1
|
Ngwa HA, Bargues-Carot A, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Manganese and Vanadium Co-Exposure Induces Severe Neurotoxicity in the Olfactory System: Relevance to Metal-Induced Parkinsonism. Int J Mol Sci 2024; 25:5285. [PMID: 38791326 PMCID: PMC11121436 DOI: 10.3390/ijms25105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic environmental exposure to toxic heavy metals, which often occurs as a mixture through occupational and industrial sources, has been implicated in various neurological disorders, including Parkinsonism. Vanadium pentoxide (V2O5) typically presents along with manganese (Mn), especially in welding rods and high-capacity batteries, including electric vehicle batteries; however, the neurotoxic effects of vanadium (V) and Mn co-exposure are largely unknown. In this study, we investigated the neurotoxic impact of MnCl2, V2O5, and MnCl2-V2O5 co-exposure in an animal model. C57BL/6 mice were intranasally administered either de-ionized water (vehicle), MnCl2 (252 µg) alone, V2O5 (182 µg) alone, or a mixture of MnCl2 (252 µg) and V2O5 (182 µg) three times a week for up to one month. Following exposure, we performed behavioral, neurochemical, and histological studies. Our results revealed dramatic decreases in olfactory bulb (OB) weight and levels of tyrosine hydroxylase, dopamine, and 3,4-dihydroxyphenylacetic acid in the treatment groups compared to the control group, with the Mn/V co-treatment group producing the most significant changes. Interestingly, increased levels of α-synuclein expression were observed in the substantia nigra (SN) of treated animals. Additionally, treatment groups exhibited locomotor deficits and olfactory dysfunction, with the co-treatment group producing the most severe deficits. The treatment groups exhibited increased levels of the oxidative stress marker 4-hydroxynonenal in the striatum and SN, as well as the upregulation of the pro-apoptotic protein PKCδ and accumulation of glomerular astroglia in the OB. The co-exposure of animals to Mn/V resulted in higher levels of these metals compared to other treatment groups. Taken together, our results suggest that co-exposure to Mn/V can adversely affect the olfactory and nigral systems. These results highlight the possible role of environmental metal mixtures in the etiology of Parkinsonism.
Collapse
Affiliation(s)
- Hilary Afeseh Ngwa
- Iowa Center for Advanced Neurotoxicity, Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA
| | - Alejandra Bargues-Carot
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (A.B.-C.); (H.J.); (V.A.)
| | - Huajun Jin
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (A.B.-C.); (H.J.); (V.A.)
| | - Vellareddy Anantharam
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (A.B.-C.); (H.J.); (V.A.)
| | - Arthi Kanthasamy
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (A.B.-C.); (H.J.); (V.A.)
| | - Anumantha G. Kanthasamy
- Iowa Center for Advanced Neurotoxicity, Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (A.B.-C.); (H.J.); (V.A.)
| |
Collapse
|
2
|
Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch‐Ernst K, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Bornhorst J, Cubadda F, Dopter A, FitzGerald R, de Sesmaisons Lecarré A, das Neves Ferreira P, Fabiani L, Horvath Z, Matijević L, Naska A. Scientific opinion on the tolerable upper intake level for manganese. EFSA J 2023; 21:e8413. [PMID: 38075631 PMCID: PMC10704406 DOI: 10.2903/j.efsa.2023.8413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024] Open
Abstract
Following a request from the European Commission (EC), the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the tolerable upper intake level (UL) for manganese. Systematic reviews of the literature of human and animal data were conducted to assess evidence regarding excess manganese intake (including authorised manganese salts) and the priority adverse health effect, i.e. manganese-induced neurotoxicity. Available human and animal studies support neurotoxicity as a critical effect, however, data are not sufficient and suitable to characterise a dose-response relationship and identify a reference point for manganese-induced neurotoxicity. In the absence of adequate data to establish an UL, estimated background dietary intakes (i.e. manganese intakes from natural dietary sources only) observed among high consumers (95th percentile) were used to provide an indication of the highest level of intake where there is reasonable confidence on the absence of adverse effects. A safe level of intake of 8 mg/day was established for adults ≥ 18 years (including pregnant and lactating women) and ranged between 2 and 7 mg/day for other population groups. The application of the safe level of intake is more limited than an UL because the intake level at which the risk of adverse effects starts to increase is not defined.
Collapse
|
3
|
Shaffer RM, Wright JM, Cote I, Bateson TF. Comparative susceptibility of children and adults to neurological effects of inhaled manganese: A review of the published literature. ENVIRONMENTAL RESEARCH 2023; 221:115319. [PMID: 36669586 DOI: 10.1016/j.envres.2023.115319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Manganese (Mn) is neurotoxic in adults and children. Current assessments are based on the more extensive adult epidemiological data, but the potential for greater childhood susceptibility remains a concern. To better understand potential lifestage-based variations, we compared susceptibilities to neurotoxicity in children and adults using Mn biomarker data. METHODS We developed a literature search strategy based on a Population, Exposures, Comparators, and Outcomes statement focusing on inhalation exposures and neurological outcomes in humans. Screening was performed using DistillerSR. Hair biomarker studies were selected for evaluation because studies with air measurements were unavailable or considered inadequate for children. Studies were paired based on concordant Mn source, biomarker, and outcome. Comparisons were made based on reported dose-response slopes (children vs. adults). Study evaluation was conducted to understand the confidence in our comparisons. RESULTS We identified five studies evaluating seven pairings of hair Mn and neurological outcomes (cognition and motor effects) in children and adults matched on sources of environmental Mn inhalation exposure. Two Brazilian studies of children and one of adults reported intelligent quotient (IQ) effects; effects in both comparisons were stronger in children (1.21 to 2.03-fold difference). In paired analyses of children and adults from the United States, children exhibited both stronger and weaker effects compared to adults (0.37 to 1.75-fold differences) on postural sway metrics. CONCLUSION There is limited information on the comparative susceptibility of children and adults to inhaled Mn. We report that children may be 0.37 to 2.03 times as susceptible as adults to neurotoxic effects of Mn, thereby providing a quantitative estimate for some aspects of lifestage variation. Due to the limited number of paired studies available in the literature, this quantitative estimate should be interpreted with caution. Our analyses do not account for other sources of inter-individual variation. Additional studies of Mn-exposed children with direct air concentration measurements would improve the evidence base.
