1
|
Lorusso D, Nikolov HN, Holdsworth DW, Dixon SJ. Vibration of osteoblastic cells using a novel motion-control platform does not acutely alter cytosolic calcium, but desensitizes subsequent responses to extracellular ATP. J Cell Physiol 2019; 235:5096-5110. [PMID: 31696507 DOI: 10.1002/jcp.29378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 09/30/2019] [Indexed: 11/08/2022]
Abstract
Low-magnitude high-frequency mechanical vibration induces biological responses in many tissues. Like many cell types, osteoblasts respond rapidly to certain forms of mechanostimulation, such as fluid shear, with transient elevation in the concentration of cytosolic free calcium ([Ca2+ ]i ). However, it is not known whether vibration of osteoblastic cells also induces acute elevation in [Ca2+ ]i . To address this question, we built a platform for vibrating live cells that is compatible with microscopy and microspectrofluorometry, enabling us to observe immediate responses of cells to low-magnitude high-frequency vibrations. The horizontal vibration system was mounted on an inverted microscope, and its mechanical performance was evaluated using optical tracking and accelerometry. The platform was driven by a sinusoidal signal at 20-500 Hz, producing peak accelerations from 0.1 to 1 g. Accelerometer-derived displacements matched those observed optically within 10%. We then used this system to investigate the effect of acceleration on [Ca2+ ]i in rodent osteoblastic cells. Cells were loaded with fura-2, and [Ca2+ ]i was monitored using microspectrofluorometry and fluorescence ratio imaging. No acute changes in [Ca2+ ]i or cell morphology were detected in response to vibration over the range of frequencies and accelerations studied. However, vibration did attenuate Ca2+ transients generated subsequently by extracellular ATP, which activates P2 purinoceptors and has been implicated in mechanical signaling in bone. In summary, we developed and validated a motion-control system capable of precisely delivering vibrations to live cells during real-time microscopy. Vibration did not elicit acute elevation of [Ca2+ ]i , but did desensitize responses to later stimulation with ATP.
Collapse
Affiliation(s)
- Daniel Lorusso
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada.,Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, ON, Canada.,Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
| | - Hristo N Nikolov
- Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | - David W Holdsworth
- Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, ON, Canada.,Bone and Joint Institute, The University of Western Ontario, London, ON, Canada.,Department of Surgery, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada
| | - S Jeffrey Dixon
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada.,Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
2
|
Pontes TA, Barbosa AD, Silva RD, Melo-Junior MR, Silva RO. Osteopenia-osteoporosis discrimination in postmenopausal women by 1H NMR-based metabonomics. PLoS One 2019; 14:e0217348. [PMID: 31141566 PMCID: PMC6541380 DOI: 10.1371/journal.pone.0217348] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
This is a report on how 1H NMR-based metabonomics was employed to discriminate osteopenia from osteoporosis in postmenopausal women, identifying the main metabolites associated to the separation between the groups. The Assays were performed using seventy-eight samples, being twenty-eight healthy volunteers, twenty-six osteopenia patients and twenty-four osteoporosis patients. PCA, LDA, PLS-DA and OPLS-DA formalisms were used. PCA discriminated the samples from healthy volunteers from diseased patient samples. Osteopenia-osteoporosis discrimination was only obtained using Analysis Discriminants formalisms, as LDA, PLS-DA and OPLS-DA. The metabonomics model using LDA formalism presented 88.0% accuracy, 88.5% specificity and 88.0% sensitivity. Cross-Validation, however, presented some problems as the accuracy of modeling decreased. LOOCV resulted in 78.0% accuracy. The OPLS-DA based model was better: R2Y and Q2 values equal to 0.871 (p<0.001) and 0.415 (p<0.001). LDA and OPLS-DA indicated the important spectral regions for discrimination, making possible to assign the metabolites involved in the skeletal system homeostasis, as follows: VLDL, LDL, leucine, isoleucine, allantoin, taurine and unsaturated lipids. These results indicate that 1H NMR-based metabonomics can be used as a diagnosis tool to discriminate osteoporosis from osteopenia using a single serum sample.
Collapse
Affiliation(s)
- T. A. Pontes
- Biology Applied to Health Postgraduate Program. LIKA–Laboratory of Immunopatology Keizo Asami. Universidade Federal de Pernambuco, Av Prof Luis Freire, s/n. Cidade Universitaria, Recife-PE, Brazil
- * E-mail:
| | - A. D. Barbosa
- Biology Applied to Health Postgraduate Program. LIKA–Laboratory of Immunopatology Keizo Asami. Universidade Federal de Pernambuco, Av Prof Luis Freire, s/n. Cidade Universitaria, Recife-PE, Brazil
| | - R. D. Silva
- Fundamental Chemistry Department, CCEN. Chemistry Postgraduate Program. Universidade Federal de Pernambuco. Av. Jornalista Aníbal Fernandes, s/n. Cidade Universitária, Recife-PE, Brazil
| | - M. R. Melo-Junior
- Biology Applied to Health Postgraduate Program. LIKA–Laboratory of Immunopatology Keizo Asami. Universidade Federal de Pernambuco, Av Prof Luis Freire, s/n. Cidade Universitaria, Recife-PE, Brazil
| | - R. O. Silva
- Fundamental Chemistry Department, CCEN. Chemistry Postgraduate Program. Universidade Federal de Pernambuco. Av. Jornalista Aníbal Fernandes, s/n. Cidade Universitária, Recife-PE, Brazil
| |
Collapse
|
3
|
Kim BH, Wang FI, Pereverzev A, Chidiac P, Dixon SJ. Toward Defining the Pharmacophore for Positive Allosteric Modulation of PTH1 Receptor Signaling by Extracellular Nucleotides. ACS Pharmacol Transl Sci 2019; 2:155-167. [PMID: 32259054 DOI: 10.1021/acsptsci.8b00053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 12/17/2022]
Abstract
The parathyroid hormone 1 receptor (PTH1R) is a Class B G-protein-coupled receptor that is a target for osteoporosis therapeutics. Activated PTH1R couples through Gs to the stimulation of adenylyl cyclase. As well, β-arrestin is recruited to PTH1R leading to receptor internalization and MAPK/ERK signaling. Previously, we reported that the agonist potency of PTH1R is increased in the presence of extracellular ATP, which acts as a positive allosteric modulator of PTH signaling. Another nucleotide, cytidine 5'-monophosphate (CMP), also enhances PTH1R signaling, suggesting that ATP and CMP share a moiety responsible for positive allostery, possibly ribose-5-phosphate. Therefore, we examined the effect of extracellular sugar phosphates on PTH1R signaling. cAMP levels and β-arrestin recruitment were monitored using luminescence-based assays. Alone, ribose-5-phosphate had no detectable effect on adenylyl cyclase activity in UMR-106 rat osteoblastic cells, which endogenously express PTH1R. However, ribose-5-phosphate markedly enhanced the activation of adenylyl cyclase induced by PTH. Other sugar phosphates, including glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, and fructose-1,6-bisphosphate, also potentiated PTH-induced adenylyl cyclase activation. As well, some sugar phosphates enhanced PTH-induced β-arrestin recruitment to human PTH1R heterologously expressed in HEK293H cells. Interestingly, the effects of glucose-1-phosphate were greater than those of its isomer glucose-6-phosphate. Our results suggest that phosphorylated monosaccharides such as ribose-5-phosphate contain the pharmacophore for positive allosteric modulation of PTH1R. At least in some cases, the extent of modulation depends on the position of the phosphate group. Knowledge of the pharmacophore may permit future development of positive allosteric modulators to increase the therapeutic efficacy of PTH1R agonists.
Collapse
Affiliation(s)
- Brandon H Kim
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry; and Bone and Joint Institute; The University of Western Ontario, London, Canada
| | - Fang I Wang
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry; and Bone and Joint Institute; The University of Western Ontario, London, Canada
| | - Alexey Pereverzev
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry; and Bone and Joint Institute; The University of Western Ontario, London, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry; and Bone and Joint Institute; The University of Western Ontario, London, Canada
| | - S Jeffrey Dixon
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry; and Bone and Joint Institute; The University of Western Ontario, London, Canada
| |
Collapse
|
4
|
Gadjanski I. Mimetic Hierarchical Approaches for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:143-170. [PMID: 29691821 DOI: 10.1007/978-3-319-76711-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED In order to engineer biomimetic osteochondral (OC) construct, it is necessary to address both the cartilage and bone phase of the construct, as well as the interface between them, in effect mimicking the developmental processes when generating hierarchical scaffolds that show gradual changes of physical and mechanical properties, ideally complemented with the biochemical gradients. There are several components whose characteristics need to be taken into account in such biomimetic approach, including cells, scaffolds, bioreactors as well as various developmental processes such as mesenchymal condensation and vascularization, that need to be stimulated through the use of growth factors, mechanical stimulation, purinergic signaling, low oxygen conditioning, and immunomodulation. This chapter gives overview of these biomimetic OC system components, including the OC interface, as well as various methods of fabrication utilized in OC biomimetic tissue engineering (TE) of gradient scaffolds. Special attention is given to addressing the issue of achieving clinical size, anatomically shaped constructs. Besides such neotissue engineering for potential clinical use, other applications of biomimetic OC TE including formation of the OC tissues to be used as high-fidelity disease/healing models and as in vitro models for drug toxicity/efficacy evaluation are covered. HIGHLIGHTS Biomimetic OC TE uses "smart" scaffolds able to locally regulate cell phenotypes and dual-flow bioreactors for two sets of conditions for cartilage/bone Protocols for hierarchical OC grafts engineering should entail mesenchymal condensation for cartilage and vascular component for bone Immunomodulation, low oxygen tension, purinergic signaling, time dependence of stimuli application are important aspects to consider in biomimetic OC TE.
