MK801 is used to block NMDA receptors, as if this prevents release of a stabilizing signal such as arachidonic acid (AA) from the postsynaptic neuron. In optic tract, AA mediates NCAM and L1 stimulation of axon growth by activating presynaptic protein kinase C (PKC) to phosphorylate GAP-43 and stabilize F-actin, and, if present in tectum, this growth control pathway could be modulated by postsynaptic activation. To test for the effects on arbor morphology of blocking PKC or AA release, we examined DiO-labeled retinal axons of larval zebrafish with time-lapse videomicroscopy. Bath application of the selective PKC inhibitor bisindolylmaleimide from 2 or 3 days onward doubled the rate at which side branches were added and deleted, as seen with MK801, and also prevented maturation of the arbor so that it retained a "bottlebrush" morphology. In order to selectively block the PKC being transported to retinal terminals, we injected the irreversible inhibitor calphostin C into the eye from which the ganglion cells were labeled, and this produced both effects seen with bath application. In contrast, there were no effects of control injections, which included Ringers into the same eye and the same dose into the opposite eye (actually much closer to the tectum of interest), to rule out the possibility that the inhibitor leaked from the eye to act on tectal cells. For comparison, we examined arbors treated with the NMDA blocker MK801 at half-hour time-lapse intervals, and detected the twofold rise in rates of branch addition and deletion previously reported in Xenopus larvae, but not the structural effect seen with the PKC inhibitors. In addition, we could produce both effects seen with PKC inhibitors by using RHC80267 to block AA release from DAG lipase, indicating that AA is the main drive for PKC activation. Thus, the results show a distinct role of AA and presynaptic PKC in both maturation of arbor structure and in the dynamic control of branching. The effects on branch dynamics were present regardless of the level of maturity of arbor structure. The fact that they mimicked those of MK801 suggests that presynaptic PKC may be involved in the NMDA receptor-driven stabilization of developing retinal arbors.
Collapse
Affiliation(s)
- John T Schmidt
- Department of Biological Sciences and Center for Neuroscience Research, University at Albany-SUNY, 1400 Washington Avenue, Albany, New York 12222, USA.
| | | | | |
Collapse
|
24
|
Abstract
Nitric oxide (NO) has been demonstrated to act as a signaling molecule during neuronal development, but its precise function is unclear. Here we investigate whether NO might function at the neuronal growth cone to affect growth cone motility. We have previously demonstrated that growth cones of identified neurons from the snail Helisoma trivolvis show a rapid and transient increase in filopodial length in response to NO, which was regulated by soluble guanylyl cyclase (sGC) [S. Van Wagenen and V. Rehder (1999) J. Neurobiol., 39, 168-185]. Because in vivo studies have demonstrated that growth cones have longer filopodia and advance more slowly in regions where pathfinding decisions are being made, this study aimed to establish whether NO could function as a combined 'slow-down and search signal' for growth cones by decreasing neurite outgrowth. In the presence of the NO donor NOC-7, neurites of B5 neurons showed a concentration-dependent effect on neurite outgrowth, ranging from slowing at low, stopping at intermediate and collapsing at high concentrations. The effects of the NO donor were mimicked by directly activating sGC with YC-1, or by increasing its product with 8-bromo-cGMP. In addition, blocking sGC in the presence of NO with NS2028 blocked the effect of NO, suggesting that NO affected outgrowth via sGC. Ca2+ imaging of growth cones with Fura-2 indicated that [Ca2+]i increased transiently in the presence of NOC-7. These results support the hypothesis that NO can function as a potent slow/stop signal for developing neurites. When coupled with transient filopodia elongation, this phenomenon emulates growth cone searching behavior.
Collapse
Affiliation(s)
- Kevin R Trimm
- Department of Biology, Georgia State University, Atlanta, GA 30303-3088, USA
| | | |
Collapse
|
25
|
Haase A, Bicker G. Nitric oxide and cyclic nucleotides are regulators of neuronal migration in an insect embryo. Development 2003; 130:3977-87. [PMID: 12874120 DOI: 10.1242/dev.00612] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dynamic regulation of nitric oxide synthase (NOS) activity and cGMP levels suggests a functional role in the development of nervous systems. We report evidence for a key role of the NO/cGMP signalling cascade on migration of postmitotic neurons in the enteric nervous system of the embryonic grasshopper. During embryonic development, a population of enteric neurons migrates several hundred micrometers on the surface of the midgut. These midgut neurons (MG neurons) exhibit nitric oxide-induced cGMP-immunoreactivity coinciding with the migratory phase. Using a histochemical marker for NOS, we identified potential sources of NO in subsets of the midgut cells below the migrating MG neurons. Pharmacological inhibition of endogenous NOS, soluble guanylyl cyclase (sGC) and protein kinase G (PKG) activity in whole embryo culture significantly blocks MG neuron migration. This pharmacological inhibition can be rescued by supplementing with protoporphyrin IX free acid, an activator of sGC, and membrane-permeant cGMP, indicating that NO/cGMP signalling is essential for MG neuron migration. Conversely, the stimulation of the cAMP/protein kinase A signalling cascade results in an inhibition of cell migration. Activation of either the cGMP or the cAMP cascade influences the cellular distribution of F-actin in neuronal somata in a complementary fashion. The cytochemical stainings and experimental manipulations of cyclic nucleotide levels provide clear evidence that NO/cGMP/PKG signalling is permissive for MG neuron migration, whereas the cAMP/PKA cascade may be a negative regulator. These findings reveal an accessible invertebrate model in which the role of the NO and cyclic nucleotide signalling in neuronal migration can be analyzed in a natural setting.