Collapse
Affiliation(s)
- Rachel M Shaffer
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA
| | - J Michael Wright
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Ila Cote
- University of Colorado, School of Public Health, Aurora, CO, USA
| | - Thomas F Bateson
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA.
| |
Collapse
|
4
|
Impacts of a perinatal exposure to manganese coupled with maternal stress in rats: Tests of untrained behaviors. Neurotoxicol Teratol 2022; 91:107088. [PMID: 35278630 PMCID: PMC9133146 DOI: 10.1016/j.ntt.2022.107088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 11/21/2022]
Abstract
Manganese (Mn), an element that naturally occurs in the environment, has been shown to produce neurotoxic effects on the developing young when levels exceed physiological requirements. To evaluate the effects of this chemical in combination with non-chemical factors pregnant Long-Evans rats were treated with 0, 2, or 4 mg/mL Mn in their drinking water from gestational day (GD) 7 to postnatal day (PND) 22. Half of the dams received a variable stress protocol from GD13 to PND9, that included restraint, small cage with reduced bedding, exposure to predator odor, intermittent intervals of white noise, lights on for 24 h, intermittent intervals of lights on during dark cycle and cages with grid floors and reduced bedding. One male and one female offspring from each litter were tested to assess untrained behavior. Ultrasonic vocalizations (USV) were recorded from PND13 pups while they were isolated from the litter. Locomotor activity (MA) was measured in figure-eight mazes at PND 17, 29, and 79 (different set of rats at each time point). Social approach (SA) was tested at PND48. Acoustic startle response (ASR) and pre-pulse inhibition (PPI) were measured starting at PND58. At PND53 a sweetness preference for a chocolate flavored milk solution was assessed. There were sex related differences on several parameters for the USVs. There was also a Mn by stress by sex interaction with the females from the 4 mg/mL stressed dams having more frequency modulated (FM) call elements than the 4 mg/mL non-stressed group. There was an effect of Mn on motor activity but only at PND29 with the 2 mg/mL group having higher counts than the 0 mg/mL group. The social approach test showed sex differences for both the habituation and test phase. There was an effect of Mn, with the 4 mg/mL males having a greater preference for the stimulus rat than did the 0 mg/mL males. There was also a stress by sex interaction. The ASR and PPI had only a sex effect. Thus, with only the FM call elements having a Mn by stress effect, and the PND29 MA and SA preference index having a Mn effect but at different doses requires further investigation.
Collapse
|
5
|
Impacts of a perinatal exposure to manganese coupled with maternal stress in rats: Maternal somatic measures and the postnatal growth and development of rat offspring. Neurotoxicol Teratol 2021; 90:107061. [PMID: 34971732 DOI: 10.1016/j.ntt.2021.107061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
Psychological stress experienced by the mother during pregnancy has been associated with emotional and cognitive disorders in children such as depression and anxiety. Socioeconomically disadvantaged populations are vulnerable to adverse life experiences and can also be disproportionally exposed to environmental contaminants. To better understand the neurodevelopmental impacts of an environmental toxicant coupled with elevated psychological stress, we exposed pregnant rats to a series of perinatal stressors. Manganese (Mn), a neurotoxicant at excessive concentrations was delivered through drinking water (0, 2, or 4 mg/mL) from gestational day (GD) 7 to postnatal day (PND) 22. A variable stress paradigm was applied to half of the animals from GD13 to PND9. Measurements of somatic development and behavior were examined in the offspring at different developmental stages. No evidence of overt maternal toxicity was observed although the 4 mg/mL Mn-exposed dams gained less body weight during gestation compared to the other dams. Stress also reduced gestational maternal weight gain. Daily fluid consumption normalized for body weight was decreased in the Mn-exposed dams in a dose-dependent manner but was not altered by the stress paradigm. Maternal stress and/or Mn exposure did not affect litter size or viability, but pup weight was significantly reduced in the 4 mg/mL Mn-exposed groups on PNDs 9 through 34 when compared to the other offspring groups. The efficacy of the manipulations to increase maternal stress levels was determined using serum corticosterone as a biomarker. The baseline concentration was established prior to treatment (GD7) and levels were low and similar in all treatment groups. Corticosterone levels were elevated in the perinatal-stress groups compared to the no-stress groups, regardless of Mn exposure, on subsequent time points (GD16, PND9), but were only significantly different on GD16. An analysis of tissue concentrations revealed Mn was elevated similarly in the brain and blood of offspring at PND2 and at PND22 in a significant dose-dependent pattern. Dams also showed a dose-dependent increase in Mn concentrations in the brain and blood; the addition of stress increased the Mn concentrations in the maternal blood but not the brain. Perinatal stress did not alter the effects of Mn on the maternal or offspring somatic endpoints described here.