Collapse
Affiliation(s)
- Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica, Novi Sad, Serbia. .,Belgrade Metropolitan University, Tadeusa Koscuska 63, Belgrade, Serbia.
| |
Collapse
|
5
|
PYK2 mediates BzATP-induced extracellular matrix proteins synthesis. Biochem Biophys Res Commun 2017; 494:663-667. [PMID: 29061307 DOI: 10.1016/j.bbrc.2017.10.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 10/25/2022]
Abstract
Mechanical stimuli such as fluid shear and cyclic tension force induced extracellular adenosine triphosphate (ATP) release in osteoblasts. In particular, cyclic tension force-induced ATP enhances bone formation through P2X7 activation. Proline-rich tyrosine kinase 2 (PYK2) mediate osteoblasts differentiation is induced by mechanical stimuli. Furthermore, activation of PYK2 also was a response to integrin by mechanical stimuli. Extracellular matrix protein (ECMP)s, which are important factors for bone formation are expressed by osteoblasts. However, the effect of the interaction of 2'(3)-Ο-(4-Benzoylbenzoyl) adenosine-5'-triphosphate (BzATP), which is the agonist of the mechanosensitive receptor P2X7, with PYK2 on ECMP production is poorly understood. Thus, our purpose was to investigate the effects of PYK2 on BzATP-induced ECMP production in osteoblasts. BzATP increased phospho-PYK2 protein expression on days 3 and 7 of culture. Furthermore, the PYK2 inhibitor PF431394 inhibited the stimulatory effect of BzATP on the expression of type I collagen, bone sialoprotein and osteocalcin expression. PF431396 did not inhibit the stimulatory effect of BzATP on osteopontin (OPN) mRNA expression. These results suggest that mechanical stimuli activate P2X7 might induce ECMPs expression through PYK2 except in the case of OPN expression. Altogether, mechanical stimuli-induced ECMPs production might be implicated by extracellular ATP secretion or integrin via PYK2 activation.
Collapse
|
6
|
Berardi D, Carlesi T, Rossi F, Calderini M, Volpi R, Perfetti G. Potential Applications of Biphosphonates in Dental Surgical Implants. Int J Immunopathol Pharmacol 2016; 20:455-65. [PMID: 17880759 DOI: 10.1177/039463200702000304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biphosphonates are largely used for their unquestionable properties of inhibiting bone resorption by osteoclast in the treatment of various osteometabolic illnesses such as osteoporosis, multiple myeloma, tumors which metastasize to the bone and malignant hypercalcemia. In this literature review the physico-chemical properties, biologic activities and the mechanisms of action of biphosphonates are described. The use of these drugs is discussed, analyzing the quantity of results which have emerged through in vitro and in vivo experiments on animal models. In this study the efficiency of these drugs is demonstrated in contrasting the osteolitic processes of the alveolar bone, in promoting the neoformation and in bettering the quality of bone implants. However, it is important to draw attention to a worrying correlation which has emerged during the last 3–4 years, between osteonecrosis of the jaw (ONJ) and the systemic administration of aminobiphosphonates. This collateral effect did not emerge following the use of non-aminobiphosphonates. The aim of this revie w is to identify the guidelines for the use of biphosphonates in oral implant surgery.
Collapse
Affiliation(s)
- D Berardi
- Department of Oral Sciences, University G. D'Annunzio, Chieti, Chieti, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Seref-Ferlengez Z, Maung S, Schaffler MB, Spray DC, Suadicani SO, Thi MM. P2X7R-Panx1 Complex Impairs Bone Mechanosignaling under High Glucose Levels Associated with Type-1 Diabetes. PLoS One 2016; 11:e0155107. [PMID: 27159053 PMCID: PMC4861344 DOI: 10.1371/journal.pone.0155107] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes (T1D) causes a range of skeletal problems, including reduced bone density and increased risk for bone fractures. However, mechanisms underlying skeletal complications in diabetes are still not well understood. We hypothesize that high glucose levels in T1D alters expression and function of purinergic receptors (P2Rs) and pannexin 1 (Panx1) channels, and thereby impairs ATP signaling that is essential for proper bone response to mechanical loading and maintenance of skeletal integrity. We first established a key role for P2X7 receptor-Panx1 in osteocyte mechanosignaling by showing that these proteins are co-expressed to provide a major pathway for flow-induced ATP release. To simulate in vitro the glucose levels to which bone cells are exposed in healthy vs. diabetic bones, we cultured osteoblast and osteocyte cell lines for 10 days in medium containing 5.5 or 25 mM glucose. High glucose effects on expression and function of P2Rs and Panx1 channels were determined by Western Blot analysis, quantification of Ca2+ responses to P2R agonists and oscillatory fluid shear stress (± 10 dyne/cm2), and measurement of flow-induced ATP release. Diabetic C57BL/6J-Ins2Akita mice were used to evaluate in vivo effects of high glucose on P2R and Panx1. Western blotting indicated altered P2X7R, P2Y2R and P2Y4R expression in high glucose exposed bone cells, and in diabetic bone tissue. Moreover, high glucose blunted normal P2R- and flow-induced Ca2+ signaling and ATP release from osteocytes. These findings indicate that T1D impairs load-induced ATP signaling in osteocytes and affects osteoblast function, which are essential for maintaining bone health.
Collapse
Affiliation(s)
- Zeynep Seref-Ferlengez
- Departments of Orthopaedic Surgery, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
- Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
| | - Stephanie Maung
- Departments of Orthopaedic Surgery, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
- Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
| | - Mitchell B. Schaffler
- Department of Biomedical Engineering, City College of New York, New York, NY, United States of America
| | - David C. Spray
- Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
- Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
| | - Sylvia O. Suadicani
- Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
- Department of Urology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
- Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
| | - Mia M. Thi
- Departments of Orthopaedic Surgery, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
- Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
- * E-mail:
| |
Collapse
|
8
|
Lee CC, Chen CL, Liu FL, Chiou CY, Chen TC, Wu CC, Sun WH, Chang DM, Huang HS. Development of 1-Amino-4-(phenylamino)anthraquinone-2-sulfonate Sodium Derivatives as a New Class of Inhibitors of RANKL-Induced Osteoclastogenesis. Arch Pharm (Weinheim) 2016; 349:342-55. [DOI: 10.1002/ardp.201500475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/20/2016] [Accepted: 03/23/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Chia-Chung Lee
- Graduate Institute of Cancer Biology and Drug Discovery; College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
- School of Pharmacy; National Defense Medical Center; Taipei Taiwan
- Rheumatology/Immunology/Allergy; Taipei Veterans General Hospital; Taipei Taiwan
| | - Chun-Liang Chen
- Graduate Institute of Cancer Biology and Drug Discovery; College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
- School of Pharmacy; National Defense Medical Center; Taipei Taiwan
- Rheumatology/Immunology/Allergy; Taipei Veterans General Hospital; Taipei Taiwan
| | - Fei-Lan Liu
- Rheumatology/Immunology/Allergy; Taipei Veterans General Hospital; Taipei Taiwan
| | - Chung-Yu Chiou
- Graduate Institute of Cancer Biology and Drug Discovery; College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
- School of Pharmacy; National Defense Medical Center; Taipei Taiwan
| | - Tsung-Chih Chen
- Graduate Institute of Cancer Biology and Drug Discovery; College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
- School of Pharmacy; National Defense Medical Center; Taipei Taiwan
| | - Cheng-Chi Wu
- Rheumatology/Immunology/Allergy; Taipei Veterans General Hospital; Taipei Taiwan
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei Taiwan
| | - Wei-Hsin Sun
- Department of Life Sciences; National Central University; Jhongli City Taiwan
| | - Deh-Ming Chang
- Rheumatology/Immunology/Allergy; Taipei Veterans General Hospital; Taipei Taiwan
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei Taiwan
| | - Hsu-Shan Huang
- Graduate Institute of Cancer Biology and Drug Discovery; College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
- School of Pharmacy; National Defense Medical Center; Taipei Taiwan
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei Taiwan
| |
Collapse
|
9
|
Kariya T, Tanabe N, Shionome C, Manaka S, Kawato T, Zhao N, Maeno M, Suzuki N, Shimizu N. Tension force-induced ATP promotes osteogenesis through P2X7 receptor in osteoblasts. J Cell Biochem 2016; 116:12-21. [PMID: 24905552 PMCID: PMC4263259 DOI: 10.1002/jcb.24863] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 05/30/2014] [Indexed: 01/31/2023]
Abstract
Orthodontic tooth movement induces alveolar bone resorption and formation by mechanical stimuli. Force exerted on the traction side promotes bone formation. Adenosine triphosphate (ATP) is one of the key mediators that respond to bone cells by mechanical stimuli. However, the effect of tension force (TF)-induced ATP on osteogenesis is inadequately understood. Accordingly, we investigated the effect of TF on ATP production and osteogenesis in MC3T3-E1 cells. Cells were incubated in the presence or absence of P2X7 receptor antagonist A438079, and then stimulated with or without cyclic TF (6% or 18%) for a maximum of 24 h using Flexercell Strain Unit 3000. TF significantly increased extracellular ATP release compared to control. Six percent TF had maximum effect on ATP release compared to 18% TF and control. Six percent TF induced the expression of Runx2 and Osterix. Six percent TF also increased the expression of extracellular matrix proteins (ECMPs), ALP activity, and the calcium content in ECM. A438079 blocked the stimulatory effect of 6% TF on the expression of Runx2, Osterix and ECMPs, ALP activity, and calcium content in ECM. This study indicated that TF-induced extracellular ATP is released in osteoblasts, suggesting that TF-induced ATP promotes osteogenesis by autocrine action through P2X7 receptor in osteoblasts. J. Cell. Biochem. 116: 12–21, 2015. © 2014 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Taro Kariya
- Nihon University Graduate School of Dentistry, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Manaka S, Tanabe N, Kariya T, Naito M, Takayama T, Nagao M, Liu D, Ito K, Maeno M, Suzuki N, Miyazaki M. Low-intensity pulsed ultrasound-induced ATP increases bone formation via the P2X7 receptor in osteoblast-like MC3T3-E1 cells. FEBS Lett 2014; 589:310-8. [PMID: 25542352 DOI: 10.1016/j.febslet.2014.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/03/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
Low-intensity pulsed ultrasound (LIPUS) is used for bone healing in orthopedics and dentistry. It has been shown that LIPUS induces the secretion of extracellular adenosine triphosphate (ATP), a key mediator of osteoblast response to mechanical stimuli. However, the detailed mechanism of LIPUS-induced osteogenesis has been elusive. In this study, we investigated the role of the P2X7 receptor in LIPUS-induced osteogenesis. LIPUS induced the release of extracellular ATP, differentiation of osteoblasts and osteogenesis via the P2X7 receptor, without affecting the activity of alkaline phosphatase (ALPase). These results suggest that LIPUS-induced extracellular ATP promotes bone formation via the osteoblast P2X7 receptor independently of ALPase.