Collapse
Affiliation(s)
- Annely Haase
- School of Veterinary Medicine Hannover, Cell Biology, Bischofsholer Damm 15, D-30173 Hannover, Germany
| | | |
Collapse
|
26
|
McCauley AK, Carden WB, Godwin DW. Brain nitric oxide synthase expression in the developing ferret lateral geniculate nucleus: analysis of time course, localization, and synaptic contacts. J Comp Neurol 2003; 462:342-54. [PMID: 12794737 DOI: 10.1002/cne.10729] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nitric oxide (NO) is a diffusible neurotransmitter that has been implicated in key developmental events, including the refinement of retinogeniculate axons into ON/OFF sublayers in the ferret lateral geniculate nucleus (LGN), and in the formation of eye-specific laminae in other species. To understand the role of NO in the LGN, it is critical to fully characterize the pattern of brain nitric oxide synthase (bNOS) expression within the nucleus, including the phenotype of the neural elements that express it. We have examined the temporal and spatial pattern of bNOS expression in the ferret LGN during the first 6 weeks of postnatal development, and in the adult, by detecting bNOS with a monoclonal antibody as well as beta-nicotinamide adenine dinucleotide phosphate-diaphorase histochemistry. We have found that bNOS is expressed in neurons in the A laminae of the LGN as early as postnatal day 7 (P7), a time coincident with eye-specific segregation of retinal axons. This expression continues through P35, with peak somatodendritic expression at P21. Fluorescent double labeling using antibodies to bNOS and glutamic acid decarboxylase indicate that bNOS is expressed in gamma-aminobutyric acid-ergic interneurons within the A laminae. Electron microscopic examination of bNOS-labeled cells showed synaptic contacts from terminals with two distinct morphologic profiles. Expression of bNOS within interneurons that receive contacts from multiple sources indicates that the synaptic circuitry associated with bNOS activation and the potential targets of NO may be more complex than originally thought and supports a potential new role for interneurons as cellular intermediaries in the refinement of pathways in the LGN. Our findings broaden the window of time that bNOS may be active within the developing LGN, suggesting an expanded role for NO during early postnatal development.
Collapse
Affiliation(s)
- Anita K McCauley
- Department of Neurobiology and Anatomy, Wake Forest University, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
27
|
Münch G, Gasic-Milenkovic J, Dukic-Stefanovic S, Kuhla B, Heinrich K, Riederer P, Huttunen HJ, Founds H, Sajithlal G. Microglial activation induces cell death, inhibits neurite outgrowth and causes neurite retraction of differentiated neuroblastoma cells. Exp Brain Res 2003; 150:1-8. [PMID: 12698210 DOI: 10.1007/s00221-003-1389-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2002] [Accepted: 12/31/2002] [Indexed: 10/20/2022]
Abstract
Activation of glial cells has been proposed to contribute to neuronal dysfunction and neuronal cell death in Alzheimer's disease. In this study, we attempt to determine some of the effects of secreted factors from activated murine N-11 microglia on viability and morphology of neurons using the differentiated neuroblastoma cell line Neuro2a. Microglia were activated either by lipopolysaccharide (LPS), bacterial cell wall proteoglycans, or advanced glycation endproducts (AGEs), protein-bound sugar oxidation products. At high LPS or AGE concentrations, conditioned medium from microglia caused neuronal cell death in a dose-dependent manner. At sublethal LPS or AGE concentrations, conditioned media inhibited retinoic acid-induced neurite outgrowth and stimulated retraction of already extended neurites. Among the many possible secreted factors, the contribution of NO or NO metabolites in the cytotoxicity of conditioned medium was investigated. Cell death and changes in neurite morphology were partly reduced when NO production was inhibited by nitric oxide synthase inhibitors. The results suggest that even in the absence of significant cell death, inflammatory processes, which are partly transmitted via NO metabolites, may affect intrinsic functions of neurons such as neurite extension that are essential components of neuronal morphology and thus may contribute to degenerative changes in Alzheimer's disease.
