1
|
Contrasting Roles of Ang II and ACEA in the Regulation of IL10 and IL1β Gene Expression in Primary SHR Astroglial Cultures. Molecules 2021; 26:molecules26103012. [PMID: 34069330 PMCID: PMC8158781 DOI: 10.3390/molecules26103012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Angiotensin (Ang) II is well-known to have potent pro-oxidant and pro-inflammatory effects in the brain. Extensive crosstalk between the primary Ang II receptor, Ang type 1 receptor (AT1R), and the cannabinoid type 1 receptor (CB1R) has been demonstrated by various groups in the last decade. Since activation of glial CB1R has been demonstrated to play a key role in the resolution of inflammatory states, we investigated the role of Ang II (100 nM) and/or ACEA (10 nM), a potent CB1R-specific agonist in the regulation of inflammatory markers in astrocytes from spontaneously hypertensive rats (SHR) and Wistar rats. Astrocytes were cultured from brainstems and cerebellums of SHR and Wistar rats and assayed for IL1β and IL10 gene expression and secreted fraction, in treated and non-treated cells, by employing qPCR and ELISA, respectively. mRNA expression of both IL10 and IL1β were significantly elevated in untreated brainstem and cerebellar astrocytes isolated from SHR when compared to Wistar astrocytes. No changes were observed in the secreted fraction. While ACEA-treatment resulted in a significant increase in IL10 gene expression in Wistar brainstem astrocytes (Log2FC ≥ 1, p < 0.05), its effect in SHR brainstem astrocytes was diminished. Ang II treatment resulted in a strong inhibitory effect on IL10 gene expression in astrocytes from both brain regions of SHR and Wistar rats (Log2FC ≤ -1, p < 0.05), and an increase in IL1β gene expression in brainstem astrocytes from both strains (Log2FC ≥ 1, p < 0.05). Co-treatment of Ang II and ACEA resulted in neutralization of Ang II-mediated effect in Wistar brainstem and cerebellar astrocytes, but not SHR astrocytes. Neither Ang II nor ACEA resulted in any significant changes in IL10 or IL1β secreted proteins. These data suggest that Ang II and ACEA have opposing roles in the regulation of inflammatory gene signature in astrocytes isolated from SHR and Wistar rats. This however does not translate into changes in their secreted fractions.
Collapse
|
2
|
Gao Y, Li J, Li J, Hu C, Zhang L, Yan J, Li L, Zhang L. Tetrahydroxy stilbene glycoside alleviated inflammatory damage by mitophagy via AMPK related PINK1/Parkin signaling pathway. Biochem Pharmacol 2020; 177:113997. [PMID: 32353422 DOI: 10.1016/j.bcp.2020.113997] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative brain disorder with complex pathogenesis. The fibrillar peptide β-amyloid (Aβ) has a chief function in the pathogenesis of AD. Emerging evidence has indicated that there is a tight relationship between inflammation, mitochondrial dysfunction and Aβ formation. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) is one of the main active components extracted from Polygonum multiflorum. Recent research corroborated the beneficial roles of TSG in alleviating the learning and memory of AD models. Unfortunately, the underlying mechanism of TSG remains poorly elucidated. The purpose of the present study was to investigate the effects of TSG on LPS/ATP and Aβ25-35-induced inflammation in microglia and neurons and its underlying molecular mechanisms. Our results found that treatment with TSG significantly attenuated the secretion of inflammatory cytokines, reduced NLRP3 inflammasome, and regulated mitophagy. TSG efficiently alleviated LPS-induced inflammatory response by inhibiting the NLRP3 signaling pathway both in microglia and neuron. Meanwhile, TSG promoted autophagy involved in the AMPK/PINK1/Parkin signaling pathway, which may contribute to the protective activity. Additional mechanistic investigations to evaluate the dependence of the neuroprotective role of TSG on PINK1 revealed that a lack of PINK1 inhibited autophagy, especially mitophagy in microglia. Importantly, knockdown of PINK1 or Parkin by siRNA or CRISPR/Cas9 system abolished the protective effects of TSG. In conclusion, these phenomena suggested that TSG prevented LPS/ATP and Aβ-induced inflammation via AMPK/PINK1/Parkin-dependent enhancement of mitophagy. We found the neuroprotective effect of TSG, suggesting it may be beneficial for AD prevention and treatment by suppressing the activation of inflammation.
Collapse
Affiliation(s)
- Yan Gao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Juntong Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jianping Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chaoying Hu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Jiaqing Yan
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.
| |
Collapse
|
3
|
Sumners C, Alleyne A, Rodríguez V, Pioquinto DJ, Ludin JA, Kar S, Winder Z, Ortiz Y, Liu M, Krause EG, de Kloet AD. Brain angiotensin type-1 and type-2 receptors: cellular locations under normal and hypertensive conditions. Hypertens Res 2019; 43:281-295. [PMID: 31853042 DOI: 10.1038/s41440-019-0374-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/25/2019] [Accepted: 11/02/2019] [Indexed: 12/15/2022]
Abstract
Brain angiotensin-II (Ang-II) type-1 receptors (AT1Rs), which exert profound effects on normal cardiovascular, fluid, and metabolic homeostasis, are overactivated in and contribute to chronic sympathoexcitation and hypertension. Accumulating evidence indicates that the activation of Ang-II type-2 receptors (AT2Rs) in the brain exerts effects that are opposite to those of AT1Rs, lowering blood pressure, and reducing hypertension. Thus, it would be interesting to understand the relative cellular localization of AT1R and AT2R in the brain under normal conditions and whether this localization changes during hypertension. Here, we developed a novel AT1aR-tdTomato reporter mouse strain in which the location of brain AT1aR was largely consistent with that determined in the previous studies. This AT1aR-tdTomato reporter mouse strain was crossed with our previously described AT2R-eGFP reporter mouse strain to yield a novel dual AT1aR/AT2R reporter mouse strain, which allowed us to determine that AT1aR and AT2R are primarily localized to different populations of neurons in brain regions controlling cardiovascular, fluid, and metabolic homeostasis. Using the individual AT1aR-tdTomato reporter mice, we also demonstrated that during hypertension induced by the administration of deoxycorticosterone acetate-salt, there was no shift in the expression of AT1aR from neurons to microglia or astrocytes in the paraventricular nucleus, a brain area important for sympathetic regulation. Using AT2R-eGFP reporter mice under similar hypertensive conditions, we demonstrated that the same was true of AT2R expression in the nucleus of the solitary tract (NTS), an area critical for baroreflex control. Collectively, these findings provided a novel means to assess the colocalization of AT1R and AT2R in the brain and a novel view of their cellular localization in hypertension.
Collapse
Affiliation(s)
- Colin Sumners
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Amy Alleyne
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Vermalí Rodríguez
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - David J Pioquinto
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Jacob A Ludin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Shormista Kar
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Zachary Winder
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, 32611, USA.,Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Yuma Ortiz
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Meng Liu
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Eric G Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Annette D de Kloet
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
4
|
O'Connor AT, Clark MA. Angiotensin II induces cyclooxygenase 2 expression in rat astrocytes via the angiotensin type 1 receptor. Neuropeptides 2019; 77:101958. [PMID: 31378306 DOI: 10.1016/j.npep.2019.101958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022]
Abstract
We previously showed that Angiotensin (Ang) II stimulated pro-inflammatory and mitogenic actions in astrocytes suggesting that astrocytes are emerging as key players in neuroinflammation. Evidence suggests that neuroinflammation may contribute to central sympathetic overactivity and elevated blood pressure. Further, cyclooxygenase (Cox)-derived prostanoids were implicated in Ang II-dependent hypertension. Cox2 is one of two Cox isoenzymes that is responsible for the formation of prostanoids from arachidonic acid. Constitutively expressed Cox2 has a protective and homeostatic role in the cardiovascular and renal systems. Inducible Cox2 has been associated with pathogenic stimuli resulting in inflammatory conditions and cancers. In this study, we investigated the effect of Ang II on Cox2 protein and mRNA expression in brainstem and cerebellum astrocytes, and determined whether any differences in Cox2 expression exist in spontaneously hypertensive rat (SHR) astrocytes compared to their normotensive control Wistar rats. We demonstrated that Ang II increased Cox2 protein and mRNA levels relative to untreated controls in a time-dependent manner, in Wistar and SHR brainstem and cerebellum astrocytes. Increases in Cox2 protein expression were evident within 4 h, with subsequent sustained elevation for several hours followed by a decline at 48 h. Ang II-induced Cox2 protein levels were higher in Wistar compared to SHRs in both brainstem and cerebellum astrocytes for the majority of time points examined. The Ang II-induced Cox2 mRNA levels increased within 8 h followed by a rapid decline to almost basal levels at later time points. At the earlier time points, Cox2 mRNA elevation were higher in SHR compared to Wistar rat astrocytes. These Ang II actions were mediated by the Ang type I receptor. Our results corroborate previous reports of Ang II's ability to stimulate neuroinflammatory mediators in astrocytes. Cox2-derived prostaglandins might play a role in brain-renin angiotensin system associated hypertension, and astrocytes could be significant players.