Collapse
|
6
|
Lasley SM, Fornal CA, Mandal S, Strupp BJ, Beaudin SA, Smith DR. Early Postnatal Manganese Exposure Reduces Rat Cortical and Striatal Biogenic Amine Activity in Adulthood. Toxicol Sci 2021; 173:144-155. [PMID: 31560393 DOI: 10.1093/toxsci/kfz208] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Growing evidence from studies with children and animal models suggests that elevated levels of manganese during early development lead to lasting cognitive and fine motor deficits. This study was performed to assess presynaptic biogenic amine function in forebrain of adult Long-Evans rats exposed orally to 0, 25, or 50 mg Mn/kg/day over postnatal day 1-21 or continuously from birth to the end of the study (approximately postnatal day 500). Intracerebral microdialysis in awake rats quantified evoked outflow of biogenic amines in the right medial prefrontal cortex and left striatum. Results indicated that brain manganese levels in the early life exposed groups (postnatal day 24) largely returned to control levels by postnatal day 66, whereas levels in the lifelong exposed groups remained elevated 10%-20% compared with controls at the same ages. Manganese exposure restricted to the early postnatal period caused lasting reductions in cortical potassium-stimulated extracellular norepinephrine, dopamine, and serotonin, and reductions in striatal extracellular dopamine. Lifelong manganese exposure produced similar effects with the addition of significant decreases in cortical dopamine that were not evident in the early postnatal exposed groups. These results indicate that early postnatal manganese exposure produces persistent deficits in cortical and striatal biogenic amine function. Given that these same animals exhibited lasting impairments in attention and fine motor function, these findings suggest that reductions in catecholaminergic activity are a primary factor underlying the behavioral effects caused by manganese, and indicate that children exposed to elevated levels of manganese during early development are at the greatest risk for neuronal deficiencies that persist into adulthood.
Collapse
Affiliation(s)
- Stephen M Lasley
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, Illinois 61605
| | - Casimir A Fornal
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, Illinois 61605
| | - Shyamali Mandal
- Business Development, BioVision Inc, Milpitas, California 95035
| | - Barbara J Strupp
- Division of Nutritional Sciences and Department of Psychology, Cornell University, Ithaca, New York 14853
| | - Stephane A Beaudin
- Department of Psychology and Cognitive Science, University of California Merced, Merced, California 95340
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California - Santa Cruz, Santa Cruz, California 95064
| |
Collapse
|
7
|
Scher DP, Goeden HM, Klos KS. Potential for Manganese-Induced Neurologic Harm to Formula-Fed Infants: A Risk Assessment of Total Oral Exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:47011. [PMID: 33848192 PMCID: PMC8043326 DOI: 10.1289/ehp7901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/22/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND High oral exposure and biological vulnerabilities may put formula-fed infants at risk for manganese-induced neurotoxicity. OBJECTIVES We sought to characterize manganese concentrations in public drinking water and prepared infant formulas commonly purchased in the United States, integrate information from these sources into a health risk assessment specific to formula-fed infants, and examine whether households that receive water with elevated manganese concentrations avoid or treat the water, which has implications for formula preparation. METHODS Manganese was measured in 27 infant formulas and nearly all Minnesota community public water systems (CPWS). The risk assessment produced central tendency and upper-end exposure estimates that were compared to a neonatal animal-based health reference dose (RfD) and considered possible differences in bioavailability. A survey study assessed esthetic concerns, treatment, and use of water in a Twin Cities community with various levels of manganese in drinking water. RESULTS Ten percent of CPWSs were estimated to exceed the EPA health advisory level of 300 μ g / L . Manganese concentrations in formula ranged from 69.8 to 741 μ g / L , with amino acid > soy > cow ' s milk formula concentrations. Central tendency estimates of soy and amino acid formula reconstituted with water at the CPWS 95th percentile manganese concentration exceeded the neonatal-based RfD. Upper-end estimates of manganese intake from formula alone, independent of any water contribution, equaled or exceeded the neonatal-based RfD. In the survey study, we observed increased awareness of esthetic issues and water avoidance at higher manganese concentrations, but these concentrations were not a reliable consumption deterrent, as the majority of households with inside tap drinking water results above 300 μ g / L reported drinking the water. DISCUSSION Excessive exposure to manganese early in life can have long-lasting neurological impacts. This assessment underscores the potential for manganese overexposure in formula-fed infants. U.S. agencies that regulate formula and drinking water must work collaboratively to assess and mitigate potential risks. https://doi.org/10.1289/EHP7901.
Collapse
|
8
|
Adejuwon KP, Osundahunsi OF, Oluwajuyitan TD, Oluwamukomi MO. Influence of Fermentation on Macro and Micro Nutrient of Toddler Formula. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2021.1879337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Kikelomo Patricia Adejuwon
- Department of Nutrition and Health Promotion, Ondo State Primary Health Care Development Agency, Akure, Nigeria
- Department of Food Science and Technology, Federal University of Technology Akure, Nigeria
| | | | | | | |
Collapse
|
9
|
Pajarillo E, Johnson J, Rizor A, Nyarko-Danquah I, Adinew G, Bornhorst J, Stiboller M, Schwerdtle T, Son DS, Aschner M, Lee E. Astrocyte-specific deletion of the transcription factor Yin Yang 1 in murine substantia nigra mitigates manganese-induced dopaminergic neurotoxicity. J Biol Chem 2020; 295:15662-15676. [PMID: 32893191 PMCID: PMC7667968 DOI: 10.1074/jbc.ra120.015552] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Manganese (Mn)-induced neurotoxicity resembles Parkinson's disease (PD), but the mechanisms underpinning its effects remain unknown. Mn dysregulates astrocytic glutamate transporters, GLT-1 and GLAST, and dopaminergic function, including tyrosine hydroxylase (TH). Our previous in vitro studies have shown that Mn repressed GLAST and GLT-1 via activation of transcription factor Yin Yang 1 (YY1). Here, we investigated if in vivo astrocytic YY1 deletion mitigates Mn-induced dopaminergic neurotoxicity, attenuating Mn-induced reduction in GLAST/GLT-1 expression in murine substantia nigra (SN). AAV5-GFAP-Cre-GFP particles were infused into the SN of 8-week-old YY1 flox/flox mice to generate a region-specific astrocytic YY1 conditional knockout (cKO) mouse model. 3 weeks after adeno-associated viral (AAV) infusion, mice were exposed to 330 μg of Mn (MnCl2 30 mg/kg, intranasal instillation, daily) for 3 weeks. After Mn exposure, motor functions were determined in open-field and rotarod tests, followed by Western blotting, quantitative PCR, and immunohistochemistry to assess YY1, TH, GLAST, and GLT-1 levels. Infusion of AAV5-GFAP-Cre-GFP vectors into the SN resulted in region-specific astrocytic YY1 deletion and attenuation of Mn-induced impairment of motor functions, reduction of TH-expressing cells in SN, and TH mRNA/protein levels in midbrain/striatum. Astrocytic YY1 deletion also attenuated the Mn-induced decrease in GLAST/GLT-1 mRNA/protein levels in midbrain. Moreover, YY1 deletion abrogated its interaction with histone deacetylases in astrocytes. These results indicate that astrocytic YY1 plays a critical role in Mn-induced neurotoxicity in vivo, at least in part, by reducing astrocytic GLAST/GLT-1. Thus, YY1 might be a potential target for treatment of Mn toxicity and other neurological disorders associated with dysregulation of GLAST/GLT-1.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - James Johnson
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Asha Rizor
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Getinet Adinew
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Michael Stiboller
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Tania Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Bronx, New York, New York, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA.