Collapse
Affiliation(s)
- Gerald Münch
- Neuroimmunological Cell Biology Unit, Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Aïtoubah J, Itaya SK, Bretzner F, Chemtob S, Guillemot JP, Tan YF, Shumikhina S, Molotchnikoff S. Influence of NO downregulation on oscillatory evoked responses in developing rat superior colliculus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 138:155-65. [PMID: 12354643 DOI: 10.1016/s0165-3806(02)00465-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) is involved in neuronal transmission by modulating neurotransmitter release in adults and in stabilizing synaptic connections in developing brains. We investigated the influence of downregulation of NO synthesis on oscillatory components of ON and OFF evoked field potentials in the rat superior colliculus. NO synthesis was decreased by inhibiting nitric oxide synthase (NOS) with an acute microinjection of N(omega)-nitro-L-arginine methyl ester (L-NAME). The study focuses on rhythmic activity by analyzing fast Fourier transform (FFT). Collicular responses were recorded in anesthetized rats, at postnatal days (PND) 13-19 and adults. This time window was chosen because it is centered on eye opening. NO downregulation resulted in a dual effect depending on age and response-type. NO synthesis inhibition decreased the magnitude of oscillations in ON responses in the youngest animals (PND13-14), whereas oscillations of frequencies higher than 20 Hz in OFF responses were increased in all age groups of developing rats. In adults NO downregulation increased oscillations in ON responses and decreased oscillations in OFF responses. L-Arginine was used to increase NOS activity and its injection produced effects opposite to those seen with L-NAME. Slow oscillatory components (7-12 Hz) were unaffected in all experiments. Our data together with results reported in the literature suggest that rhythmic patterns of activity are NO-dependent.
Collapse
Affiliation(s)
- Jamila Aïtoubah
- Département de Sciences Biologiques, Université de Montréal, C.P. 6128, Succursale centre-ville, Québec, H3C 3J7, Montréal, Canada
| | | | | | | | | | | | | | | |
Collapse
|
29
|
McCauley AK, Meyer GA, Godwin DW. Developmental regulation of brain nitric oxide synthase expression in the ferret thalamic reticular nucleus. Neurosci Lett 2002; 320:151-5. [PMID: 11852184 DOI: 10.1016/s0304-3940(02)00053-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have found that cells in the ferret thalamic reticular nucleus (TRN) express brain nitric oxide synthase (bNOS) in a transient pattern during early postnatal development. Similar to our previous findings in the lateral geniculate nucleus (LGN), bNOS expression in the TRN is first observed at postnatal day 7 (P7) and continues to P35. Quantitative measures show a significant change in the relative numbers of bNOS+ cells from P7-P35, and suggest there is a transition in morphology from a bipolar shape with two primary dendrites, to a more complex, multipolar arrangement. During TRN development, the pattern of bNOS expression shifts from the somatodendritic localization seen during the first postnatal month to expression within axon fibers in the adult. Expression of bNOS within TRN cells demonstrates an additional source of nitric oxide in the developing visual thalamus, perhaps indicating a common function for thalamic nitergic neurons as cellular mediators in the establishment of central topography both in the LGN and the TRN.
Collapse
Affiliation(s)
- Anita K McCauley
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
30
|
Abstract
It is now 15 years since the discovery that N-methyl-d-aspartate receptor activity is required to maintain the refined topographic organization of retinotectal projections. Recent studies have identified additional components of the signaling pathways required for activity-dependent map formation and maintenance. Nitric oxide and brain-derived neurotrophic factor, candidate retrograde messengers, and serotonin and acetylcholine, modulators of neuronal excitability, all affect mapping. These studies indicate that the mapping process intersects with other processes fundamental to visual system development and function, such as process outgrowth, synaptic turnover and neuromodulation.
Collapse
Affiliation(s)
- Elizabeth A Debski
- Department of Biological Sciences, University of Kentucky, 101 Morgan Biological Science Building, Lexington, Kentucky 40506, USA
| | | |
Collapse
|
31
|
Gibson NJ, Rössler W, Nighorn AJ, Oland LA, Hildebrand JG, Tolbert LP. Neuron-glia communication via nitric oxide is essential in establishing antennal-lobe structure in Manduca sexta. Dev Biol 2001; 240:326-39. [PMID: 11784067 DOI: 10.1006/dbio.2001.0463] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide synthase recently has been shown to be present in olfactory receptor cells throughout development of the adult antennal (olfactory) lobe of the brain of the moth Manduca sexta. Here, we investigate the possible involvement of nitric oxide (NO) in antennal-lobe morphogenesis. Inhibition of NO signaling with a NO synthase inhibitor or a NO scavenger early in development results in abnormal antennal lobes in which neuropil-associated glia fail to migrate. A more subtle effect is seen in the arborization of dendrites of a serotonin-immunoreactive neuron, which grow beyond their normal range. The effects of NO signaling in these types of cells do not appear to be mediated by activation of soluble guanylyl cyclase to produce cGMP, as these cells do not exhibit cGMP immunoreactivity following NO stimulation and are not affected by infusion of a soluble guanylyl cyclase inhibitor. Treatment with Novobiocin, which blocks ADP-ribosylation of proteins, results in a phenotype similar to those seen with blockade of NO signaling. Thus, axons of olfactory receptor cells appear to trigger glial cell migration and limit arborization of serotonin-immunoreactive neurons via NO signaling. The NO effect may be mediated in part by ADP-ribosylation of target cell proteins.