Collapse
Affiliation(s)
- Ann Tenneil O'Connor
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, United States of America
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, United States of America.
| |
Collapse
|
5
|
Cui YQ, Zheng Y, Tan GL, Zhang DM, Wang JY, Wang XM. (5R)-5-hydroxytriptolide inhibits the inflammatory cascade reaction in astrocytes. Neural Regen Res 2019; 14:913-920. [PMID: 30688278 PMCID: PMC6375032 DOI: 10.4103/1673-5374.249240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Many studies have shown that (5R)-5-hydroxytriptolide is the optimal modified analogue of triptolide, possessing comparable immunosuppressive activity but much lower cytotoxicity than triptolide. Whether (5R)-5-hydroxytriptolide has preventive effects on neuroinflammation is unclear. This study was designed to pretreat primary astrocytes from the brains of neonatal Sprague-Dawley rats with 20, 100 and 500 nM (5R)-5-hydroxytriptolide for 1 hour before establishing an in vitro neuroinflammation model with 1.0 μg/mL lipopolysaccharide for 24 hours. The generation of nitric oxide was detected by Griess reagents. Astrocyte marker glial fibrillary acidic protein was measured by immunohistochemical staining. The levels of tumor necrosis factor-α and interleukin-1β in the culture supernatant were assayed by enzyme linked immunosorbent assay. Nuclear factor-κB/p65 expression was examined by immunofluorescence staining. The phosphorylation of inhibitor of nuclear factor IκB-α and the location of nuclear factor-κB/P65 were determined using western blot assay. Our data revealed that (5R)-5-hydroxytriptolide inhibited the generation of nitric oxide, tumor necrosis factor-α and interleukin-1β from primary astrocytes activated by lipopolysaccharide, decreased the positive reaction intensity of glial fibrillary acidic protein, reduced the expression of tumor necrosis factor alpha and interleukin-1β in culture supernatant, inhibited the phosphorylation of IκB-α and the translocation of nuclear factor-κB/P65 to the nucleus. These results have confirmed that (5R)-5-hydroxytriptolide inhibits lipopolysaccharide-induced glial inflammatory response and provides cytological experimental data for (5R)-5-hydroxytriptolide in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan-Qiu Cui
- Functional Laboratory of Experiment Teaching Center for Basic Medical Sciences; Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China
| | - Yan Zheng
- Department of Physiology, Capital Medical University, Beijing, China
| | - Gui-Lian Tan
- Department of Basic Medicine, Yanjing Medical College, Capital Medical University, Beijing, China
| | - Dong-Mei Zhang
- Department of Basic Medicine, Yanjing Medical College, Capital Medical University, Beijing, China
| | - Jun-Ya Wang
- Department of Basic Medicine, Yanjing Medical College, Capital Medical University, Beijing, China
| | - Xiao-Min Wang
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University; Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
6
|
Negussie S, Lymperopoulos A, Clark MA. Role of βarrestin1 in AT1
R-mediated mitogen-activated protein kinase activation in Wistar and SHR brainstem astrocytes. J Neurochem 2018; 148:46-62. [DOI: 10.1111/jnc.14620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/25/2018] [Accepted: 09/25/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Shmuel Negussie
- Department of Pharmaceutical Sciences; College of Pharmacy; Nova Southeastern University; Fort Lauderdale Florida USA
| | - Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences; College of Pharmacy; Nova Southeastern University; Fort Lauderdale Florida USA
| | - Michelle A. Clark
- Department of Pharmaceutical Sciences; College of Pharmacy; Nova Southeastern University; Fort Lauderdale Florida USA
| |
Collapse
|
7
|
O’Connor AT, Clark MA. Astrocytes and the Renin Angiotensin System: Relevance in Disease Pathogenesis. Neurochem Res 2018; 43:1297-1307. [DOI: 10.1007/s11064-018-2557-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/21/2018] [Accepted: 05/23/2018] [Indexed: 12/29/2022]
|
8
|
Corticosterone impairs gap junctions in the prefrontal cortical and hippocampal astrocytes via different mechanisms. Neuropharmacology 2018; 131:20-30. [DOI: 10.1016/j.neuropharm.2017.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 01/20/2023]
|
9
|
Bali A, Jaggi AS. Angiotensin II-triggered kinase signaling cascade in the central nervous system. Rev Neurosci 2018; 27:301-15. [PMID: 26574890 DOI: 10.1515/revneuro-2015-0041] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/26/2015] [Indexed: 12/26/2022]
Abstract
Recent studies have projected the renin-angiotensin system as a central component of the physiological and pathological processes of assorted neurological disorders. Its primary effector hormone, angiotensin II (Ang II), not only mediates the physiological effects of vasoconstriction and blood pressure regulation in cardiovascular disease but is also implicated in a much wider range of neuronal activities and diseases, including Alzheimer's disease, neuronal injury, and cognitive disorders. Ang II produces different actions by acting on its two subtypes of receptors (AT1 and AT2); however, the well-known physiological actions of Ang II are mainly mediated through AT1 receptors. Moreover, recent studies also suggest the important functional role of AT2 receptor in the brain. Ang II acts on AT1 receptors and conducts its functions via MAP kinases (ERK1/2, JNK, and p38MAPK), glycogen synthase kinase, Rho/ROCK kinase, receptor tyrosine kinases (PDGF and EGFR), and nonreceptor tyrosine kinases (Src, Pyk2, and JAK/STAT). AT1R-mediated NADPH oxidase activation also leads to the generation of reactive oxygen species, widely implicated in neuroinflammation. These signaling cascades lead to glutamate excitotoxicity, apoptosis, cerebral infarction, astrocyte proliferation, nociception, neuroinflammation, and progression of other neurological disorders. The present review focuses on the Ang II-triggered signal transduction pathways in central nervous system.
Collapse
|
10
|
MAPK activation patterns of AT1R and CB1R in SHR versus Wistar astrocytes: Evidence of CB1R hypofunction and crosstalk between AT1R and CB1R. Cell Signal 2017; 40:81-90. [PMID: 28887229 DOI: 10.1016/j.cellsig.2017.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/22/2017] [Accepted: 09/03/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Angiotensin (Ang) II and cannabinoids regulate physiologically relevant astroglial functions via receptor-mediated activation of Mitogen-activated protein kinases (MAPKs). In this study, we investigated the consequences of astroglial Ang II type 1 receptor (AT1R) and Cannabinoid type 1 receptor (CB1R) activation, alone and in combination, on MAPK activation in the presence and absence of hypertensive states. In addition, we also investigated a novel unidirectional crosstalk mechanism between AT1R and CB1R, that involves PKC-mediated phosphorylation of CB1R. METHODS Astrocytes were isolated from the brainstem and cerebellum of Spontaneously hypertensive rats (SHRs) and normotensive Wistar rats. The cells were treated with either 100nM Ang II or 10nM Arachidonyl-2'-chloroethylamide (ACEA), both alone and in combination, for varying time periods, and the extent of phosphorylation of MAPKs, ERK and p38, and the phosphorylated forms of CB1R (p-CB1R), were measured using western blotting. RESULTS Ang II treatment resulted in a greater activation of MAPKs in SHR brainstem astrocytes, but not SHR cerebellar astrocytes when compared to Wistar rats. ACEA-mediated MAPK activation was significantly lower in brainstem astrocytes of SHRs when compared to Wistar rats. ACEA negatively modulates AT1R-mediated MAPK activation in both cerebellar and brainstem astrocytes of both models. The effect however was diminished in brainstem astrocytes. Ang II caused a significant increase in phosphorylation of CB1R in cerebellar astrocytes, while its effect was diminished in brainstem astrocytes of both models. CONCLUSION Both Ang II and ACEA-induced MAPK activation were significantly altered in SHR astrocytes when compared to Wistar astrocytes. A possible reduction in CB1R functionality, coupled with a hyperfunctional AT1R in the brainstem, could well be significant factors in the development of hypertensive states. AT1R-mediated phosphorylation of CB1R could be critical for impaired cerebellar development characterized by a hyperactive RAS.
Collapse
|
11
|
Gowrisankar YV, Clark MA. Angiotensin II induces interleukin-6 expression in astrocytes: Role of reactive oxygen species and NF-κB. Mol Cell Endocrinol 2016; 437:130-141. [PMID: 27539920 DOI: 10.1016/j.mce.2016.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/21/2016] [Accepted: 08/08/2016] [Indexed: 02/07/2023]
Abstract
Previously, we showed that the bio-peptide angiotensin (Ang) II induces interleukin-6 (IL-6) in cultured astrocytes; however, the mechanism(s) involved in this effect were unknown. In the current study, we determined in brainstem and cerebellum astrocytes from the spontaneously hypertensive rat (SHR), the effect of Ang II to induce IL-6 as well as reactive oxygen species (ROS) generation. Results from this study showed that Ang II significantly induced the differential expression of IL-6 mRNA and protein levels in astrocytes from both regions of Wistar and SHRs. There were differences in the ability of Ang II to induce IL-6 mRNA and protein levels, but these differences were not apparent at all time points examined. Ang II also induced ROS generation, but there were no significant differences between ROS generation in SHR samples as compared to the Wistar samples. Ang II-induced IL-6 levels were mediated via the AT1/Nuclear Factor Kappa beta/ROS pathway. Overall, our findings suggest that there may be dysregulation in IL-6 production from astrocytes, contributing to differences observed in SHRs versus its normotensive control. Elucidating the mechanisms involved in Ang II pro-inflammatory effects in the central nervous system may lead to the development of novel therapeutic strategies that can be harnessed not just to treat hypertension, but other Ang II-mediated diseases as well.
Collapse
Affiliation(s)
- Yugandhar V Gowrisankar
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, United States
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, United States.
| |
Collapse
|
12
|
Haspula D, Clark MA. Heterologous regulation of the cannabinoid type 1 receptor by angiotensin II in astrocytes of spontaneously hypertensive rats. J Neurochem 2016; 139:523-536. [PMID: 27529509 DOI: 10.1111/jnc.13776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
Brainstem and cerebellar astrocytes have critical roles to play in hypertension and attention-deficit hyperactivity disorder, respectively. Angiotensin (Ang) II, via the astroglial Ang type 1 receptor (AT1R), has been demonstrated to elevate pro-inflammatory mediators in the brainstem and the cerebellum. The activation of astroglial cannabinoid type 1 receptor (CB1R), a master regulator of homeostasis, has been shown to neutralize inflammatory states. Factors that drive disease progression are known to alter the expression of CB1Rs. In this study, we investigated the role of Ang II in regulating CB1R protein and mRNA expression in astrocytes isolated from the brainstem and the cerebellum of spontaneously hypertensive rats (SHRs). The results were then compared with their normotensive counterpart, Wistar rats. Not only was the basal expression of CB1R protein and mRNA significantly lower in SHR brainstem astrocytes, but treatment with Ang II resulted in lowering it further in the initial 12 h. In the case of cerebellum, Ang II up-regulated the CB1R protein and mRNA in SHR astrocytes. While the effect of Ang II on CB1R protein was predominantly mediated via the AT1R in SHR brainstem; both AT1R- and AT2R-mediated Ang II's effect in the SHR cerebellum. These data are strongly indicative of a potential new mode of cross-talk between components of the renin angiotensin system and the endocannabinoid system in astrocytes. The consequence of such a cross-talk could be a potential reduced endocannabinoid tone in brainstem in hypertensive states, but not in the cerebellum under the same conditions.
