1
|
Pretreatment with Fish Oil-Based Lipid Emulsion Modulates Muscle Leukocyte Chemotaxis in Murine Model of Sublethal Lower Limb Ischemia. Mediators Inflamm 2017; 2017:4929346. [PMID: 28182087 PMCID: PMC5274663 DOI: 10.1155/2017/4929346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/22/2016] [Indexed: 01/02/2023] Open
Abstract
This study investigated the effects of a fish oil- (FO-) based lipid emulsion on muscle leukocyte chemotaxis and inflammatory responses in a murine model of limb ischemia-reperfusion (IR) injury. Mice were assigned randomly to 1 sham (sham) group, 2 ischemic groups, and 2 IR groups. The sham group did not undergo the ischemic procedure. The mice assigned to the ischemic or IR groups were pretreated intraperitoneally with either saline or FO-based lipid emulsion for 3 consecutive days. The IR procedure was induced by applying a 4.5 oz orthodontic rubber band to the left thigh above the greater trochanter for 120 min and then cutting the band to allow reperfusion. The ischemic groups were sacrificed immediately while the IR groups were sacrificed 24 h after reperfusion. Blood, IR-injured gastrocnemius, and lung tissues were collected for analysis. The results showed that FO pretreatment suppressed the local and systemic expression of several IR-induced proinflammatory mediators. Also, the FO-pretreated group had lower blood Ly6ChiCCR2hi monocyte percentage and muscle M1/M2 ratio than the saline group at 24 h after reperfusion. These findings suggest that FO pretreatment may have a protective role in limb IR injury by modulating the expression of proinflammatory mediators and regulating the polarization of macrophage.
Collapse
|
2
|
Shih YM, Shih JM, Pai MH, Hou YC, Yeh CL, Yeh SL. Glutamine Administration After Sublethal Lower Limb Ischemia Reduces Inflammatory Reaction and Offers Organ Protection in Ischemia/Reperfusion Injury. JPEN J Parenter Enteral Nutr 2015; 40:1122-1130. [PMID: 26059902 DOI: 10.1177/0148607115587949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/27/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study investigated the effects of intravenous glutamine (GLN) administration on the expression of adhesion molecules and inflammatory mediators in a mice model of hind limb ischemia/reperfusion (IR) injury. METHODS There were 3 IR groups and 1 normal control (NC) group. The NC group did not undergo the IR procedure. Mice in the IR groups underwent 90 minutes of limb ischemia followed by a variable period of reperfusion. Ischemia was performed by applying a 4.5-oz orthodontic rubber band to the left thigh. Mice in one IR group were sacrificed immediately after reperfusion. The other 2 IR groups were injected once with either 0.75 g GLN/kg body weight (G group) or an equal volume of saline (S group) via tail vein before reperfusion. Mice in the S and G groups were subdivided and sacrificed at 4 or 24 hours after reperfusion. RESULTS IR enhanced the inflammatory cytokine gene expressions in muscle. Also, plasma interleukin (IL)-6 levels, blood neutrophil percentage, and the adhesion molecule and chemokine receptors expressed by leukocytes were upregulated after reperfusion. The IR-induced muscle inflammatory mediator gene expressions, blood macrophage percentage, and plasma IL-6 concentration had declined at an early or a late phase of reperfusion when GLN was administered. Histologic findings also found that remote lung injury was attenuated during IR insult. CONCLUSIONS A single dose of GLN administration immediately after sublethal lower limb ischemia reduces the inflammatory reaction locally and systemically; this may offer local and distant organ protection in hind limb IR injury.
Collapse
Affiliation(s)
- Yao-Ming Shih
- School of Nutrition and Health Sciences, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Juey-Ming Shih
- School of Nutrition and Health Sciences, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Man-Hui Pai
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen Hou
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiu-Li Yeh
- Department of Nutrition and Health Sciences, Chinese Culture University, Taipei, Taiwan
| | - Sung-Ling Yeh
- School of Nutrition and Health Sciences, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Alipour M, Mohsen A, Gadiri-Soufi F, Farhad GS, Jafari MR, Mohammad-Reza J. Effect of aminoguanidine on sciatic functional index, oxidative stress, and rate of apoptosis in an experimental rat model of ischemia-reperfusion injury. Can J Physiol Pharmacol 2014; 92:1013-9. [PMID: 25391296 DOI: 10.1139/cjpp-2014-0315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was conducted to investigate the potential protective effects of aminoguanidine (AG) on sciatic functional index (SFI), oxidative stress status, and apoptosis index using a rat model of experimental sciatic nerve ischemia-reperfusion injury (I/R). Treatment groups received 150 mg AG/kg body mass, 24 h after the induction of ischemia. After reperfusion for 2, 4, 7, 14, and 28 days, we evaluated measured SFI, plasma antioxidant enzymes, total antioxidant capacity (TAC), malondialdehyde (MDA), and index of apoptosis. SFI was significantly improved on the 7th and 14th day of reperfusion in the AG-treated groups. AG treatment resulted in the significant reduction of MDA levels on the 7th and 14th day of reperfusion. TAC was only increased after 7 days of reperfusion compared with the untreated group. SOD activity was decreased in both the untreated and AG-treated groups by comparison with the control, but did not show a significant change. GPx activity decreased only after 7 days of reperfusion. The maximal rate of apoptosis occurred on the 7th day of reperfusion. Treatment with AG significantly reduced this enhancement. AG exhibits positive effects against sciatic nerve I/R injury, possibly in part because of the protective effects of AG against apoptosis and I/R-induced oxidative stress.