Collapse
Affiliation(s)
- N J Gibson
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | | | | | |
Collapse
|
32
|
McLean DL, Sillar KT. Spatiotemporal pattern of nicotinamide adenine dinucleotide phosphate-diaphorase reactivity in the developing central nervous system of premetamorphic Xenopus laevis tadpoles. J Comp Neurol 2001; 437:350-62. [PMID: 11494261 DOI: 10.1002/cne.1288] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have catalogued the progressive appearance of putative nitric oxide synthase (NOS)-containing neurons in the developing central nervous system (CNS) of Xenopus laevis. Xenopus embryos and larvae were processed in wholemount and in cross section using nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry as a marker for NOS within the CNS. The temporal sequence of NADPH-d reactivity identified discrete groups and subgroups of neurons in the forebrain, midbrain, and hindbrain on the basis of their morphology, location, and order of appearance during development. A proportion of these groups of neurons appeared to be important in sensory processing and motor control. Staining also appeared at specific stages in the spinal cord, the retina, and the skin. After the appearance of labelling, NADPH-d reactivity continued in each of the cell groups throughout the stages examined. We found no evidence for staining that subsequently disappeared at later stages in any cell group, indicating a persistent rather than transient role for NO in the Xenopus tadpole CNS. These results are discussed in light of recent findings on possible roles for NADPH-d-positive cell groups within the developing motor circuitry.
Collapse
Affiliation(s)
- D L McLean
- Division of Biomedical Sciences, School of Biology, University of St Andrews, St Andrews, Fife KY16 9TS, United Kingdom
| | | |
Collapse
|
33
|
The role of nitric oxide in development of topographic precision in the retinotectal projection of chick. J Neurosci 2001. [PMID: 11404417 DOI: 10.1523/jneurosci.21-12-04318.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The axonal projection from the retina to the tectum exhibits a precise topographic order in the mature chick such that neighboring ganglion cells send axons to neighboring termination zones in the contralateral tectum. The initial pattern formed during development is much less organized and is refined to the adult pattern during a discrete period of development. Refinement includes elimination of radically aberrant projections, such as those from the temporal side of the retina to posterior regions of the tectum, as well as a more subtle improvement in the topographic precision of the projection. The enzyme that synthesizes nitric oxide is expressed at high levels in the tectum during the developmental period in which the topography improves. Pharmacological blockade of nitric oxide synthesis during this period prevented elimination of topographically inappropriate retinotectal projections in a dose-dependent manner. This effect could not be duplicated by treatment of embryos with a vasoconstrictor, indicating that vascular changes were not a factor. These results show that nitric oxide is involved in refinement of the topography of the retinotectal projection as well as in other aspects of refinement of this projection in developing chick.
Collapse
|
34
|
|
35
|
Gibbs SM. Regulation of Drosophila Visual System Development by Nitric Oxide and Cyclic GMP1. ACTA ACUST UNITED AC 2001. [DOI: 10.1668/0003-1569(2001)041[0268:rodvsd]2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
|
37
|
Villani L, Minelli D, Giuliani A, Quaglia A. The development of NADPH-diaphorase and nitric oxide synthase in the visual system of the cichlid fish, Tilapia mariae. Brain Res Bull 2001; 54:569-74. [PMID: 11397550 DOI: 10.1016/s0361-9230(01)00451-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The pattern of NADPH-diaphorase expression was studied in the retina and optic tectum of the cichlid fish Tilapia mariae during the first developmental stages. NADPH-diaphorase activity was seen early, at hatching. In the retina a few cell bodies of the retinal inner nuclear layer showed a faint labeling. Scattered labeled cells were found in the stratum periventriculare of the optic tectum, while the optic nerve was unlabeled. Two days after hatching, the number of labeled neurons increased in the inner nuclear layer and a few stained cell bodies were also scattered in the ganglion cell layer. Both the inner and outer plexiform layers showed a diffuse staining and the optic nerve was devoid of labeling. In the optic tectum several positive cells in the periventricular layer, with their dendritic trees extending in the superficial fibrous layer, were found. In 1-month-old Tilapia, NADPH-diaphorase staining and nitric oxide synthase immunoreactivity were found to overlap in both the retina and optic tectum. The density of NADPH-diaphorase labeled neurons in the inner nuclear layer of the retina and in the stratum periventriculare of the optic tectum was largely reduced in comparison with 2 days posthatching embryos. These findings indicated an early and transient production of nitric oxide in the retina and optic tectum of Tilapia, suggesting a functional role for nitric oxide in the development of visual structures in aquatic vertebrates.