Collapse
Affiliation(s)
- Dhanush Haspula
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
13
|
Xu HF, Fang XY, Zhu SH, Xu XH, Zhang ZX, Wang ZF, Zhao ZQ, Ding YJ, Tao LY. Glucocorticoid treatment inhibits intracerebral hemorrhage‑induced inflammation by targeting the microRNA‑155/SOCS‑1 signaling pathway. Mol Med Rep 2016; 14:3798-804. [PMID: 27601160 DOI: 10.3892/mmr.2016.5716] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 06/08/2016] [Indexed: 11/06/2022] Open
Abstract
Intracerebral hemorrhage (ICH) results in inflammation, and glucocorticoids have been proven to be effective inhibitors of ICH‑induced inflammation. However, the precise underlying mechanisms of ICH‑induced inflammation and glucocorticoid function remain largely undefined. Using a mouse ICH model, the present study demonstrated that the short non‑coding RNA molecule microRNA‑155 (miR‑155) is involved in the inflammatory process initiated by ICH in mice. Increased mRNA expression levels of miR‑155, as well as the pro‑inflammatory cytokines interferon‑β (IFN‑β), tumor necrosis factor‑α (TNF‑α) and interleukin‑6 (IL‑6), were observed in vivo following ICH. By contrast, the expression level of suppressor of cytokine signaling 1 (SOCS‑1) protein was reduced in the ICH group compared with control mice. Similar results were observed in vitro using astrocytes, the primary effector cells in ICH. Compared with wild type astrocytes, astrocytes overexpressing miR‑155 exhibited significant inhibition of SOCS‑1 protein expression levels. These results suggest that miR‑155 contributes to the development of ICH‑induced inflammation in mice by downregulating SOCS‑1 protein expression levels and promoting pro‑inflammatory cytokine (IFN‑β, TNF‑α and IL‑6) production. Expression levels of miR‑155 and pro‑inflammatory cytokines in the ICH group were significantly decreased following dexamethasone administration. This suggests that glucocorticoids attenuate ICH‑induced inflammation by targeting the miR‑155/SOCS‑1 signaling pathway in mice. In conclusion, the results of the present study demonstrated that the miR‑155/SOCS‑1 signaling pathway is required for ICH‑induced inflammation, and glucocorticoids inhibit this process by targeting the miR‑155/SOCS‑1 signaling pathway.
Collapse
Affiliation(s)
- Hong-Fei Xu
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xiao-Yun Fang
- Jiangsu Patent Examination Assistance Center Under State Intellectual Property Office of The People's Republic of China, Suzhou, Jiangsu 215163, P.R. China
| | - Shao-Hua Zhu
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xue-Hua Xu
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhi-Xiang Zhang
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zu-Feng Wang
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zi-Qin Zhao
- Department of Forensic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yu-Jie Ding
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lu-Yang Tao
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
14
|
Gowrisankar YV, Clark MA. Regulation of angiotensinogen expression by angiotensin II in spontaneously hypertensive rat primary astrocyte cultures. Brain Res 2016; 1643:51-8. [DOI: 10.1016/j.brainres.2016.04.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/07/2016] [Accepted: 04/25/2016] [Indexed: 01/26/2023]
|
15
|
Gowrisankar YV, Clark MA. Angiotensin II regulation of angiotensin-converting enzymes in spontaneously hypertensive rat primary astrocyte cultures. J Neurochem 2016; 138:74-85. [PMID: 27085714 DOI: 10.1111/jnc.13641] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/03/2016] [Accepted: 03/23/2016] [Indexed: 02/07/2023]
Abstract
Angiotensin (Ang) II plays a critical role in cardiovascular and blood pressure regulation. Ang II is produced by angiotensin-converting enzyme (ACE) and it interacts with the Ang AT1 receptor to cause much of its well-known cardiovascular effects. Ang-(1-7) is another active peptide produced by the rennin-angiotensin system. This peptide is produced from Ang I or Ang II by the catalytic activity of ACE2. Ang-(1-7) interacts with the Mas receptor to counteract many of the effects of Ang II. Thus, the ACE2/Ang-(1-7)/Mas axis acts opposite of the ACE/Ang II/AT1 axis. In this study we investigated how Ang II regulates the key enzymes of these axes, ACE and its homolog ACE2, and determined whether they are dysregulated in the hypertensive condition. Brainstem and cerebellum astrocytes isolated from the spontaneously hypertensive rat (SHR) were used in these studies. Ang II effect on the enzymes' mRNA and protein levels was measured using quantitative PCR and western blotting techniques, respectively. Results from this study showed that Ang II up-regulated ACE protein levels, but down-regulated ACE mRNA levels in brainstem and cerebellum astrocytes in both models. Ang II also reduced ACE2 mRNA expression in SHR and Wistar astrocytes isolated from both brain regions. Ang II effects on ACE2 protein were biphasic. In SHR astrocytes, Ang II-mediated ACE2 protein initially increased then decreased at later time points. In contrast, in Wistar astrocytes, Ang II initially decreased ACE2 protein expression, but up-regulated the protein at later time points. The findings of these studies suggest that Ang II has a differential effect on ACE and ACE2 expression. Furthermore, in the SHR model there may be alteration in the ACE/ACE2 balance in a manner that favors increased Ang II generation and decreased Ang-(1-7) production contributing to the hypertensive phenotype observed in this model. The levels of angiotensin (Ang) II depend on the actions of angiotensin-converting enzyme (ACE) and ACE2. We showed in astrocytes isolated from the SHRs that Ang II differentially affects ACE and ACE2 expression. There may be an alteration in the ACE/ACE2 balance favoring Ang II generation. This imbalance may contribute to the hypertensive phenotype observed in this SHR model.
Collapse
Affiliation(s)
- Yugandhar V Gowrisankar
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
16
|
Kandalam U, Sarmiento N, Haspula D, Clark MA. Angiotensin III induces signal transducer and activator of transcription 3 and interleukin-6 mRNA levels in cultured rat astrocytes. J Renin Angiotensin Aldosterone Syst 2014; 16:758-67. [PMID: 24961501 DOI: 10.1177/1470320314534509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Recently we established that pro-inflammatory actions of angiotensin (Ang) II in astrocytes involved Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), and interleukin-6 (IL-6). MATERIALS AND METHODS In our current study, we determined in brainstem and cerebellum whether Ang III also activates STAT3 leading to IL-6 mRNA expression and astrocyte proliferation. RESULTS Ang III induced STAT3 phosphorylation in a concentration- and time-dependent manner. Significant STAT3 phosphorylation was rapid and was maximal within 10 min, and with 100 nM Ang III. The Ang AT1 receptor was shown to mediate this action of Ang III. Ang III also significantly induced IL-6 mRNA expression within an hour, and maximal Ang III-mediated IL-6 mRNA expression occurred in the presence of 100 nM Ang III. Ang III-mediated IL-6 mRNA expression occurred by the interaction of the peptide with the Ang AT1 receptor and was mediated by STAT3. In addition, STAT3 was shown to mediate Ang III astrocyte proliferation. CONCLUSIONS These findings suggest that Ang III, similar to Ang II, has pro-inflammatory effects since it induces STAT3 leading to an induction of IL-6 mRNA expression, outcomes that lend relevance to the physiological importance of central Ang III.
Collapse
Affiliation(s)
- Umadevi Kandalam
- Department of Pediatric Dentistry, Nova Southeastern University, USA
| | - Nancy Sarmiento
- Farquhar College of Arts and Sciences, Nova Southeastern University, USA
| | - Dhanush Haspula
- Department of Pharmaceutical Sciences, Nova Southeastern University, USA
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, Nova Southeastern University, USA
| |
Collapse
|
17
|
Z. Alanazi A, Patel P, Clark MA. p38 Mitogen-activated protein kinase is stimulated by both angiotensin II and angiotensin III in cultured rat astrocytes. J Recept Signal Transduct Res 2014; 34:205-11. [DOI: 10.3109/10799893.2013.876041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Moore ED, Kooshki M, Metheny-Barlow LJ, Gallagher PE, Robbins ME. Angiotensin-(1-7) prevents radiation-induced inflammation in rat primary astrocytes through regulation of MAP kinase signaling. Free Radic Biol Med 2013; 65:1060-1068. [PMID: 24012919 PMCID: PMC3879043 DOI: 10.1016/j.freeradbiomed.2013.08.183] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/14/2013] [Accepted: 08/23/2013] [Indexed: 12/15/2022]
Abstract
About 500,000 new cancer patients will develop brain metastases in 2013. The primary treatment modality for these patients is partial or whole brain irradiation which leads to a progressive, irreversible cognitive impairment. Although the exact mechanisms behind this radiation-induced brain injury are unknown, neuroinflammation in glial populations is hypothesized to play a role. Blockers of the renin-angiotensin system (RAS) prevent radiation-induced cognitive impairment and modulate radiation-induced neuroinflammation. Recent studies suggest that RAS blockers may reduce inflammation by increasing endogenous concentrations of the anti-inflammatory heptapeptide angiotensin-(1-7) [Ang-(1-7)]. Ang-(1-7) binds to the AT(1-7) receptor and inhibits MAP kinase activity to prevent inflammation. This study describes the inflammatory response to radiation in astrocytes characterized by radiation-induced increases in (i) IL-1β and IL-6 gene expression; (ii) COX-2 and GFAP immunoreactivity; (iii) activation of AP-1 and NF-κB transcription factors; and (iv) PKCα, MEK, and ERK (MAP kinase) activation. Treatment with U-0126, a MEK inhibitor, demonstrates that this radiation-induced inflammation in astrocytes is mediated through the MAP kinase pathway. Ang-(1-7) inhibits radiation-induced inflammation, increases in PKCα, and MAP kinase pathway activation (phosphorylation of MEK and ERK). Additionally Ang-(1-7) treatment leads to an increase in dual specificity phosphatase 1 (DUSP1). Furthermore, treatment with sodium vanadate (Na3VO4), a phosphatase inhibitor, blocks Ang-(1-7) inhibition of radiation-induced inflammation and MAP kinase activation, suggesting that Ang-(1-7) alters phosphatase activity to inhibit radiation-induced inflammation. These data suggest that RAS blockers inhibit radiation-induced inflammation and prevent radiation-induced cognitive impairment not only by reducing Ang II but also by increasing Ang-(1-7) levels.