Collapse
Affiliation(s)
| | - Alipour Mohsen
- a Department of Physiology & Pharmacology, School of Medicine, Kramandan, Zanjan University of Medical Sciences, 4513956111, Islamic Republic of Iran
| | | | | | | | | |
Collapse
|
4
|
S-nitroso-N-acetylcysteine: a promising drug for early ischemia/reperfusion injury in rat liver. Transplant Proc 2011; 42:4491-5. [PMID: 21168722 DOI: 10.1016/j.transproceed.2010.09.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/11/2010] [Accepted: 09/28/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND/AIMS Ischemia-reperfusion (I/R) injury is among the major causes of poor graft function early after liver transplantation that adversely influences patient survival. A variety of mediators have been implicated in the pathogenesis of I/R vascular injury, including nitric oxide (NO). Because of the beneficial effects of NO during preconditioning and reperfusion, strategies to prevent or ameliorate I/R injury through the stimulation of hepatic NO production are an area of significant clinical interest. We evaluated the role of S-nitroso-N-acetylcysteine (SNAC) as an NO donor in the prevention of liver I/R injury in an animal model. METHODS Adult male Wistar rats were randomly assigned to 3 experimental groups containing 5 animals each: the University of Wisconsin (UW) solution group; SNAC solution group; and SNAC-containing UW solution (SNAC+UW) group. Aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) were determined in samples of the cold storage solution at 2, 4, and 6 hours of preservation. After 6 hours of cold storage, We applied a 15-minute reperfusion period. Thereafter, the reperfusion was interrupted with blood samples obtained to measure AST, ALT, LDH, and thiobarbituric acid reactive substances (TBARS). Hepatic fragments were processed for histologic analysis, and to determine of TBARS, catalase, and glutathione levels. RESULTS During cold preservation, AST and LDH were significantly lower among the SNAC than the UW group or the SNAC+UW group (P = .004 and P = .03, respectively). ALT was comparable among the groups (P = .3). After reperfusion, serum levels of AST, ALT, and LDH, as well as of hepatic TBARS and catalase showed no differences among the groups. Glutathione concentration was lower in the SNAC and SNAC+UW group (P < .001) compared with the UW group. We did not observe histologic signs of preservation injury. CONCLUSION The SNAC solution showed a greater protective effect to preserve rat livers during cold storage, but it was comparable with UW.
Collapse
|
5
|
Kearns SR, O’Briain DE, Sheehan KM, Kelly C, Bouchier-Hayes D. N-acetylcysteine protects striated muscle in a model of compartment syndrome. Clin Orthop Relat Res 2010; 468:2251-9. [PMID: 20309660 PMCID: PMC2895823 DOI: 10.1007/s11999-010-1287-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 02/22/2010] [Indexed: 02/06/2023]
Abstract
BACKGROUND To avoid ischemic necrosis, compartment syndrome is a surgical emergency treated with decompression once identified. A potentially lethal, oxidant-driven reperfusion injury occurs after decompression. N-acetylcysteine is an antioxidant with the potential to attenuate the reperfusion injury. QUESTIONS/PURPOSES We asked whether N-acetylcysteine could preserve striated muscle contractility and modify neutrophil infiltration and activation after simulated compartment syndrome release. MATERIALS AND METHODS Fifty-seven rats were randomized to control, simulated compartment syndrome, and simulated compartment syndrome plus N-acetylcysteine groups. We isolated the rodent cremaster muscle on its neurovascular pedicle and placed it in a pressure chamber. Chamber pressure was elevated above critical closing pressure for 3 hours to simulate compartment syndrome. Experiments were concluded at three times: 1 hour, 24 hours, and 7 days after decompression of compartment syndrome. We assessed twitch and tetanic contractile function and tissue myeloperoxidase activity. Ten additional rats were randomized to control and N-acetylcysteine administration after which neutrophil respiratory burst activity was assessed. RESULTS The simulated compartment syndrome decreased muscle contractility and increased muscle tissue myeloperoxidase activity compared with controls. Treatment with N-acetylcysteine preserved twitch and tetanic contractility. N-acetylcysteine did not alter neutrophil infiltration (myeloperoxidase activity) acutely but did reduce infiltration at 24 hours, even when given after decompression. N-acetylcysteine reduced neutrophil respiratory burst activity. CONCLUSION N-acetylcysteine administration before or after simulated compartment syndrome preserved striated muscle contractility, apparently by attenuating neutrophil activation and the resultant oxidant injury. CLINICAL RELEVANCE Our data suggest a potential role for N-acetylcysteine in the attenuation of muscle injury after release of compartment syndrome and possibly in the prophylaxis of compartment syndrome.