Collapse
Affiliation(s)
- L Villani
- Department of Biology, University of Bologna, Bologna, Italy.
| | | | | | | |
Collapse
|
38
|
Activity-dependent patterning of retinogeniculate axons proceeds with a constant contribution from AMPA and NMDA receptors. J Neurosci 2001. [PMID: 11050126 DOI: 10.1523/jneurosci.20-21-08051.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural activity is critical for the refinement of neural circuitry during development, although the mechanisms involved in stabilizing appropriate connectivity remain unclear. It has been proposed that the insertion of AMPA receptors at synapses with only NMDA receptors ("silent synapses") mediates this stabilization, leading to an increasing contribution from AMPA receptors as development proceeds. Here we show in a mammalian system known to undergo activity-dependent development [the segregation of retinal afferents into ON/OFF sublaminae in the ferret lateral geniculate nucleus (LGN)] that the refinement of the neural circuitry occurs in the presence of a constant functional contribution from AMPA and NMDA receptors. Although we detected a small number of silent synapses on LGN cells, their proportion did not decrease with age. The size and kinetics of NMDA-mediated spontaneous EPSCs (sEPSCs) were also stable over this period. Together with previous results reporting the stability of unitary AMPA-mediated EPSCs, the constancy of NMDA-mediated sEPSCs indicates an unchanging AMPA/NMDA contribution. Additionally, the CNQX-sensitivity did not increase for either sEPSCs or optic tract-evoked EPSCs. Likewise, the anatomical AMPA/NMDA ratio, as assayed by quantifying the colocalized expression of AMPA and NMDA receptor subunits, was fixed throughout ON/OFF sublamination. In particular, the colocalization of AMPA receptor subunits (GluR1 or GluR4) and NMDA receptor subunit NR1 opposite identified retinogeniculate terminals was stable during this period. These results add to the view of the population of retinogeniculate synapses as robustly stable or normalized during a period when retinogeniculate axons are undergoing dramatic activity-dependent refinement.
Collapse
|
39
|
Abstract
An early step in repair of the leech CNS is the appearance of endothelial nitric oxide synthase (eNOS) immunoreactivity and NOS activity, but coincident generation of NO at the lesion after injury has not been shown. This is important because NO can regulate microglial cell motility and axon growth. Indirect measurement of NO with the standard citrulline assay demonstrated that NO was generated within 30 min after nerve cord injury. A polarographic NO-selective self-referencing microelectrode that measures NO flux noninvasively was developed to obtain higher spatial and temporal resolution. With this probe, it was possible to demonstrate that immediately after the leech CNS was injured, NO left the lesion with a mean peak efflux of 803 +/- 99 fmol NO cm(-2) sec(-1). NO efflux exponentially declined to a constant value, as described through the equation f(t) = y(o) + ae(-t/tau), with tau = 117 +/- 30 sec. The constant y(o) = 15.8 +/- 4.5 fmol cm(-2) represents a sustained efflux of NO. Approximately 200 pmol NO cm(-2) is produced at the lesion (n = 8). Thus, injury activates eNOS already present in the CNS and precedes the accumulation of microglia at the lesion, consistent with the hypothesis that NO acts to stop the migrating microglia at the lesion site.
Collapse
|
40
|
Van Wagenen S, Rehder V. Regulation of neuronal growth cone filopodia by nitric oxide depends on soluble guanylyl cyclase. ACTA ACUST UNITED AC 2001. [DOI: 10.1002/1097-4695(20010215)46:3<206::aid-neu1003>3.0.co;2-s] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Abstract
Topographic refinement of synaptic connections within the developing visual system involves a variety of molecules which interact with impulse activity in order to produce the precise retinotopic maps found in the adult brain. Nitric oxide (NO) has been implicated in this process, as have various growth factors. Within the subcortical visual system, we have recently shown that nitric oxide contributes to pathway refinement in the superior colliculus (SC). Long-term potentiation (LTP) and long-term depression (LTD) are also expressed in SC during the time that this pathway undergoes refinement. The role of NO has been demonstrated by showing that refinement of ipsilateral fibers in the retinocollicular pathway is significantly delayed in gene knockout mice in which both the endothelial and neuronal isoforms of nitric oxide synthase (NOS) have been disrupted. The effect also depends upon Ca(2+) channels because refinement of both the ipsilateral retinocollicular and retinogeniculate pathways is disrupted in genetic mutants in which the beta3 subunit of the Ca(2+) channel has been deleted. LTD may also be involved in this process, because the time course of its expression correlates with that of pathway refinement and LTD magnitude is depressed by nitrendipine, an L-type Ca(2+) channel blocker. LTP is also expressed during early postnatal development in the LGN and SC and may contribute to synaptic stabilization. The role of neurotrophins in pathway refinement in the visual system is also reviewed.
