1
|
de Freitas RL, Acunha RM, Bendaña-Córdoba FR, Medeiros P, Melo-Thomas L, Coimbra NC. Nitric oxide-signalling affects panic-like defensive behaviour and defensive antinociception neuromodulation in the prelimbic cerebral cortex. Brain Res 2024; 1844:149134. [PMID: 39097217 DOI: 10.1016/j.brainres.2024.149134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
RATIONALE The prelimbic division (PrL) of the medial prefrontal cortex (mPFC) is a key structure in panic. OBJECTIVES To evaluate the role of nitric oxide (NO) in defensive behaviour and antinociception. METHODS Either Nω-propyl-L-arginine (NPLA) or Carboxy-PTIO was microinjected in the PrL cortex, followed by hypothalamic treatment with bicuculline. The exploratory behaviours, defensive reactions and defensive antinociception were recorded. Encephalic c-Fos protein was immunolabelled after escape behaviour. RESULTS NPLA (an inhibition of nNOs) decreased panic-like responses and innate fear-induced antinociception. The c-PTIO (a membrane-impermeable NO scavenger) decreased the escape behaviour. PrL cortex pre-treatment with c-PTIO at all doses decreased defensive antinociception. c-Fos protein was labelled in neocortical areas, limbic system, and mesencephalic structures. CONCLUSION The NPLA and c-PTIO in the PrL/mPFC decreased the escape behaviour and defensive antinociception organised by medial hypothalamic nuclei. The oriented escape behaviour recruits neocortical areas, limbic system, and mesencephalic structures. These findings suggest that the organisation of defensive antinociception recruits NO-signalling mechanisms within the PrL cortex. Furthermore, the present findings also support the role of NO as a retrograde messenger in the PrL cortex during panic-like emotional reactions.
Collapse
Affiliation(s)
- Renato Leonardo de Freitas
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Institute of Neuroscience and Behaviour (INeC) Ophidiarium, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901, Brazil; Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy; Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Str. Gabriel Monteiro da Silva, 700, Alfenas, 37130-000 Minas Gerais (MG), Brazil.
| | - Renata Moreira Acunha
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Fernando René Bendaña-Córdoba
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Priscila Medeiros
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Department of General and Specialized Nursing, University of São Paulo at Ribeirão Preto College of Nursing (EERP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Liana Melo-Thomas
- Marburg Centre for Mind, Brain, and Behaviour (MCMBB) of the Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany; Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, D-35032 Marburg, Germany
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Institute of Neuroscience and Behaviour (INeC) Ophidiarium, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901, Brazil.
| |
Collapse
|
2
|
Hamati R, Ahrens J, Shvetz C, Holahan MR, Tuominen L. 65 years of research on dopamine's role in classical fear conditioning and extinction: A systematic review. Eur J Neurosci 2024; 59:1099-1140. [PMID: 37848184 DOI: 10.1111/ejn.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Dopamine, a catecholamine neurotransmitter, has historically been associated with the encoding of reward, whereas its role in aversion has received less attention. Here, we systematically gathered the vast evidence of the role of dopamine in the simplest forms of aversive learning: classical fear conditioning and extinction. In the past, crude methods were used to augment or inhibit dopamine to study its relationship with fear conditioning and extinction. More advanced techniques such as conditional genetic, chemogenic and optogenetic approaches now provide causal evidence for dopamine's role in these learning processes. Dopamine neurons encode conditioned stimuli during fear conditioning and extinction and convey the signal via activation of D1-4 receptor sites particularly in the amygdala, prefrontal cortex and striatum. The coordinated activation of dopamine receptors allows for the continuous formation, consolidation, retrieval and updating of fear and extinction memory in a dynamic and reciprocal manner. Based on the reviewed literature, we conclude that dopamine is crucial for the encoding of classical fear conditioning and extinction and contributes in a way that is comparable to its role in encoding reward.
Collapse
Affiliation(s)
- Rami Hamati
- Neuroscience Graduate Program, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Jessica Ahrens
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Cecelia Shvetz
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Matthew R Holahan
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Coelho AA, Vila-Verde C, Sartim AG, Uliana DL, Braga LA, Guimarães FS, Lisboa SF. Inducible Nitric Oxide Synthase Inhibition in the Medial Prefrontal Cortex Attenuates the Anxiogenic-Like Effect of Acute Restraint Stress via CB 1 Receptors. Front Psychiatry 2022; 13:923177. [PMID: 35911236 PMCID: PMC9330908 DOI: 10.3389/fpsyt.2022.923177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Stress exposure can result in several proinflammatory alterations in the brain, including overexpression of the inducible isoform of nitric oxide synthase (iNOS) in the medial prefrontal cortex (mPFC). These changes may be involved in the development of many psychiatric conditions. However, it is unknown if iNOS in mPFC plays a significant role in stress-induced behavioral changes. The endocannabinoid (ECB) system is also influenced by stress. Its activation seems to be a counter regulatory mechanism to prevent or decrease the stress-mediated neuroinflammatory consequences. However, it is unclear if the ECB system and iNOS interact to influence stress consequences. This study aimed to test the hypothesis that the anti-stress effect of iNOS inhibition in mPFC involves the local ECB system, particularly the CB1 cannabinoid receptors. Male Wistar rats with guide cannula aimed at the mPFC were submitted to acute restraint stress (RS) for 2 h. In the following morning, rats received bilateral microinjections of vehicle, AM251 (CB1 antagonist; 100 pmol), and/or 1400W (iNOS selective inhibitor; 10-4, 10-3, or 10-2 nmol) into the prelimbic area of mPFC (PL-mPFC) before being tested in the elevated plus-maze (EPM). iNOS inhibition by 1400W prevented the anxiogenic-like effect observed in animals submitted to RS. The drug did not promote behavior changes in naive animals, demonstrating a stress-dependent effect. The 1400W-anti-stress effect was prevented by local pretreatment with AM251. Our data suggest that iNOS inhibition may facilitate the local endocannabinoid signaling, attenuating stress effects.
Collapse
Affiliation(s)
- Arthur A Coelho
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil.,Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto-University of São Paulo, São Paulo, Brazil
| | - Carla Vila-Verde
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil
| | - Ariandra G Sartim
- Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto-University of São Paulo, São Paulo, Brazil
| | - Daniela L Uliana
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil.,Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Laura A Braga
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil
| | - Francisco S Guimarães
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil
| | - Sabrina F Lisboa
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil.,Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto-University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Jacobs DS, Moghaddam B. Medial prefrontal cortex encoding of stress and anxiety. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 158:29-55. [PMID: 33785149 DOI: 10.1016/bs.irn.2020.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The prefrontal cortex (PFC) is involved in adaptive control of behavior and optimizing action selection. When an organism is experiencing an aversive event, such as a sustained state of anxiety or an overt experience of fear or stress, the mechanisms that govern PFC regulation of action selection may be critical for survival. A large body of literature has shown that acute aversive states influence the activity of PFC neurons and the release of neurotransmitters in this region. These states also result in long-term neurobiological changes in the PFC and expression of PFC-dependent motivated behaviors. The mechanism for how these changes lead to modifying action selection is only recently beginning to emerge. Here, we review animal and human studies into the neural mechanisms which may mediate the adaptive changes in the PFC that emerge during negative affective states. We then highlight recent advances in approaches for understanding how anxiety influences action selection and related cortical processes. We conclude by proposing that PFC neurons selectively influence action encoding during conditions where actions toward obtaining a reward or avoiding harm are executed under a fog of fear and anxiety.
Collapse
Affiliation(s)
- David S Jacobs
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Bita Moghaddam
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
5
|
Understanding stress: Insights from rodent models. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100013. [PMID: 36246514 PMCID: PMC9559100 DOI: 10.1016/j.crneur.2021.100013] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 02/01/2023] Open
Abstract
Through incorporating both physical and psychological forms of stressors, a variety of rodent models have provided important insights into the understanding of stress physiology. Rodent models also have provided significant information with regards to the mechanistic basis of the pathophysiology of stress-related disorders such as anxiety disorders, depressive illnesses, cognitive impairment and post-traumatic stress disorder. Additionally, rodent models of stress have served as valuable tools in the area of drug screening and drug development for treatment of stress-induced conditions. Although rodent models do not accurately reproduce the biochemical or physiological parameters of stress response and cannot fully mimic the natural progression of human disorders, yet, animal research has provided answers to many important scientific questions. In this review article, important studies utilizing a variety of stress models are described in terms of their design and apparatus, with specific focus on their capabilities to generate reliable behavioral and biochemical read-out. The review focusses on the utility of rodent models by discussing examples in the literature that offer important mechanistic insights into physiologically relevant questions. The review highlights the utility of rodent models of stress as important tools for advancing the mission of scientific research and inquiry. Stressful life events may lead to the onset of severe psychopathologies in humans. Rodents may model many features of stress exposure in human populations. Induction of stress via pharmacological and psychological manipulations alter rodent behavior. Mechanistic rodent studies reveal key molecular targets critical for new therapeutic targets.