Collapse
Affiliation(s)
- Stephen R. Kearns
- Department of Orthopaedics, Galway University Hospitals, Newcastle Road, Galway, Ireland
| | - David E. O’Briain
- Department of Orthopaedics, Galway University Hospitals, Newcastle Road, Galway, Ireland
| | | | - Cathal Kelly
- Department of Surgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - David Bouchier-Hayes
- Department of Surgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
6
|
Crawford RS, Albadawi H, Atkins MD, Jones JE, Yoo HJ, Conrad MF, Austen WG, Watkins MT. Postischemic poly (ADP-ribose) polymerase (PARP) inhibition reduces ischemia reperfusion injury in a hind-limb ischemia model. Surgery 2010; 148:110-8. [PMID: 20132957 DOI: 10.1016/j.surg.2009.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 12/07/2009] [Indexed: 11/25/2022]
Abstract
BACKGROUND Several experiments were designed to determine whether the systemic, postischemic administration of PJ34,which is a poly-adenosine diphosphate (ADP)-ribose polymerase inhibitor, decreased tissue injury and inflammation after hind-limb ischemia reperfusion (I/R). METHODS C57BL6 mouse limbs were subjected to 1.5 h ischemia followed by 24-h reperfusion. The treatment group (PJ) received intraperitoneal PJ34 (30 mg/kg) immediately before reperfusion, as well as 15 min and 2 h into reperfusion. The control group (CG) received lactated Ringer's alone at the same time intervals as PJ34 administration. The skeletal muscle levels of adenosine triphosphate (ATP), macrophage inflammatory protein-2 (MIP-2), keratinocyte derived chemokine (KC), and myeloperoxidase (MPO) were measured. Quantitative measurement of skeletal muscle tissue injury was assessed by microscopic analysis of fiber injury. RESULTS ATP levels were higher in limbs of PJ versus CG mice (absolute ATP: 4.7 +/- 0.35 vs 2.3 +/- 0.15-ng/mg tissue, P = .002). The levels of MIP-2, KC, and MPO were lower in PJ versus CG mice (MIP-2: 1.4 +/- 0.34 vs 3.67 +/- 0.67-pg/mg protein, P = .014; KC: 4.97 +/- 0.97 vs 12.65 +/- 3.05-pg/mg protein, P = .037; MPO: 46.27 +/- 10.53 vs 107.34 +/- 13.58-ng/mg protein, P = .008). Muscle fiber injury was markedly reduced in PJ versus CG mice (4.25 +/- 1.9% vs 22.68 +/- 3.0% total fibers, P = .0004). CONCLUSION Systemic postischemic administration of PJ34 preserved skeletal muscle energy levels, decreased inflammatory markers, and preserved tissue viability post-I/R. These results support PARP inhibition as a viable treatment for skeletal muscle I/R in a clinically relevant post hoc scenario.
Collapse
Affiliation(s)
- Robert S Crawford
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Cyclic Mechanical Preconditioning Improves Engineered Muscle Contraction. Tissue Eng Part A 2008; 14:473-82. [DOI: 10.1089/tea.2007.0104] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
8
|
Tsui JCS, Baker DM, Shaw SG, Dashwood MR. Alterations in nitric oxide synthase isoforms in acute lower limb ischemia and reperfusion. Angiology 2007; 58:586-92. [PMID: 18024942 DOI: 10.1177/0003319707305466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alterations in nitric oxide synthase (NOS) are implicated in ischemia and ischemia-reperfusion injury. Changes in the 3 NOS isoforms in human skeletal muscle subjected to acute ischemia and reperfusion were studied. Muscle biopsies were taken from patients undergoing total knee replacement. Distribution of the specific NOS isoforms within muscle sections was studied using immunohistochemistry. NOS mRNA levels were measured using real-time reverse transcription-polymerase chain reaction and protein levels studied using Western blotting. NOS activity was also assessed using the citrulline assay. All 3 NOS isoforms were found in muscle sections associated with muscle fibers and microvessels. In muscle subjected to acute ischemia and reperfusion, NOS I/neuronal NOS mRNA and protein were elevated during reperfusion. NOS III/endothelial NOS was also upregulated at the protein level during reperfusion. No changes in NOS II/inducible NOS expression or NOS activity occurred. In conclusion, alterations in NOS I and III (neuronal NOS and endothelial NOS) at different levels occurred after acute ischemia and reperfusion in human skeletal muscle; however, this did not result in increased NOS activity. In the development of therapeutic agents based on manipulation of the NO pathway, targeting the appropriate NOS isoenzymes may be important.
Collapse
|
9
|
Shishido SM, Oliveira MG. Polyethylene Glycol Matrix Reduces the Rates of Photochemical and Thermal Release of Nitric Oxide from S-nitroso-N-acetylcysteine. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0710273pgmrtr2.0.co2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Khanna A, Cowled PA, Fitridge RA. Nitric Oxide and Skeletal Muscle Reperfusion Injury: Current Controversies (Research Review). J Surg Res 2005; 128:98-107. [PMID: 15961106 DOI: 10.1016/j.jss.2005.04.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 03/13/2005] [Accepted: 04/08/2005] [Indexed: 10/25/2022]
Abstract
Nitric oxide (NO) has been implicated in a large number of disease processes, including ischemia-reperfusion injury following the restoration of oxygenated blood to previously ischemic muscle, which is a recognized significant complication of vascular surgery. Altered metabolism of NO is implicated in the endothelial dysfunction that forms part of the pathophysiology of ischemia-reperfusion injury. However, NO can demonstrate either protective or cytotoxic effects during reperfusion injury. The use of transgenic mice, either NO synthase (NOS) gene knockout animals, or animals that over-express NOS isoforms, along with direct NO measurements and NO donor or inhibitor studies, have all demonstrated a role for NO in skeletal muscle reperfusion injury. There appears to be an initial stimulation of NO production in the first 20-min of ischemia, with a gradual decline through early reperfusion and a second higher peak of NO commencing in the later stages of reperfusion. The absolute levels of NO in the reperfused tissue and its regulation by the subtle interplay with superoxide and the subsequent production of the highly toxic peroxynitrite anion, are important factors in determining whether NO, in the context of ischemia-reperfusion injury, has damaging or protective effects in the body.