Collapse
Affiliation(s)
- R R Mize
- Department of Cell Biology and Anatomy and The Neuroscience Center, Louisiana State University Health Sciences Center, 70112, New Orleans, LA, USA.
| | | |
Collapse
|
42
|
Abstract
Nitric oxide (NO) has been postulated to act as an activity-dependent retrograde signal that can mediate multiple aspects of synaptic plasticity during development. In the visual system, a role for NO in activity-dependent structural modification of presynaptic arbors has been proposed based on NO's ability to prune inappropriate projections and segregate axon terminals. However, evidence demonstrating that altered NO signaling does not perturb ocular dominance map formation leaves unsettled the role of NO during the in vivo refinement of visual connections. To determine whether NO modulates the structural remodeling of individual presynaptic terminal arbors in vivo we have: 1. Used NADPH-diaphorase histochemistry to determine the onset of NO synthase (NOS) expression in the Xenopus visual system. 2. Used in vivo time-lapse imaging to examine the role of NO during retinal ganglion cell (RGC) axon arborization. We show that NOS expression in the target optic tectum is developmentally regulated and localized to neurons that reside in close proximity to arborizing RGC axons. Moreover, we demonstrate that perturbations in tectal NO levels rapidly and significantly alter the dynamic branching of RGC arbors in vivo. Tectal injection of NO donors increased the addition of new branches, but not their stabilization in the long term. Tectal injection of NOS inhibitors increased the dynamic remodeling of axonal arbors by increasing branch addition and elimination and by lengthening pre-existing branches. Thus, these results indicate that altering NO signaling significantly modifies axon branch dynamics in a manner similar to altering neuronal activity levels (Cohen-Cory, 1999). Consequently, our results support a role for NO during the dynamic remodeling of axon arbors in vivo, and suggest that NO functions as an activity-dependent retrograde signal during the refinement of visual connections.
Collapse
Affiliation(s)
- J Cogen
- Mental Retardation Research Center, Department of Psychiatry, University of California, 760 Westwood Plaza, Los Angeles, California 90095, USA
| | | |
Collapse
|
43
|
Abstract
The grasshopper embryo has been used as a convenient system with which to investigate mechanisms of axonal navigation and pathway formation at the level of individual nerve cells. Here, we focus on the developing antenna of the grasshopper embryo (Schistocerca gregaria) where two siblings of pioneer neurons establish the first two axonal pathways to the CNS. Using immunocytochemistry we detected nitric oxide (NO)-induced synthesis of cGMP in the pioneer neurons of the embryonic antenna. A potential source of NO are NADPH-diaphorase-stained epithelial cells close to the basal lamina. To investigate the role of the NO/cGMP signaling system during pathfinding, we examined the pattern of outgrowing pioneer neurons in embryo culture. Pharmacological inhibition of soluble guanylyl cyclase (sGC) and of NO synthase (NOS) resulted in an abnormal pattern of pathway formation in the antenna. Axonogenesis of both pairs of pioneers was inhibited when specific NOS or sGC inhibitors were added to the culture medium; the observed effects include the loss axon emergence as well as retardation of outgrowth, such that growth cones do not reach the CNS. The addition of membrane-permeant cGMP or a direct activator of the sGC enzyme to the culture medium completely rescued the phenotype resulting from the block of NO/cGMP signaling. These results indicate that NO/cGMP signaling is involved in axonal elongation of pioneer neurons in the antenna of the grasshopper.
Collapse
Affiliation(s)
- C Seidel
- Institut für Neurobiologie, Freie Universität Berlin, Königin-Luise-Str. 28-30, D-14195 Berlin, Germany
| | | |
Collapse
|
44
|
Wu HH, Cork RJ, Mize RR. Normal development of the ipsilateral retinocollicular pathway and its disruption in double endothelial and neuronal nitric oxide synthase gene knockout mice. J Comp Neurol 2000; 426:651-65. [PMID: 11027405 DOI: 10.1002/1096-9861(20001030)426:4<651::aid-cne11>3.0.co;2-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The development of the ipsilateral retinocollicular pathway involves activity-dependent refinement in which misdirected axons retract to form a precise retinotopic map in adults. This refinement is altered by disruption of genes for the endothelial and neuronal isoforms of nitric oxide synthase (e,nNOS), but the extent of disruption during early development is not known. Therefore, we studied the refinement of this pathway in normal C57/BL6 and e,nNOS double knockouts from P4 to P21 and in adults. Anterograde tracers were injected into one eye to localize the ipsilateral retinal projection (IRP) within the superior colliculus (SC). At P4, the IRP in normal mice was distributed throughout the dorsoventral extent of the superficial gray layer (SGL) across most of the rostrocaudal axis of SC. Between P4 and P9, the pathway retracted to the rostromedial SC, and retracted further between P15 and P21, such that multiple patches of label were seen only in the rostral 200-300 microm. Refinement also began to occur between P4 and P9 in e,nNOS double knockout mice, but labeling was more extensive in P9, P15, and P21 knockout animals. This delay in refinement was confirmed quantitatively at P15 where differences in the area occupied by the pathway were statistically significant. The refinement process is therefore in progress in both normal and e,nNOS knockout mice before eye opening but is significantly delayed in the double knockouts. The IRP in normal mice is also more exuberant at early ages, and the process of refinement more protracted than has been previously reported, suggesting that there is a prolonged critical period of synaptic plasticity.