Collapse
Affiliation(s)
| | - Natsuko Tanabe
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan.
| | - Taro Kariya
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Masako Naito
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan; Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan
| | - Tadahiro Takayama
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan; Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Mayu Nagao
- Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Di Liu
- Department of Prosthodontics, School of Dentistry, Shandong University, Jinan, Shandong Province, China
| | | | - Masao Maeno
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan; Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Naoto Suzuki
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Masashi Miyazaki
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan; Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
11
|
Burnstock G, Arnett TR, Orriss IR. Purinergic signalling in the musculoskeletal system. Purinergic Signal 2013; 9:541-72. [PMID: 23943493 PMCID: PMC3889393 DOI: 10.1007/s11302-013-9381-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022] Open
Abstract
It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
12
|
Sims SM, Panupinthu N, Lapierre DM, Pereverzev A, Dixon SJ. Lysophosphatidic acid: a potential mediator of osteoblast-osteoclast signaling in bone. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:109-16. [PMID: 22892679 DOI: 10.1016/j.bbalip.2012.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 08/01/2012] [Indexed: 02/05/2023]
Abstract
Osteoclasts (bone resorbing cells) and osteoblasts (bone forming cells) play essential roles in skeletal development, mineral homeostasis and bone remodeling. The actions of these two cell types are tightly coordinated, and imbalances in bone formation and resorption can result in disease states, such as osteoporosis. Lysophosphatidic acid (LPA) is a potent bioactive phospholipid that influences a number of cellular processes, including proliferation, survival and migration. LPA is also involved in wound healing and pathological conditions, such as tumor metastasis and autoimmune disorders. During trauma, activated platelets are likely a source of LPA in bone. Physiologically, osteoblasts themselves can also produce LPA, which in turn promotes osteogenesis. The capacity for local production of LPA, coupled with the proximity of osteoblasts and osteoclasts, leads to the intriguing possibility that LPA acts as a paracrine mediator of osteoblast-osteoclast signaling. Here we summarize emerging evidence that LPA enhances the differentiation of osteoclast precursors, and regulates the morphology, resorptive activity and survival of mature osteoclasts. These actions arise through stimulation of multiple LPA receptors and intracellular signaling pathways. Moreover, LPA is a potent mitogen implicated in promoting the metastasis of breast and ovarian tumors to bone. Thus, LPA released from osteoblasts is potentially an important autocrine and paracrine mediator - physiologically regulating skeletal development and remodeling, while contributing pathologically to metastatic bone disease. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- Stephen M Sims
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | |
Collapse
|
13
|
Grol MW, Zelner I, Dixon SJ. P2X₇-mediated calcium influx triggers a sustained, PI3K-dependent increase in metabolic acid production by osteoblast-like cells. Am J Physiol Endocrinol Metab 2012; 302:E561-75. [PMID: 22185840 DOI: 10.1152/ajpendo.00209.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The P2X₇ receptor is an ATP-gated cation channel expressed by a number of cell types, including osteoblasts. Genetically modified mice with loss of P2X₇ function exhibit altered bone formation. Moreover, activation of P2X₇ in vitro stimulates osteoblast differentiation and matrix mineralization, although the underlying mechanisms remain unclear. Because osteogenesis is associated with enhanced cellular metabolism, our goal was to characterize the effects of nucleotides on metabolic acid production (proton efflux) by osteoblasts. The P2X₇ agonist 2',3'-O-(4-benzoylbenzoyl)ATP (BzATP; 300 μM) induced dynamic membrane blebbing in MC3T3-E1 osteoblast-like cells (consistent with activation of P2X₇ receptors) but did not induce cell death. Using a Cytosensor microphysiometer, we found that 9-min exposure to BzATP (300 μM) caused a dramatic increase in proton efflux from MC3T3-E1 cells (∼2-fold), which was sustained for at least 1 h. In contrast, ATP or UTP (100 μM), which activate P2 receptors other than P2X₇, failed to elicit a sustained increase in proton efflux. Specific P2X₇ receptor antagonists A 438079 and A 740003 inhibited the sustained phase of the BzATP-induced response. Extracellular Ca²⁺ was required during P2X₇ receptor stimulation for initiation of sustained proton efflux, and removal of extracellular glucose within the sustained phase abolished the elevation elicited by BzATP. In addition, inhibition of phosphatidylinositol 3-kinase blocked the maintenance but not initiation of the sustained phase. Taken together, we conclude that brief activation of P2X₇ receptors on osteoblast-like cells triggers a dramatic, Ca²⁺-dependent stimulation of metabolic acid production. This increase in proton efflux is sustained and dependent on glucose and phosphatidylinositol 3-kinase activity.
Collapse
Affiliation(s)
- Matthew W Grol
- Dept. of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Univ. of Western Ontario, London, ON, Canada
| | | | | |
Collapse
|
14
|
Genetic Background Strongly Influences the Bone Phenotype of P2X7 Receptor Knockout Mice. J Osteoporos 2012; 2012:391097. [PMID: 22934234 PMCID: PMC3425798 DOI: 10.1155/2012/391097] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/28/2012] [Accepted: 07/02/2012] [Indexed: 11/25/2022] Open
Abstract
The purinergic P2X7 receptor is expressed by bone cells and has been shown to be important in both bone formation and bone resorption. In this study we investigated the importance of the genetic background of the mouse strains on which the P2X7 knock-out models were based by comparing bone status of a new BALB/cJ P2X7(-/-) strain with a previous one based on the C57BL/6 strain. Female four-month-old mice from both strains were DXA scanned on a PIXImus densitometer; femurs were collected for bone strength measurements and serum for bone marker analysis. Bone-related parameters that were altered only slightly in the B6 P2X7(-/-) became significantly altered in the BALB/cJ P2X7(-/-) when compared to their wild type littermates. The BALB/cJ P2X7(-/-) showed reduced levels of serum C-telopeptide fragment (s-CTX), higher bone mineral density, and increased bone strength compared to the wild type littermates. In conclusion, we have shown that the genetic background of P2X7(-/-) mice strongly influences the bone phenotype of the P2X7(-/-) mice and that P2X7 has a more significant regulatory role in bone remodeling than found in previous studies.
Collapse
|
15
|
Association between P2X7 Receptor Polymorphisms and Bone Status in Mice. J Osteoporos 2012; 2012:637986. [PMID: 22919543 PMCID: PMC3420134 DOI: 10.1155/2012/637986] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 05/28/2012] [Indexed: 11/17/2022] Open
Abstract
Macrophages from mouse strains with the naturally occurring mutation P451L in the purinergic receptor P2X7 have impaired responses to agonists (1). Because P2X7 receptors are expressed in bone cells and are implicated in bone physiology, we asked whether strains with the P451L mutation have a different bone phenotype. By sequencing the most common strains of inbred mice, we found that only a few strains (BALB, NOD, NZW, and 129) were harboring the wild allelic version of the mutation (P451) in the gene for the purinergic receptor P2X7. The strains were compared by means of dual energy X-ray absorptiometry (DXA), bone markers, and three-point bending. Cultured osteoclasts were used in the ATP-induced pore formation assay. We found that strains with the P451 allele (BALB/cJ and 129X1/SvJ) had stronger femurs and higher levels of the bone resorption marker C-telopeptide collagen (CTX) compared to C57Bl/6 (B6) and DBA/2J mice. In strains with the 451L allele, pore-formation activity in osteoclasts in vitro was lower after application of ATP. In conclusion, two strains with the 451L allele of the naturally occurring mutation P451L, have weaker bones and lower levels of CTX, suggesting lower resorption levels in these animals, which could be related to the decreased ATP-induced pore formation observed in vitro. The importance of these findings for the interpretation of the earlier reported effects of P2X7 in mice is discussed, along with strategies in developing a murine model for testing the therapeutic effects of P2X7 agonists and antagonists upon postmenopausal osteoporosis.
Collapse
|
16
|
Xue L, Wang Y, Liu L, Zhao L, Han T, Zhang Q, Qin L. A HNMR-based metabonomics study of postmenopausal osteoporosis and intervention effects of Er-Xian Decoction in ovariectomized rats. Int J Mol Sci 2011; 12:7635-51. [PMID: 22174622 PMCID: PMC3233428 DOI: 10.3390/ijms12117635] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 10/29/2011] [Accepted: 10/31/2011] [Indexed: 11/16/2022] Open
Abstract
A metabonomics method using 1H nuclear magnetic resonance spectroscopy (1HNMR) was applied to obtain a systematic view of the development and progression of postmenopausal osteoporosis. Using partial least squares discriminant analysis (PLS-DA), 26 and 34 characteristic resonances were found respectively in urine and plasma of ovariectomized rats (Variable importance, VIP value ≥1.0), and the significant altered metabolites identified in the plasma and urine were 10 and 9, respectively. Changes in these metabolites were related to the pathways of lipid, energy and amino acid metabolism, some of which involved the oxidative system. The described method was also used to analyze the therapeutic effects of Er-Xian Decoction (EXD), a traditional Chinese medicine widely used in the clinical treatment of osteoporosis in China. The results showed that EXD administration could provide satisfactory effects on osteoporosis through partially regulating the perturbed pathways of lipid, energy and amino acid metabolism and improving the anti-oxidative ability.