Collapse
Affiliation(s)
- Achal Khanna
- Department of Surgery, The University of Adelaide, The Queen Elizabeth Hospital, Adelaide, South Australia
| | | | | |
Collapse
|
11
|
Park JW, Qi WN, Cai Y, Nunley JA, Urbaniak JR, Chen LE. The effects of exogenous nitric oxide donor on motor functional recovery of reperfused peripheral nerve. J Hand Surg Am 2005; 30:519-27. [PMID: 15925162 DOI: 10.1016/j.jhsa.2004.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 11/01/2004] [Accepted: 11/05/2004] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate the effects of the nitric oxide donor S-nitroso-N-acetylcysteine (SNAC) on motor functional recovery of reperfused rat sciatic nerve. METHODS Seventy-eight rats were divided into groups treated with SNAC (100 nmol/100 g/min), methylprednisolone 30 mg/kg/h for 15 minutes, 45-minute pause, 5.4 mg/kg/h for 1.5 h), and phosphate-buffered saline 0.2 mL/100 g/h). A 1-cm segment of sciatic nerve had 2 hours of ischemia and the results were evaluated after various reperfusion periods using a walking track test, muscle contractile testing, muscle weight, and histology. RESULTS During reperfusion there was a significant overall improvement in sciatic functional index measurement and isometric titanic contractile force for the SNAC-treated group compared with the methylprednisolone- and phosphate-buffered saline- treated groups. The SNAC group had significantly earlier improvement in the sciatic functional index measurement between days 7 and 28. Restoration of the contractile force and muscle weight of the extensor digitorum longus muscle began earlier in the SNAC group--after day 11--whereas the other 2 groups showed progressive atrophy until day 21, with a significant difference between the SNAC group and the other 2 groups. Histologic examination showed that SNAC-treated rats had less severe degeneration and earlier regeneration of axons than the others. Although methylprednisolone-treated rats showed earlier recovery than phosphate-buffered saline-treated rats in all parameters there were no significant differences between these 2 groups. CONCLUSIONS Supplementation of nitric oxide is effective in promoting motor functional recovery of the reperfused peripheral nerve and has potential to replace or augment steroids as therapeutic agents in treatment of nervous system ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Jong Woong Park
- Department of Orthopaedic Surgery, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
12
|
Park JW, Qi WN, Cai Y, Zelko I, Liu JQ, Chen LE, Urbaniak JR, Folz RJ. Skeletal muscle reperfusion injury is enhanced in extracellular superoxide dismutase knockout mouse. Am J Physiol Heart Circ Physiol 2005; 289:H181-7. [PMID: 15778274 DOI: 10.1152/ajpheart.00458.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigates the role of extracellular SOD (EC-SOD), the major extracellular antioxidant enzyme, in skeletal muscle ischemia and reperfusion (I/R) injury. Pedicled cremaster muscle flaps from homozygous EC-SOD knockout (EC-SOD-/-) and wild-type (WT) mice were subjected to 4.5-h ischemia and 90-min reperfusion followed by functional and molecular analyses. Our results revealed that EC-SOD-/- mice showed significantly profound I/R injury compared with WT littermates. In particular, there was a delayed and incomplete recovery of arterial spasm and blood flow during reperfusion, and more severe acute inflammatory reaction and muscle damage were noted in EC-SOD-/- mice. After 90-min reperfusion, intracellular SOD [copper- and zinc-containing SOD (CuZn-SOD) and manganese-containing (Mn-SOD)] mRNA levels decreased similarly in both groups. EC-SOD mRNA levels increased in WT mice, whereas EC-SOD mRNA was undetectable, as expected, in EC-SOD-/- mice. In both groups of animals, CuZn-SOD protein levels decreased and Mn-SOD protein levels remained unchanged. EC-SOD protein levels decreased in WT mice. Histological analysis showed diffuse edema and inflammation around muscle fibers, which was more pronounced in EC-SOD-/- mice. In conclusion, our data suggest that EC-SOD plays an important role in the protection from skeletal muscle I/R injury caused by excessive generation of reactive oxygen species.
Collapse
Affiliation(s)
- Jong Woong Park
- Department of Orthopaedic Surgery, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Schaser KD, Bail HJ, Schewior L, Stover JF, Melcher I, Haas NP, Mittlmeier T. Acute effects of N-acetylcysteine on skeletal muscle microcirculation following closed soft tissue trauma in rats. J Orthop Res 2005; 23:231-41. [PMID: 15607898 DOI: 10.1016/j.orthres.2004.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2004] [Indexed: 02/04/2023]
Abstract
Trauma-induced microcirculatory dysfunction, formation of free radicals and decreased endothelial release of nitric oxide (NO) contribute to evolving tissue damage following skeletal muscle injury. Administration of N-acetylcysteine (NAC) known to scavenge free radicals and generate NO is considered a valuable therapeutic approach. Thus, the objective of this study was to quantitatively analyze the acute effects of NAC on skeletal muscle microcirculation and leukocyte-endothelial cell interaction following severe standardized closed soft tissue injury (CSTI). Severe CSTI was induced in the hindlimbs of 14 male anesthetized Sprague-Dawley rats using the controlled impact injury technique. Rats were randomly assigned (n = 7) to high-dose intravenous infusion of NAC (400 mg/kg body weight) or isovolemic normal saline (NS). Non-injured, sham-operated animals (n = 7) were subjected to the same surgical procedures but did not receive any additional fluid. Creatin kinase (CK) activity was assessed at baseline, 1 h before and 2 h following posttraumatic NAC or NS infusion. Microcirculation of the extensor digitorum longus (EDL) muscle was analyzed using intravital microscopy and Laser-Doppler flowmetry (LDF). Edema index (EI) was calculated by measuring the EDL wet-to-dry weight ratio (EI=injured/contralateral limb). EDL-muscles were analyzed for desmin immunoreactivity and granulocyte infiltration. Microvascular deteriorations observed following NS-infusion were effectively reversed by NAC: Functional capillary density was restored to levels found in sham-operated animals and leukocyte adherence was significantly (p < 0.05) reduced compared to the NS group. NAC significantly (p < 0.05) increased erythrocyte flux determined by Laser-Doppler flowmetry. Posttraumatic serum CK levels and EI were significantly (p < 0.05) decreased by NAC. During the posttraumatic acute phase, single infusion of NAC markedly reduced posttraumatic microvascular dysfunction, attenuated both leukocyte adherence and tissue infiltration. NAC also decreased CSTI-induced edema formation and myonecrosis as reflected by attenuated serum CK levels and attenuated loss of desmin immunoreactivity. NAC may serve as an effective therapeutic strategy by supporting microvascular blood supply and tissue viability in the early posttraumatic period. Additional studies aimed at long-term analysis and investigation of injury severity--or dosage dependency are needed.