Collapse
Affiliation(s)
- H H Wu
- Department of Cell Biology and Anatomy and the Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
45
|
Phillips DE, Cummings JD, Wall KA. Prenatal alcohol exposure decreases the number of nitric oxide synthase positive neurons in rat superior colliculus and periaqueductal gray. Alcohol 2000; 22:75-84. [PMID: 11113621 DOI: 10.1016/s0741-8329(00)00108-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Because nitric oxide (NO) is involved in the development and refinement of axonal projections and synapses, it is of interest to know if developmental alcohol exposures affect NO producing neurons. Pregnant rats were fed artificial liquid diet throughout gestation as the only fluid or caloric source. The diet for experimental dams contained ethanol (6.7% v/v) while the pair-fed diet for control dams contained isocaloric maltose-dextrin instead of ethanol. This ethanol diet regime is known to produce peak blood alcohol concentrations of approximately 140 mg%. Cells stained histochemically for nitric oxide synthase (NOS) were counted at postnatal day 15 (P15) and 35 (P35) in cross-sections of the stratum griseum superficiale (SGS) of the superior colliculus (SC) and in the dorsolateral column of the periaqueductal gray (dlPAG). Compared to control tissues, alcohol caused the following effects: In the SC, the areal density of NOS+ neurons was decreased 24% at P15 but a similar decrease in means at P35 was not statistically significant (P=0.10); soma size was unaffected at either P15 or P35. In the dlPAG, both the areal density and the total number of NOS+ neurons per section were unaffected at P15 but were decreased at P35 (33% and 37% decreases); soma size was unaffected at either P15 or P35. The decrease in NOS+ neurons in the SC at P15 could be expected to have a negative impact on the refinement of neuronal connections while the decreases in NOS+ neurons in the dlPAG at P35 likely represent more permanent effects that could alter the function of that nucleus.
Collapse
Affiliation(s)
- D E Phillips
- Department of Biology and WWAMI Medical Education Program, Montana State University, Bozeman, MT 59717, USA.
| | | | | |
Collapse
|
46
|
Abstract
The morphology of neuronal axons and dendrites is dependent on the dynamics of the cytoskeleton. An understanding of neurodevelopment and adult neuroplasticity must therefore include a detailed description of the intrinsic and extrinsic mechanisms that regulate the organization and dynamics of actin filaments and microtubules. In this paper we review recent advances in the understanding of the dynamic regulation of neuronal morphology by interactions among cytoskeletal components and the regulation of the cytoskeleton by neurotrophins.
Collapse
Affiliation(s)
- G Gallo
- Department of Neuroscience, 6-145 Jackson Hall, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
47
|
Gibson NJ, Nighorn A. Expression of nitric oxide synthase and soluble guanylyl cyclase in the developing olfactory system of Manduca sexta. J Comp Neurol 2000; 422:191-205. [PMID: 10842227 DOI: 10.1002/(sici)1096-9861(20000626)422:2<191::aid-cne4>3.0.co;2-c] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The gaseous messenger nitric oxide (NO), with its ability to mediate both intercellular and intracellular communication, can play important roles in mediating cellular communication in both the development and the function of the nervous system. The authors investigated the possible role of NO signaling in the developing olfactory system (antennal lobe) of the moth Manduca sexta. NO synthase (NOS), the enzyme that generates NO, was localized by using immunocytochemistry, in situ hybridization, and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry. Although NADPH-d staining appears to be a poor indicator of the presence of NOS in this system, immunocytochemistry and in situ hybridization reveal that NOS is expressed in the axons of olfactory receptor neurons throughout development and in the perineurial sheath that covers the brain early in development. NOS is present in axon terminals as they form protoglomeruli, raising the possibility that NO mediates cell-cell interactions during antennal lobe development. NO-sensitive soluble guanylyl cyclase (sGC), one of the best characterized targets of NO, was localized in the developing olfactory system by using in situ hybridization and immunocytochemistry for the Manduca sexta sGCalpha1 subunit. The ability of the developing olfactory system to respond to exogenous NO also was examined by using cyclic guanosine monophosphate immunocytochemistry. sGC is expressed in mechanosensory neurons in the developing antenna and in many antennal lobe neurons in both the medial and lateral cell body clusters. Thus, NOS and sGC are expressed in a pattern that suggests that this signaling pathway may mediate intercellular communication during development of the olfactory system in Manduca sexta.