| |
Collapse
|
10
|
Gray EP, Browning CL, Vaslet CA, Gion KD, Green A, Liu M, Kane AB, Hurt RH. Chemical and Colloidal Dynamics of MnO 2 Nanosheets in Biological Media Relevant for Nanosafety Assessment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000303. [PMID: 32191401 PMCID: PMC7461694 DOI: 10.1002/smll.202000303] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/22/2020] [Indexed: 05/15/2023]
Abstract
Many layered crystal phases can be exfoliated or assembled into ultrathin 2D nanosheets with novel properties not achievable by particulate or fibrous nanoforms. Among these 2D materials are manganese dioxide (MnO2 ) nanosheets, which have applications in batteries, catalysts, and biomedical probes. A novel feature of MnO2 is its sensitivity to chemical reduction leading to dissolution and Mn2+ release. Biodissolution is critical for nanosafety assessment of 2D materials, but the timing and location of MnO2 biodissolution in environmental or occupational exposure scenarios are poorly understood. This work investigates the chemical and colloidal dynamics of MnO2 nanosheets in biological media for environmental and human health risk assessment. MnO2 nanosheets are insoluble in most aqueous phases, but react with strong and weak reducing agents in biological fluid environments. In vitro, reductive dissolution can be slow enough in cell culture media for MnO2 internalization by cells in the form of intact nanosheets, which localize in vacuoles, react to deplete intracellular glutathione, and induce cytotoxicity that is likely mediated by intracellular Mn2+ release. The results are used to classify MnO2 nanosheets within a new hazard screening framework for 2D materials, and the implications of MnO2 transformations for nanotoxicity testing and nanosafety assessment are discussed.
Collapse
Affiliation(s)
- Evan P Gray
- The Department of Civil Environmental and Construction Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Cynthia L Browning
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Charles A Vaslet
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Kyle D Gion
- The School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Allen Green
- The School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Muchun Liu
- The School of Engineering, Brown University, Providence, RI, 02912, USA
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Agnes B Kane
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Robert H Hurt
- The School of Engineering, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
11
|
Huntington's disease associated resistance to Mn neurotoxicity is neurodevelopmental stage and neuronal lineage dependent. Neurotoxicology 2019; 75:148-157. [PMID: 31545971 DOI: 10.1016/j.neuro.2019.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/06/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Manganese (Mn) is essential for neuronal health but neurotoxic in excess. Mn levels vary across brain regions and neurodevelopment. While Mn requirements during infanthood and childhood are significantly higher than in adulthood, the relative vulnerability to excess extracellular Mn across human neuronal developmental time and between distinct neural lineages is unknown. Neurological disease is associated with changes in brain Mn homeostasis and pathology associated with Mn neurotoxicity is not uniform across brain regions. For example, mutations associated with Huntington's disease (HD) decrease Mn bioavailability and increase resistance to Mn cytotoxicity in human and mouse striatal neuronal progenitors. Here, we sought to compare the differences in Mn cytotoxicity between control and HD human-induced pluripotent stem cells (hiPSCs)-derived neuroprogenitor cells (NPCs) and maturing neurons. We hypothesized that there would be differences in Mn sensitivity between lineages and developmental stages. However, we found that the different NPC lineage specific media substantially influenced Mn cytotoxicity in the hiPSC derived human NPCs and did so consistently even in a non-human cell line. This limited the ability to determine which human neuronal sub-types were more sensitive to Mn. Nonetheless, we compared within neuronal subtypes and developmental stage the sensitivity to Mn cytotoxicity between control and HD patient derived neuronal lineages. Consistent with studies in other striatal model systems the HD genotype was associated with resistance to Mn cytotoxicity in human striatal NPCs. In addition, we report an HD genotype-dependent resistance to Mn cytotoxicity in cortical NPCs and hiPSCs. Unexpectedly, the HD genotype conferred increased sensitivity to Mn in early post-mitotic midbrain neurons but had no effect on Mn sensitivity in midbrain NPCs or post-mitotic cortical neurons. Overall, our data suggest that sensitivity to Mn cytotoxicity is influenced by HD genotype in a human neuronal lineage type and stage of development dependent manner.