Collapse
|
6
|
Fee C, Prevot T, Misquitta K, Banasr M, Sibille E. Chronic Stress-induced Behaviors Correlate with Exacerbated Acute Stress-induced Cingulate Cortex and Ventral Hippocampus Activation. Neuroscience 2020; 440:113-129. [PMID: 32473277 DOI: 10.1016/j.neuroscience.2020.05.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/28/2022]
Abstract
Altered activity of corticolimbic brain regions is a hallmark of stress-related illnesses, including mood disorders, neurodegenerative diseases, and substance abuse disorders. Acute stress adaptively recruits brain region-specific functions for coping, while sustained activation under chronic stress may overwhelm feedback mechanisms and lead to pathological cellular and behavioral responses. The neural mechanisms underlying dysregulated stress responses and how they contribute to behavioral deficits are poorly characterized. Here, we tested whether prior exposure to chronic restraint stress (CRS) or unpredictable chronic mild stress (UCMS) in mice could alter functional response to acute stress and whether these changes are associated with chronic stress-induced behavioral deficits. More specifically, we assessed acute stress-induced functional activation indexed by c-Fos+ cell counts in 24 stress- and mood-related brain regions, and determined if changes in functional activation were linked to chronic stress-induced behavioral impairments, summarized across dimensions through principal component analysis (PCA). Results indicated that CRS and UCMS led to convergent physiological and anxiety-like deficits, whereas working and short-term memory were impaired only in UCMS mice. CRS and UCMS exposure exacerbated functional activation by acute stress in anterior cingulate cortex (ACC) area 24b and ventral hippocampal (vHPC) CA1, CA3, and subiculum. In dysregulated brain regions, levels of functional activation were positively correlated with principal components reflecting variance across behavioral deficits relevant to stress-related disorders. Our data supports an association between a dysregulated stress response, altered functional corticolimbic excitation/inhibition balance, and the expression of maladaptive behaviors.
Collapse
Affiliation(s)
- Corey Fee
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Thomas Prevot
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Keith Misquitta
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Margolis EB, Karkhanis AN. Dopaminergic cellular and circuit contributions to kappa opioid receptor mediated aversion. Neurochem Int 2019; 129:104504. [PMID: 31301327 DOI: 10.1016/j.neuint.2019.104504] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 01/05/2023]
Abstract
Neural circuits that enable an organism to protect itself by promoting escape from immediate threat and avoidance of future injury are conceptualized to carry an "aversive" signal. One of the key molecular elements of these circuits is the kappa opioid receptor (KOR) and its endogenous peptide agonist, dynorphin. In many cases, the aversive response to an experimental manipulation can be eliminated by selective blockade of KOR function, indicating its necessity in transmitting this signal. The dopamine system, through its contributions to reinforcement learning, is also involved in processing of aversive stimuli, and KOR control of dopamine in the context of aversive behavioral states has been intensely studied. In this review, we have discussed the multiple ways in which the KORs regulate dopamine dynamics with a central focus on dopamine neurons and projections from the ventral tegmental area. At the neuronal level, KOR agonists inhibit dopamine neurons both in the somatodendritic region as well as at terminal release sites, through various signaling pathways and ion channels, and these effects are specific to different synaptic sites. While the dominant hypotheses are that aversive states are driven by decreases in dopamine and increases in dynorphin, reported exceptions to these patterns indicate these ideas require refinement. This is critical given that KOR is being considered as a target for development of new therapeutics for anxiety, depression, pain, and other psychiatric disorders.
Collapse
Affiliation(s)
- Elyssa B Margolis
- Department of Neurology, Alcohol and Addiction Research Group, University of California, San Francisco, 675 Nelson Rising Lane, Box 0444, San Francisco, CA, 94143, USA.
| | - Anushree N Karkhanis
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA.
| |
Collapse
|
8
|
Clozapine impact on FosB/ΔFosB expression in stress preconditioned rats: response to a novel stressor. Endocr Regul 2019; 53:83-92. [PMID: 31517626 DOI: 10.2478/enr-2019-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Prolonged treatment with neuroleptics has been shown to induce FosB/ΔFosB expression in several brain regions including the medial prefrontal cortex, dorsomedial and dorsolateral striatum, ventrolateral and dorsolateral septum, nucleus accumbens shell and core, and the hypothalamic paraventricular nucleus (PVN). Some of these regions are known to be also stress responsive. This study was designed to determine whether repeated clozapine (CLZ) administration for 7 consecutive days to Wistar rats may modify FosB/ΔFosB expression in the above-mentioned brain areas induced by acute stress or novel stressor that followed 13-day chronic mild stress preconditioning. METHODS Following experimental groups were used: unstressed animals treated with vehicle/ CLZ for 7 days; 7-day vehicle/CLZ-treated animals on the last day exposed to acute stress - forced swimming (FSW); and animals preconditioned with stress for 13 days treated from the 8th day with vehicle/CLZ and on the 14th day exposed to novel stress - FSW. RESULTS In the unstressed animals CLZ markedly increased FosB/ΔFosB immunoreactivity in the ventrolateral septum and PVN. FSW elevated FosB/ΔFosB expression in the medial prefrontal cortex, striatum, and septum. CLZ markedly potentiated the effect of the FSW on FosB/ΔFosB expression in the PVN, but suppressed it in the dorsomedial striatum. Novel stress with stress preconditioning increased FosB/ΔFosB immunoreactivity in the prefrontal cortex, striatum, ventrolateral septum, and the PVN. In the nucleus accumbens the effect of the novel stressor was potentiated by CLZ. CONCLUSION Our data indicate that CLZ may modulate the acute as well as novel stress effects on FosB/ΔFosB expression but its effect differs within the individual brain regions.
Collapse
|
9
|
Losing Control: Excessive Alcohol Seeking after Selective Inactivation of Cue-Responsive Neurons in the Infralimbic Cortex. J Neurosci 2015. [PMID: 26224858 DOI: 10.1523/jneurosci.0684-15.2015] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Loss of control over drinking is a key deficit in alcoholism causally associated with malfunction of the medial prefrontal cortex (mPFC), but underlying molecular and cellular mechanisms remain unclear. Cue-induced reinstatement of alcohol seeking activates a subset of mPFC neurons in rats, identified by their common expression of the activity marker cFos and comprised of both principal and interneurons. Here, we used cFos-lacZ and pCAG-lacZ transgenic rats for activity-dependent or nonselective inactivation of neurons, respectively, which by their lacZ encoded β-galactosidase activity convert the inactive prodrug Daun02 into the neurotoxin daunorubicin. We report that activity-dependent ablation of a neuronal ensemble in the infralimbic but not the prelimbic subregion induced excessive alcohol seeking. The targeted neuronal ensemble was specific for the cue-induced response because stress-induced reinstatement was not affected in these animals. Importantly, nonselective inactivation of infralimbic neurons, using pCAG-lacZ rats, was without functional consequence on the cue-induced reinstatement task. Thus, inhibitory control over alcohol seeking is exerted by distinct functional ensembles within the infralimbic cortex rather than by a general inhibitory tone of this region on the behavioral output. This indicates a high level of functional compartmentation within the rat mPFC whereat many functional ensembles could coexist and interact within the same subregion. SIGNIFICANCE STATEMENT Hebb's (1949) idea of memories as being represented in local neuronal networks is supported by identification of transiently stable activity patterns within subgroups of neurons. However, it is difficult to link individual networks to specific memory tasks, for example a learned behavior. By a novel approach of activity-dependent ablation, here we identify a specific neuronal ensemble located in the infralimbic subregion of the medial prefrontal cortex that controls a seeking response for alcohol in rats. Our data demonstrate that functional output depends on specific neuronal ensembles within a given brain region rather than on the global activity of that region, which raises important questions about the interpretation of numerous earlier experiments using site-directed silencing or stimulation for elucidating brain function.
Collapse
|
10
|
Liu J, Guo M, Lu XY. Leptin/LepRb in the Ventral Tegmental Area Mediates Anxiety-Related Behaviors. Int J Neuropsychopharmacol 2015; 19:pyv115. [PMID: 26438799 PMCID: PMC4772826 DOI: 10.1093/ijnp/pyv115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/29/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Leptin, an adipose-derived hormone, has been implicated in emotional regulation. We have previously shown that systemic administration of leptin produces anxiolytic-like effects and deletion of the leptin receptor, LepRb, in midbrain dopamine neurons leads to an anxiogenic phenotype. This study investigated whether activation or deletion of LepRb in the ventral tegmental area of adult mice is capable of inducing anxiolytic and anxiogenic effects, respectively. METHODS Mice were cannulated in the ventral tegmental area and received bilateral intra-ventral tegmental area infusions of leptin or the JAK2/STAT3 inhibitor AG490. Anxiety-like behaviors were assessed using the elevated plus-maze, light-dark box, and novelty suppressed feeding tests. Deletion of LepRb in the ventral tegmental area was achieved by bilateral injection of AAV-Cre into the ventral tegmental area of adult Lepr(flox/flox) mice. Anxiety-related behaviors were evaluated 3 weeks after viral injection. RESULTS Intra-ventral tegmental area infusions of leptin reduced anxiety-like behaviors, as indicated by increased percent open-arm time and open-arm entries in the elevated plus-maze test, increased time spent in the light side and decreased latency to enter the light side of the light-dark box, and decreased latency to feed in the novelty suppressed feeding test. Blockade of JAK2/STAT3 signaling in the ventral tegmental area by AG490 attenuated the anxiolytic effect produced by systemic administration of leptin. Lepr(flox/flox) mice injected with AAV-Cre into the ventral tegmental area showed decreased leptin-induced STAT3 phosphorylation and enhanced anxiety-like behaviors in the elevated plus-maze test and the novelty suppressed feeding test. CONCLUSIONS These findings suggest that leptin-LepRb signaling in the ventral tegmental area plays an important role in the regulation of anxiety-related behaviors.