Collapse
Affiliation(s)
- Elizabeth D Moore
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Mitra Kooshki
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Linda J Metheny-Barlow
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Patricia E Gallagher
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Mike E Robbins
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
19
|
Dunn KM, Nelson MT. Neurovascular signaling in the brain and the pathological consequences of hypertension. Am J Physiol Heart Circ Physiol 2013; 306:H1-14. [PMID: 24163077 DOI: 10.1152/ajpheart.00364.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The execution and maintenance of all brain functions are dependent on a continuous flow of blood to meet the metabolic needs of the tissue. To ensure the delivery of resources required for neural processing and the maintenance of neural homeostasis, the cerebral vasculature is elaborately and extensively regulated by signaling from neurons, glia, interneurons, and perivascular nerves. Hypertension is associated with impaired neurovascular regulation of the cerebral circulation and culminates in neurodegeneration and cognitive dysfunction. Here, we review the physiological processes of neurovascular signaling in the brain and discuss mechanisms of hypertensive neurovascular dysfunction.
Collapse
Affiliation(s)
- Kathryn M Dunn
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont; and
| | | |
Collapse
|
20
|
Kandalam U, Palanisamy M, Clark MA. Angiotensin II induces cell growth and IL-6 mRNA expression through the JAK2-STAT3 pathway in rat cerebellar astrocytes. JAKSTAT 2013; 1:83-9. [PMID: 24058756 PMCID: PMC3670299 DOI: 10.4161/jkst.19688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The pleiotrophic effects of angiotensin II (Ang II) play important roles in astrocyte growth and inflammatory responses. We investigated whether Ang II induces astrocyte growth and interleukin-6 (IL-6) mRNA expression in rat cerebellar astrocytes through Janus kinase 2-signal transduction activator of transcription (JAK2-STAT3). Ang II increased JAK2 and STAT3 phosphorylation in a time- and a dose-dependent manner. One hundred nanomolar Ang II induced maximal phosphorylation of both JAK2 and STAT3 between 15 min and 30 min. The Ang II-mediated phosphorylation of both JAK2 and STAT3 was blocked by AG490, a selective JAK2 inhibitor. Losartan, a selective AT1 receptor antagonist, inhibited Ang II-mediated JAK2 and STAT3 phosphorylation, while pretreatment with an AT2 receptor blocker, PD123319, was ineffective. Ang II increased the mRNA expression of IL-6 in a concentration-and time-dependent manner. Maximal IL-6 mRNA expression occurred with 100 nM Ang II, and the peak effect occurred in a biphasic manner at 3 h and between 12 and 24 h. Moreover, pretreatments with AG490 attenuated Ang II-induced IL-6 mRNA levels, and Ang II-induced astrocyte growth. This study has demonstrated that Ang II induced the phosphorylation of both JAK2 and STAT3 via the AT1 receptor in cerebellar astrocytes. In addition, our results suggest that JAK2 and STAT3 are upstream signals that mediate Ang II-induced IL-6 mRNA expression and astrocyte growth. These findings represent a novel non-classical mechanism of Ang II signaling in cerebellar astrocytes.
Collapse
Affiliation(s)
- Umadevi Kandalam
- Department of Pediatric Dentistry; College of Dental Medicine; Nova Southeastern University; Fort Lauderdale, FL USA
| | | | | |
Collapse
|
21
|
Distinct Molecular Effects of Angiotensin II and Angiotensin III in Rat Astrocytes. Int J Hypertens 2013; 2013:782861. [PMID: 23476748 PMCID: PMC3586509 DOI: 10.1155/2013/782861] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 11/17/2022] Open
Abstract
It is postulated that central effects of angiotensin (Ang) II may be indirect due to rapid conversion to Ang III by aminopeptidase A (APA). Previously, we showed that Ang II and Ang III induced mitogen-activated protein (MAP) kinases ERK1/2 and stress-activated protein kinase/Jun-terminal kinases (SAPK/JNK) phosphorylation in cultured rat astrocytes. Most importantly, both peptides were equipotent in causing phosphorylation of these MAP kinases. In these studies, we used brainstem and cerebellum astrocytes to determine whether Ang II's phosphorylation of these MAP kinases is due to the conversion of the peptide to Ang III. We pretreated astrocytes with 10 μ M amastatin A or 100 μ M glutamate phosphonate, selective APA inhibitors, prior to stimulating with either Ang II or Ang III. Both peptides were equipotent in stimulating ERK1/2 and SAPK/JNK phosphorylation. The APA inhibitors failed to prevent Ang II- and Ang III-mediated phosphorylation of the MAP kinases. Further, pretreatment of astrocytes with the APA inhibitors did not affect Ang II- or Ang III-induced astrocyte growth. These findings suggest that both peptides directly induce phosphorylation of these MAP kinases as well as induce astrocyte growth. These studies establish both peptides as biologically active with similar intracellular and physiological effects.
Collapse
|
22
|
Angiotensin III Induces c-Jun N-terminal Kinase Leading to Proliferation of Rat Astrocytes. Neurochem Res 2012; 37:1475-81. [DOI: 10.1007/s11064-012-0738-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/09/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
|
23
|
Clark MA, Tran H, Nguyen C. Angiotensin III stimulates ERK1/2 mitogen-activated protein kinases and astrocyte growth in cultured rat astrocytes. Neuropeptides 2011; 45:329-35. [PMID: 21788072 DOI: 10.1016/j.npep.2011.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/10/2011] [Accepted: 07/02/2011] [Indexed: 11/20/2022]
Abstract
Angiotensin (Ang) III is a biologically active metabolite of Ang II with similar effects and receptor binding properties as Ang II. Most Ang III studies delineate physiological effects of the peptide but, the intracellular pathways leading to the actions are unknown and are a focus of these studies. We investigated in cultured brainstem and cerebellum rat astrocytes whether Ang III stimulates ERK1/2 mitogen activated protein (MAP) kinases and astrocyte growth. Ang III significantly stimulated ERK1/2 MAP kinases in a dose- and time-dependent manner. The maximal stimulation occurred with 100 nM Ang III (2.8±0.3 and 2.3±0.1-fold over basal, in brainstem and cerebellum astrocytes, respectively). This stimulation occurred as early as 1 min, and was sustained for at least 15 min. Moreover, inhibition of the ERK1/2 MAP kinase pathway by 10 μM PD98059 attenuated Ang III-induced ERK1/2 phosphorylation. Ang III induction of ERK1/2 occurred via stimulation of the Ang AT(1) receptor since pretreatment with 10 μM Losartan, a selective AT(1) receptor blocker, prevented Ang III-induced ERK1/2 phosphorylation. The selective AT(2) Ang receptor blocker PD123319 was ineffective. Comparable to Ang II, Ang III also stimulated astrocyte growth in a concentration-dependent manner, an effect that occurred via activation of the AT(1) receptor as well. These findings suggest that Ang III has similar effects as Ang II in astrocytes since it rapidly stimulates the phosphorylation of the ERK1/2 MAP kinases and induces astrocyte proliferation through activation of the AT(1) receptor. These studies are important in establishing signaling pathways for Ang III and provide validation of the central role of Ang III.
Collapse
Affiliation(s)
- Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States.
| | | | | |
Collapse
|
24
|
Castro-Chaves P, Cerqueira R, Pintalhao M, Leite-Moreira AF. New pathways of the renin-angiotensin system: the role of ACE2 in cardiovascular pathophysiology and therapy. Expert Opin Ther Targets 2010; 14:485-96. [PMID: 20392165 DOI: 10.1517/14728221003709784] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE OF THE FIELD The renin-angiotensin system (RAS) is nowadays an important target in cardiovascular diseases and we are currently on the verge of a new interpretation of its role in cardiovascular homeostasis, mainly due to the identification of the new axis ACE2/angiotensin 1 - 7/Mas receptor. AREAS COVERED IN THIS REVIEW The main aspects related to ACE2 role in cardiovascular physiology and possible pathological and therapeutic implications are reviewed. WHAT THE READER WILL GAIN A description of the new view of the RAS, along with the key findings that support it. In the cardiovascular system, the ACE2/angiotensin 1 - 7/Mas axis, mainly through the inhibition of fibrosis, inflammation, thrombosis and cell proliferation, modulates RAS activity with significant pathophysiological implications in clinical conditions such as hypertension, myocardial ischemia and heart failure. A more complete understanding of this axis has significant therapeutic relevance and a major effort is being carried out in order to pursue this objective. TAKE HOME MESSAGE There is increasing evidence that ACE2/angiotensin 1 - 7/Mas receptor axis has a key role in RAS activity regulation with significant pathophysiological implications in several disease states. A therapeutic intervention at this level may open new doors and change the current approach to RAS targeting.