Collapse
Affiliation(s)
- Klaus-D Schaser
- Department of Trauma and Reconstructive Surgery, Charité, Campus Virchow-Klinikum, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Park JW, Qi WN, Liu JQ, Urbaniak JR, Folz RJ, Chen LE. Inhibition of iNOS attenuates skeletal muscle reperfusion injury in extracellular superoxide dismutase knockout mice. Microsurgery 2005; 25:606-13. [PMID: 16284952 DOI: 10.1002/micr.20175] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are closely involved in the mechanism of skeletal muscle ischemia/reperfusion (I/R) injury. This study was designed to determine the effects of inducible nitric oxide synthase (iNOS) inhibitor 1400 W on the reperfused cremaster muscle in extracellular super-oxide dismutase knockout (EC-SOD(-/-)) mice. The muscle was exposed to 4.5 h of ischemia, followed by 90 min of reperfusion. Mice received either 3 mg/kg of 1400 W or the same amount of phosphate-buffered saline (PBS, as a control) subcutaneously at 10 min before the start of reperfusion. 1400 W treatment markedly improved the recovery speed of vessel diameter and blood flow in the reperfused cremaster muscle of EC-SOD(-/-) mice compared to controls. Histological examination showed reduced edema in the interstitial space and muscle fiber, and reduced density of nitrotyrosine (a marker of total peroxi-nitrate (ONOO(-)) level) in 1400 W-treated muscles compared to controls. Our results suggest that iNOS and ONOO(-) products are involved in skeletal muscle I/R injury. Reduced I/R injury by using selective inhibition of iNOS perhaps works by limiting cytotoxic ONOO(-) generation, a reaction product of nitric oxide (NO) and super-oxide anion (O(2) (-)). Thus, inhibition of iNOS appears to be a treatment strategy for reducing clinical I/R injury.
Collapse
Affiliation(s)
- Jong Woong Park
- Department of Orthopaedic Surgery, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
15
|
Patel P, Qi WN, Allen DM, Chen LE, Seaber AV, Stamler JS, Urbaniak JR. Inhibition of iNOS with 1400W improves contractile function and alters nos gene and protein expression in reperfused skeletal muscle. Microsurgery 2004; 24:324-31. [PMID: 15274192 DOI: 10.1002/micr.20029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study examined the effects of 1400W, an inhibitor of inducible nitric oxide (iNOS), on contractile function and iNOS expression in reperfused skeletal muscle. The right extensor digitorum longus (EDL) muscle of 104 rats underwent a sham operation or 3-h ischemia followed by 3-h or 24-h reperfusion (I/R). Rats received 3 mg/kg 1400W, 10 mg/kg 1400W, or water subcutaneously. Results showed that EDL contractile function in both 1400W-treated groups significantly outperformed the controls at 24-h but not at 3-h reperfusion. Although iNOS expression increased in all three I/R groups during reperfusion, a significantly smaller increase was found in 1400W-treated muscles after 3-h reperfusion, and more dramatically so after 24-h reperfusion. Our results indicate that inhibition of iNOS preserved the contractile function in reperfused skeletal muscle, perhaps via downregulating iNOS expression. Protection by 1400W at 24-h reperfusion suggests that the role of iNOS in exaggerating reperfusion injury is more prominent in the later stages of injury.
Collapse
Affiliation(s)
- Prerana Patel
- Orthopaedic Microsurgery Laboratory, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Qi WN, Chaiyakit P, Cai Y, Allen DM, Chen LE, Seaber AV, Urbaniak JR. NF-kappaB p65 involves in reperfusion injury and iNOS gene regulation in skeletal muscle. Microsurgery 2004; 24:316-23. [PMID: 15274191 DOI: 10.1002/micr.20030] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study investigated the effects of inhibition of NF-kappaB activation on microcirculation and inducible NOS expression in reperfused rat cremaster muscle. The muscle from 16 rats underwent 5-h ischemia and 90-min reperfusion. Each rat received NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC, 150 mg/kg) or phosphate-buffered saline 15 min before reperfusion. Results showed that PDTC treatment had a significant overall increase in muscle blood flow during reperfusion. Blood flow more rapidly recovered to and over baseline in the PDTC-treated group than in controls, with a significant difference at 10-30 min and 70-90 min. Expression of iNOS mRNA had a 167-fold increase from normal in controls, but was significantly (P < 0.05) reduced to a 63-fold increase in PDTC-treated muscles. In addition, PDTC treatment significantly (P < 0.05) decreased a reperfusion-induced increase in activated NF-kappaB p65 and nuclear p65 protein. Our results suggest that NF-kappaB is involved in I/R injury and that inhibition of NF-kappaB p65 activation affords protection against I/R injury, perhaps via downregulating expression of iNOS transcription.