Collapse
Affiliation(s)
| | | | - Xin-Yun Lu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX (Drs Liu, Guo, and Lu); Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University, Binzhou, China (Dr Guo).
| |
Collapse
|
11
|
Ollmann T, Péczely L, László K, Kovács A, Gálosi R, Kertes E, Kállai V, Zagorácz O, Karádi Z, Lénárd L. Anxiolytic effect of neurotensin microinjection into the ventral pallidum. Behav Brain Res 2015; 294:208-14. [PMID: 26296669 DOI: 10.1016/j.bbr.2015.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 01/31/2023]
Abstract
Neurotensin (NT) acts as a neurotransmitter and neuromodulator in the central nervous system. NT is involved in reward and memory processes, drug addiction and also in the regulation of anxiety. The ventral pallidum (VP) receives neurotensinergic innervation from the ventral striatopallidal pathway originating from the nucleus accumbens. Positive reinforcing effects of NT in the VP had been shown recently, however the possible effects of NT on anxiety have not been examined yet. In our present experiments, the effects of NT on anxiety were investigated in the VP. In male Wistar rats bilateral microinjections of 100 ng or 250 ng NT were delivered in the volume of 0.4 μl into the VP, and elevated plus maze (EPM) test was performed. In another groups of animals, 35 ng NT-receptor 1 (NTR1) antagonist SR 48,692 was applied by itself, or microinjected 15 min before 100 ng NT treatment. Open field test (OPF) was also conducted. The 100 ng dose of NT had anxiolytic effect, but the 250 ng NT did not influence anxiety. The antagonist pretreatment inhibited the effect of NT, while the antagonist itself had no effect. In the OPF test there was no difference among the groups. Our present results show that microinjection of NT into the VP induces anxiolytic effect, which is specific to the NTR1 receptors because it can be eliminated by a specific NTR1 antagonist. It is also substantiated that neither the NT, nor the NTR1 antagonist in the VP influences locomotor activity.
Collapse
Affiliation(s)
- Tamás Ollmann
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Rita Gálosi
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Erika Kertes
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Veronika Kállai
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Olga Zagorácz
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Pécs University, Szentágothai Center, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Pécs University, Szentágothai Center, Pécs, Hungary.
| |
Collapse
|
12
|
Excitatory drive onto dopaminergic neurons in the rostral linear nucleus is enhanced by norepinephrine in an α1 adrenergic receptor-dependent manner. Neuropharmacology 2014; 86:116-24. [PMID: 25018040 DOI: 10.1016/j.neuropharm.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 06/09/2014] [Accepted: 07/01/2014] [Indexed: 12/19/2022]
Abstract
Dopaminergic innervation of the extended amygdala regulates anxiety-like behavior and stress responsivity. A portion of this dopamine input arises from dopamine neurons located in the ventral lateral periaqueductal gray (vlPAG) and rostral (RLi) and caudal linear nuclei of the raphe (CLi). These neurons receive substantial norepinephrine input, which may prime them for involvement in stress responses. Using a mouse line that expresses eGFP under control of the tyrosine hydroxylase promoter, we explored the physiology and responsiveness to norepinephrine of these neurons. We find that RLi dopamine neurons differ from VTA dopamine neurons with respect to membrane resistance, capacitance and the hyperpolarization-activated current, Ih. Further, we found that norepinephrine increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) on RLi dopamine neurons. This effect was mediated through the α1 adrenergic receptor (AR), as the actions of norepinephrine were mimicked by the α1-AR agonist methoxamine and blocked by the α1-AR antagonist prazosin. This action of norepinephrine on sEPSCs was transient, as it did not persist in the presence of prazosin. Methoxamine also increased the frequency of miniature EPSCs, indicating that the α1-AR action on glutamatergic transmission likely has a presynaptic mechanism. There was also a modest decrease in sEPSC frequency with the application of the α2-AR agonist UK-14,304. These studies illustrate a potential mechanism through which norepinephrine could recruit the activity of this population of dopaminergic neurons.
Collapse
|
13
|
Hendriksen H, Olivier B, Oosting RS. From non-pharmacological treatments for post-traumatic stress disorder to novel therapeutic targets. Eur J Pharmacol 2014; 732:139-58. [DOI: 10.1016/j.ejphar.2014.03.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
|
14
|
Menezes MM, Santini MA, Benvenga MJ, Marek GJ, Merchant KM, Mikkelsen JD, Svensson KA. The mGlu2/3 Receptor Agonists LY354740 and LY379268 Differentially Regulate Restraint-Stress-Induced Expression of c-Fos in Rat Cerebral Cortex. NEUROSCIENCE JOURNAL 2013; 2013:736439. [PMID: 26317098 PMCID: PMC4437333 DOI: 10.1155/2013/736439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/27/2013] [Indexed: 11/23/2022]
Abstract
Metabotropic glutamate 2/3 (mGlu2/3) receptors have emerged as potential therapeutic targets due to the ability of mGlu2/3 receptor agonists to modulate excitatory transmission at specific synapses. LY354740 and LY379268 are selective and potent mGlu2/3 receptor agonists that show both anxiolytic- and antipsychotic-like effects in animal models. We compared the efficacy of LY354740 and LY379268 in attenuating restraint-stress-induced expression of the immediate early gene c-Fos in the rat prelimbic (PrL) and infralimbic (IL) cortex. LY354740 (10 and 30 mg/kg, i.p.) showed statistically significant and dose-related attenuation of stress-induced increase in c-Fos expression, in the rat cortex. By contrast, LY379268 had no effect on restraint-stress-induced c-Fos upregulation (0.3-10 mg/kg, i.p.). Because both compounds inhibit serotonin 2A receptor (5-HT2AR)-induced c-Fos expression, we hypothesize that LY354740 and LY379268 have different in vivo properties and that 5-HT2AR activation and restraint stress induce c-Fos through distinct mechanisms.
Collapse
Affiliation(s)
- M. M. Menezes
- Neuroscience Discovery, Eli Lilly & Company, Indianapolis, IN 46285, USA
| | - M. A. Santini
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - M. J. Benvenga
- Neuroscience Discovery, Eli Lilly & Company, Indianapolis, IN 46285, USA
| | - G. J. Marek
- Neuroscience Discovery, Eli Lilly & Company, Indianapolis, IN 46285, USA
- Abbott Laboratories, Global Pharmaceutical Research and Development, Neuroscience Clinical Development, Abbott Park, IL 60064-6075, USA
| | - K. M. Merchant
- Neuroscience Discovery, Eli Lilly & Company, Indianapolis, IN 46285, USA
| | - J. D. Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - K. A. Svensson
- Neuroscience Discovery, Eli Lilly & Company, Indianapolis, IN 46285, USA
| |
Collapse
|
15
|
Shoji H, Mizoguchi K. Brain region-specific reduction in c-Fos expression associated with an anxiolytic effect of yokukansan in rats. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:93-102. [PMID: 23770052 DOI: 10.1016/j.jep.2013.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/24/2013] [Accepted: 06/05/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A traditional Japanese (Kampo) medicine, yokukansan, has long been used to treat neurosis, insomnia, and night crying and irritability in children. Recently, this medicine has reported to improve the behavioral and psychological symptoms of dementia that often become problematic in patients with Alzheimer's disease and other forms of dementia. AIM OF THE STUDY Several animal studies have reported that yokukansan has an anxiolytic effect. However, the underlying mechanisms are not yet understood. In the present study, we investigated the effects in rats of single and repeated administrations of yokukansan on anxiety-like behaviors, stress responses, and the brain regions involved. MATERIALS AND METHODS Yokukansan dissolved in water (100 or 300 mg/kg) was administered orally to F344/N male rats 1h before each test or for two weeks before the tests began. Locomotor activity and anxiety-related behavior in the open-field test and the elevated plus-maze test, serum corticosterone levels, and restraint stress-induced c-Fos expression in various brain regions as a marker of neuronal activation were evaluated in both the vehicle-treated and yokukansan-treated rats. RESULTS A single administration of yokukansan had no effect on locomotor activity or anxiety-like behavior; however, repeated administration decreased anxiety-like behavior in a dose-dependent manner. Neither single nor repeated administration of yokukansan had an effect on the basal or stress-induced levels of serum corticosterone. For c-Fos expression, restraint stress increased the number of c-Fos-positive cells in the subdivisions of the prefrontal cortex, amygdala, and hypothalamus. Repeated administration of yokukansan decreased the stress-induced c-Fos expression in the prelimbic cortex and the basolateral and medial amygdaloid nuclei. CONCLUSIONS The present study indicates that repeated oral administration of yokukansan has an anxiolytic effect and that this effect may be associated with attenuated neuronal activity in the medial prefrontal cortex and amygdala.
Collapse
Affiliation(s)
- Hirotaka Shoji
- Section of Oriental Medicine, Department of Geriatric Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology (NCGG), 36-3 Gengo, Morioka, Obu, Aichi 474-8511, Japan
| | | |
Collapse
|
16
|
Salomons AR, Arndt SS, Lavrijsen M, Kirchhoff S, Ohl F. Expression of CRFR1 and Glu5R mRNA in different brain areas following repeated testing in mice that differ in habituation behaviour. Behav Brain Res 2013; 246:1-9. [DOI: 10.1016/j.bbr.2013.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 02/17/2013] [Accepted: 02/20/2013] [Indexed: 01/11/2023]
|
17
|
de Freitas RL, Salgado-Rohner CJ, Biagioni AF, Medeiros P, Hallak JEC, Crippa JAS, Coimbra NC. NMDA and AMPA/Kainate Glutamatergic Receptors in the Prelimbic Medial Prefrontal Cortex Modulate the Elaborated Defensive Behavior and Innate Fear-Induced Antinociception Elicited by GABAA Receptor Blockade in the Medial Hypothalamus. Cereb Cortex 2013; 24:1518-28. [DOI: 10.1093/cercor/bht001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
18
|
Moreira FA, Aguiar DC, Resstel LB, Lisboa SF, Campos AC, Gomes FV, Guimarães FS. Neuroanatomical substrates involved in cannabinoid modulation of defensive responses. J Psychopharmacol 2012; 26:40-55. [PMID: 21616976 DOI: 10.1177/0269881111400651] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Administration of Cannabis sativa derivatives causes anxiolytic or anxiogenic effects in humans and laboratory animals, depending on the specific compound and dosage used. In agreement with these findings, several studies in the last decade have indicated that the endocannabinoid system modulates neuronal activity in areas involved in defensive responses. The mechanisms of these effects, however, are still not clear. The present review summarizes recent data suggesting that they involve modulation of glutamate and GABA-mediated neurotransmission in brain sites such as the medial prefrontal cortex, amygdaloid complex, bed nucleus of the stria terminalis, hippocampus and dorsal periaqueductal gray. Moreover, we also discuss results indicating that, in these regions, the endocannabinoid system could be particularly engaged by highly stressful situations.