Collapse
Affiliation(s)
- N J Gibson
- Arizona Research Laboratories, Division of Neurobiology, The University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
48
|
Cheung WS, Bhan I, Lipton SA. Nitric oxide (NO.) stabilizes whereas nitrosonium (NO+) enhances filopodial outgrowth by rat retinal ganglion cells in vitro. Brain Res 2000; 868:1-13. [PMID: 10841882 DOI: 10.1016/s0006-8993(00)02161-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent observations suggest that nitric oxide (NO(.)) can increase or decrease growth cone motility. Here, these apparently paradoxical results are explained by distinct actions of different NO-related species. Filopodial morphology of 223 rat retinal ganglion cells was monitored under computer-enhanced video microscopy in the presence of NO synthase (NOS) substrates or inhibitors, donors of specific NO-related species, and membrane-permeant cyclic nucleotide analogs. Physiological NOS activity induced filopodial outgrowth, whereas inhibition of NOS stabilized filopodia. Similar to NOS, nitrosonium (NO(+) transfer) and peroxynitrite (ONOO(-)), which can regulate the activity of growth-associated proteins by S-nitrosylation and oxidation, respectively, induced filopodial outgrowth. In contrast, NO(.), which stimulates guanylate cyclase to increase cGMP, stabilized filopodial activity. Thus disparate NO-related species may offer a dynamic process of filopodial growth regulation.
Collapse
Affiliation(s)
- W S Cheung
- Cerebrovascular and NeuroScience Research Institute, Brigham and Women's Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
49
|
Contestabile A. Roles of NMDA receptor activity and nitric oxide production in brain development. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 32:476-509. [PMID: 10760552 DOI: 10.1016/s0165-0173(00)00018-7] [Citation(s) in RCA: 281] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The concept that neural activity is important for brain maturation has focused much research interest on the developmental role of the NMDA receptor, a key mediator of experience-dependent synaptic plasticity. However, a mechanism able to link spatial and temporal parameters of synaptic activity during development emerged as a necessary condition to explain how axons segregate into a common brain region and make specific synapses on neuronal sub-populations. To comply with this developmental constraint, it was proposed that nitric oxide (NO), or other substances having similar chemical and biological characteristics, could act as short-lived, activity-dependent spatial signals, able to stabilize active synapses by diffusing through a local volume of tissue. The present article addresses this issue, by reviewing the experimental evidence for a correlated role of the activity of the NMDA receptor and the production of NO in key steps of neural development. Evidence for such a functional coupling emerges not only concerning synaptogenesis and formation of neural maps, for which it was originally proposed, but also for some earlier phases of neurogenesis, such as neural cell proliferation and migration. Regarding synaptogenesis and neural map formation in some cases, there is so far no conclusive experimental evidence for a coupled functional role of NMDA receptor activation and NO production. Some technical problems related to the use of inhibitors of NO formation and of gene knockout animals are discussed. It is also suggested that other substances, known to act as spatial signals in adult synaptic plasticity, could have a role in developmental plasticity. Concerning the crucial developmental phase of neuronal survival or elimination through programmed cell death, the well-documented survival role related to NMDA receptor activation also starts to find evidence for a concomitant requirement of downstream NO production. On the basis of the reviewed literature, some of the major controversial issues are addressed and, in some cases, suggestions for possible future experiments are proposed.
Collapse
Affiliation(s)
- A Contestabile
- Department of Biology, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
50
|
Wu HH, Cork RJ, Huang PL, Shuman DL, Mize RR. Refinement of the ipsilateral retinocollicular projection is disrupted in double endothelial and neuronal nitric oxide synthase gene knockout mice. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 120:105-11. [PMID: 10727738 DOI: 10.1016/s0165-3806(99)00145-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Development of retinal connections to the superior colliculus (SC) requires an activity dependent refinement process in which axons gradually become restricted to appropriate retinotopic locations. Nitric oxide has been implicated in this process. We tested this possibility by studying the refinement of the ipsilateral retinocollicular projections (IRP) in normal C57-BL/6 mice and in double knockout mice in which the genes for the edothelial and neuronal isoforms of nitric oxide synthase (e, nNOS) were disrupted. Mice aged between P19 and adulthood were perfused 44-48 h after anterograde injections of WGA-HRP into one eye in order to measure the distribution of the labeled IRP. In normal mice, segregation of the IRP was complete at P21, with the ipsilateral projection restricted to the rostro-medial SC. By contrast, the ipsilateral projection was spread over much more of the SC in double e, nNOS knockouts at P21 with patches of label distributed across the entire medio-lateral axis of the rostral 700 microm. Although the distribution of the ipsilateral projection became more restricted in knockout animals at later ages, it was still more extensive than that of normal mice of the same age at P28 and P42. In the adult, the distribution of axons was similar in both normal and double knockout animals. These results show that refinement of the IRP is delayed when expression of eNOS and nNOS is disrupted, presumably to axons with uncorrelated activity because nitric oxide serves as a repellant molecule during normal development.
Collapse
Affiliation(s)
- H H Wu
- Department of Cell Biology and Anatomy and The Neuroscience Center, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA, USA
| | | | | | | | | |
Collapse
|