Collapse
|
12
|
Sachse B, Kolbaum AE, Ziegenhagen R, Andres S, Berg K, Dusemund B, Hirsch-Ernst KI, Kappenstein O, Müller F, Röhl C, Lindtner O, Lampen A, Schäfer B. Dietary Manganese Exposure in the Adult Population in Germany-What Does it Mean in Relation to Health Risks? Mol Nutr Food Res 2019; 63:e1900065. [PMID: 31216097 DOI: 10.1002/mnfr.201900065] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/29/2019] [Indexed: 11/10/2022]
Abstract
Manganese is both an essential nutrient and a potential neurotoxicant. Therefore, the question arises whether the dietary manganese intake in the German population is on the low or high side. Results from a pilot total diet study in Germany presented here reveal that the average dietary manganese intake in the general population in Germany aged 14-80 years is about 2.8 mg day-1 for a person of 70 kg body weight. This exposure level is within the intake range of 2-5 mg per person and day as recommended by the societies for nutrition in Germany, Austria, and Switzerland. No information on the dietary exposure of children in Germany can be provided so far. Although reliable information on health effects related to oral manganese exposure is limited, there is no indication from the literature that these dietary intake levels are associated with adverse health effects either by manganese deficiency or excess. However, there is limited evidence that manganese taken up as a highly bioavailable bolus, for example, uptake via drinking water or food supplements, could pose a potential risk to human health-particularly in certain subpopulations-when certain intake amounts, which are currently not well defined, are exceeded.
Collapse
Affiliation(s)
- Benjamin Sachse
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| | - Anna Elena Kolbaum
- German Federal Institute for Risk Assessment (BfR), Department of Exposure, 12277, Berlin, Germany
| | - Rainer Ziegenhagen
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| | - Susanne Andres
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| | - Katharina Berg
- German Federal Institute for Risk Assessment (BfR), Department of Exposure, 12277, Berlin, Germany
| | - Birgit Dusemund
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| | - Karen Ildico Hirsch-Ernst
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| | - Oliver Kappenstein
- German Federal Institute for Risk Assessment (BfR), Department of Chemicals and Product Safety, 10589, Berlin, Germany
| | - Frederic Müller
- German Federal Institute for Risk Assessment (BfR), Department of Chemicals and Product Safety, 10589, Berlin, Germany
| | - Claudia Röhl
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany.,State Agency for Social Services Schleswig-Holstein (LAsD), Department of Environmental Health Protection, 24105, Kiel, Germany
| | - Oliver Lindtner
- German Federal Institute for Risk Assessment (BfR), Department of Exposure, 12277, Berlin, Germany
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| | - Bernd Schäfer
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| |
Collapse
|
13
|
Yoon M, Efremenko A, Van Landingham C, Gentry PR, Keene AM, Taylor MD, Clewell HJ, Andersen ME. Updating physiologically based pharmacokinetic models for manganese by incorporating rapid association/dissociation processes in tissues. Toxicol Appl Pharmacol 2019; 372:1-10. [PMID: 30978397 DOI: 10.1016/j.taap.2019.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 11/30/2022]
Abstract
Previously, we developed a series of physiologically based pharmacokinetic (PBPK) models for manganese (Mn) in which saturable tissue binding and dose-dependent increases in biliary excretion captured key aspects of Mn homeostasis biology. These models reproduced the non-linear behavior of Mn kinetics in different tissues, accounting for dose-dependent changes in Mn kinetics. The original model construct had relatively slow association and dissociation rate constants for Mn binding in tissues. In this updated model, both rates of entry into tissue and the interaction of Mn with binding sites are rapid, and the step limiting Mn accumulation is the saturation of tissue binding sites. This binding reflects general cellular requirements for Mn with high affinity but rapid exchange between bound and free forms, which we captured using a dissociation constant (KD) of ~ 0.5 μM across tissues while maintaining different maximum binding capacities in each tissue. Variability in the binding capacities accounted for different background levels of Mn in particular tissues. This alternative structure successfully described Mn kinetics in tissues in adult rats exposed to Mn either in their diet or by inhalation, indicating that both the original and the present models capture the dose-dependent and tissue-specific kinetic behavior of Mn in adult rats. Although the published models that emphasize the role of smaller tissue binding rate constants in non-linear behaviors capture all relevant dose-dependent kinetic behaviors of this metal, increasing biological relevance of the model structure and parameters should provide greater confidence in applying the Mn PBPK models to risk assessment.
Collapse
Affiliation(s)
- Miyoung Yoon
- ScitoVation, LLC, RTP, Cary, NC, USA; Toxstrategies, Inc., Cary, NC, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Garcia EM, da Silva Júnior FMR, Baisch PRM, Soares MCF, Muccillo-Baisch AL. Effect of mixing two environmental stressors, pH and metal contaminants, on offspring of rats exposed during gestation and lactation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35555-35561. [PMID: 30353427 DOI: 10.1007/s11356-018-3495-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
In large urban centers, the toxicity of metal mixtures may be enhanced by physicochemical factors and environmental variables, including pH. Rio Grande, a municipality located in the extreme south of Brazil, has soils with high levels of contamination due to urban and industrial activities and a high prevalence of acid rain events. Previous studies have shown that contact with elutriate of these soils can cause physiological and reproductive changes. Thus, the objective of the present study was to evaluate, through animal experimentation, the effects of a metal-contaminated soil, acidified by hydrofluoric acid at two different pH values (5.2 and 3.6), on the health of offspring of rats exposed during gestation and lactation. Female Wistar rats were gavaged daily for 42 days (gestation and breastfeeding) with soil elutriate contaminated with metals, using solvent with different pH values (6.0, 5.2, and 3.6). The following parameters were evaluated in their offspring: body and organ weight, length, appearance of developmental characteristics, and swimming. Experimental groups in which the progenitors were exposed to the solution at pH 3.6 exhibited a delayed increase in weight as well as motor deficit, with a decreased weight (onset) and length (beginning and end), while exposure in association with soil was an aggravating factor for the damages to the body. Exposure to the solution at pH 5.2 decreased the initial weight of the animals, impaired some parameters of weight development, and caused motor deficit on the 14th day. These novel findings reveal that the exposure of progenitors to environmental stressors can compromise the health of the offspring. Special attention should be given to populations living in areas with high prevalence of acid rain.