Collapse
Affiliation(s)
- Paulo Castro-Chaves
- University of Porto, Department of Physiology, Faculty of Medicine, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | | | | | | |
Collapse
|
25
|
Kandalam U, Clark MA. Angiotensin II activates JAK2/STAT3 pathway and induces interleukin-6 production in cultured rat brainstem astrocytes. ACTA ACUST UNITED AC 2010; 159:110-6. [PMID: 19748527 DOI: 10.1016/j.regpep.2009.09.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/13/2009] [Accepted: 09/02/2009] [Indexed: 01/09/2023]
Abstract
We have shown that tyrosine kinases and mitogen-activated protein kinases mediate angiotensin II (Ang II) effects in cultured rat astrocytes. In this study, we investigated whether Ang II induces Janus kinase (JAK) 2, signal transducer and activators of transcription (STAT) 3 phosphorylation, and interleukin-6 (IL-6) secretion in cultured brainstem rat astrocytes. Ang II increased JAK2 phosphorylation in a time- and dose-dependent manner. Maximal phosphorylation of 1.7+/-0.4 fold above basal was observed at 15 min with 100 nM Ang II. Losartan (10 microM), an AT(1) receptor blocker, inhibited Ang II-mediated JAK2 phosphorylation, while 10 microM PD123319, an AT(2) receptor blocker, was ineffective. The JAK2 inhibitor, AG490 (50 microM), prevented Ang II JAK2 phosphorylation. Ang II also stimulated STAT3 in a concentration- and time-dependent manner. Maximal phosphorylation of 0.8+/-0.11 above basal was observed at 15 min with 100 nM Ang II. Treatment with AG490 reduced Ang II phosphorylation of STAT3 and Ang II-induced astrocyte growth suggesting that JAK2 is an upstream signal in these Ang II effects. Ang II also stimulated IL-6 secretion from brainstem astrocytes in a concentration- and time-dependent manner. Maximal IL-6 secretion of 0.7+/-0.2 above basal was observed with 100 nM Ang II after 48 h of treatment. Losartan decreased Ang II-induced IL-6 secretion while PD123319 was ineffective. Interestingly, AG490 reduced Ang II-stimulated IL-6 secretion. Our study showed for the first time that Ang II induced JAK2/STAT3 phosphorylation and IL-6 secretion through activation of the Ang II AT(1) receptor in brainstem astrocytes. In addition, Ang II stimulated IL-6 secretion and astrocyte growth through the JAK2 pathway in brainstem astrocytes. These results provide new insights into pro-inflammatory and mitogenic signaling mechanisms of Ang II in astrocytes.
Collapse
Affiliation(s)
- Umadevi Kandalam
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 S. University Drive, Fort Lauderdale, FL 33328, USA
| | | |
Collapse
|
26
|
Coleman CG, Anrather J, Iadecola C, Pickel VM. Angiotensin II type 2 receptors have a major somatodendritic distribution in vasopressin-containing neurons in the mouse hypothalamic paraventricular nucleus. Neuroscience 2009; 163:129-42. [PMID: 19539723 DOI: 10.1016/j.neuroscience.2009.06.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/21/2009] [Accepted: 06/12/2009] [Indexed: 01/16/2023]
Abstract
The hypothalamic paraventricular nucleus (PVN) and angiotensin II (AngII) play critical roles in cardiovascular and neurohumoral regulation ascribed in part to vasopressin (VP) release. The AngII actions in the PVN are mediated largely through angiotensin II type 1 (AT1) receptors. However, there is indirect evidence that the functionally elusive central angiotensin II type 2 (AT2) receptors are also mediators of AngII signaling in the PVN. We used electron microscopic dual immunolabeling of antisera recognizing the AT2 receptor and VP to test the hypothesis that mouse PVN neurons expressing VP are among the cellular sites where this receptor has a subcellular distribution conducive to local activation. Immunoreactivity for the AT2 receptor was detected in somatodendritic profiles, of which approximately 60% of the somata and approximately 28% of the dendrites also contained VP. In comparison with somata and dendrites, axons, axon terminals, and glia less frequently contained the AT2 receptor. Somatic labeling for the AT2 receptor was often seen in the cytoplasm near the Golgi lamellae and other endomembrane structures implicated in receptor trafficking. AT2 receptor immunoreactivity in dendrites was commonly localized to cytoplasmic endomembranes, but was occasionally observed on extra- or peri-synaptic portions of the plasma membrane apposed by astrocytic processes or by unlabeled axon terminals. The labeled dendritic plasmalemmal segments containing AT2 receptors received asymmetric excitatory-type or more rarely symmetric inhibitory-type contacts from unlabeled axon terminals containing dense core vesicles, many of which are known to store neuropeptides. These results provide the first ultrastructural evidence that AT2 receptors in PVN neurons expressing VP and other neuromodulators are strategically positioned for surface activation by AngII and/or intracellular trafficking.
Collapse
Affiliation(s)
- C G Coleman
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Medical College of Cornell University, 407 E 61st Street, New York, NY, USA.
| | | | | | | |
Collapse
|
27
|
Ferrari MFR, Raizada MK, Fior-Chadi DR. Differential regulation of the renin-angiotensin system by nicotine in WKY and SHR glia. J Mol Neurosci 2008; 35:151-60. [PMID: 18369742 DOI: 10.1007/s12031-007-9025-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
Given that (1) the renin-angiotensin system (RAS) is compartmentalized within the central nervous system in neurons and glia (2) the major source of brain angiotensinogen is the glial cells, (3) the importance of RAS in the central control of blood pressure, and (4) nicotine increases the probability of development of hypertension associated to genetic predisposition; the objective of the present study was to evaluate the effects of nicotine on the RAS in cultured glial cells from the brainstem and hypothalamus of Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Ligand binding, real-time PCR and western blotting assays were used to compare the expression of angiotensinogen, angiotensin converting enzyme, angiotensin converting enzyme 2 and angiotensin II type1 receptors. We demonstrate, for the first time, that there are significant differences in the basal levels of RAS components between WKY and SHR rats in glia from 1-day-old rats. We also observed that nicotine is able to modulate the renin-angiotensin system in glial cells from the brainstem and hypothalamus and that the SHR responses were more pronounced than WKY ones. The present data suggest that nicotine effects on the RAS might collaborate to the development of neurogenic hypertension in SHR through modulation of glial cells.
Collapse
Affiliation(s)
- Merari F R Ferrari
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, n.321, Cidade Universitária, São Paulo, SP, 05508-090, Brazil.
| | | | | |
Collapse
|
28
|
Clark MA, Guillaume G, Pierre-Louis HC. Angiotensin II induces proliferation of cultured rat astrocytes through c-Jun N-terminal kinase. Brain Res Bull 2008; 75:101-6. [DOI: 10.1016/j.brainresbull.2007.07.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/26/2007] [Accepted: 07/26/2007] [Indexed: 10/22/2022]
|
29
|
Clark MA, Gonzalez N. Angiotensin II stimulates rat astrocyte mitogen-activated protein kinase activity and growth through EGF and PDGF receptor transactivation. ACTA ACUST UNITED AC 2007; 144:115-22. [PMID: 17688958 DOI: 10.1016/j.regpep.2007.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/03/2007] [Accepted: 07/04/2007] [Indexed: 10/23/2022]
Abstract
We showed that the intracellular tyrosine kinases src and pyk2 mediate angiotensin II (Ang II) stimulation of growth and ERK1/2 mitogen-activated protein (MAP) kinase phosphorylation in astrocytes. In this study, we investigated whether the membrane-bound receptor tyrosine kinases platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) receptors mediate Ang II stimulation of ERK1/2 and astrocyte growth. Ang II significantly stimulated PDGF and EGF receptors in a dose- and time-dependent manner. The PDGF receptor and the EGF receptor were maximally stimulated with 100 nM Ang II (0.98+/-0.18- and 4.4+/-1.4-fold above basal, respectively). This stimulation occurred as early as 5 min, and was sustained for at least 15 min for both receptor tyrosine kinases. Moreover, 1 microM AG1478 and 0.25 microM PDGFRInhib attenuated Ang II stimulation of the EGF and PDGF receptors, respectively. Ang II-induced phosphorylation of ERK1/2 and astrocyte growth was mediated by both PDGF and EGF receptors. This report also provides novel findings that co-inhibiting EGF and PDGF receptors had a greater effect to decrease Ang II-induced ERK1/2 (90% versus 49% and 71% with PDGF receptor and EGF receptor inhibition, respectively), and astrocyte growth (60% versus 10% and 32% with PDGF receptor and EGF receptor inhibition, respectively). In conclusion we showed in astrocytes that the PDGF and the EGF receptors mediate Ang II-induced ERK1/2 phosphorylation and astrocyte growth and that these two receptors may exhibit synergism to regulate effects of the peptide in these cells.
Collapse
Affiliation(s)
- Michelle A Clark
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Cardiovascular and Metabolic Research Unit, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, United States.
| | | |
Collapse
|
30
|
Clark MA, Gonzalez N. Src and Pyk2 mediate angiotensin II effects in cultured rat astrocytes. ACTA ACUST UNITED AC 2007; 143:47-55. [PMID: 17391778 DOI: 10.1016/j.regpep.2007.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 02/15/2007] [Accepted: 02/18/2007] [Indexed: 12/01/2022]
Abstract
Angiotensin II (Ang II)-induced proliferation of rat astrocytes is mediated by multiple signaling pathways. In the present study, we investigated the role of non-receptor tyrosine kinases on Ang II-signaling and proliferation of astrocytes cultured from neonatal rat pups. Ang II stimulated astrocyte growth, ERK1/2 phosphorylation and the phosphorylation of Src and proline-rich tyrosine kinase-2 (Pyk2), in astrocytes obtained from brainstem and cerebellum. Pretreatment with 10 microM PP2, a selective Src inhibitor, inhibited Ang II stimulated ERK1/2 phosphorylation by 59% to 91% both in brainstem and cerebellum astrocytes. PP2 also inhibited Ang II induction of brainstem (76% inhibition) and cerebellar (64% inhibition) astrocyte growth. Similarly, pretreatment with 25 microM dantrolene, the Pyk2 inhibitor, attenuated ERK1/2 activity in brainstem (62% inhibition) and in cerebellum astrocytes (44% inhibition). Interestingly, inhibition of Pyk2 inhibited Ang II-induced Src activation suggesting that these two non-receptor tyrosine kinases may be acting in concert to mediate Ang II effects in astrocytes. In summary, we found that Ang II stimulates the non-receptor tyrosine kinases Src and Pyk2 which mediate Ang II-induced ERK1/2 activation leading to stimulation of astrocyte growth. In addition, these two tyrosine kinases may be interacting to regulate effects of the peptide in these cells.