Collapse
Affiliation(s)
- Liming Xue
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China; E-Mails: (L.X.); (L.L.); (L.Z.); (T.H.)
| | - Yin Wang
- Department of Pharmaceutics, No. 455 Hospital of CPLA, Shanghai 200052, China; E-Mail:
| | - Lei Liu
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China; E-Mails: (L.X.); (L.L.); (L.Z.); (T.H.)
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Lu Zhao
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China; E-Mails: (L.X.); (L.L.); (L.Z.); (T.H.)
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Ting Han
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China; E-Mails: (L.X.); (L.L.); (L.Z.); (T.H.)
| | - Qiaoyan Zhang
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China; E-Mails: (L.X.); (L.L.); (L.Z.); (T.H.)
- Authors to whom correspondence should be addressed; E-Mails: (Q.Z.); (L.Q.); Tel.: +86-21-8187-1303 (Q.Z.); Fax: +86-21-8187-1305 (Q.Z.)
| | - Luping Qin
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China; E-Mails: (L.X.); (L.L.); (L.Z.); (T.H.)
- Authors to whom correspondence should be addressed; E-Mails: (Q.Z.); (L.Q.); Tel.: +86-21-8187-1303 (Q.Z.); Fax: +86-21-8187-1305 (Q.Z.)
| |
Collapse
|
17
|
Abstract
Communication between osteoblasts, osteoclasts, and osteocytes is integral to their ability to build and maintain the skeletal system and respond to physical signals. Various physiological mechanisms, including nerve communication, hormones, and cytokines, play an important role in this process. More recently, the important role of direct, cell-cell communication via gap junctions has been established. In this review, we demonstrate the integral role of gap junctional intercellular communication (GJIC) in skeletal physiology and bone cell mechanosensing.
Collapse
|
18
|
Expression, signaling, and function of P2X7 receptors in bone. Purinergic Signal 2009; 5:205-21. [PMID: 19224395 DOI: 10.1007/s11302-009-9139-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 09/16/2008] [Indexed: 01/01/2023] Open
Abstract
Nucleotides released from cells in response to mechanical stimulation or injury may serve as paracrine regulators of bone cell function. Extracellular nucleotides bind to multiple subtypes of P2 receptors on osteoblasts (the cells responsible for bone formation) and osteoclasts (cells with the unique ability to resorb mineralized tissues). Both cell lineages express the P2X7 receptor subtype. The skeletal phenotype of mice with targeted disruption of P2rx7 points to interesting roles for this receptor in the regulation of bone formation and resorption, as well as the response of the skeleton to mechanical stimulation. This paper reviews recent work on the expression of P2X7 receptors in bone, their associated signal transduction mechanisms and roles in regulating bone formation and resorption. Areas for future research in this field are also discussed.
Collapse
|
19
|
Panupinthu N, Rogers JT, Zhao L, Solano-Flores LP, Possmayer F, Sims SM, Dixon SJ. P2X7 receptors on osteoblasts couple to production of lysophosphatidic acid: a signaling axis promoting osteogenesis. ACTA ACUST UNITED AC 2008; 181:859-71. [PMID: 18519738 PMCID: PMC2396816 DOI: 10.1083/jcb.200708037] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nucleotides are released from cells in response to mechanical stimuli and signal in an autocrine/paracrine manner through cell surface P2 receptors. P2rx7−/− mice exhibit diminished appositional growth of long bones and impaired responses to mechanical loading. We find that calvarial sutures are wider in P2rx7−/− mice. Functional P2X7 receptors are expressed on osteoblasts in situ and in vitro. Activation of P2X7 receptors by exogenous nucleotides stimulates expression of osteoblast markers and enhances mineralization in cultures of rat calvarial cells. Moreover, osteogenesis is suppressed in calvarial cell cultures from P2rx7−/− mice compared with the wild type. P2X7 receptors couple to production of the potent lipid mediators lysophosphatidic acid (LPA) and prostaglandin E2. Either an LPA receptor antagonist or cyclooxygenase (COX) inhibitors abolish the stimulatory effects of P2X7 receptor activation on osteogenesis. We conclude that P2X7 receptors enhance osteoblast function through a cell-autonomous mechanism. Furthermore, a novel signaling axis links P2X7 receptors to production of LPA and COX metabolites, which in turn stimulate osteogenesis.
Collapse
Affiliation(s)
- Nattapon Panupinthu
- Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, London, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Kudirka JC, Panupinthu N, Tesseyman MA, Dixon SJ, Bernier SM. P2Y nucleotide receptor signaling through MAPK/ERK is regulated by extracellular matrix: involvement of beta3 integrins. J Cell Physiol 2007; 213:54-64. [PMID: 17620283 DOI: 10.1002/jcp.21087] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Extracellular matrix influences cell behavior through receptors such as integrins and through transmission of mechanical forces. Nucleotides are released in response to mechanical stimuli and bind to P2 nucleotide receptors. As chondrocytes are subjected to frequent mechanical stimulation within a rich extracellular matrix, they are an excellent model for studying integration of signals induced by matrix and nucleotides. We investigated signaling of G protein-coupled P2Y receptors to MAPK/ERK and how this is influenced by matrix. Rat articular chondrocytes expressed transcripts for P2Y1, P2Y2, P2Y4, and P2Y6 receptors and responded to extracellular nucleotides by transient elevation of cytosolic calcium and MAPK/ERK phosphorylation. ERK1/2 activation was suppressed by the protein kinase C (PKC) inhibitors bisindolylmaleimide I and rottlerin, and by the phospholipase D inhibitor 1-butanol. Thus, nucleotides stimulate P2Y receptors to activate ERK1/2 through a mechanism dependent on PKC and phospholipase D. We next examined the involvement of integrins. Both an RGD-containing pentapeptide and a beta3 integrin blocking antibody, but not a beta1 integrin blocking antibody, abolished nucleotide-induced ERK1/2 phosphorylation. Moreover, chondrocytes adhering to fibronectin (which binds to beta1 and beta3 containing integrins in an RGD-dependent manner) displayed prolonged ERK1/2 signaling compared to cells grown on type I or II collagen (which bind to beta1-containing integrins in an RGD-independent manner). In conclusion, P2Y receptor signaling through ERK1/2 is gated selectively by matrix proteins. Thus, nucleotides released in response to mechanical stimulation will have differing effects on cell function due to changes in the composition of the extracellular matrix during development and disease.
Collapse
Affiliation(s)
- Julie C Kudirka
- CIHR Group in Skeletal Development and Remodeling, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | | | | | | | | |
Collapse
|
21
|
D'Andrea P, Romanello M, Bicego M, Steinberg TH, Tell G. H(2)O(2) modulates purinergic-dependent calcium signalling in osteoblast-like cells. Cell Calcium 2007; 43:457-68. [PMID: 17825906 DOI: 10.1016/j.ceca.2007.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/02/2007] [Accepted: 07/28/2007] [Indexed: 10/22/2022]
Abstract
Reactive oxygen species (ROS) have long been considered as toxic by-products of aerobic metabolism and appear involved in the pathogenesis of degenerative diseases. The physiological role of ROS as second messengers in cell signal transduction is, on the other hand, increasingly recognized. Here we investigated the effects of H(2)O(2) and extracellular nucleotides on calcium signalling in four osteoblastic cell lines. In the highly differentiated HOBIT cells, sensitive to nanomolar concentrations of ADP and UTP, millimolar H(2)O(2) induced oscillatory increases of the cytosolic calcium concentration followed by a steady and sustained calcium increase. Long lasting rhythmic calcium activity was induced by micromolar H(2)O(2) doses. The H(2)O(2)-induced calcium signals, due to both release from intracellular stores and influx from the extracellular milieu, were totally prevented by incubating the cells with the P2 receptor antagonist suramin or with the ATP/ADP hydrolyzing enzyme apyrase. In the osteosarcoma SaOS-2 cells micromolar H(2)O(2) failed to evoke calcium signals and millimolar H(2)O(2) induced a slowly developing calcium influx which was unaffected by suramin and apyrase. These cells responded to micromolar concentrations of ATP and ADP, but were largely insensitive to UTP. ROS 17/2.8 osteosarcoma cells were totally insensitive to ATP, ADP and UTP in keeping with the evidence that these cells lack functional purinergic receptors. In these cells, H(2)O(2) up to 1mM did not increase the cytosolic calcium concentration. In ROS/P2Y(2) cells, stably expressing the P2Y(2) receptor, spontaneous calcium oscillations were observed in 38% of the population and nanomolar concentration of extracellular ATP or UTP activated oscillations in quiescent cells. Spontaneous calcium signals were inhibited by suramin and apyrase. In these cells H(2)O(2) induced oscillatory calcium activity that was blocked by suramin and apyrase. The sensitivity of ROS/P2Y(2) cells to UTP decreased significantly in the presence of DTT, which was effective also in inhibiting spontaneous calcium oscillations. On the other hand, the membrane-impermeant thiol oxidant DTNB induced calcium oscillations that were inhibited by incubating the cells with suramin or apyrase. Since peroxide did not increase extracellular ATP in these cell lines, we propose that, in osteoblasts, mild oxidative conditions could activate purinergic signalling through the sensitization of P2Y(2) receptor.
Collapse
Affiliation(s)
- Paola D'Andrea
- Dipartimento di Biochimica, Biofisica e Chimica delle Macromolecole, Università degli Studi di Trieste, Trieste, Italy.
| | | | | | | | | |
Collapse
|
22
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
23
|
Armstrong S, Korcok J, Sims SM, Dixon SJ. Activation of transcription factors by extracellular nucleotides in immune and related cell types. Purinergic Signal 2007; 3:59-69. [PMID: 18404419 PMCID: PMC2096760 DOI: 10.1007/s11302-006-9037-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 03/13/2006] [Indexed: 01/18/2023] Open
Abstract
Extracellular nucleotides, acting through P2 receptors, can regulate gene expression via intracellular signaling pathways that control the activity of transcription factors. Relatively little is known about the activation of transcription factors by nucleotides in immune cells. The NF-kappaB family of transcription factors is critical for many immune and inflammatory responses. Nucleotides released from damaged or stressed cells can act alone through certain P2 receptors to alter NF-kappaB activity or they can enhance responses induced by pathogen-associated molecules such as LPS. Nucleotides have also been shown to regulate the activity of other transcription factors (AP-1, NFAT, CREB and STAT) in immune and related cell types. Here, we provide an overview of transcription factors shown to be activated by nucleotides in immune cells, and describe what is known about their mechanisms of activation and potential functions. Furthermore, we propose areas for future work in this new and expanding field.