Collapse
Affiliation(s)
- Edariane Menestrino Garcia
- Laboratório de Ensaios Farmacológicos e Toxicológicos - LEFT, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande do Sul - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
| | - Flavio Manoel Rodrigues da Silva Júnior
- Laboratório de Ensaios Farmacológicos e Toxicológicos - LEFT, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande do Sul - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil.
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, CEP 96203-900, Brazil.
| | - Paulo Roberto Martins Baisch
- Laboratório de Oceanografia Geológica, Instituto de Oceanografia, Universidade Federal do Rio Grande do Sul-FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96201-900, Brazil
| | - Maria Cristina Flores Soares
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, CEP 96203-900, Brazil
| | - Ana Luíza Muccillo-Baisch
- Laboratório de Ensaios Farmacológicos e Toxicológicos - LEFT, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande do Sul - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, CEP 96203-900, Brazil
| |
Collapse
|
15
|
Physiologically-based pharmacokinetic modeling suggests similar bioavailability of Mn from diet and drinking water. Toxicol Appl Pharmacol 2018; 359:70-81. [DOI: 10.1016/j.taap.2018.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/29/2022]
|
16
|
El-Hady WM, Galal AAA. Neurotoxic Outcomes of Subchronic Manganese Chloride Exposure via Contaminated Water in Adult Male Rats and the Potential Benefits of Ebselen. Biol Trace Elem Res 2018. [PMID: 29516356 DOI: 10.1007/s12011-018-1291-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The neurological effects of manganese (Mn) exposure on adults consuming contaminated water remain unclear. Accordingly, the current experiment was planned to explore the neurotoxic consequences of subchronic Mn exposure via contaminated water and to examine whether ebselen (Ebs) improved these outcomes. Rats exposed to oral MnCl2 (50 mg/kg body weight) for 30 successive days exhibited reduced rearing and ambulation. Furthermore, Mn administration increased brain Mn concentrations and induced superoxide dismutase, catalase, and glutathione depletion. Mn administration also increased lipid peroxidation biomarker levels. Additionally, Mn increased interleukin1-β and prostaglandin E2 levels and altered caspase-3 and Bcl-2 expression. Mn intoxication also induced marked gliosis, numerous vacuolations, and disoriented and pyknotic Purkinje cells as well as marked vascular congestion in brain tissue. Meanwhile, intraperitoneal administration of Ebs (15 mg/kg body weight) to Mn-intoxicated rats improved the behavioral performance and oxidative damage as well as inflammatory, apoptotic, and histopathological changes. The above results indicate that Ebs alleviated Mn neurotoxicity via its antioxidant, anti-inflammatory, and anti-apoptotic activities. Therefore, Ebs could represent a promising agent in the prevention of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Walaa M El-Hady
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Azza A A Galal
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
17
|
Thompson KJ, Hein J, Baez A, Sosa JC, Wessling-Resnick M. Manganese transport and toxicity in polarized WIF-B hepatocytes. Am J Physiol Gastrointest Liver Physiol 2018; 315:G351-G363. [PMID: 29792530 PMCID: PMC6335010 DOI: 10.1152/ajpgi.00103.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Manganese (Mn) toxicity arises from nutritional problems, community and occupational exposures, and genetic risks. Mn blood levels are controlled by hepatobiliary clearance. The goals of this study were to determine the cellular distribution of Mn transporters in polarized hepatocytes, to establish an in vitro assay for hepatocyte Mn efflux, and to examine possible roles the Mn transporters would play in metal import and export. For these experiments, hepatocytoma WIF-B cells were grown for 12-14 days to achieve maximal polarity. Immunoblots showed that Mn transporters ZIP8, ZnT10, ferroportin (Fpn), and ZIP14 were present. Indirect immunofluorescence microscopy localized Fpn and ZIP14 to WIF-B cell basolateral domains whereas ZnT10 and ZIP8 associated with intracellular vesicular compartments. ZIP8-positive structures were distributed uniformly throughout the cytoplasm, but ZnT10-positive vesicles were adjacent to apical bile compartments. WIF-B cells were sensitive to Mn toxicity, showing decreased viability after 16 h exposure to >250 μM MnCl2. However, the hepatocytes were resistant to 4-h exposures of up to 500 μM MnCl2 despite 50-fold increased Mn content. Washout experiments showed time-dependent efflux with 80% Mn released after a 4 h chase period. Hepcidin reduced levels of Fpn in WIF-B cells, clearing Fpn from the cell surface, but Mn efflux was unaffected. The secretory inhibitor, brefeldin A, did block release of Mn from WIF-B cells, suggesting vesicle fusion may be involved in export. These results point to a possible role of ZnT10 to import Mn into vesicles that subsequently fuse with the apical membrane and empty their contents into bile. NEW & NOTEWORTHY Polarized WIF-B hepatocytes express manganese (Mn) transporters ZIP8, ZnT10, ferroportin (Fpn), and ZIP14. Fpn and ZIP14 localize to basolateral domains. ZnT10-positive vesicles were adjacent to apical bile compartments, and ZIP8-positive vesicles were distributed uniformly throughout the cytoplasm. WIF-B hepatocyte Mn export was resistant to hepcidin but inhibited by brefeldin A, pointing to an efflux mechanism involving ZnT10-mediated uptake of Mn into vesicles that subsequently fuse with and empty their contents across the apical bile canalicular membrane.