Collapse
Affiliation(s)
- F A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | |
Collapse
|
19
|
Li YC, Gao WJ. GSK-3β activity and hyperdopamine-dependent behaviors. Neurosci Biobehav Rev 2010; 35:645-54. [PMID: 20727368 DOI: 10.1016/j.neubiorev.2010.08.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/28/2010] [Accepted: 08/11/2010] [Indexed: 01/28/2023]
Abstract
Dopamine plays important roles in normal brain function and many neuropsychiatric disorders. Classically, dopamine receptors are positively coupled to G protein-mediated signaling to regulate cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA)-dopamine and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and Ca(2+) pathways. However, emerging evidence indicates that under hyperdopaminergic conditions, the protein kinase B (Akt)-glycogen synthase kinase 3β (GSK-3β) signaling cascade may mediate dopamine actions via D(2)-like receptors. This cAMP-independent signaling pathway involves the regulation of downstream synaptic targets, e.g., AMPA receptor, NMDA receptors, and thus synaptic plasticity. Here we provide an overview of how this novel signaling pathway relays dopamine receptor-mediated responses, particularly hyperdopamine-dependent behaviors. We discuss the relevance of the Akt/GSK-3β signaling cascade for the expression of dopamine-dependent behaviors and the drug actions associated with dopaminergic systems.
Collapse
Affiliation(s)
- Yan-Chun Li
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | |
Collapse
|
20
|
Nogueira L, Lavin A. Strong somatic stimulation differentially regulates the firing properties of prefrontal cortex neurons. Brain Res 2010; 1351:57-63. [PMID: 20624375 DOI: 10.1016/j.brainres.2010.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/30/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
Abstract
Among the brain structures involved in processing affective stimuli, the roles of the prefrontal cortex (PFC) and the mesocorticolimbic dopaminergic (DA) innervation are well established. In contrast to our understanding of the reward stimuli, less is known about how strong somatic stimulation is processed within the PFC. Here, we examined the effects of a strong pinch delivered to the rat posterior paw on spontaneous and current-evoked activity of PFC neurons using intracellular recordings in anesthetized rats. Following the paw pinch, pyramidal cells exhibited a significant decrease in spontaneous activity along with a significant increase in the current-evoked firing. The increase in current-evoked firing elicited by the paw pinch was inversely correlated with the baseline firing rate. Systemic administration of a selective dopamine D2 receptor antagonist partially blocked the effects elicited by the paw pinch on cortical excitability, whereas systemic administration of a D1 antagonist seems to facilitate paw-mediated increases in evoked firing. These results suggest that strong somatic stimuli decrease spontaneous firing while increasing depolarization-evoked firing in a DA receptor dependent manner. These mechanisms may help in the control of the signal to noise ratio or the salience of information processing in the PFC following strong somatic stimulation.
Collapse
Affiliation(s)
- Lourdes Nogueira
- Dept. of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Antonieta Lavin
- Dept. of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
21
|
Salomons AR, van Luijk JAKR, Reinders NR, Kirchhoff S, Arndt SS, Ohl F. Identifying emotional adaptation: behavioural habituation to novelty and immediate early gene expression in two inbred mouse strains. GENES BRAIN AND BEHAVIOR 2009; 9:1-10. [PMID: 19751395 DOI: 10.1111/j.1601-183x.2009.00527.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Normal anxiety is an adaptive emotional response. However, when anxiety appears to lack adaptive value, it might be defined as pathological. Adaptation in animals can be assessed for example by changes in behavioural responses over time, i.e. habituation. We hypothesize that non-adaptive anxiety might be reflected by impaired habituation. To test our hypothesis, we repeatedly exposed male mice from two inbred strains to a novel environment, the modified hole board. BALB/cJ mice were found to be initially highly anxious, but subsequently habituated to the test environment. In contrast, 129P3/J mice initially showed less anxiety-related behaviour compared with the BALB/cJ mice but no habituation in anxiety-related behaviour was observed. Notably, anxiety-related behaviour even increased during the experimental period. Complementary, 129P3/J mice did not show habituation in other parameters such as locomotor and exploratory activity, whereas significant changes appeared in these behaviours in BALB/c mice. Finally, the expression of the immediate early gene c-fos differed between the two strains in distinct brain areas, known to regulate the integration of emotional and cognitive processes. These results suggest that 129P3/J mice might be a promising (neuro)-behavioural animal model for non-adaptive, i.e. pathological anxiety.
Collapse
Affiliation(s)
- A R Salomons
- Department of Animals, Science and Society, Division of Laboratory Animal Science, Utrecht University, Utrecht, the Netherlands.
| | | | | | | | | | | |
Collapse
|
22
|
Colocalisation of c-Fos and glucocorticoid receptor as well as of 5-HT1A and glucocorticoid receptor immunoreactivity-expressing cells in the brain structures of low and high anxiety rats. Behav Brain Res 2009; 200:150-9. [DOI: 10.1016/j.bbr.2009.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Stress-induced prefrontal reorganization and executive dysfunction in rodents. Neurosci Biobehav Rev 2008; 33:773-83. [PMID: 19111570 DOI: 10.1016/j.neubiorev.2008.11.005] [Citation(s) in RCA: 353] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 11/26/2008] [Accepted: 11/30/2008] [Indexed: 11/22/2022]
Abstract
The prefrontal cortex (PFC) mediates a range of higher order 'executive functions' that subserve the selection and processing of information in such a way that behavior can be planned, controlled and directed according to shifting environmental demands. Impairment of executive functions typifies many forms of psychopathology, including schizophrenia, mood and anxiety disorders and addiction, that are often associated with a history of trauma and stress. Recent research in animal models demonstrates that exposure to even brief periods of intense stress is sufficient to cause significant structural remodeling of the principle projection neurons within the rodent PFC. In parallel, there is growing evidence that stress-induced alterations in PFC neuronal morphology are associated with deficits in rodent executive functions such as working memory, attentional set-shifting and cognitive flexibility, as well as emotional dysregulation in the form of impaired fear extinction. Although the molecular basis of stress-induced changes in PFC morphology and function are only now being elucidated, an understanding of these mechanisms could provide important insight into the pathophysiology of executive dysfunction in neuropsychiatric disease and foster improved strategies for treatment.
Collapse
|
24
|
Hossain A, Hajman K, Charitidi K, Erhardt S, Zimmermann U, Knipper M, Canlon B. Prenatal dexamethasone impairs behavior and the activation of the BDNF exon IV promoter in the paraventricular nucleus in adult offspring. Endocrinology 2008; 149:6356-65. [PMID: 18755799 DOI: 10.1210/en.2008-0388] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prenatal manipulations to the hypothalamic-pituitary-adrenal axis are shown to affect auditory responses to an acoustic challenge as well as behavior in adult life. To achieve these results, we examined the effect of prenatal dexamethasone (DEX) treatment in male and female adult rat offspring by assessing body and adrenal weight, anxiety using the elevated plus maze (EPM), and acoustic startle responses as well as the effects of acoustic challenge in the paraventricular nucleus (PVN). DEX male offspring had reduced adrenal gland weight in adult life and demonstrated anxiolytic-like behavior when tested on the EPM. The acoustic startle amplitude in naive DEX-treated male offspring was significantly higher compared with saline (SAL)-treated males and females and DEX-treated females. When challenged with either a glucocorticoid agonist or antagonist, the startle response of the SAL-treated males and females significantly increased or decreased in the presence of agonist and antagonist treatment, respectively, whereas DEX males and females were not affected. Acoustic challenge caused an increase in c-fos mRNA and glucocorticoid receptor nuclear translocation in the PVN of all groups. BDNF and TrkB mRNA increased in the PVN after acoustic challenge in the SAL-treated males and females but not in the DEX males or females. These findings exemplify the differential sensitivity of the developing nervous and endocrine systems to prenatal hormonal stress and demonstrate that prenatal DEX treatment elicits long-term behavioral alterations related to anxiety and auditory processing.
Collapse
Affiliation(s)
- Amzad Hossain
- Department of Physiology & Pharmacology Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
25
|
Resstel LBM, Souza RF, Guimarães FS. Anxiolytic-like effects induced by medial prefrontal cortex inhibition in rats submitted to the Vogel conflict test. Physiol Behav 2007; 93:200-5. [PMID: 17884112 DOI: 10.1016/j.physbeh.2007.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 08/09/2007] [Accepted: 08/20/2007] [Indexed: 11/23/2022]
Abstract
Conflicting results have been obtained in studies aimed at investigating the role of the ventral portion of the medial prefrontal cortex (vMPFC), which comprise the prelimbic cortex (PL) and infralimbic cortex (IL), on anxiety responses in rodents evoked by animal models such as fear conditioning, elevated plus maze or social interaction. This may reflect the use of different lesion techniques and/or experimental paradigms based on distinct behaviors properties. Among the latter, the Vogel punished-licking test has been widely used to measure anxiety. However, the role of the vMPFC on anxiety-like behavior evoked by the Vogel model has not been evaluated. Thus, the present study verified the effects of acute and reversible bilateral inhibition of the vMPFC on the behavioral responses in the Vogel conflict test. After 24 h of water deprivation, male Wistar rats were subjected to an initial 3-min non-punished (pretest) drinking session. After an additional 24-h period of water deprivation they were exposed to a 3-min punished-licking session (test).Bilateral microinjections of lidocaine 2% (200 nL) or CoCl(2) (1 mM/200 nL) into the PL or IL produced similar anticonflict effects, increasing the number of punished licks. No responses were observed when lidocaine 2% was microinjected into vMPFC surrounding structures such as the cingulate cortex area 1, the corpus callosum and the tenia tecta. In control experiments the drugs did not change the number of unpunished licks nor had any effect in the tail-flick test. The present results, therefore, indicate that the vMPFC is involved in the behavioral responses elicited by punished stimuli.