Collapse
Affiliation(s)
- Michelle A Clark
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA.
| | | |
Collapse
|
31
|
Delaney J, Chiarello R, Villar D, Kandalam U, Castejon AM, Clark MA. Regulation of c-fos, c-jun and c-myc Gene Expression by Angiotensin II in Primary Cultured Rat Astrocytes: Role of ERK1/2 MAP Kinases. Neurochem Res 2007; 33:545-50. [PMID: 17763940 DOI: 10.1007/s11064-007-9474-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 08/14/2007] [Indexed: 11/30/2022]
Abstract
We have previously shown that angiotensin II (Ang II) stimulates astrocyte growth through activation of ERK1/2 mitogen activated protein (MAP) kinases. In the current study, we determined whether Ang II stimulates the expression of c-fos, c-jun and c-myc in brainstem astrocyte cultures. Reverse transcriptase-PCR analysis showed c-fos, c-jun, and c-myc mRNAs were induced by Ang II. The EC50 values for Ang II stimulation of c-fos, c-jun and c-myc were 1.3, 1.68 and 1.4 nM, respectively. Ang II (100 nM) induced peak stimulation for all genes by 45 min followed by a gradual decline. Inhibition of ERK1/2 by PD98059 attenuated Ang II-induced c-fos and c-myc mRNA expression (by 75% and 100%, respectively) but was ineffective in preventing Ang II induction of c-jun. These studies show for the first time in brainstem astrocytes that Ang II induces the expression of c-fos, c-myc and c-jun, and showed that ERK1/2 mediate Ang II stimulation of c-fos and c-myc. These data implicate the ERK1/2 MAP kinase pathway as a divergent point in controlling Ang II stimulation of immediate early response genes in the central nervous system.
Collapse
Affiliation(s)
- Jimmy Delaney
- College of Pharmacy, Department of Pharmaceutical and Administrative Sciences, Cardiovascular and Metabolic Research Unit, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | | | | | | | | | | |
Collapse
|
32
|
Pereyra-Alfonso S, Rodríguez de Lores Arnaiz G, Peña C. Phosphoinositide hydrolysis increase by angiotensin-(1–7) in neonatal rat brain. ACTA ACUST UNITED AC 2007; 140:162-7. [PMID: 17218025 DOI: 10.1016/j.regpep.2006.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 11/24/2006] [Accepted: 12/01/2006] [Indexed: 11/23/2022]
Abstract
Angiotensin (Ang)-(1-7) is an endogenous peptide hormone of the renin-angiotensin system which exerts diverse biological actions, some of them counterregulate Ang II effects. In the present study potential effect of Ang-(1-7) on phosphoinositide (PI) turnover was evaluated in neonatal rat brain. Cerebral cortex prisms of seven-day-old rats were preloaded with [(3)H]myoinositol, incubated with additions during 30 min and later [(3)H]inositol-phosphates (IPs) accumulation quantified. It was observed that PI hydrolysis enhanced 30% to 60% in the presence of 0.01 nM to 100 nM Ang-(1-7). Neither 10 nM [D-Ala(7)]Ang-(1-7), an Ang-(1-7) specific antagonist, nor 10 nM losartan, an angiotensin II type 1 (AT(1)) receptor antagonist, blocked the effect of 0.1 nM Ang-(1-7) on PI metabolism. The effect of 0.1 nM Ang-(1-7) on PI hydrolysis was not reduced but it was even significantly increased in the simultaneous presence of [D-Ala(7)]Ang-(1-7) or losartan. PI turnover enhancement achieved with 0.1 nM Ang-(1-7) decreased roughly 30% in the presence of 10 nM PD 123319, an angiotensin II type 2 (AT(2)) receptor antagonist. The antagonists alone also enhanced PI turnover. Present findings showing an increase in PI turnover by Ang-(1-7) represent a novel action for this peptide and suggest that it exerts a function in this signaling system in neonatal rat brain, an effect involving, at least partially, angiotensin AT(2) receptors.
Collapse
Affiliation(s)
- Susana Pereyra-Alfonso
- Instituto de Biología Celular y Neurociencias Prof. E. De Robertis, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, (1121) Buenos Aires, Argentina
| | | | | |
Collapse
|
33
|
Lo Vasco VR, Fabrizi C, Artico M, Cocco L, Billi AM, Fumagalli L, Manzoli FA. Expression of phosphoinositide-specific phospholipase C isoenzymes in cultured astrocytes. J Cell Biochem 2007; 100:952-9. [PMID: 17063484 DOI: 10.1002/jcb.21048] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Signal transduction from plasma membrane to cell nucleus is a complex process depending on various components including lipid signaling molecules, in particular phosphoinositides and their related enzymes, which act at cell periphery and/or plasma membrane as well as at nuclear level. As far as the nervous system may concern the inositol lipid cycle has been hypothesized to be involved in numerous neural as well as glial functions. In this context, however, a precise panel of glial PLC isoforms has not been determined yet. In the present experiments we investigated astrocytic PLC isoforms in astrocytes obtained from foetal primary cultures of rat brain and from an established cultured (C6) rat astrocytoma cell line, two well known cell models for experimental studies on glia. Identification of PLC isoforms was achieved by using a combination of RT-PCR and immunocytochemistry experiments. While in both cell models the most represented PI-PLC isoforms were beta4, gamma1, delta4, and epsilon, isoforms PI-PLC beta2 and delta3 were not detected. Moreover, in primary astrocyte cultures PI-PLC delta3 resulted well expressed in C6 cells but was absent in astrocytes. Immunocytochemistry performed with antibodies against specific PLC isoforms substantially confirmed this pattern of expression both in astrocytes and C6 glioma cells. In particular while some isoenzymes (namely isoforms beta3 and beta4) resulted mainly nuclear, others (isoforms delta4 and epsilon) were preferentially localized at cytoplasmic and plasma membrane level.
Collapse
Affiliation(s)
- Vincenza Rita Lo Vasco
- Department of Fisiologia e Farmacologia V Erspamer, Respiratorie e Morfologiche, University of Rome La Sapienza, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
von Bohlen und Halbach O, Albrecht D. The CNS renin-angiotensin system. Cell Tissue Res 2006; 326:599-616. [PMID: 16555051 DOI: 10.1007/s00441-006-0190-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 02/20/2006] [Indexed: 01/24/2023]
Abstract
The renin-angiotensin system (RAS) is one of the best-studied enzyme-neuropeptide systems in the brain and can serve as a model for the action of peptides on neuronal function in general. It is now well established that the brain has its own intrinsic RAS with all its components present in the central nervous system. The RAS generates a family of bioactive angiotensin peptides with variable biological and neurobiological activities. These include angiotensin-(1-8) [Ang II], angiotensin-(3-8) [Ang IV], and angiotensin-(1-7) [Ang-(1-7)]. These neuroactive forms of angiotensin act through specific receptors. Only Ang II acts through two different high-specific receptors, termed AT1 and AT2. Neuronal AT1 receptors mediate the stimulatory actions of Ang II on blood pressure, water and salt intake, and the secretion of vasopressin. In contrast, neuronal AT2 receptors have been implicated in the stimulation of apoptosis and as being antagonistic to AT1 receptors. Among the many potential effects mediated by stimulation of AT2 are neuronal regeneration after injury and the inhibition of pathological growth. Ang-(1-7) mediates its antihypertensive effects by stimulating the synthesis and release of vasodilator prostaglandins and nitric oxide and by potentiating the hypotensive effects of bradykinin. New data concerning the roles of Ang IV and Ang-(1-7) in cognition also support the existence of complex site-specific interactions between multiple angiotensins and multiple receptors in the mediation of important central functions of the RAS. Thus, the RAS of the brain is involved not only in the regulation of blood pressure, but also in the modulation of multiple additional functions in the brain, including processes of sensory information, learning, and memory, and the regulation of emotional responses.
Collapse
Affiliation(s)
- O von Bohlen und Halbach
- Interdisciplinary Center for Neurosciences (IZN), Department of Neuroanatomy, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| | | |
Collapse
|
35
|
Gallagher PE, Chappell MC, Ferrario CM, Tallant EA. Distinct roles for ANG II and ANG-(1-7) in the regulation of angiotensin-converting enzyme 2 in rat astrocytes. Am J Physiol Cell Physiol 2005; 290:C420-6. [PMID: 16176966 DOI: 10.1152/ajpcell.00409.2004] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a homolog of ACE that preferentially forms angiotensin-(1-7) [ANG-(1-7)] from angiotensin II (ANG II). Incubation of neonatal rat cerebellar or medullary astrocytes with ANG II reduced ACE2 mRNA by approximately 60%, suggesting transcriptional regulation of the enzyme. In contrast, ANG II had no effect on ACE mRNA in astrocytes isolated from either brain region, demonstrating a differential regulation of the two enzymes by ANG II. The ANG II-mediated reduction in ACE2 mRNA was blocked by the angiotensin type 1 (AT(1)) receptor antagonists losartan or valsartan; the angiotensin type 2 (AT(2)) antagonist PD123319 was ineffective. The reduction in ACE2 mRNA by ANG II also was associated with a 50% decrease in cerebellar and medullary ACE2 protein, which was blocked by losartan. Treatment of medullary astrocytes with ANG-(1-7), the product of ACE2 hydrolysis of ANG II, did not affect ACE2 mRNA; however, ANG-(1-7) prevented the ANG II-mediated reduction in ACE2 mRNA. The addition of [d-Ala(7)]-ANG-(1-7), a selective AT((1-7)) receptor antagonist, blocked the inhibitory actions of ANG-(1-7). These data are the first to demonstrate transcriptional regulation of ACE2 by ANG II and ANG-(1-7). Because ACE2 preferentially converts ANG II to ANG-(1-7), downregulation of the enzyme by ANG II constitutes a novel positive feed-forward system within the brain that may favor ANG II-mediated neural responses. Furthermore, the modulatory role of ANG-(1-7) in the transcriptional regulation of ACE2 by ANG II suggests a complex interplay between these peptides that is mediated by distinct receptor systems.