Collapse
Affiliation(s)
- Wen-Ning Qi
- Orthopaedic Research Laboratories, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Qi WN, Chen LE, Zhang L, Eu JP, Seaber AV, Urbaniak JR. Reperfusion injury in skeletal muscle is reduced in inducible nitric oxide synthase knockout mice. J Appl Physiol (1985) 2004; 97:1323-8. [PMID: 15180976 DOI: 10.1152/japplphysiol.00380.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) participates in many pathological events, and selective inhibition of iNOS has been shown to reduce ischemia-reperfusion (I/R) injury in different tissues. To further confirm its role in this injury process, I/R injury was observed in denervated cremaster muscles of iNOS-deficient (iNOS−/−) and wild-type mice. After 3-h ischemia and 90-min reperfusion, blood flow in reperfused muscle was 80 ± 8.5% (mean ± SE) of baseline at 10-min reperfusion and completely returned to the preischemia baseline after 20 min in iNOS−/− mice. In contrast, blood flow was 32 ± 7.4% at 10 min and increased to 60 ± 20% of the baseline level at 90 min in wild-type mice ( P < 0.001 vs. iNOS−/− mice at all time points). The increased muscle blood flow in iNOS−/− mice was associated with significantly less vasospasm in all three sizes of arterial vessel size categories. The weight ratio to the contralateral muscle not subjected to I/R was greater in wild-type mice (173 ± 11%) than in iNOS−/− mice (117 ± 3%; P < 0.01). Inflammation and neutrophil extravasation were also more severe in wild-type mice. Western blot analysis demonstrated an absence of iNOS protein band in iNOS−/− mice and upregulation of iNOS protein expression in wild-type mice. Our results confirm the importance of iNOS in I/R injury. Upregulated iNOS exacerbates I/R injury and appears to be a therapeutic target in protection of tissues against this type of injury.
Collapse
Affiliation(s)
- Wen-Ning Qi
- Orthopaedic Research Laboratory, Duke Univ. Medical Center, Box 3093, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
18
|
Gowda C, Toomayan GA, Qi WN, Chen LE, Cai Y, Allen DM, Seaber AV, Urbaniak JR. The effects of N(omega)-propyl-L-arginine on reperfusion injury of skeletal muscle. Nitric Oxide 2004; 11:17-24. [PMID: 15350553 DOI: 10.1016/j.niox.2004.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 06/25/2004] [Indexed: 11/22/2022]
Abstract
N(omega)-Propyl-L-arginine (NPA) is reported to be a highly selective inhibitor of neuronal nitric oxide synthase (nNOS). This in vivo study observed its role in ischemia/reperfusion (I/R) injury in rat skeletal muscle. Our results showed that NPA infusion significantly increased vessel diameters and blood flow in reperfused cremaster muscle, and slightly increased contractile function in reperfused extensor digitorum longus (EDL) muscle. In addition, NPA treatment slightly increased I/R-mediated downregulation of nNOS and eNOS mRNA and protein levels. Although NPA showed a beneficial role in I/R injury, our in vivo data do not support NPA as a selective nNOS inhibitor. Also, our data do not provide any insight into the mechanism of NPA. Thus, the in vivo mechanism of action of NPA needs to be further identified, and the role of nNOS in skeletal muscle I/R still remains to be determined.
Collapse
Affiliation(s)
- Charan Gowda
- The Orthopaedic Research Laboratories, Department of Surger, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Qi WN, Zhang L, Chen LE, Seaber AV, Urbaniak JR. Nitric oxide involvement in reperfusion injury of denervated muscle. J Hand Surg Am 2004; 29:638-45. [PMID: 15249088 DOI: 10.1016/j.jhsa.2004.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Accepted: 01/13/2004] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate whether inhibition of inducible nitric oxide synthase (iNOS) improves microcirculation in denervated and reperfused skeletal muscle. METHODS The cremaster muscles of 52 rats received iNOS inhibitor 1400W (3 mg/kg) or phosphate buffered saline (PBS) and underwent either 3 hours of ischemia and 1.5 hours of reperfusion or a sham operation. During reperfusion the vessel diameters were measured by using intravital videomicroscopy and overall muscle blood flow was measured with laser Doppler flowmetry. The expression of NOS messenger RNA (mRNA) and protein was determined by using real-time reverse-transcription polymerase chain reaction and Western blot, respectively. RESULTS 1400W treatment significantly increased the mean blood flow of the reperfused muscle compared with controls, and this was associated with significantly less vasospasm in 10 to 20 microm, 21 to 40 microm, and 41 to 70 microm arterioles. The expression of iNOS mRNA and protein in controls increased 23-fold and 6-fold from normal, respectively, but was reduced to only a 2-fold increase in the 1400W-treated muscles. The ischemia/reperfusion (I/R)-induced decrease of endothelial NOS (eNOS) and neuronal NOS (nNOS) expression in controls was not significantly changed after 1400W treatment. CONCLUSIONS Our data support a nitric oxide-mediated mechanism in reperfusion injury and show the importance of inhibition of iNOS in reducing reperfusion injury in denervated skeletal muscle. Our results suggest potential benefits via inhibition of iNOS to improve clinical outcomes not only for hand surgeons who work in the microsurgery field, but also for other physicians whose work involves ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Wen-Ning Qi
- Orthopaedic Microsurgery Laboratories, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
20
|
Scott Isenberg J. Modulating effects of L-arginine on cytokine-stimulated lymphocyte migration in vitro. Microsurgery 2003; 23:262-7. [PMID: 12833329 DOI: 10.1002/micr.10119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Elective microsurgical transplants have become routine. Yet there remains a 1-5% rate of complete flap necrosis among these surgical reconstructions. This rate is much higher in emergent replantations. Despite technically accurate surgery, perfusion fails in this group. This lack of perfusion, or no-reflow, has been attributed to ischemic-reperfusion injury. The exact nature of this phenomenon remains poorly characterized, though it is clear that significant changes occur in such situations at the endothelial vascular interface. In an effort to understand the biomolecular events involved in ischemic-reperfusion injury we investigated the modulation of leukocyte transendothelial migration. Using a chemotactic chamber model with a cytokine stimulate mono-layer of umbilical vein endothelium, we evaluated the migration rate of peripheral blood mononuclear cells in the presence of exogenous L-arginine and/or the nitric oxide synthase inhibitor L-NAME. Levels of INF-gamma and TNF-alpha production were also determined. It was found that in the face of cytokine pre-stimulation and L-arginine, mononuclear cell trans-endothelial migration increased dramatically. There were also parallel increases in inflammatory cytokine output. These responses were sharply decreased by L-NAME. The results of this study suggest that in vitro nitric oxide augments transendothelial migration of inflammatory cells. Modulation of this response may provide a clinically useful method of minimizing ischemic-reperfusion injury.