Collapse
Affiliation(s)
- L B M Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, USP, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil.
| | | | | |
Collapse
|
26
|
Rubino T, Guidali C, Vigano D, Realini N, Valenti M, Massi P, Parolaro D. CB1 receptor stimulation in specific brain areas differently modulate anxiety-related behaviour. Neuropharmacology 2007; 54:151-60. [PMID: 17692344 DOI: 10.1016/j.neuropharm.2007.06.024] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 06/21/2007] [Accepted: 06/22/2007] [Indexed: 11/25/2022]
Abstract
There is a general consensus that the effects of cannabinoid agonists on anxiety seem to be biphasic, with low doses being anxiolytic and high doses ineffective or possibly anxiogenic. Besides the behavioural effects of cannabinoids on anxiety, very few papers have dealt with the neuroanatomical sites of these effects. We investigated the effect on rat anxiety behavior of local administration of THC in the prefrontal cortex, basolateral amygdala and ventral hippocampus, brain regions belonging to the emotional circuit and containing high levels of CB1 receptors. THC microinjected at low doses in the prefrontal cortex (10 microg) and ventral hippocampus (5 microg) induced in rats an anxiolytic-like response tested in the elevated plus-maze, whilst higher doses lost the anxiolytic effect and even seemed to switch into an anxiogenic profile. Low THC doses (1 microg) in the basolateral amygdala produced an anxiogenic-like response whereas higher doses were ineffective. All these effects were CB1-dependent and closely linked to modulation of CREB activation. Specifically, THC anxiolytic activity in the prefrontal cortex and ventral hippocampus was paralleled by an increase in CREB activation, whilst THC anxiogenic response in the basolateral amygdala was paralleled by a decrease in CREB activation. Our results suggest that while a mild activation of CB1 receptors in the prefrontal cortex and ventral hippocampus attenuates anxiety, a slight CB1 receptor stimulation in the amygdala results in an anxiogenic-like response. The molecular underpinnings of these effects involve a direct stimulation of CB1 receptors ending in pCREB modulation and/or a possible alteration in the fine tuning of local neuromodulator release.
Collapse
Affiliation(s)
- T Rubino
- DBSF, Pharmacology Section and Center of Neuroscience, University of Insubria, via A. da Giussano 10, 21052 Busto Arsizio (VA), Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Nguyen NK, Keck ME, Hetzenauer A, Thoeringer CK, Wurst W, Deussing JM, Holsboer F, Müller MB, Singewald N. Conditional CRF receptor 1 knockout mice show altered neuronal activation pattern to mild anxiogenic challenge. Psychopharmacology (Berl) 2006; 188:374-85. [PMID: 16953386 DOI: 10.1007/s00213-006-0513-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 07/07/2006] [Indexed: 10/24/2022]
Abstract
RATIONALE Regional-specific corticotropin-releasing factor receptor 1 (CRF-R1) knockout mice have been generated recently as a tool to dissociate CNS functions modulated by this receptor. In these mice, CRF-R1 function is postnatally inactivated in the anterior forebrain including limbic brain structures but not in the pituitary leading to normal activity of the hypothalamic-pituitary-adrenocortical (HPA) axis under basal conditions and reduced anxiety-related behavior in the light-dark box and the elevated plus maze (EPM) as compared to wild-type (WT) mice (Müller et al., Nat Neurosci 6:1100-1107, 2003). OBJECTIVE To identify neurobiological correlates underlying this reduced anxiety-like behavior, the expression of c-Fos, an established marker for neuronal activation, which was examined in response to a mild anxiogenic challenge. MATERIALS AND METHODS Mice were placed for 10 min on the open arm (OA) of the EPM, and regional c-Fos expression was investigated by immunohistochemistry. RESULTS OA exposure enhanced c-Fos expression in both conditional CRF-R1 knockout and WT mice in a number of brain areas (39 of 55 quantified), including cortical, limbic, thalamic, hypothalamic, and hindbrain regions. The c-Fos response in conditional CRF-R1 knockout animals was reduced in a restricted subset of activated neurons (4 out of 39 regions) located in the medial amygdala, ventral lateral septum, prelimbic cortex, and dorsomedial hypothalamus. CONCLUSIONS These results underline the importance of limbic CRF-R1 in modulating anxiety-related behavior and suggest that reduced neuronal activation in the identified limbic and hypothalamic key structures of the anxiety circuitry may mediate or contribute to the anxiolytic-like phenotype observed in mice with region-specific deletion of forebrain CRF-R1.
Collapse
MESH Headings
- Amygdala/anatomy & histology
- Amygdala/metabolism
- Animals
- Anxiety Disorders/genetics
- Anxiety Disorders/physiopathology
- Behavior, Animal/physiology
- Hypothalamus, Posterior/anatomy & histology
- Hypothalamus, Posterior/metabolism
- Immunohistochemistry
- Male
- Maze Learning/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Models, Anatomic
- Neurons/metabolism
- Neurons/physiology
- Prefrontal Cortex/anatomy & histology
- Prefrontal Cortex/metabolism
- Proto-Oncogene Proteins c-fos/biosynthesis
- Receptors, Corticotropin-Releasing Hormone/deficiency
- Receptors, Corticotropin-Releasing Hormone/genetics
- Receptors, Corticotropin-Releasing Hormone/physiology
- Septal Nuclei/anatomy & histology
- Septal Nuclei/metabolism
- Time Factors
Collapse
Affiliation(s)
- Ngoc Khoi Nguyen
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Peter-Mayrstr. 1, 6020, Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pecoraro N, Dallman MF, Warne JP, Ginsberg AB, Laugero KD, la Fleur SE, Houshyar H, Gomez F, Bhargava A, Akana SF. From Malthus to motive: how the HPA axis engineers the phenotype, yoking needs to wants. Prog Neurobiol 2006; 79:247-340. [PMID: 16982128 DOI: 10.1016/j.pneurobio.2006.07.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 07/17/2006] [Accepted: 07/24/2006] [Indexed: 01/28/2023]
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis is the critical mediator of the vertebrate stress response system, responding to environmental stressors by maintaining internal homeostasis and coupling the needs of the body to the wants of the mind. The HPA axis has numerous complex drivers and highly flexible operating characterisitics. Major drivers include two circadian drivers, two extra-hypothalamic networks controlling top-down (psychogenic) and bottom-up (systemic) threats, and two intra-hypothalamic networks coordinating behavioral, autonomic, and neuroendocrine outflows. These various networks jointly and flexibly control HPA axis output of periodic (oscillatory) functions and a range of adventitious systemic or psychological threats, including predictable daily cycles of energy flow, actual metabolic deficits over many time scales, predicted metabolic deficits, and the state-dependent management of post-prandial responses to feeding. Evidence is provided that reparation of metabolic derangement by either food or glucocorticoids results in a metabolic signal that inhibits HPA activity. In short, the HPA axis is intimately involved in managing and remodeling peripheral energy fluxes, which appear to provide an unidentified metabolic inhibitory feedback signal to the HPA axis via glucocorticoids. In a complementary and perhaps a less appreciated role, adrenocortical hormones also act on brain to provide not only feedback, but feedforward control over the HPA axis itself and its various drivers, as well as coordinating behavioral and autonomic outflows, and mounting central incentive and memorial networks that are adaptive in both appetitive and aversive motivational modes. By centrally remodeling the phenotype, the HPA axis provides ballistic and predictive control over motor outflows relevant to the type of stressor. Evidence is examined concerning the global hypothesis that the HPA axis comprehensively induces integrative phenotypic plasticity, thus remodeling the body and its governor, the brain, to yoke the needs of the body to the wants of the mind. Adverse side effects of this yoking under conditions of glucocorticoid excess are discussed.
Collapse
Affiliation(s)
- Norman Pecoraro
- Department of Physiology, University of California, San Francisco, CA 94143-0444, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
McDougall SJ, Widdop RE, Lawrence AJ. Central autonomic integration of psychological stressors: Focus on cardiovascular modulation. Auton Neurosci 2005; 123:1-11. [PMID: 16289941 DOI: 10.1016/j.autneu.2005.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 07/14/2005] [Accepted: 09/28/2005] [Indexed: 02/04/2023]
Abstract
During stress the sympathoadrenal system and the hypothalamo-pituitary-adrenal axis act in a coordinated manner to force changes within an animal's current physiological and behavioral state. Such changes have been described as 'fight flight' or stress responses. The central nervous system may generate a stress response by different neural circuits, this being dependent upon the type of stressor presented. For instance, the central control of the autonomic function during physical stress would seem to be based on existing homeostatic mechanisms. In contrast, with exposure to psychological stress the means by which autonomic outflow is regulated has not been fully established. This review discusses recent observations of autonomic flow, cardiovascular components in particular, during psychological stress and the possible implications these may have for our understanding of the central nervous system. In addition, an update of recent findings concerning several regions thought to be important to the regulation of autonomic function during psychological stress exposure is provided.