Collapse
Affiliation(s)
- Patricia E Gallagher
- The Hypertension and Vascular Disease Center, Wake Forest Univ. School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1032, USA.
| | | | | | | |
Collapse
|
36
|
|
37
|
Simard M, Nedergaard M. The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 2004; 129:877-96. [PMID: 15561405 DOI: 10.1016/j.neuroscience.2004.09.053] [Citation(s) in RCA: 419] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2004] [Indexed: 10/26/2022]
Abstract
Astrocytes are highly complex cells that respond to a variety of external stimulations. One of the chief functions of astrocytes is to optimize the interstitial space for synaptic transmission by tight control of water and ionic homeostasis. Several lines of work have, over the past decade, expanded the role of astrocytes and it is now clear that astrocytes are active participants in the tri-partite synapse and modulate synaptic activity in hippocampus, cortex, and hypothalamus. Thus, the emerging concept of astrocytes includes both supportive functions as well as active modulation of neuronal output. Glutamate plays a central role in astrocytic-neuronal interactions. This excitatory amino acid is cleared from the neuronal synapses by astrocytes via glutamate transporters, and is converted into glutamine, which is released and in turn taken up by neurons. Furthermore, metabotropic glutamate receptor activation on astrocytes triggers via increases in cytosolic Ca(2+) a variety of responses. For example, calcium-dependent glutamate release from the astrocytes modulates the activity of both excitatory and inhibitory synapses. In vivo studies have identified the astrocytic end-foot processes enveloping the vessel walls as the center for astrocytic Ca(2+) signaling and it is possible that Ca(2+) signaling events in the cellular component of the blood-brain barrier are instrumental in modulation of local blood flow as well as substrate transport. The hormonal regulation of water and ionic homeostasis is achieved by the opposing effects of vasopressin and atrial natriuretic peptide on astroglial water and chloride uptake. In conjuncture, the brain appears to have a distinct astrocytic perivascular system, involving several potassium channels as well as aquaporin 4, a membrane water channel, which has been localized to astrocytic endfeet and mediate water fluxes within the brain. The multitask functions of astrocytes are essential for higher brain function. One of the major challenges for future studies is to link receptor-mediated signaling events in astrocytes to their roles in metabolism, ion, and water homeostasis.
Collapse
Affiliation(s)
- M Simard
- Utah Diabetes Center, 615 Arapeen Drive, Suite 100, Salt Lake City, UT 84108, USA.
| | | |
Collapse
|
38
|
Logan A, Berry M. Cellular and molecular determinants of glial scar formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 513:115-58. [PMID: 12575819 DOI: 10.1007/978-1-4615-0123-7_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ann Logan
- Molecular Neuroscience, Department of Medicine, Wolfson Research Laboratories, Queen Elizabeth Hospital, Edgbaston, Birmingham, B15 2TH, UK
| | | |
Collapse
|
39
|
Fogarty DJ, Sánchez-Gómez MV, Matute C. Multiple angiotensin receptor subtypes in normal and tumor astrocytes in vitro. Glia 2002; 39:304-13. [PMID: 12203396 DOI: 10.1002/glia.10117] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A role for neuropeptide receptors in glial tumorigenesis has recently been proposed. Although angiotensin receptors are known to mediate proliferative effects in many cell types, including brain astrocytes, the possible participation of these receptors in glial tumorigenesis remains unknown. In the present study, we have examined the expression of the molecularly defined angiotensin receptor subtypes AT(1a), AT(1b), and AT(2) in normal perinatal rat astrocytes and in a panel of tumor adult astrocytoma cells, using the reverse transcriptase-polymerase chain reaction (RT-PCR). Subsequently, we compared the mitogenic effect of the angiotensins A(1-8), A(2-8), A(3-8) and the heptapeptide "metabolite" A(1-7), on both normal and tumor astrocytes, measured in terms of the incorporation of tritiated thymidine. Our results indicate that AT(1a), AT(1b), and AT(2) angiotensin receptor mRNA is commonly expressed by many of these cells. Of notable exception is the astrocytoma U373 which was not found to express AT(1) or AT(2) mRNA. Chronic (24-h) incubation of cells with A(1-8) and A(1-7) lead to the induction of mitogenesis, even in the AT(1) and AT(2) mRNA negative astrocytoma cell line U373. Moreover, pharmacological analysis indicated that the observed mitogenic effects are not mediated by the AT(1) or AT(2) type receptors, but rather by a novel, specific A((1-7)) angiotensin receptor, since mitogenesis was shown to be partially blocked by the A(1-7) analogue D-Ala(7)A(1-7) and by the protease inhibitor orthophenanthroline (100 microM). Using Fura-2 spectrophotometry, we found that activation of this receptor does not alter intracellular calcium levels; however, preincubation with the protein kinase kinase inhibitor U0126 (10 microM) was found to inhibit these mitogenic effects partially. Overall, these results which demonstrate that normal and tumor astrocytes express a greater variety of angiotensin receptor subtypes than previously thought, support the idea that A(1-7) and its receptor signaling system may play an important role in shaping the astrocyte population during development. Moreover, the untimely expression of this A((1-7)) receptor may represent an important etiological component in the development of brain astrocytomas.
Collapse
MESH Headings
- Angiotensins/pharmacology
- Angiotensins/physiology
- Animals
- Animals, Newborn
- Astrocytes/cytology
- Astrocytes/metabolism
- Astrocytoma/metabolism
- Cells, Cultured
- Cerebral Cortex/cytology
- Cerebral Cortex/metabolism
- Dose-Response Relationship, Drug
- Humans
- Mitogen-Activated Protein Kinase Kinases/metabolism
- RNA, Messenger/biosynthesis
- Rats
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/biosynthesis
- Receptors, Angiotensin/classification
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- David J Fogarty
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Vizcaya, Spain
| | | | | |
Collapse
|
40
|
Kitiyakara C, Welch WJ, Verbalis JG, Wilcox CS. Role of thromboxane receptors in the dipsogenic response to central angiotensin II. Am J Physiol Regul Integr Comp Physiol 2002; 282:R865-9. [PMID: 11832409 DOI: 10.1152/ajpregu.00328.2001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Central angiotensin II (ANG II) regulates thirst. Because thromboxane A2-prostaglandin H2 (TP) receptors are expressed in the brain and mediate some of the effects of ANG II in the vasculature, we investigated the hypothesis that TP receptors mediate the drinking response to intracerebroventricular (icv) injections of ANG II. Pretreatment with the specific TP-receptor antagonist ifetroban (Ifet) decreased water intake with 50 ng/kg icv ANG II (ANG II + Veh, 7.2 +/- 0.7 ml vs. ANG II + Ifet, 2.8 +/- 0.8 ml; n = 5 rats; P < 0.001) but had no effect on water intake induced by hypertonic saline (NaCl + Veh, 8.4 +/- 1.1 ml vs. NaCl + Ifet, 8.9 +/- 1.8 ml; n = 5 rats; P = not significant). Administration of 0.6 microg/kg icv of the TP-receptor agonist U-46,619 did not induce drinking when given alone but did increase the dipsogenic response to a near-threshold dose of 15 ng/kg icv ANG II (ANG II + Veh, 1.1 +/- 0.7 vs. ANG II + U-46,619, 4.5 +/- 0.9 ml; n = 5 rats; P < 0.01). We conclude that central TP receptors contribute to the dipsogenic response to ANG II.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/administration & dosage
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Angiotensin II/administration & dosage
- Angiotensin II/pharmacology
- Animals
- Brain/physiology
- Drinking/drug effects
- Drinking/physiology
- Drug Interactions
- Injections, Intravenous
- Injections, Intraventricular
- Male
- Rats
- Rats, Sprague-Dawley
- Receptors, Thromboxane/physiology
- Saline Solution, Hypertonic/administration & dosage
- Saline Solution, Hypertonic/pharmacology
Collapse
Affiliation(s)
- Chagriya Kitiyakara
- Division of Nephrology and Hypertension, and Center for Hypertension and Renal Disease Research, Georgetown University, Washington, District of Columbia 20007, USA
| | | | | | | |
Collapse
|
41
|
Mustafa T, Lee JH, Chai SY, Albiston AL, McDowall SG, Mendelsohn FA. Bioactive angiotensin peptides: focus on angiotensin IV. J Renin Angiotensin Aldosterone Syst 2001; 2:205-10. [PMID: 11881124 DOI: 10.3317/jraas.2001.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- T Mustafa
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
42
|
Fogarty DJ, Matute C. Angiotensin receptor-like immunoreactivity in adult brain white matter astrocytes and oligodendrocytes. Glia 2001; 35:131-46. [PMID: 11460269 DOI: 10.1002/glia.1078] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Most of the physiological effects of brain angiotensins are currently believed to be mediated by angiotensin receptors located principally on neurons. However, numerous studies in vitro have demonstrated the presence of functional angiotensin receptors on brain astrocytes, raising the possibility that glial cells may also participate in mediating the effects of the central renin-angiotensin system. Nevertheless, it is uncertain whether these cells in situ express angiotensin receptors, raising questions about the physiological significance of results observed in cell cultures. We have examined the distribution of angiotensin receptor-like immunoreactivity in glial cells in white matter tracts in the adult CNS, using a panel of antisera to the AT1 and AT2 angiotensin receptors. Antiserum preadsorption and/or Western blot demonstrated the specificity of the antisera in brain tissue. In immunohistochemical experiments, the AT1 antisera selectively labeled AT1-expressing neurons in the piriform cortex, whereas the AT2 antiserum stained cells in the trigeminal motor nucleus, these being nuclei known to express AT1 and AT2 receptors, respectively. Using double-label immunohistochemistry, we observed AT1- and AT2-immunoreactive astrocytes and oligodendrocytes in white matter tracts, which include the rat cerebellar white matter, periventricular white matter, and optic nerve, in addition to the bovine corpus callosum and human subcortical white matter. In contrast, astrocytes in the gray matter region of the cerebral cortex were not found to be angiotensin receptor-like immunoreactive. These results demonstrate the presence of AT1 and/or AT2 angiotensin receptor-like immunoreactivity in brain white matter macroglial cells in situ and support the idea that glial cells may play a more important role in the central renin-angiotensin system than previously thought.