Collapse
Affiliation(s)
- Khristy J. Thompson
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Jennifer Hein
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Andrew Baez
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Jose Carlo Sosa
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Marianne Wessling-Resnick
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| |
Collapse
|
18
|
Deriving A Drinking Water Guideline for A Non-Carcinogenic Contaminant: The Case of Manganese. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061293. [PMID: 29925794 PMCID: PMC6025359 DOI: 10.3390/ijerph15061293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 11/17/2022]
Abstract
Manganese is a natural contaminant of water sources. It is an essential oligo-element, which may exert toxicity at high doses, particularly via inhalation. Its toxicity by the oral route is less known, but epidemiological and experimental studies tend to support its neurodevelopmental toxicity in infants and children. This paper describes the method used by a middle-size public health institution to derive a Drinking Water Guideline (DWG) for manganese. After reviewing the work done by major public health institutions, authors confirmed the use of experimental data to derive a point-of-departure (POD) of 25 mg of manganese/kg/day, based on neurodevelopmental effects on pup rats. Then, a total uncertainty factor of 450 was applied to calculate a Toxicological Reference Value (TRV) of 55 µg/kg/day. The final DWG proposed for manganese is 60 µg/L and is based on a relative source contribution (RSC) of water of 20% and an infant drinking scenario of 182 mL/kg of body weight (BW) of water (95th percentile of the ingestion rate distribution for 0⁻6 months). Despite its limitations, e.g., starting with the work done by other agencies, such an approach demonstrates in a transparent way the rationale and challenging choices made by regulators when deriving a DWG.
Collapse
|
19
|
Sprowles JLN, Amos-Kroohs RM, Braun AA, Sugimoto C, Vorhees CV, Williams MT. Developmental manganese, lead, and barren cage exposure have adverse long-term neurocognitive, behavioral and monoamine effects in Sprague-Dawley rats. Neurotoxicol Teratol 2018; 67:50-64. [PMID: 29631003 DOI: 10.1016/j.ntt.2018.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/17/2022]
Abstract
Developmental stress, including low socioeconomic status (SES), can induce dysregulation of the hypothalamic-pituitary-adrenal axis and result in long-term changes in stress reactivity. Children in lower SES households experience more stress and are more likely to be exposed to environmental neurotoxins such as lead (Pb) and manganese (Mn) than children in higher SES households. Co-exposure to stress, Pb, and Mn during early development may increase the risk of central nervous system dysfunction compared with unexposed children. To investigate the potential interaction of these factors, Sprague-Dawley rats were bred, and litters born in-house were culled on postnatal day (P)1 to 6 males and 6 females. One male and female within each litter were assigned to one of the following groups: 0 (vehicle), 10 mg/kg Pb, 100 mg/kg Mn, or 10 mg/kg Pb + 100 mg/kg Mn (PbMn), water gavage, and handled only from P4-28 with half the litters reared in cages with standard bedding (29 litters) and half with no bedding (Barren; 27 litters). Mn and PbMn groups had decreased anxiety, reduced acoustic startle, initial open-field hypoactivity, increased activity following (+)-methamphetamine, deficits in egocentric learning in the Cincinnati water maze (CWM), and deficits in latent inhibition conditioning. Pb increased anxiety and reduced open-field activity. Barren-reared rats had decreased anxiety, CWM deficits, increased startle, and initial open-field hyperactivity. Mn, PbMn, Pb Barren-reared groups had impaired Morris water maze performance. Pb altered neostriatal serotonin and norepinephrine, Mn increased hippocampal serotonin in males, Mn + Barren-rearing increased neostriatal serotonin, and Barren-rearing decreased neostriatal dopamine in males. At the doses used here, most effects were in the Mn and PbMn groups. Few interactions between Mn, Pb, and rearing stress were found, indicating that the interaction of these three variables is not as impactful as hypothesized.
Collapse
Affiliation(s)
- Jenna L N Sprowles
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Rhodes College, Department of Psychology, 2000 North Parkway, Memphis, TN 38112, United States.
| | - Robyn M Amos-Kroohs
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Virginia Department of Forensic Science, 700 North Fifth St, Richmond, VA 23219, United States
| | - Amanda A Braun
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States
| | - Chiho Sugimoto
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States.
| | - Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States.
| | - Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States.
| |
Collapse
|
20
|
Smith D, Woodall GM, Jarabek AM, Boyes WK. Manganese testing under a clean air act test rule and the application of resultant data in risk assessments. Neurotoxicology 2018; 64:177-184. [PMID: 28676206 PMCID: PMC6664450 DOI: 10.1016/j.neuro.2017.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/27/2017] [Indexed: 01/19/2023]
Abstract
In the 1990's, the proposed use of methylcyclopentadienyl manganese tricarbonyl (MMT) as an octane-enhancing gasoline fuel additive led to concerns for potential public health consequences from exposure to manganese (Mn) combustion products in automotive exhaust. After a series of regulatory/legal actions and negotiations, the U.S. Environmental Protection Agency (EPA) issued under Clean Air Act (CAA) section 211(b) an Alternative Tier 2 Test Rule that required development of scientific information intended to help resolve uncertainties in exposure or health risk estimates associated with MMT use. Among the uncertainties identified were: the chemical forms of Mn emitted in automotive exhaust; the relative toxicity of different Mn species; the potential for exposure among sensitive subpopulations including females, the young and elderly; differences in sensitivity between test species and humans; differences between inhalation and oral exposures; and the influence of dose rate and exposure duration on tissue accumulation of Mn. It was anticipated that development of specific sets of pharmacokinetic (PK) information and models regarding Mn could help resolve many of the identified uncertainties and serve as the best foundation for available data integration. The results of the test program included development of several unique Mn datasets, and a series of increasingly sophisticated Mn physiologically-based pharmacokinetic (PBPK) models. These data and models have helped address each of the uncertainties originally identified in the Test Rule. The output from these PBPK models were used by the Agency for Toxic Substances and Disease Registry (ATSDR) in 2012 to inform the selection of uncertainty factors for deriving the manganese Minimum Risk Level (MRL) for chronic exposure durations. The EPA used the MRL in the Agency's 2015 evaluation of potential residual risks of airborne manganese released from ferroalloys production plants. This resultant set of scientific data and models likely would not exist without the CAA section 211(b) test rule regulatory procedure.