Collapse
Affiliation(s)
- Stuart J McDougall
- Howard Florey Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
30
|
Burow A, Day HE, Campeau S. A detailed characterization of loud noise stress: Intensity analysis of hypothalamo-pituitary-adrenocortical axis and brain activation. Brain Res 2005; 1062:63-73. [PMID: 16256084 PMCID: PMC2409188 DOI: 10.1016/j.brainres.2005.09.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 09/15/2005] [Accepted: 09/25/2005] [Indexed: 11/26/2022]
Abstract
The present studies were undertaken to help determine the putative neural circuits mediating activation of the hypothalamo-pituitary-adrenocortical (HPA) axis and the release of adrenocorticotropin hormone (ACTH) and corticosterone in response to the perceived threat of loud noise. This experiment involved placing rats in acoustic chambers overnight to avoid any handling and context changes prior to noise exposure, which was done for 30 min (between 9:00 and 10:00 am) at intensities of 80, 85, 90, 95, 100, 105, and 110 dBA in different groups (n = 8), and included a background condition (60 dBA ambient noise). This manipulation produced a noise-intensity-related increase in plasma ACTH and corticosterone levels, with levels beginning to rise at approximately 85 dBA. c-fos mRNA induction was very low in the brains of the control and 80 dBA groups, but several brain regions displayed a noise-intensity-related induction. Of these, several forebrain regions displayed c-fos mRNA induction highly correlated (r > 0.70) with that observed in the paraventricular hypothalamic nucleus and plasma ACTH levels. These regions included the ventrolateral septum, the anteroventral subiculum, several preoptic nuclei, the anterior bed nucleus of the stria terminalis (BNST), the anterior paraventricular nucleus of the thalamus, and the medial subdivision of the medial geniculate body. Together with prior findings with audiogenic stress, the present results suggest that either or both the anterior BNST or the lateral septum is ideally situated to trigger HPA axis activation by stimuli that are potentially threatening.
Collapse
Affiliation(s)
| | | | - Serge Campeau
- Corresponding author. Fax: +1 303 492 2967. E-mail address: (S. Campeau)
| |
Collapse
|
31
|
Role of prefrontal cortex in stress responsivity. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0921-0709(05)80043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
32
|
Wall PM, Blanchard RJ, Yang M, Blanchard DC. Differential effects of infralimbic vs. ventromedial orbital PFC lidocaine infusions in CD-1 mice on defensive responding in the mouse defense test battery and rat exposure test. Brain Res 2004; 1020:73-85. [PMID: 15312789 DOI: 10.1016/j.brainres.2004.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2004] [Indexed: 11/23/2022]
Abstract
The ventromedial prefrontal cortex (vmPFC) is extremely sensitive to a variety of stressful situations and threatening events, and has been suggested to be an associative cortical brain system processing the integration of anxiety-related cognitive, affective and motivated behavior in rodents, primates and humans. In addition, recent evidence suggests that (a) anxiety-related affective processing appears to be lateralized to the right hemisphere vmPFC; and (b) there appears to be functional heterogeneity within the rodent vmPFC. The present study evaluated the possibility that distinct sub-areas of the right hemisphere ventral PFC might differentially influence anxiety-like defensive responding in two different predator stress situations following transient inactivation of the ventromedial orbital (vMO) or infralimbic (IL) vmPFC in CD-1 mice. In week 1, IL vmPFC lidocaine infusions reduced anxiety-like defensive responding in mice (enhanced approach and contact) confronted with a hand-held anesthetized rat stimulus in the mouse defense test battery (vMO inactivation exerted minimal effects). In week 2, vMO lidocaine infusions enhanced anxiety-like defensive responding (enhanced avoidance and protected risk assessment) toward a barricaded live rat in the rat exposure test (IL inactivation exerted minimal effects). Although it is unclear whether week 1 mouse defense test battery testing influenced week 2 rat exposure test results, these preliminary data suggest functional differences within the mouse right hemisphere ventral PFC related to cautious evaluation of predator threat. Given the dense unilateral reciprocal connectivity between the IL and vMO subregions of the PFC, both associative ventromedial cortical areas may exert complimentary yet dissociable roles in the processing of threat stimuli. This suggests that while the IL vmPFC may mediate cautious evaluation of threat situations (risk assessment), the vMO PFC may inhibit prepotent avoidance responses to facilitate such IL-mediated adaptive behavioral responses.
Collapse
Affiliation(s)
- P M Wall
- Institute of Neuroscience, Life Sciences Research Building, Carleton University, Ottawa, Canada K1S 5B6.
| | | | | | | |
Collapse
|
33
|
Perrotti LI, Hadeishi Y, Ulery PG, Barrot M, Monteggia L, Duman RS, Nestler EJ. Induction of deltaFosB in reward-related brain structures after chronic stress. J Neurosci 2004; 24:10594-602. [PMID: 15564575 PMCID: PMC6730117 DOI: 10.1523/jneurosci.2542-04.2004] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 09/14/2004] [Accepted: 09/14/2004] [Indexed: 11/21/2022] Open
Abstract
Acute and chronic stress differentially regulate immediate-early gene (IEG) expression in the brain. Although acute stress induces c-Fos and FosB, repeated exposure to stress desensitizes the c-Fos response, but FosB-like immunoreactivity remains high. Several other treatments differentially regulate IEG expression in a similar manner after acute versus chronic exposure. The form of FosB that persists after these chronic treatments has been identified as DeltaFosB, a splice variant of the fosB gene. This study was designed to determine whether the FosB form induced after chronic stress is also DeltaFosB and to map the brain regions and identify the cell populations that exhibit this effect. Western blotting, using an antibody that recognizes all Fos family members, revealed that acute restraint stress caused robust induction of c-Fos and full-length FosB, as well as a small induction of DeltaFosB, in the frontal cortex (fCTX) and nucleus accumbens (NAc). The induction of c-Fos (and to some extent full-length FosB) was desensitized after 10 d of restraint stress, at which point levels of DeltaFosB were high. A similar pattern was observed after chronic unpredictable stress. By use of immunohistochemistry, we found that chronic restraint stress induced DeltaFosB expression predominantly in the fCTX, NAc, and basolateral amygdala, with lower levels of induction seen elsewhere. These findings establish that chronic stress induces DeltaFosB in several discrete regions of the brain. Such induction could contribute to the long-term effects of stress on the brain.
Collapse
Affiliation(s)
- Linda I Perrotti
- Department of Psychiatry and Center for Basic Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
McDougall SJ, Widdop RE, Lawrence AJ. Medial prefrontal cortical integration of psychological stress in rats. Eur J Neurosci 2004; 20:2430-40. [PMID: 15525283 DOI: 10.1111/j.1460-9568.2004.03707.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study aimed to determine whether the medial prefrontal cortex (mPFC) (prelimbic and infralimbic regions) is implicated in the integration of a stress response. Sprague-Dawely rats were implanted with telemetry probes and guide cannulae so that either muscimol or vehicle could be administered locally within the mPFC or dorsomedial hypothalamus (DMH). The heart rate and blood pressure of rats was continuously recorded as either muscimol or vehicle was administered centrally and rats were either exposed to restraint stress or left alone in their home cages. After the stress challenge, or equivalent period, rats that had received intra-mPFC injections were processed for immunohistochemical detection of Fos throughout the neuraxis. Bilateral microinjection of muscimol into the mPFC had no effect upon either baseline cardiovascular parameters or restraint stress-induced tachycardia or pressor responses whereas, in the DMH, pretreatment with muscimol attenuated the cardiovascular stress response. Analysis of Fos expression throughout the CNS of nonstressed rats showed no effect of muscimol injections into the mPFC on baseline expression in the nuclei examined. In contrast, rats that had received muscimol injections into their mPFC and were subsequently restrained exhibited an increase in the number of Fos-positive cells in the DMH, medial amygdala, and medial nucleus tractus solitarius as compared to vehicle-injected rats that experienced restraint stress. These results indicate that, during acute psychological stress, the mPFC does not modulate the cardiovascular system in rats but does inhibit specific subcortical nuclei to exert control over aspects of an integrated response to a stressor.
Collapse
Affiliation(s)
- S J McDougall
- Department of Pharmacology, Monash University, Victoria 3800, Australia
| | | | | |
Collapse
|
35
|
Kalisch R, Salomé N, Platzer S, Wigger A, Czisch M, Sommer W, Singewald N, Heilig M, Berthele A, Holsboer F, Landgraf R, Auer DP. High trait anxiety and hyporeactivity to stress of the dorsomedial prefrontal cortex: a combined phMRI and Fos study in rats. Neuroimage 2004; 23:382-91. [PMID: 15325386 DOI: 10.1016/j.neuroimage.2004.06.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 05/28/2004] [Accepted: 06/05/2004] [Indexed: 10/26/2022] Open
Abstract
The neural basis of trait anxiety is poorly understood. In genetically selected hyperanxious (high anxiety-related behavior; HAB) rats, diazepam induces a stronger anxiolytic response than in hypoanxious (low anxiety-related behavior; LAB) rats. A screen for neuronal response differences to diazepam between HAB and LAB rats using pharmacologic fMRI (phMRI) at 7 T revealed a blunted diazepam-induced neuronal deactivation in the dorsomedial prefrontal cortex (dmPFC) of HABs. This was not due to reduced benzodiazepine (BDZ) receptor densities in this region. Instead, dmPFC tissue oxygenation at baseline was found to be significantly lower in HABs. This suggests a tonic relative hypoactivity under the highly stressful phMRI conditions, offering an explanation for the reduced responsivity to the neural depressant effect of diazepam in the sense of a floor effect. Subsequently, Fos immunoreactivity (Fos-IR) showed that ethologically relevant stressors also cause less dmPFC activation in HABs. In the context of an anxiety-inhibiting role of the dmPFC, we propose that failure to sufficiently activate this region in stressful situations may contribute to high trait anxiety.
Collapse
Affiliation(s)
- Raffael Kalisch
- NMR Study Group, Max-Planck-Institute of Psychiatry, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The prefrontal cortex (PFC) is known to play an important role not only in the regulation of emotion, but in the integration of affective states with appropriate modulation of autonomic and neuroendocrine stress regulatory systems. The present review highlights findings in the rat which helps to elucidate the complex nature of prefrontal involvement in emotion and stress regulation. The medial PFC is particularly important in this regard and while dorsomedial regions appear to play a suppressive role in such regulation, the ventromedial (particularly infralimbic) region appears to activate behavioral, neuroendocrine and sympathetic autonomic systems in response to stressful situations. This may be especially true of spontaneous stress-related behavior or physiological responses to relatively acute stressors. The role of the medial PFC is somewhat more complex in conditions involving learned adjustments to stressful situations, such as the extinction of conditioned fear responses, but it is clear that the medial PFC is important in incorporating stressful experience for future adaptive behavior. It is also suggested that mesocortical dopamine plays an important adaptive role in this region by preventing excessive behavioral and physiological stress reactivity. The rat brain shows substantial hemispheric specialization in many respects, and while the right PFC is normally dominant in the activation of stress-related systems, the left may play a role in countering this activation through processes of interhemispheric inhibition. This proposed basic template for the lateralization of stress regulatory systems is suggested to be associated with efficient stress and emotional self-regulation, and also to be shaped by both early postnatal experience and gender differences.