Collapse
Affiliation(s)
- Souzan Armstrong
- CIHR Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON Canada N6A 5C1
| | - Jasminka Korcok
- CIHR Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON Canada N6A 5C1
| | - Stephen M. Sims
- CIHR Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON Canada N6A 5C1
| | - S. Jeffrey Dixon
- CIHR Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON Canada N6A 5C1
| |
Collapse
|
24
|
Binderman I, Bahar H, Jacob-Hirsch J, Zeligson S, Amariglio N, Rechavi G, Shoham S, Yaffe A. P2X4 is up-regulated in gingival fibroblasts after periodontal surgery. J Dent Res 2007; 86:181-5. [PMID: 17251520 DOI: 10.1177/154405910708600214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Several studies have shown that surgical detachment of marginal gingiva close to the cervical cementum of molar teeth in a rat mandible is a distinct stimulus for alveolar bone resorption. Recently, we found that P2X4, an ATP-receptor, is significantly up-regulated in marginal gingival cells soon after surgery. We hypothesized that local release of ATP signaling through P2X4 elicits activation of osteoclasts on the alveolar bone surface. In this study, we identified intense immunoreactivity of gingival fibroblasts to P2X4-specific antibodies and a 6.4-fold increase in expression by real-time RT-PCR. Moreover, a single local application, at the time of surgery, of Apyrase (which degrades ATP) or Coomassie Brilliant Blue (an antagonist of purinoreceptors) significantly reduced alveolar bone loss. We propose that ATP flowing from cells after surgery can directly activate P2X4 receptors in the sensor cells of marginal gingiva through Ca(2+) signaling, or by direct activation of osteoclasts on the bone surface.
Collapse
Affiliation(s)
- I Binderman
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Panupinthu N, Zhao L, Possmayer F, Ke HZ, Sims SM, Dixon SJ. P2X7 nucleotide receptors mediate blebbing in osteoblasts through a pathway involving lysophosphatidic acid. J Biol Chem 2006; 282:3403-12. [PMID: 17135244 DOI: 10.1074/jbc.m605620200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular nucleotides, released in response to mechanical or inflammatory stimuli, signal through P2 receptors in many cell types, including osteoblasts. P2X7 receptors are ATP-gated cation channels that can induce formation of large membrane pores. Disruption of the gene encoding the P2X7 receptor leads to decreased periosteal bone formation and insensitivity of the skeleton to mechanical stimulation. Our purpose was to investigate signaling pathways coupled to P2X7 activation in osteoblasts. Live cell imaging showed that ATP or 2 ',3 '-O-(4-benzoylbenzoyl)-ATP (BzATP), but not UTP, UDP, or 2-methylthio-ADP, induced dynamic membrane blebbing in calvarial osteoblasts. Blebbing was observed in calvarial cells from wildtype but not P2X7 knock-out mice. P2X7 receptors coupled to activation of phospholipase D and A2, inhibition of which suppressed BzATP-induced blebbing. Activation of these phospholipases leads to production of lysophosphatidic acid (LPA). LPA caused dynamic blebbing in osteoblasts from both wild-type and P2X7 knock-out mice, similar to that induced by BzATP in wildtype cells. However, LPA-induced blebbing was more rapid in onset and was not affected by inhibition of phospholipase D or A2. Blockade or desensitization of LPA receptors suppressed blebbing in response to LPA and BzATP, without affecting P2X7-stimulated pore formation. Thus, LPA functions downstream of P2X7 receptors to induce membrane blebbing. Furthermore, inhibition of Rho-associated kinase abolished blebbing induced by both BzATP and LPA. In summary, we propose a novel signaling axis that links P2X7 receptors through phospholipases to production of LPA and activation of Rho-associated kinase. This pathway may contribute to P2X7-stimulated osteogenesis during skeletal development and mechanotransduction.
Collapse
Affiliation(s)
- Nattapon Panupinthu
- Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Qi J, Chi L, Faber J, Koller B, Banes AJ. ATP reduces gel compaction in osteoblast-populated collagen gels. J Appl Physiol (1985) 2006; 102:1152-60. [PMID: 17122380 DOI: 10.1152/japplphysiol.00535.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bone remodeling is a localized process, but regulated by systemic signals such as hormones, cytokines, and mechanical loading. The mechanism by which bone cells convert these systemic signals into local signals is not completely understood. It is broadly accepted that the "prestress" in cytoskeleton of cells affects the magnitude of cellular responses to mechanical stimuli. Prestress derives from stiff cytoskeletal proteins and their connections within the cell and from cell contractility upon attaching to matrix. In an in vitro model of three-dimensional gel compaction, the relative cellular prestress levels in the same matrix environment were determined by matrix compaction rate: a greater compaction rate resulted in a higher level of prestress. In the present study, the effects of ATP on the prestress of osteoblasts were studied using mouse MC3T3-E1 cells grown in three-dimensional bioartificial tissues (BATs). ATP (> or =100 microM) reduced the compaction rate of BATs in a dose-dependent manner. ADP, 2'-(or 3')-O-(4-benzoylbenzoyl) ATP, and UTP, but not alpha,beta-methylene ATP, also reduced the compaction rate but to a lesser extent. Pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid tetrasodium did not block the effect of ATP on BAT compaction rate. These results indicate that both P2X and P2Y receptors are involved in ATP-induced reduction of BAT compaction rate. Steady fluid flow and RT-PCR results showed that ATP reduced cell attachment on type I collagen by downregulating the expression of integrin alpha(1). These results suggest a potential role for P2 receptors in matrix remodeling and repair and as a potential drug target in treatment of bone diseases.
Collapse
Affiliation(s)
- Jie Qi
- Flexcell International Corp., Hillsborough, NC 27278, USA
| | | | | | | | | |
Collapse
|
27
|
Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 2006; 58:281-341. [PMID: 16968944 PMCID: PMC3471216 DOI: 10.1124/pr.58.3.3] [Citation(s) in RCA: 987] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There have been many advances in our knowledge about different aspects of P2Y receptor signaling since the last review published by our International Union of Pharmacology subcommittee. More receptor subtypes have been cloned and characterized and most orphan receptors de-orphanized, so that it is now possible to provide a basis for a future subdivision of P2Y receptor subtypes. More is known about the functional elements of the P2Y receptor molecules and the signaling pathways involved, including interactions with ion channels. There have been substantial developments in the design of selective agonists and antagonists to some of the P2Y receptor subtypes. There are new findings about the mechanisms underlying nucleotide release and ectoenzymatic nucleotide breakdown. Interactions between P2Y receptors and receptors to other signaling molecules have been explored as well as P2Y-mediated control of gene transcription. The distribution and roles of P2Y receptor subtypes in many different cell types are better understood and P2Y receptor-related compounds are being explored for therapeutic purposes. These and other advances are discussed in the present review.
Collapse
Affiliation(s)
- Maria P Abbracchio
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Roy AA, Nunn C, Ming H, Zou MX, Penninger J, Kirshenbaum LA, Dixon SJ, Chidiac P. Up-regulation of endogenous RGS2 mediates cross-desensitization between Gs and Gq signaling in osteoblasts. J Biol Chem 2006; 281:32684-93. [PMID: 16950788 DOI: 10.1074/jbc.m604416200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins limit G protein signals. In this study, we investigated the role of RGS2 in the control of G protein signaling cascades in osteoblasts, the cells responsible for bone formation. Expression of RGS2 was up-regulated in primary cultures of mouse calvarial osteoblasts by parathyroid hormone-related peptide (PTHrP)-(1-34), which stimulates G(s) signaling. RGS2 was also up-regulated by extracellular ATP, which selectively activates G(q), as well as by forskolin and phorbol myristate acetate, which activate targets downstream of G(s) and G(q), respectively. To assess the role of endogenous RGS2, we characterized G(s) and G(q) signaling in osteoblasts derived from wild type and rgs2(-/-) mice. Under control conditions, nucleotide-stimulated calcium release, endothelin-stimulated accumulation of inositol phosphates, and PTHrP-stimulated cAMP accumulation were equivalent in osteoblasts isolated from wild type and rgs2(-/-) mice. Thus, basal levels of endogenous RGS2 do not appear to regulate G(s) or G(q) signaling in osteoblasts. Interestingly, forskolin treatment of wild type but not rgs2(-/-) osteoblasts suppressed both endothelin-stimulated accumulation of inositol phosphates and nucleotide-stimulated calcium release, indicating that up-regulation of RGS2 by G(s) signaling desensitizes G(q) signals. Furthermore, pretreatment with ATP suppressed PTHrP-dependent cAMP accumulation in wild type but not rgs2(-/-) osteoblasts, implying that up-regulation of RGS2 by G(q) signaling desensitizes G(s) signals. Our findings demonstrate that endogenously expressed RGS2 can limit G(s) signaling. Moreover, up-regulation of RGS2 contributes to cross-desensitization of G(s)- and G(q)-coupled signals.