Collapse
Affiliation(s)
- J Scott Isenberg
- Department of Oral and Maxillofacial Surgery, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
21
|
Isenberg JS. Inhibition of nitric oxide synthase (NOS) conversion of L-arginine to nitric oxide (NO) decreases low density mononuclear cell (LD MNC) trans-endothelial migration and cytokine output. J Surg Res 2003; 114:100-6. [PMID: 13678705 DOI: 10.1016/s0022-4804(03)00310-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Biochemical, molecular, and cellular events at the micro-vascular endothelial interface determine the integrity of the vascular system. Disruption of these events has been described to occur in accordance with ischemic/reperfusion injury leading to inflammation, cell adhesion, and endothelial permeability changes. It has also been suggested that nitric oxide (NO) participates in these events. However, the manner in which it does is debated. The purpose of this study was to investigate the effects of exogenous L-arginine, an NO precursor, and L-N (G) nitroarginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor, upon inflammatory events at the endothelial interface. MATERIAL AND METHODS Fresh cultures of human umbilical vein endothelial cells were established and used to seed Transwell chemotaxic chambers, and then grown to confluence. Whole blood was obtained from the same healthy volunteer and processed for light density mononuclear cells. Following per-stimulation of the endothelial monolayer with IL-1beta or antigen-antibody complex, known numbers of mononuclear cells were seeded to the endothelium. Incubation with and without exogenous L-arginine or L-NAME for 48 h was done. Lower chamber supernatant was then collected, cell numbers and viability determined and levels of inflammatory cytokines TNF-alpha and INF-lambda determined via ELISA assay. RESULTS Tran-endothelial cellular migration was nil lacking pre-stimulation, regardless of the addition of exogenous L-arginine. With pre-stimulation trans-endothelial migration increased significantly, a response that was greatly enhanced by L-arginine. With the further addition of L-NAME cellular migration decreased substantially. Pro-inflammatory cytokine levels of TNF-alpha and INF-lambda followed levels of cellular migration. CONCLUSIONS In vitro there was little to no trans-endothelial migration of inflammatory cells across an unstimulated monolayer of vascular endothelium. Pre-stimulation of the same endothelial monolayer with either a cytokine or antigen-antibody complex resulted in a significant trans-endothelial migration of inflammatory cells. This latter response was associated with a concurrent increase in the secretion of the pro-inflammatory cytokines TNF-alpha and INF-gamma. The presence of the NO precursor L-arginine greatly enhanced the observed inflammatory response. Conversely, L-NAME, an inhibitor of NOS, depressed the inflammatory response.
Collapse
Affiliation(s)
- J Scott Isenberg
- Department of Oral and Maxillofacial Surgery, University of Oklahoma, Oklahoma, USA.