Collapse
Affiliation(s)
- R M Sullivan
- Department of Psychiatry, University of Montreal, Canada.
| |
Collapse
|
37
|
Salomé N, Salchner P, Viltart O, Sequeira H, Wigger A, Landgraf R, Singewald N. Neurobiological correlates of high (HAB) versus low anxiety-related behavior (LAB): differential Fos expression in HAB and LAB rats. Biol Psychiatry 2004; 55:715-23. [PMID: 15039000 DOI: 10.1016/j.biopsych.2003.10.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 10/10/2003] [Accepted: 10/28/2003] [Indexed: 11/17/2022]
Abstract
BACKGROUND Two Wistar rat lines selectively bred for either high (HAB) or low (LAB) anxiety-related behavior were used to identify neurobiological correlates of trait anxiety. METHODS We used Fos expression for mapping of neuronal activation patterns in response to mild anxiety-provoking challenges. RESULTS In both lines, exposure to an open field (OF) or the open arm (OA) of an elevated plus-maze induced Fos expression in several brain areas of the anxiety/fear circuitry. Rats of the HAB type, which showed signs of a hyperanxious phenotype and a hyperreactive hypothalamic-pituitary-adrenal axis compared with LAB rats, exhibited a higher number of Fos-positive cells in the paraventricular nucleus of the hypothalamus, the lateral and anterior hypothalamic area, and the medial preoptic area in response to both OA and OF. Less Fos expression was induced in the cingulate cortex in HAB than in LAB rats. Differential Fos expression in response to either OA or OF was observed in few brain regions, including the thalamus and hippocampus. CONCLUSIONS The present data indicate that the divergent anxiety-related behavioral response of HAB versus LAB rats to OF and OA exposures is associated with differential neuronal activation in restricted parts of the anxiety/fear circuitry. Distinct hypothalamic regions displayed hyperexcitability, and the cingulate cortex showed hypoexcitability, which suggests that they are main candidate mediators of dysfunctional brain activation in pathologic anxiety.
Collapse
Affiliation(s)
- Nicolas Salomé
- Laboratoire de Stress Périnatal, Université de Lille 1, Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Ostrander MM, Richtand NM, Herman JP. Stress and amphetamine induce Fos expression in medial prefrontal cortex neurons containing glucocorticoid receptors. Brain Res 2004; 990:209-14. [PMID: 14568346 DOI: 10.1016/j.brainres.2003.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exposure to stress or amphetamine potently activates the immediate early gene, c-fos, within medial prefrontal cortex neurons, but the phenotype of these neurons is not known. Fluorescence immunohistochemistry was used to determine that a large subpopulation of medial prefrontal cortex cells expressing Fos protein after restraint and amphetamine also co-express nuclear glucocorticoid receptors (GRs). These findings suggest exposure to amphetamine activates the same medial prefrontal cortex regions responsible for integration of responses to stress, and suggest the potential for AP1-glucocorticoid cross-talk in these cell populations.
Collapse
Affiliation(s)
- Michelle M Ostrander
- Department of Psychiatry, University of Cincinnati, Med. Sci. Bldg., Rm. G551, 231 Albert Sabin Way, Cincinnati, OH 45267-0559, USA.
| | | | | |
Collapse
|
39
|
Shah AA, Treit D. Infusions of midazolam into the medial prefrontal cortex produce anxiolytic effects in the elevated plus-maze and shock-probe burying tests. Brain Res 2004; 996:31-40. [PMID: 14670628 DOI: 10.1016/j.brainres.2003.10.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous research has shown that lesions of the medial prefrontal cortex (MPFC) inhibit fear-related behavior in rats (Brain Res. 969 (2003) 183-194). However, at present little is known about the role of specific neurotransmitter receptor systems within the MPFC in the mediation of fear and anxiety. For example, extensive research has demonstrated the effectiveness of benzodiazepines in decreasing fear-related behavior. However, no research has yet been published regarding the effects of micro-infusions of benzodiazepines, or any other GABA-A receptor agonist, into the MPFC. In addition, previous work has suggested that there may be functional differences between the dorsal and ventral subregions of the MPFC in regard to fear and anxiety. Therefore, the present study examined the effects of dorsal and ventral MPFC infusions of the benzodiazepine midazolam in two well-validated animal models of anxiety, the elevated plus maze and the shock probe burying test. The results showed that bilateral (5 microg/side) infusions of midazolam into the MPFC produced anxiolytic effects in both behavioural tests, without affecting general activity or pain sensitivity. Furthermore, these anxiolytic effects were found in both the dorsal and ventral regions of the MPFC. The present findings indicate that the benzodiazepine receptors of the MPFC are capable of modulating fear-related behaviors.
Collapse
Affiliation(s)
- Akeel A Shah
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, T6G 2E9, Edmonton, AB, Canada.
| | | |
Collapse
|
40
|
Westenbroek C, Den Boer JA, Ter Horst GJ. Gender-specific effects of social housing on chronic stress-induced limbic Fos expression. Neuroscience 2003; 121:189-99. [PMID: 12946711 DOI: 10.1016/s0306-4522(03)00367-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Stress plays an important role in the development of affective disorders. Women show a higher prevalence for these disorders then men. The course of a depressive episode is thought to be positively influenced by social support. We have used a chronic mild stress model in which rats received footshocks daily for 3 weeks. Since rats are social animals we hypothesised that social housing, as a possible model for human social support, might reduce the adverse effects of chronic stress. Brain activity after chronic stress was measured in several limbic brain areas with the neuronal activation marker c-fos. High behavioural activity due to housing rats under reversed light-dark conditions could be responsible for the observed high within group variability in some limbic regions. FOS- (ir) in the paraventricular nucleus of the hypothalamus (PVN) was increased in all stress-exposed groups, except for the socially housed females who showed increased FOS-ir in control condition. Individually housed males and socially housed females showed increased FOS-ir in the dorsal raphe (DRN). Amygdala nuclei were differentially affected by stress, gender and housing conditions. Also the mesolimbic dopaminergic system showed gender specific responses to stress and housing conditions. These results indicate that social support can enhance stress coping in female rats, whereas in males rats, group housing appears to increase the adverse effects of chronic stress, although the neurobiological mechanism is not simply a reduction or enhancement of stress-induced brain activation.
Collapse
Affiliation(s)
- C Westenbroek
- Department of Psychiatry, Graduate school of Behavioral Cognitive Neurosciences, University of Groningen, Hanzeplein 1, PO box 30.001, 9700, Groningen, The Netherlands.
| | | | | |
Collapse
|
41
|
Heidbreder CA, Groenewegen HJ. The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 2003; 27:555-79. [PMID: 14599436 DOI: 10.1016/j.neubiorev.2003.09.003] [Citation(s) in RCA: 644] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The prefrontal cortex in rats can be distinguished anatomically from other frontal cortical areas both in terms of cytoarchitectonic characteristics and neural connectivity, and it can be further subdivided into subterritories on the basis of such criteria. Functionally, the prefrontal cortex of rats has been implicated in working memory, attention, response initiation and management of autonomic control and emotion. In humans, dysfunction of prefrontal cortical areas with which the medial prefrontal cortex of the rat is most likely comparable is related to psychopathology including schizophrenia, sociopathy, obsessive-compulsive disorder, depression, and drug abuse. Recent literature points to the relevance of conducting a functional analysis of prefrontal subregions and supports the idea that the area of the medial prefrontal cortex in rats is characterized by its own functional heterogeneity, which may be related to neuroanatomical and neurochemical dissociations. The present review covers recent findings with the intent of correlating these distinct functional differences in the dorso-ventral axis of the rat medial prefrontal cortex with anatomical and neurochemical patterns.
Collapse
Affiliation(s)
- Christian A Heidbreder
- Department of Biology, Centre of Excellence for Drug Discovery in Psychiatry, GlaxoSmithKline Pharmaceuticals, Via A Fleming 4, 37135 Verona, Italy.