Collapse
Affiliation(s)
- Anju Anne Roy
- Department of Physiology and Pharmacology, Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, the University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Invited Lectures : Overviews Purinergic signalling: past, present and future. Purinergic Signal 2006; 2:1-324. [PMID: 18404494 PMCID: PMC2096525 DOI: 10.1007/s11302-006-9006-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2006] [Indexed: 12/11/2022] Open
|
30
|
Abstract
The concept of a purinergic signaling system, using purine nucleotides and nucleosides as extracellular messengers, was first proposed over 30 years ago. After a brief introduction and update of purinoceptor subtypes, this article focuses on the diverse pathophysiological roles of purines and pyrimidines as signaling molecules. These molecules mediate short-term (acute) signaling functions in neurotransmission, mechanosensory transduction, secretion and vasodilatation, and long-term (chronic) signaling functions in cell proliferation, differentiation, and death involved in development and regeneration. Plasticity of purinoceptor expression in pathological conditions is frequently observed, including an increase in the purinergic component of autonomic cotransmission. Recent advances in therapies using purinergic-related drugs in a wide range of pathological conditions will be addressed with speculation on future developments in the field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London NW3 2PF, UK.
| |
Collapse
|
31
|
|
32
|
Romanello M, Codognotto A, Bicego M, Pines A, Tell G, D'Andrea P. Autocrine/paracrine stimulation of purinergic receptors in osteoblasts: contribution of vesicular ATP release. Biochem Biophys Res Commun 2005; 331:1429-38. [PMID: 15883034 DOI: 10.1016/j.bbrc.2005.03.246] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Indexed: 11/26/2022]
Abstract
Extracellular nucleotides such as ATP and UTP are released in response to mechanical stimulation in different cell systems. It is becoming increasingly evident that ATP release plays a role in autocrine and paracrine stimulation of osteoblasts. Mechanical stimulation, as shear stress, membrane stretch or hypo-osmotic swelling, as well as oscillatory fluid flow, stimulates ATP release from different osteoblastic cell lines. Human osteoblast-like initial transfectant (HOBIT) cells release ATP in response to mechanical stimulation. In the present study, we show that HOBIT cells are activated by nanomolar levels of extracellular ATP, concentrations that can be detected under resting conditions and increase following hypotonic shock. Cell activation by hypotonic medium induced intracellular Ca2+ oscillations, and Egr-1 synthesis and DNA-binding activity. Quinacrine staining of living, resting cells revealed a granular fluorescence, typical of ATP-storing vesicles. Monensin prevented quinacrine staining and considerably inhibited hypotonic-induced ATP release. Finally, elevated levels of cytosolic Ca2+ activated massive ATP release and a dose-dependent loss of quinacrine granules. The contribution of a vesicular mechanism for ATP release is proposed to sustain paracrine osteoblast activation.
Collapse
Affiliation(s)
- Milena Romanello
- Department of Biochemistry, University of Trieste, via L. Giorgeri 1, 34100 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Korcok J, Raimundo LN, Du X, Sims SM, Dixon SJ. P2Y6 nucleotide receptors activate NF-kappaB and increase survival of osteoclasts. J Biol Chem 2005; 280:16909-15. [PMID: 15722352 DOI: 10.1074/jbc.m410764200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleotides, released from cells during inflammation and by mechanical stimulation, act through the P2 family of nucleotide receptors. Previous studies have demonstrated the expression of P2Y1 and P2Y2 receptors in osteoclasts. The aim of this study was to determine whether osteoclast P2Y receptors signal through NF-kappaB, a key transcription factor regulating osteoclastogenesis. Immunofluorescence was used to detect the p65 subunit of NF-kappaB, which upon activation translocates from the cytosol to nuclei. Low levels of NF-kappaB activation were observed in untreated rabbit osteoclasts and in those exposed to 2-methylthio ADP (P2Y1 agonist) or ATP or UTP (P2Y2 agonists). In contrast, UDP or INS48823 (P2Y6 agonists) induced a significant increase in the number of cells exhibiting NF-kappaB activation, a process sensitive to the proteasome inhibitor lactacystin. In osteoclasts purified by micromanipulation, reverse transcription-PCR revealed the presence of P2Y1, P2Y2, and P2Y6 receptor transcripts, and application of agonists for these receptors induced the transient rise of cytosolic calcium. Treatment of rat osteoclasts with UDP or INS48823, but not 2-methylthio ADP or UTP, increased osteoclast survival. Osteoprotegerin (a decoy receptor for RANK ligand) did not significantly alter the effects of UDP on NF-kappaB localization or osteoclast survival, consistent with a direct action. Moreover, SN50 (cell-permeable peptide inhibitor of NF-kappaB) suppressed the enhancement of cell survival induced by UDP and INS48823. Our findings demonstrate the presence of functional P2Y6 receptors in osteoclasts. Thus, nucleotides, following their release at sites of inflammation and mechanical stimulation, can act through P2Y6 receptors to initiate NF-kappaB signaling and enhance osteoclast survival.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Adenosine Diphosphate/metabolism
- Adenosine Triphosphate/metabolism
- Alkaline Phosphatase/metabolism
- Animals
- Bone and Bones/metabolism
- Bone and Bones/pathology
- Calcium/metabolism
- Cell Nucleus/metabolism
- Cell Survival
- Cells, Cultured
- Cytosol/metabolism
- DNA Primers/pharmacology
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Glycoproteins/metabolism
- Inflammation
- Ligands
- Microscopy, Fluorescence
- NF-kappa B/metabolism
- Osteoclasts/cytology
- Osteoclasts/drug effects
- Osteoclasts/metabolism
- Osteoprotegerin
- Proteasome Inhibitors
- Purinergic P2 Receptor Agonists
- Rabbits
- Rats
- Rats, Wistar
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2Y1
- Receptors, Purinergic P2Y2
- Receptors, Tumor Necrosis Factor
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Time Factors
- Transcription Factor RelA
- Uridine Diphosphate/metabolism
- Uridine Triphosphate/analogs & derivatives
- Uridine Triphosphate/metabolism
- Uridine Triphosphate/pharmacology
Collapse
Affiliation(s)
- Jasminka Korcok
- Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology and Division of Oral Biology, Faculty of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | | | | | | | | |
Collapse
|
34
|
Regmi A, Fuson T, Yang X, Kays J, Moxham C, Zartler E, Chandrashekhar S, Galvin RJS. Suramin interacts with RANK and inhibits RANKL-induced osteoclast differentiation. Bone 2005; 36:284-91. [PMID: 15780954 DOI: 10.1016/j.bone.2004.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 09/13/2004] [Accepted: 09/17/2004] [Indexed: 10/25/2022]
Abstract
Suramin is a naphthalene trisulfonic acid derivative that inhibits osteoclast differentiation and bone resorption in vitro and in vivo; however, the mechanisms underlying this activity have not been studied. Receptor activator of NF-kB (RANK) ligand (RANKL) is a key regulator of osteoclast differentiation and function and this study evaluated the ability of suramin, which has been shown to disrupt protein-protein interactions, to interfere with RANKL functional activity and binding to RANK. Suramin inhibited osteoclastic bone resorption in a calvarial model and inhibited osteoclast differentiation in RANKL-stimulated murine spleen cells and RAW264.7 cells. RANKL-induced second messenger signaling (AKT and p38 MAP Kinase phosphorylation) was completely blocked by 100 microM suramin. The ability of RANKL to bind to recombinant human RANK-Fc (rhRANK-Fc) was reduced 50% by suramin in an in vitro binding assay. Surface plasmon resonance technology and nuclear magnetic resonance (NMR) were used to evaluate the ability of suramin to bind to rhRANK-Fc. Suramin was found to selectively interact with immobilized rhRANK-Fc chimera in a concentration-dependent manner by Biacore 3000 analysis. Similar results were obtained using saturation transfer difference NMR spectroscopy to demonstrate that suramin binds to rhRANK-Fc, but not IgG1Fc or sRANKL. In summary, these findings demonstrate that suramin inhibits sRANKL-induced osteoclast differentiation and suggest that these effects are mediated by suramin binding to RANK and blocking the ability of sRANKL to induce second messenger signaling.
Collapse
Affiliation(s)
- Ajit Regmi
- Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Genetically modified mouse models provide an important tool for understanding of the roles of specific gene in skeletal growth, development, and aging. Appropriate study design is essential for characterization of skeletal phenotype of these mice. It is important to characterize the bone status of the different phases of skeletal development including the early rapid growth, attainment of peak bone mass, and age-related bone loss phases. In C57BL/6 strain mice, cancellous and cortical bone mass rapidly increases with age before 3 months of age, and reaches the peak cancellous bone mass at approximately 6-8 months of age, while cortical bone mass continuously increases until 12 months of age. Thereafter, age-related decrease in bone mass occurs. According to these observations, at least three different age groups need to be evaluated for bone status to cover the different phases of the life span: 1-3 months of age for rapid growth, 6-9 months for peak bone mass, and >12 months for aged phases. Furthermore, bone resorption and formation activities on all bone surfaces (periosteal, endocortical, intracortical, and cancellous) need to be evaluated. In this article, we briefly summarize our findings in the estrogen receptor-beta knockout (BERKO) and the P2X7 receptor (an ATP-gated ion channel) knockout mice. In BERKO female mice, bone status at 6, 13, and 21 months of ages was evaluated as compared with the wild-type littermate controls. We found that estrogen receptor-beta plays an inhibitory role in periosteal bone formation and longitudinal and radial growth during the growth period, whereas it plays a role in stimulation of bone resorption, bone turnover, and bone loss on cancellous and endocortical bone surfaces during the aging process. We also found that ER-beta knockout improves the survival rate between 6 and 21 months of age. In P2X7R knockout mice, bone status at 2, 5, 9, and 15 months of age was evaluated for both sexes as compared with their wild-type littermate controls. We found that P2X7R plays a role in stimulating periosteal and cancellous bone formation and inhibiting cancellous bone resorption during the growth period.