Collapse
Affiliation(s)
- D J Fogarty
- Department of Neurosciences, Faculty of Medicine, University of the Basque Country, Leioa, Spain
| | | |
Collapse
|
43
|
Clark MA, Diz DI, Tallant EA. Angiotensin-(1-7) downregulates the angiotensin II type 1 receptor in vascular smooth muscle cells. Hypertension 2001; 37:1141-6. [PMID: 11304516 DOI: 10.1161/01.hyp.37.4.1141] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin (Ang)-(1-7) is a biologically active peptide of the renin-angiotensin system that has both vasodilatory and antiproliferative activities that are opposite the constrictive and proliferative effects of angiotensin II (Ang II). We studied the actions of Ang-(1-7) on the Ang II type 1 (AT(1)) receptor in cultured rat aortic vascular smooth muscle cells to determine whether the effects of Ang-(1-7) are due to its regulation of the AT(1) receptor. Ang-(1-7) competed poorly for [(125)I]Ang II binding to the AT(1) receptor on vascular smooth muscle cells, with an IC(50) of 2.0 micromol/L compared with 1.9 nmol/L for Ang II. The pretreatment of vascular smooth muscle cells with Ang-(1-7) followed by treatment with acidic glycine to remove surface-bound peptide resulted in a significant decrease in [(125)I]Ang II binding; however, reduced Ang II binding was observed only at micromolar concentrations of Ang-(1-7). Scatchard analysis of vascular smooth muscle cells pretreated with 1 micromol/L Ang-(1-7) showed that the reduction in Ang II binding resulted from a loss of the total number of binding sites [B(max) 437.7+/-261.5 fmol/mg protein in Ang-(1-7)-pretreated cells compared with 607.5+/-301.2 fmol/mg protein in untreated cells, n=5, P<0.05] with no significant effect on the affinity of Ang II for the AT(1) receptor. Pretreatment with the AT(1) receptor antagonist L-158,809 blocked the reduction in [(125)I]Ang II binding by Ang-(1-7) or Ang II. Pretreatment of vascular smooth muscle cells with increasing concentrations of Ang-(1-7) reduced Ang II-stimulated phospholipase C activity; however, the decrease was significant (81.2+/-6.4%, P<0.01, n=5) only at 1 micromol/L Ang-(1-7). These results demonstrate that pharmacological concentrations of Ang-(1-7) in the micromolar range cause a modest downregulation of the AT(1) receptor on vascular cells and a reduction in Ang II-stimulated phospholipase C activity. Because the antiproliferative and vasodilatory effects of Ang-(1-7) are observed at nanomolar concentrations of the heptapeptide, these responses to Ang-(1-7) cannot be explained by competition of Ang-(1-7) at the AT(1) receptor or Ang-(1-7)-mediated downregulation of the vascular AT(1) receptor.
Collapse
Affiliation(s)
- M A Clark
- Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1032, USA
| | | | | |
Collapse
|
44
|
Clark MA, Tallant EA, Diz DI. Downregulation of the AT1A receptor by pharmacologic concentrations of Angiotensin-(1-7). J Cardiovasc Pharmacol 2001; 37:437-48. [PMID: 11300657 DOI: 10.1097/00005344-200104000-00011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Angiotensin (Ang)-(1-7), the amino terminal heptapeptide fragment of Ang II, is an endogenous Ang peptide with vasodilatory and antiproliferative actions. Because Ang II causes vasoconstriction and promotes growth through activation of Ang type 1 (AT1) receptors, we investigated whether the actions of Ang-(1-7) are due to its regulation of these receptors. Studies were performed in CHO cells stably transfected with the AT1A receptor. Ang-(1-7) competed poorly with [125I]-Ang II for the AT1A binding site and was ineffective at shifting the IC50 for Ang II competition with [125I]-Ang II for binding to the AT1A receptor. However, if CHO-AT1A cells were pretreated with Ang-(1-7) and then treated with acidic glycine to remove surface-bound ligand, the heptapeptide caused a concentration-dependent reduction in Ang II binding, with a maximal inhibition to 67.8 +/- 4.6% of total (p < 0.05) at 1 microM Ang-(1-7) compared with a reduction to 24% of total by 10 nM Ang II. Ang-(1-7) pretreatment caused a small but significant decrease in the affinity of [125I]-Ang II for the AT1A receptor and a significant reduction in the total number of binding sites. The Ang-(1-7)-induced reduction in binding was rapid (occurring as early as 5 min after exposure to the peptide), was maintained for 30 min during continued exposure of the cells to Ang-(1-7), and rapidly recovered after removal of the heptapeptide. The AT1 receptor antagonist L-158,809 reduced the Ang-(1-7)-induced downregulation of the AT1A receptor, suggesting that interactions with AT1A receptors mediate the regulatory events. Pretreatment with 1 microM or 10 microM Ang-(1-7) significantly reduced inositol phosphate production in response to 10 nM Ang II. The decrease in binding and responsiveness of the AT1A receptor after exposure to micromolar concentrations of Ang-(1-7) suggests that the heptapeptide downregulates the AT1A receptor to reduce responses to Ang II. Because downregulation of the receptor only occurred at micromolar concentrations of the heptapeptide, our findings suggest that Ang-(1-7) is not a potent antagonist at the AT1A receptor. However, when the balance between Ang II and Ang-(1-7) is shifted in favor of Ang-(1-7), such as during inhibition of Ang-converting enzyme, some contribution of this mechanism may come into play.
Collapse
Affiliation(s)
- M A Clark
- Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1032, USA.
| | | | | |
Collapse
|
45
|
Abstract
It is well known that increased cAMP levels in cultured astrocytes can convert flat polygonal shaped astrocytes into process-bearing, stellate astrocytes. In this study, we have examined the possible existence of astrocyte regional heterogeneity in morphological changes in response to cAMP stimulation. Primary astrocyte cultures were prepared from six different regions of neonatal rat brains, including cerebral cortex, hippocampus, brain stem, mid brain, cerebellum, and hypothalamus. After about 2 weeks in culture, the astrocyte culture medium was changed to DMEM containing various concentrations of 8-CPT-cAMP, a membrane permeable cAMP analog, for 2 h. We found that 250 microM 8-CPT-cAMP produced a maximum effect causing >95% stellation in all regional astrocytes except hypothalamic astrocytes (56% stellation). At lower cAMP concentrations, cell stellation most effectively occurred in cerebellar astrocytes. To examine further the regional heterogeneity of astrocyte morphological changes, glutamate was added together with 8-CPT-cAMP to block cAMP-induced astrocyte stellation. Interestingly, glutamate blockage on cAMP-induced astrocyte stellation was brain region-specific in that cerebral and hippocampal astrocytes were effectively blocked by glutamate when compared to other regional astrocytes. Furthermore, glutamate inhibited isoproterenol-induced astrocyte stellation in a region-specific manner similarly as in cAMP-induced stellation. The present study demonstrates that astrocytes derived from different regions of the neonatal rat brain maintain different levels of morphological plasticity in culture.
Collapse
Affiliation(s)
- C L Won
- Department of Medicine, Sparks Center 865, University of Alabama at Birmingham, 1530 3rd Ave. South, Birmingham, AL 35294, USA
| | | |
Collapse
|
46
|
Althaus HH, Richter-Landsberg C. Glial cells as targets and producers of neurotrophins. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 197:203-77. [PMID: 10761118 DOI: 10.1016/s0074-7696(00)97005-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glial cells fulfill important tasks within the neural network of the central and peripheral nervous systems. The synthesis and secretion of various polypeptidic factors (cytokines) and a number of receptors, with which glial cells are equipped, allow them to communicate with their environment. Evidence has accumulated during recent years that neurotrophins play an important role not only for neurons but also for glial cells. This brief update of some morphological, immunocytochemical, and biochemical characteristics of glial cell lineages conveys our present knowledge about glial cells as targets and producers of neurotrophins under normal and pathological conditions. The chapter discusses the presence of neurotrophin receptors on glial cells, glial cells as producers of neurotrophins, signaling pathways downstream Trk and p75NTR, and the significance of neurotrophins and their receptors for glial cells during development, in cell death and survival, and in neurological disorders.
Collapse
Affiliation(s)
- H H Althaus
- AG Neural Regeneration, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | | |
Collapse
|
47
|
Brenneman DE, Hauser J, Spong CY, Phillips TM, Pert CB, Ruff M. VIP and D-ala-peptide T-amide release chemokines which prevent HIV-1 GP120-induced neuronal death. Brain Res 1999; 838:27-36. [PMID: 10446313 DOI: 10.1016/s0006-8993(99)01644-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vasoactive intestinal peptide (VIP) and DAPTA (D-ala(1)-peptide T-amide, a gp120-derived octapeptide homologous to VIP) prevent neuronal cell death produced by five variants of HIV-1 (human immunodeficiency virus) envelope protein (gp120). VIP or DAPTA treatment of astrocyte cultures resulted in the release of macrophage inflammatory protein-1alpha (MIP-1alpha) and RANTES, beta chemokines known to block gp120 interactions with microglial chemokine receptors. In rat cerebral cortical cultures, gp120-induced neuronal killing was partially or completely prevented by chemokines that stimulate the CXCR4, CCR3 or CCR5 chemokine receptors. Chemokines exhibited marked differences in potency and efficacy in preventing toxicity associated with five gp120 variants (LAV/BRU, CM243, RF, SF2, and MN). RANTES had the broadest and most potent inhibition (IC(50)<3 pM for RF isolate). An octapeptide derived from RANTES also exhibited neuroprotection from gp120 (RF isolate) toxicity (IC(50)=0.3 microM). Treatment with chemokines alone had no detectable effect on neuronal cell number. However, antiserum to MIP-1alpha produced neuronal cell death that was prevented by co-treatment with MIP-1alpha, suggesting that this endogenous chemokine exerts a tonic regulation important to neuronal survival. The neuroprotective action of VIP on gp120 was attenuated by co-treatment with anti-MIP-1alpha. These studies suggest that the neuroprotective action of VIP is linked in part to its release of MIP-1alpha. Furthermore, neuroprotection produced by chemokines is dependent on both the type of chemokine and the variant structure of gp120 and may be relevant to drug strategies for the treatment of AIDS dementia.
Collapse
Affiliation(s)
- D E Brenneman
- Section on Developmental and Molecular Pharmacology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|