| | | |
Collapse
|
42
|
Abstract
Fear is an adaptive component of the acute "stress" response to potentially-dangerous (external and internal) stimuli which threaten to perturb homeostasis. However, when disproportional in intensity, chronic and/or irreversible, or not associated with any genuine risk, it may be symptomatic of a debilitating anxious state: for example, social phobia, panic attacks or generalized anxiety disorder. In view of the importance of guaranteeing an appropriate emotional response to aversive events, it is not surprising that a diversity of mechanisms are involved in the induction and inhibition of anxious states. Apart from conventional neurotransmitters, such as monoamines, gamma-amino-butyric acid (GABA) and glutamate, many other modulators have been implicated, including: adenosine, cannabinoids, numerous neuropeptides, hormones, neurotrophins, cytokines and several cellular mediators. Accordingly, though benzodiazepines (which reinforce transmission at GABA(A) receptors), serotonin (5-HT)(1A) receptor agonists and 5-HT reuptake inhibitors are currently the principle drugs employed in the management of anxiety disorders, there is considerable scope for the development of alternative therapies. In addition to cellular, anatomical and neurochemical strategies, behavioral models are indispensable for the characterization of anxious states and their modulation. Amongst diverse paradigms, conflict procedures--in which subjects experience opposing impulses of desire and fear--are of especial conceptual and therapeutic pertinence. For example, in the Vogel Conflict Test (VCT), the ability of drugs to release punishment-suppressed drinking behavior is evaluated. In reviewing the neurobiology of anxious states, the present article focuses in particular upon: the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research. In view of the recent proliferation of mechanisms implicated in the pathogenesis, modulation and, potentially, treatment of anxiety disorders, this is an opportune moment to survey their functional and pathophysiological significance, and to assess their influence upon performance in the VCT and other models of potential anxiolytic properties.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Centre de Rescherches de Croissy, Institut de Recherches (IDR) Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| |
Collapse
|
43
|
Shah AA, Treit D. Excitotoxic lesions of the medial prefrontal cortex attenuate fear responses in the elevated-plus maze, social interaction and shock probe burying tests. Brain Res 2003; 969:183-94. [PMID: 12676379 DOI: 10.1016/s0006-8993(03)02299-6] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous research investigating the effects of medial prefrontal cortex (MPFC) lesions on fear- and anxiety-related behavior has yielded an inconsistent body of findings. Behavioral studies have reported increases, decreases, and no effect on anxiety. In addition, many studies are complicated by the use of lesioning techniques that destroy fibers of passage, and the use of conditioned fear tests, which may introduce the confounding effects of learning and memory. Therefore, the present study examined the effects of ibotenic acid lesions of the MPFC (including prelimbic, infralimbic and anterior cingulate) on three wide-ranging and well-validated behavioral assays of anxiety: the elevated plus maze (EPM), social interaction (SI) and the shock-probe tests (SP). In the EPM test, lesioned rats showed a significantly higher percentage of open arm entries and open arm time than controls. In a version of the SI test sensitive to anxiolytic effects, lesioned rats were found to spend a significantly greater amount of time in active interaction with a conspecific; while another version of the SI test sensitive to anxiogenic effects did not show any differences between lesioned and non-lesioned controls. In the SP test, lesioned rats exhibited significantly lower rates of burying. In contrast, retention of shock probe avoidance was not affected. No effects of lesions on measures of locomotor activity or shock reactivity were found. The concordant anxiolytic-like effects found in the three behavioral assays strongly suggests a general reduction in fear responsiveness in MPFC lesioned rats.
Collapse
Affiliation(s)
- Akeel A Shah
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, AB, T6H 2E9, Edmonton, Canada
| | | |
Collapse
|
44
|
Millan MJ, Brocco M. The Vogel conflict test: procedural aspects, gamma-aminobutyric acid, glutamate and monoamines. Eur J Pharmacol 2003; 463:67-96. [PMID: 12600703 DOI: 10.1016/s0014-2999(03)01275-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A multitude of mechanisms are involved in the control of emotion and in the response to stress. These incorporate mediators/targets as diverse as gamma-aminobutyric acid (GABA), excitatory amino acids, monoamines, hormones, neurotrophins and various neuropeptides. Behavioural models are indispensable for characterization of the neuronal substrates underlying their implication in the etiology of anxiety, and of their potential therapeutic pertinence to its management. Of considerable significance in this regard are conflict paradigms in which the influence of drugs upon conditioned (trained) behaviours is examined. For example, the Vogel conflict test, which was introduced some 30 years ago, measures the ability of drugs to release the drinking behaviour of water-deprived rats exposed to a mild aversive stimulus ("punishment"). This model, of which numerous procedural variants are discussed herein, has been widely used in the evaluation of potential anxiolytic agents. In particular, it has been exploited in the characterization of drugs interacting with GABAergic, glutamatergic and monoaminergic networks, the actions of which in the Vogel conflict test are summarized in this article. More recently, the effects of drugs acting at neuropeptide receptors have been examined with this model. It is concluded that the Vogel conflict test is of considerable utility for rapid exploration of the actions of anxiolytic (and anxiogenic) drugs. Indeed, in view of its clinical relevance, broader exploitation of the Vogel conflict test in the identification of novel classes of anxiolytic agents, and in the determination of their mechanisms of action, would prove instructive.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| | | |
Collapse
|
45
|
Abstract
Mice (C57BL/6J strain, females) with cytotoxic lesions of the medial wall of the prefrontal cortex were given a battery of tests to assess emotional, species-typical, cognitive, motor and other behaviours. Lesioned mice showed a profile of reduced anxiety, both on a plus-maze, and a similar, novel test, the successive alleys. There was no evidence, however, for attenuation of anxiety in tests of hyponeophagia, and lesioned mice, like controls, preferred the black to the white area of an enclosed alley. Their locomotor activity tended to be higher than that of the controls, particularly when the test surroundings were novel or relatively so. Species-typical behaviours were similar to those of control mice, except lesioned mice displaced ('burrowed') less food pellets from a tube in their home cage. They were not impaired at learning a spatial Y-maze reference memory task, which is profoundly affected by cytotoxic hippocampal lesions in the same strain, or at learning a multi-trial passive avoidance test. Their strength and co-ordination in motor performance tests was also normal. The results show that cytotoxic medial prefrontal cortex lesions in mice produce a clear but restricted anxiolytic action. The marked reduction in burrowing, in the absence of any detectable impairment of motor ability, demonstrates the sensitivity of this behavioural index.
Collapse
Affiliation(s)
- Robert M J Deacon
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3UD, United Kingdom.
| | | | | |
Collapse
|
46
|
Redmond AJ, Morrow BA, Elsworth JD, Roth RH. Selective activation of the A10, but not A9, dopamine neurons in the rat by the predator odor, 2,5-dihydro-2,4,5-trimethylthiazoline. Neurosci Lett 2002; 328:209-12. [PMID: 12147308 DOI: 10.1016/s0304-3940(02)00566-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
2,5-Dihydro-2,4,5-trimethylthiazoline (TMT), a predator odor, has many similar attributes to classic stresses, including activation of cortical dopamine (DA) turnover. Here, we report that exposure to TMT resulted in the expression of c-fos, an immediate-early gene, in A10, but not A9, DA neurons using immunocytochemical techniques. The magnitude of TMT-associated Fos expression was less than that seen with intermittent, mild footshock. Exposure to the control odor, butyric acid, did not result in the increase of expression of Fos protein. Fos is thought to be involved with long-term changes in a neuron's structure and function that may underlie learning by altering the expression of other genes with AP-1 sites. Exposure to TMT may result in alterations in the A10 neurons that could contribute to an altered response to subsequent stresses.
Collapse
Affiliation(s)
- Andy J Redmond
- Laboratory of Neuropsychopharmacology, Yale University School of Medicine, 333 Cedar Street, 06520-8066, New Haven, CT, USA
| | | | | | | |
Collapse
|
47
|
Sullivan RM, Gratton A. Prefrontal cortical regulation of hypothalamic-pituitary-adrenal function in the rat and implications for psychopathology: side matters. Psychoneuroendocrinology 2002; 27:99-114. [PMID: 11750772 DOI: 10.1016/s0306-4530(01)00038-5] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In recent years, dysfunction of hypothalamic-pituitary-adrenal (HPA) axis function has been implicated in a wide variety of psychiatric conditions. The importance of this system in responding to and coping with stress is well documented, and the integrity of such systems is of obvious significance to good mental health. The prefrontal cortex (PFC) is also heavily implicated in numerous psychopathological conditions. There is thus a growing interest in the potential role the PFC might play in regulating HPA function, and whether abnormalities of these systems are linked. The present paper reviews a number of recent animal studies which have attempted to elucidate the role of the PFC in regulation of HPA axis function, and how these systems may interact. It is concluded that the PFC is involved both in activating HPA responses to stress and in the negative feedback regulation of this system. Cerebral laterality is an important feature of this regulation, with the right PFC being most directly linked to stress-regulatory systems. On this basis, a number of parallels are drawn to the human literature, where asymmetrical disturbances in PFC activity may help explain associated patterns of HPA dysfunction.
Collapse
Affiliation(s)
- Ron M Sullivan
- Douglas Hospital Research Centre, Dept. Psychiatry, McGill University, Québec, Montréal, Canada.
| | | |
Collapse
|
48
|
Gifkins A, Greba Q, Kokkinidis L. Ventral tegmental area dopamine neurons mediate the shock sensitization of acoustic startle: A potential site of action for benzodiazepine anxiolytics. Behav Neurosci 2002. [DOI: 10.1037/0735-7044.116.5.785] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Morrow BA, Elsworth JD, Roth RH. Prenatal exposure to cocaine reduces the number and enhances reactivity of A10 dopaminergic neurons to environmental stress. Synapse 2001; 41:337-44. [PMID: 11494404 DOI: 10.1002/syn.1090] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prenatal exposure to cocaine has been shown to result in poor cognitive performance in the resulting offspring in humans and laboratory animals. The underlying biochemical changes that contribute to these behavioral effects are not known but have been proposed to involve changes in dopaminergic function. In these studies, we exposed rats to cocaine in utero using the clinically relevant intravenous model and report a mean loss of 24.8% of the tyrosine hydroxylase immunoreactive, presumed dopaminergic, neurons in the A10, but not A9 and A8, cell groups of the young adult offspring. Additionally, in prenatal cocaine-exposed rats dopaminergic neurons in the ventral, midline A10, and lateral A9 regions demonstrated a hyperreactivity to environmental stress, as measured by activation of the immediate-early gene, Fos. Mild, intermittent footshock did not further increase the number of dopamine neurons expressing Fos in prenatal cocaine-exposed rats, as it did in the prenatal saline controls. Because the exposure to cocaine took place during development, other potential changes in dopaminergic and nondopaminergic neuronal systems could result from the cocaine-induced reduction in numbers of A10 dopamine neurons. We hypothesize that a perinatal loss of A10 dopamine neurons, and subsequent developmental changes, contributes to a dysregulation of the adult mesoprefrontal system, resulting in the reported cognitive deficits.
Collapse
Affiliation(s)
- B A Morrow
- Department of Pharmacology, Laboratory of Neuropsychopharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA.
| | | | | |
Collapse
|