Collapse
Affiliation(s)
- Hua Zhu Ke
- Osteoporosis Research, Mail Stop 8118W-216, Pfizer Global Research and Development, Groton Laboratories, Groton, CT 06340, USA.
| |
Collapse
|
36
|
Korcok J, Raimundo LN, Ke HZ, Sims SM, Dixon SJ. Extracellular nucleotides act through P2X7 receptors to activate NF-kappaB in osteoclasts. J Bone Miner Res 2004; 19:642-51. [PMID: 15005852 DOI: 10.1359/jbmr.040108] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 11/09/2003] [Accepted: 11/20/2003] [Indexed: 11/18/2022]
Abstract
UNLABELLED Nucleotides, released in response to mechanical and other stimuli, act on P2 receptors in osteoclasts and other cell types. In vitro studies of osteoclasts from rabbits and P2X7 receptor-deficient mice revealed that P2X7 receptors couple to activation of the key transcription factor NF-kappaB. INTRODUCTION Osteoclasts express functional P2X4 and P2X7 receptors, which are ATP-gated cation channels. Knockout (KO) of the P2X7 receptor has revealed its role in regulating bone formation and resorption, but the underlying signals are not known. The transcription factor NF-kappaB plays a key role in the response of osteoclasts to RANKL and other cytokines. The aim of this study was to examine whether P2X receptors on osteoclasts signal through NF-kappaB. MATERIALS AND METHODS Osteoclasts were isolated from neonatal rabbits or wildtype (WT) and P2X7 receptor KO mice. Immunofluorescence was used to detect the p65 subunit of NF-kappaB, which, on activation, translocates from the cytosol to the nuclei. The concentration of cytosolic free Ca2+ ([Ca2+]i) was monitored in single osteoclasts loaded with fura-2. RESULTS In control samples, few rabbit osteoclasts demonstrated nuclear localization of NF-kappaB. Benzoyl-benzoyl-ATP (BzATP, a P2X7 agonist, 300 microM) induced nuclear translocation of NF-kappaB after 3 h in approximately 45% of rabbit osteoclasts. In contrast, a low concentration of ATP (10 microM, sufficient to activate P2X4 and P2Y2, but not P2X7 receptors) did not induce nuclear translocation of NF-kappaB. Because BzATP activates multiple P2 receptors, we examined responses of osteoclasts derived from WT and P2X7 receptor KO mice. Treatment with BzATP for 30 minutes increased nuclear localization of NF-kappaB in osteoclasts from WT but not KO mice, showing involvement of P2X7 receptors. Both ATP (10 microM) and BzATP (300 microM) caused transient elevation of [Ca2+]i, indicating that rise of calcium alone is not sufficient to activate NF-kappaB. Pretreatment of rabbit osteoclasts with osteoprotegerin inhibited translocation of NF-kappaB induced by RANKL but not by BzATP, establishing that the effects of BzATP are independent of RANKL signaling. CONCLUSION These findings show that P2X7 nucleotide receptors couple to activation of NF-kappaB in osteoclasts. Thus, nucleotides, released at sites of inflammation or in response to mechanical stimuli, may act through NF-kappaB to regulate osteoclast formation and activity.
Collapse
Affiliation(s)
- Jasminka Korcok
- CIHR Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology and Division of Oral Biology, Faculty of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
37
|
Hoebertz A, Arnett TR, Burnstock G. Regulation of bone resorption and formation by purines and pyrimidines. Trends Pharmacol Sci 2003; 24:290-7. [PMID: 12823955 DOI: 10.1016/s0165-6147(03)00123-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Growing evidence suggests that extracellular nucleotides, signalling through P2 receptors, might play important roles in the regulation of bone and cartilage metabolism. ATP and other nucleotides can exert impressive stimulatory effects on the formation and activity of osteoclasts (bone-resorbing cells) in addition to inhibiting bone formation by osteoblasts. In this review, the current understanding of the actions of nucleotides on skeletal cells and the probable receptor subtypes involved are discussed.
Collapse
Affiliation(s)
- Astrid Hoebertz
- Research Institute of Molecular Biology, Dr Bohr Gasse 7, 1030 Vienna, Austria
| | | | | |
Collapse
|
38
|
Hoebertz A, Mahendran S, Burnstock G, Arnett TR. ATP and UTP at low concentrations strongly inhibit bone formation by osteoblasts: a novel role for the P2Y2 receptor in bone remodeling. J Cell Biochem 2003; 86:413-9. [PMID: 12210747 DOI: 10.1002/jcb.10236] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is increasing evidence that extracellular nucleotides act on bone cells via multiple P2 receptors. The naturally-occurring ligand ATP is a potent agonist at all receptor subtypes, whereas ADP and UTP only act at specific receptor subtypes. We have reported that the formation and resorptive activity of rodent osteoclasts are stimulated powerfully by both extracellular ATP and its first degradation product, ADP, the latter acting at nanomolar concentrations, probably via the P2Y1 receptor subtype. In the present study, we investigated the actions of ATP, ADP, adenosine, and UTP on osteoblastic function. In 16-21 day cultures of primary rat calvarial osteoblasts, ADP and the selective P2Y1 agonist 2-methylthioADP were without effect on bone nodule formation at concentrations between 1 and 125 microM, as was adenosine. However, UTP, a P2Y2 and P2Y4 receptor agonist, known to be without effect on osteoclast function, strongly inhibited bone nodule formation at concentrations >or= 1 microM. ATP was inhibitory at >or= 10 microM. Rat osteoblasts express P2Y2, but not P2Y4 receptor mRNA, as determined by in situ hybridization. Thus, the low-dose effects of extracellular nucleotides on bone formation and bone resorption appear to be mediated via different P2Y receptor subtypes: ADP, signalling through the P2Y1 receptor on both osteoclasts and osteoblasts, is a powerful stimulator of osteoclast formation and activity, whereas UTP, signalling via the P2Y2 receptor on osteoblasts, blocks bone formation by osteoblasts. ATP, the 'universal' agonist, can simultaneously stimulate resorption and inhibit bone formation. These findings suggest that extracellular nucleotides could function locally as important negative modulators of bone metabolism, perhaps contributing to bone loss in a number of pathological states.
Collapse
Affiliation(s)
- Astrid Hoebertz
- Department of Anatomy & Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
39
|
Burnstock G. Introduction: ATP and Its Metabolites as Potent Extracellular Agents. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
40
|
You J, Jacobs CR, Steinberg TH, Donahue HJ. P2Y purinoceptors are responsible for oscillatory fluid flow-induced intracellular calcium mobilization in osteoblastic cells. J Biol Chem 2002; 277:48724-9. [PMID: 12376532 DOI: 10.1074/jbc.m209245200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously found that oscillatory fluid flow activated MC3T3-E1 osteoblastic cell Ca(2+)(i) mobilization via the inositol 1,4,5-trisphosphate pathway in the presence of 2% fetal bovine serum (FBS). However, the molecular mechanism of fluid flow-induced Ca(2+)(i) mobilization is unknown. In this study, we first demonstrated that oscillatory fluid flow in the absence of FBS failed to increase [Ca(2+)](i) in MC3T3-E1 cells. Apyrase (10 units/ml), which rapidly hydrolyzes 5' nucleotide triphosphates to monosphophates, prevented the fluid flow induced increases in [Ca(2+)](i) in the presence of FBS. Adding ATP or UTP to flow medium without FBS restored the ability of fluid flow to increase [Ca(2+)](i), suggesting that ATP or UTP may mediate the effect of fluid flow on [Ca(2+)](i). Furthermore, adenosine, ADP, UDP, or adenosine 5'-O-(3-thiotriphosphate) did not induce Ca(2+)(i) mobilization under oscillatory fluid flow without FBS. Pyridoxal phosphate 6-azophenyl-2,4'-disulfonic acid, an antagonist of P2X purinoceptors, did not alter the effect of fluid flow on the Ca(2+)(i) response, whereas pertussis toxin, a G(i/o)-protein inhibitor, inhibited fluid flow-induced increases in [Ca(2+)](i) in the presence of 2% FBS. Thus, by the process of elimination, our data suggest that P2Y purinoceptors (P2Y2 or P2Y4) are involved in the Ca(2+)(i) response to fluid flow. Finally, a decreased percentage of MC3T3-E1 osteoblastic cells treated with P2Y2 antisense oligodeoxynucleotides responded to fluid flow with an increase in [Ca(2+)](i), and an increased percentage of ROS 17/2.8 cells, which do not normally express P2Y2 purinoceptors, transfected with P2Y2 purinoceptors responded to fluid flow in the presence of 2% FBS, confirming that P2Y2 purinoceptors are responsible for oscillatory fluid flow-induced Ca(2+)(i) mobilization. Our findings shed new light of the molecular mechanisms responsible for oscillatory fluid flow-induced Ca(2+)(i) mobilization in osteoblastic cells.
Collapse
Affiliation(s)
- Jun You
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey 17033, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
P2X receptors are membrane ion channels that open in response to the binding of extracellular ATP. Seven genes in vertebrates encode P2X receptor subunits, which are 40-50% identical in amino acid sequence. Each subunit has two transmembrane domains, separated by an extracellular domain (approximately 280 amino acids). Channels form as multimers of several subunits. Homomeric P2X1, P2X2, P2X3, P2X4, P2X5, and P2X7 channels and heteromeric P2X2/3 and P2X1/5 channels have been most fully characterized following heterologous expression. Some agonists (e.g., alphabeta-methylene ATP) and antagonists [e.g., 2',3'-O-(2,4,6-trinitrophenyl)-ATP] are strongly selective for receptors containing P2X1 and P2X3 subunits. All P2X receptors are permeable to small monovalent cations; some have significant calcium or anion permeability. In many cells, activation of homomeric P2X7 receptors induces a permeability increase to larger organic cations including some fluorescent dyes and also signals to the cytoskeleton; these changes probably involve additional interacting proteins. P2X receptors are abundantly distributed, and functional responses are seen in neurons, glia, epithelia, endothelia, bone, muscle, and hemopoietic tissues. The molecular composition of native receptors is becoming understood, and some cells express more than one type of P2X receptor. On smooth muscles, P2X receptors respond to ATP released from sympathetic motor nerves (e.g., in ejaculation). On sensory nerves, they are involved in the initiation of afferent signals in several viscera (e.g., bladder, intestine) and play a key role in sensing tissue-damaging and inflammatory stimuli. Paracrine roles for ATP signaling through P2X receptors are likely in neurohypophysis, ducted glands, airway epithelia, kidney, bone, and hemopoietic tissues. In the last case, P2X7 receptor activation stimulates cytokine release by engaging intracellular signaling pathways.