| |
Collapse
|
22
|
Zhang L, Looney CG, Qi WN, Chen LE, Seaber AV, Stamler JS, Urbaniak JR. Reperfusion injury is reduced in skeletal muscle by inhibition of inducible nitric oxide synthase. J Appl Physiol (1985) 2003; 94:1473-8. [PMID: 12506043 DOI: 10.1152/japplphysiol.00789.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This study evaluated the effects of the selective inducible nitric oxide synthase (iNOS) inhibitor N-[3-(aminomethyl)benzyl]acetamidine (1400W) on the microcirculation in reperfused skeletal muscle. The cremaster muscles from 32 rats underwent 5 h of ischemia followed by 90 min of reperfusion. Rats received either 3 mg/kg 1400W or PBS subcutaneously before reperfusion. We found that blood flow in reperfused muscles was <45% of baseline in controls but sharply recovered to near baseline levels in 1400W-treated animals. There was a significant (P < 0.01 to P < 0.001) difference between the two groups at each time point throughout the 90 min of reperfusion. Vessel diameters remained <80% of baseline in controls during reperfusion, but recovered to the baseline level in the 1400W group by 20 min, and reached a maximum of 121 +/- 14% (mean +/- SD) of baseline in 10- to 20-micro m arterioles, 121 +/- 6% in 21- to 40-micro m arterioles, and 115 +/- 8% in 41- to 70-micro m arteries (P < 0.01 to P < 0.001). The muscle weight ratio between ischemia-reperfused (left) and non-ischemia-reperfused (right) cremaster muscles was 193 +/- 42% of normal in controls and 124 +/- 12% in the 1400W group (P < 0.001). Histology showed that neutrophil extravasation and edema were markedly reduced in 1400W-treated muscles compared with controls. We conclude that ischemia-reperfusion leads to increased generation of NO from iNOS in skeletal muscle and that the selective iNOS inhibitor 1400W reduces the negative effects of ischemia-reperfusion on vessel diameter and muscle blood flow. Thus 1400W may have therapeutic potential in treatment of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Li Zhang
- Orthopaedic Microsurgery Laboratory, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Qi WN, Yan ZQ, Whang PG, Zhou Q, Chen LE, Seaber AV, Stamler JS, Urbaniak JR. Gene and protein expressions of nitric oxide synthases in ischemia-reperfused peripheral nerve of the rat. Am J Physiol Cell Physiol 2001; 281:C849-56. [PMID: 11502562 DOI: 10.1152/ajpcell.2001.281.3.c849] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined mRNA and protein expressions of neuronal (nNOS), inducible (iNOS), and endothelial nitric oxide synthases (eNOS) in peripheral nerve after ischemia-reperfusion (I/R). Sixty-six rats were divided into the ischemia only and I/R groups. One sciatic nerve of each animal was used as the experimental side and the opposite untreated nerve as the control. mRNA levels in the nerve were quantitatively measured by competitive PCR, and protein was determined by Western blotting and immunohistochemical staining. The results showed that, after ischemia (2 h), both nNOS and eNOS protein expressions decreased. After I/R (2 h of ischemia followed by 3 h of reperfusion), expression of both nNOS and eNOS mRNA and protein decreased further. In contrast, iNOS mRNA significantly increased after ischemia and was further upregulated (14-fold) after I/R, while iNOS protein was not detected. The results reveal the dynamic expression of individual NOS isoforms during the course of I/R injury. An understanding of this modulation on a cellular and molecular level may lead to understanding the mechanisms of I/R injury and to methods of ameliorating peripheral nerve injury.
Collapse
Affiliation(s)
- W N Qi
- Orthopaedic Cell Biology Laboratory, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
In the past five years, skeletal muscle has emerged as a paradigm of "nitric oxide" (NO) function and redox-related signaling in biology. All major nitric oxide synthase (NOS) isoforms, including a muscle-specific splice variant of neuronal-type (n) NOS, are expressed in skeletal muscles of all mammals. Expression and localization of NOS isoforms are dependent on age and developmental stage, innervation and activity, history of exposure to cytokines and growth factors, and muscle fiber type and species. nNOS in particular may show a fast-twitch muscle predominance. Muscle NOS localization and activity are regulated by a number of protein-protein interactions and co- and/or posttranslational modifications. Subcellular compartmentalization of the NOSs enables distinct functions that are mediated by increases in cGMP and by S-nitrosylation of proteins such as the ryanodine receptor-calcium release channel. Skeletal muscle functions regulated by NO or related molecules include force production (excitation-contraction coupling), autoregulation of blood flow, myocyte differentiation, respiration, and glucose homeostasis. These studies provide new insights into fundamental aspects of muscle physiology, cell biology, ion channel physiology, calcium homeostasis, signal transduction, and the biochemistry of redox-related systems.
Collapse
Affiliation(s)
- J S Stamler
- Howard Hughes Medical Institute, Department of Medicine, Divisions of Pulmonary and Cardiology and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA.
| | | |
Collapse
|
25
|
Polyethylene glycol matrix reduces the rates of photochemical and thermal release of nitric oxide from S-nitroso-N-acetylcysteine. Photochem Photobiol 2000; 71:273-80. [PMID: 10732444 DOI: 10.1562/0031-8655(2000)071<0273:pgmrtr>2.0.co;2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
S-nitrosothiols have many biological activities and may act as nitric oxide (NO) carriers and donors, prolonging NO half-life in vivo. In spite of their great potential as therapeutic agents, most S-nitrosothiols are too unstable to isolate. We have shown that the S-nitroso adduct of N-acetylcysteine (SNAC) can be synthesized directly in aqueous and polyethylene glycol (PEG) 400 matrix by using a reactive gaseous (NO/O2) mixture. Spectral monitoring of the S-N bond cleavage showed that SNAC, synthesized by this method, is relatively stable in nonbuffered aqueous solution at 25 degrees C in the dark and that its stability is greatly increased in PEG matrix, resulting in a 28-fold decrease in its initial rate of thermal decomposition. Irradiation with UV light (lambda = 333 nm) accelerated the rate of decomposition of SNAC to NO in both matrices, indicating that SNAC may find use for the photogeneration of NO. The quantum yield for SNAC decomposition decreased from 0.65 +/- 0.15 in aqueous solution to 0.047 +/- 0.005 in PEG 400 matrix. This increased stability in PEG matrix was assigned to a cage effect promoted by the PEG microenvironment that increases the rate of geminated radical pair recombination in the homolytic S-N bond cleavage process. This effect allowed for the storage of SNAC in PEG at -20 degrees C in the dark for more than 10 weeks with negligible decomposition. Such stabilization may represent a viable option for the synthesis, storage and handling of S-nitrosothiol solutions for biomedical applications.
Collapse
|