Collapse
Affiliation(s)
- R Alan North
- Institute of Molecular Physiology, University of Sheffield, Western Bank, Sheffield, United Kingdom.
| |
Collapse
|
42
|
Jacobson KA, Jarvis MF, Williams M. Purine and pyrimidine (P2) receptors as drug targets. J Med Chem 2002; 45:4057-93. [PMID: 12213051 DOI: 10.1021/jm020046y] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases/NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
43
|
Naemsch LN, Dixon SJ, Sims SM. Activity-dependent development of P2X7 current and Ca2+ entry in rabbit osteoclasts. J Biol Chem 2001; 276:39107-14. [PMID: 11495918 DOI: 10.1074/jbc.m105881200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bone remodeling is regulated by local factors and modulated by mechanical stimuli. Mechanical stimulation can cause release of ATP, an agent that stimulates osteoclastic resorption at low concentrations and inhibits at high concentrations. We examined whether osteoclasts express P2X(7) receptors, which are activated by high concentrations of ATP and can behave as ion channels or cause the formation of membrane pores. Rabbit osteoclasts were studied using patch clamp techniques. Successive or prolonged applications of 2'- & 3'-O-(4-benzoylbenzoyl)-ATP (BzATP, a relatively potent P2X(7) agonist) or high concentrations of ATP caused the development of a slowly deactivating inward current. The underlying channel was permeable only to small cations, ruling out pore formation. Divalent cations reduced current magnitude, consistent with the presence of P2X(7) receptors, a finding confirmed in rat osteoclasts by immunocytochemistry. Successive applications of BzATP also elicited [Ca(2+)](i) elevations that required extracellular Ca(2+). The BzATP-induced current and the rise of [Ca(2+)](i) were temporally associated, and both were inhibited by PPADS, a P2X(7) antagonist. This study demonstrates that high concentrations of ATP activate P2X(7) receptors and provides the first functional evidence for an extracellular ligand-gated Ca(2+) influx pathway in osteoclasts. ATP released in response to mechanical stimuli may act through P2X(7) receptors to inhibit osteoclastic resorption.
Collapse
Affiliation(s)
- L N Naemsch
- Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, Department of Physiology and Division of Oral Biology, Faculty of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
44
|
Steinberg TH, Jørgensen NR, Bong JS, Henriksen Z, Atal N, Lin GC, Bennett BD, Eriksen EF, Sørensen OH, Civitelli R. P2-mediated responses in osteoclasts and osteoclast-like cells. Drug Dev Res 2001. [DOI: 10.1002/ddr.1179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Weidema AF, Dixon SJ, Sims SM. Activation of P2Y but not P2X(4) nucleotide receptors causes elevation of [Ca2+]i in mammalian osteoclasts. Am J Physiol Cell Physiol 2001; 280:C1531-9. [PMID: 11350748 DOI: 10.1152/ajpcell.2001.280.6.c1531] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular nucleotides cause elevation of cytosolic free Ca2+ concentration ([Ca2+](i)) in osteoclasts, although the sources of Ca2+ are uncertain. Activation of P2Y receptors causes Ca2+ release from stores, whereas P2X receptors are ligand-gated channels that mediate Ca2+ influx in some cell types. To examine the sources of Ca2+, we studied osteoclasts from rat and rabbit using fura 2 fluorescence and patch clamp. Nucleotide-induced rise of ([Ca2+](i)) persisted on removal of extracellular Ca2+ (Ca), indicating involvement of stores. Inhibition of phospholipase C (PLC) with U-73122 or inhibition of endoplasmic reticulum Ca(2+)-ATPase with cyclopiazonic acid or thapsigargin abolished the rise of ([Ca2+](i)). After store depletion in the absence of Ca, addition of Ca led to a rise of ([Ca2+](i)) consistent with store-operated Ca2+ influx. Store-operated Ca2+ influx was greater at negative potentials and was blocked by La(3+). In patch-clamp studies where PLC was blocked, ATP induced inward current indicating activation of P2X(4) nucleotide receptors, but with no rise of ([Ca2+](i)). We conclude that nucleotide-induced elevation of [Ca(2+)](i) in osteoclasts arises primarily through activation of P2Y nucleotide receptors, leading to release of Ca2+ from intracellular stores.
Collapse
Affiliation(s)
- A F Weidema
- Department of Physiology and Division of Oral Biology, Faculty of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | |
Collapse
|
46
|
|
47
|
Bowler WB, Buckley KA, Gartland A, Hipskind RA, Bilbe G, Gallagher JA. Extracellular nucleotide signaling: a mechanism for integrating local and systemic responses in the activation of bone remodeling. Bone 2001; 28:507-12. [PMID: 11344050 DOI: 10.1016/s8756-3282(01)00430-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bone turnover occurs at discreet sites in the remodeling skeleton. The focal nature of this process indicates that local cues may facilitate the activation of bone cells by systemic factors. Nucleotides such as adenosine triphosphate (ATP) are locally released, short-lived, yet potent extracellular signaling molecules. These ligands act at a large family of receptors-the P2 receptors, which are subdivided into P2Y and P2X subtypes based on mechanism of signal transduction. Nucleotides enter the extracellular milieu via non-lytic and lytic mechanisms where they activate multiple P2 receptor types expressed by both osteoblasts and osteoclasts. In this review the release of ATP by bone cells is discussed in the context of activation of bone remodeling. We provide compelling evidence that nucleotides, acting via P2Y receptors, are potent potentiators of parathyroid hormone-induced signaling and transcriptional activation in osteoblasts. The provision of a mechanism to induce activation of osteoblasts above a threshold attained by systemic factors alone may facilitate focal remodeling and address the paradox of why systemic regulators like PTH exert effects at discreet sites.
Collapse
Affiliation(s)
- W B Bowler
- Human Bone Cell Research Group, Department of Human Anatomy & Cell Biology, University of Liverpool, Liverpool L69 3GE, UK.
| | | | | | | | | | | |
Collapse
|
48
|
Hoebertz A, Meghji S, Burnstock G, Arnett TR. Extracellular ADP is a powerful osteolytic agent: evidence for signaling through the P2Y(1) receptor on bone cells. FASEB J 2001; 15:1139-48. [PMID: 11344082 DOI: 10.1096/fj.00-0395com] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is increasing evidence that extracellular nucleotides act on bone cells via P2 receptors. This study investigated the action of ADP and 2-methylthioADP, a potent ADP analog with selectivity for the P2Y(1) receptor, on osteoclasts, the bone-resorbing multinuclear cells. Using three different assays, we show that ADP and 2-methylthioADP at nanomolar to submicromolar levels caused up to fourfold to sixfold increases in osteoclastic bone resorption. On mature rat osteoclasts, cultured for 1 day on polished dentine disks, peak effects on resorption pit formation were observed between 20 nM and 2 microM of ADP. The same concentrations of ADP also stimulated osteoclast and resorption pit formation in 10-day mouse marrow cultures on dentine disks. In 3-day explant cultures of mouse calvarial bones, the stimulatory effect of ADP on osteoclast-mediated Ca(2+) release was greatest at 5-50 microM and equivalent to the maximal effects of prostaglandin E(2). The ADP effects were blocked in a nontoxic manner by MRS 2179, a P2Y(1) receptor antagonist. Using in situ hybridization and immunocytochemistry, we found evidence for P2Y(1) receptor expression on both osteoclasts and osteoblasts; thus, ADP could exert its actions both directly on osteoclasts and indirectly via P2Y(1) receptors on osteoblasts. As a major ATP degradation product, ADP is a novel stimulator of bone resorption that could help mediate inflammatory bone loss in vivo.
Collapse
Affiliation(s)
- A Hoebertz
- Department of Anatomy and Developmental Biology, Autonomic Neuroscience Institute, University College London, London WC1E 6BT, U.K
| | | | | | | |
Collapse
|
49
|
Gartland A, Hipskind RA, Gallagher JA, Bowler WB. Expression of a P2X7 receptor by a subpopulation of human osteoblasts. J Bone Miner Res 2001; 16:846-56. [PMID: 11341329 DOI: 10.1359/jbmr.2001.16.5.846] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
There is now conclusive evidence that extracellular nucleotides acting via cell surface P2 receptors are important local modulators of bone cell function. Multiple subtypes of P2 receptors have been localized to bone, where their activation modulates multiple processes including osteoblast proliferation, osteoblast-mediated bone formation, and osteoclast formation and resorptive capacity. Locally released nucleotides also have been shown to sensitize surrounding cells to the action of systemic factors such as parathyroid hormone (PTH). In nonskeletal tissue recent attention has focused on one particular P2 receptor, the P2X7 receptor (previously termed P2Z), and its ability to form nonselective aqueous pores in the plasma membrane on prolonged stimulation. Expression of this receptor originally was thought to be restricted to cells of hemopoietic origin, in which it has been implicated in cell fusion, apoptosis, and release of proinflammatory cytokines. However, recent reports have indicated expression of this receptor in cells of stromal origin. In this study, we investigated the expression of the P2X7 receptor in two human osteosarcoma cell lines, as well as several populations of primary human bone-derived cells (HBDCs) at the levels of messenger RNA (mRNA) and protein. We found that there is a subpopulation of osteoblasts that expresses the P2X7 receptor and that these receptors are functional as assessed by monitoring ethidium bromide uptake following pore formation. Inhibition of delayed lactate dehydrogenase (LDH) release in response to the specific agonist 2',3'-(4-benzoyl)-benzoyl-adenosine triphosphate (BzATP) by the nonspecific P2X receptor antagonist PPADS confirmed a receptor-mediated event. After treatment with BzATP SaOS-2 cells exhibited dramatic morphological changes consistent with those observed after P2X7-mediated apoptosis in hemopoietic cells. Dual staining with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) and a P2X7-specific monoclonal antibody confirmed the induction of apoptosis in osteoblasts expressing the P2X7 receptor. These data show for the first time the expression of functional P2X7 receptors in a subpopulation of osteoblasts, activation of which can result in ATP-mediated apoptosis.
Collapse
Affiliation(s)
- A Gartland
- Department of Human Anatomy and Cell Biology, The University of Liverpool, United Kingdom
| | | | | | | |
Collapse
|
50
|
|