Collapse
Affiliation(s)
- Darcie Smith
- Office of Air Quality Planning and Standards, Office of Air and Radiation, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - George M Woodall
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Annie M Jarabek
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - William K Boyes
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| |
Collapse
|
21
|
Foster ML, Bartnikas TB, Maresca-Fichter HC, Mercadante C, Dash M, Miller C, Dorman DC. Neonatal C57BL/6J and parkin mice respond differently following developmental manganese exposure: Result of a high dose pilot study. Neurotoxicology 2017; 64:291-299. [PMID: 29020610 DOI: 10.1016/j.neuro.2017.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 11/28/2022]
Abstract
It has been suggested that childhood exposure to neurotoxicants may increase the risk of Parkinson's disease (PD) or other neurodegenerative disease in adults. Some recessive forms of PD have been linked to loss-of-function mutations in the Park2 gene that encodes for parkin. The purpose of this pilot study was to evaluate whether responses to neonatal manganese (Mn) exposure differ in mice with a Park2 gene defect (parkin mice) when compared with a wildtype strain (C57BL/6J). Neonatal parkin and C57BL/6J littermates were randomly assigned to 0, 11, or 25mg Mn/kg-day dose groups with oral exposures occurring from postnatal day (PND) 1 through PND 28. Motor activity was measured on PND 19-22 and 29-32. Tissue Mn concentrations were measured in liver, femur, olfactory bulb, frontal cortex, and striatum on PND 29. Hepatic and frontal cortex gene expression of Slc11a2, Slc40a1, Slc30a10, Hamp (liver only), and Park2 were also measured on PND 29. Some strain differences were seen. As expected, decreased hepatic and frontal cortex Park2 expression was seen in the parkin mice when compared with C57BL/6J mice. Untreated parkin mice also had higher liver and femur Mn concentrations when compared with the C57BL/6J mice. Exposure to≥11mg Mn/kg-day was associated with increased brain Mn concentrations in all mice, no strain difference was observed. Manganese exposure in C57Bl6, but not parkin mice, was associated with a negative correlation between striatal Mn concentration and motor activity. Manganese exposure was not associated with changes in frontal cortex gene expression. Decreased hepatic Slc30a10, Slc40a1, and Hamp expression were seen in PND 29 C57BL/6J mice given 25mg Mn/kg-day. In contrast, Mn exposure was only associated with decreased Hamp expression in the parkin mice. Our results suggest that the Parkin gene defect did not increase the susceptibility of neonatal mice to adverse health effects associated with high-dose Mn exposure.
Collapse
Affiliation(s)
- Melanie L Foster
- North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Thomas B Bartnikas
- Brown University, Department of Pathology and Laboratory Medicine, 70 Ship St., Rm. 522, Providence, RI 02912, USA.
| | - Hailey C Maresca-Fichter
- North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Courtney Mercadante
- Brown University, Department of Pathology and Laboratory Medicine, 70 Ship St., Rm. 522, Providence, RI 02912, USA.
| | - Miriam Dash
- Brown University, Department of Pathology and Laboratory Medicine, 70 Ship St., Rm. 522, Providence, RI 02912, USA.
| | - Chelsea Miller
- Brown University, Department of Pathology and Laboratory Medicine, 70 Ship St., Rm. 522, Providence, RI 02912, USA.
| | - David C Dorman
- North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
22
|
Dees WL, Hiney JK, Srivastava VK. Influences of manganese on pubertal development. J Endocrinol 2017; 235:R33-R42. [PMID: 28720645 PMCID: PMC5675006 DOI: 10.1530/joe-17-0237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/18/2017] [Indexed: 11/08/2022]
Abstract
The onset of puberty is the result of complex neuroendocrine interactions within hypothalamic region of the brain, as well as from genetic and environmental influences. These interactions ultimately result in the increased synthesis and release of luteinizing hormone-releasing hormone (LHRH). Manganese (Mn) is an essential environmental element known for years to be involved in numerous mammalian physiological processes, including growth and reproductive function. Studies in recent years have shown the ability of Mn to cross the blood-brain barrier and act within the hypothalamus to influence the timing of puberty. This review will depict research showing the molecular and physiological actions of Mn in the control of prepubertal LHRH and discuss the potential for the element to cause either helpful or harmful outcomes on the developmental process depending upon the age and accumulation of Mn within the hypothalamus.
Collapse
Affiliation(s)
- William L Dees
- Veterinary Integrative BiosciencesCollege of Veterinary Medicine, Texas A&M University, College Station, Texas, USA
| | - Jill K Hiney
- Veterinary Integrative BiosciencesCollege of Veterinary Medicine, Texas A&M University, College Station, Texas, USA
| | - Vinod K Srivastava
- Veterinary Integrative BiosciencesCollege of Veterinary Medicine, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
23
|
Li SJ, Ou CY, He SN, Huang XW, Luo HL, Meng HY, Lu GD, Jiang YM, Vieira Peres T, Luo YN, Deng XF. Sodium p-Aminosalicylic Acid Reverses Sub-Chronic Manganese-Induced Impairments of Spatial Learning and Memory Abilities in Rats, but Fails to Restore γ-Aminobutyric Acid Levels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14040400. [PMID: 28394286 PMCID: PMC5409601 DOI: 10.3390/ijerph14040400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
Abstract
Excessive manganese (Mn) exposure is not only a health risk for occupational workers, but also for the general population. Sodium para-aminosalicylic acid (PAS-Na) has been successfully used in the treatment of manganism, but the involved molecular mechanisms have yet to be determined. The present study aimed to investigate the effects of PAS-Na on sub-chronic Mn exposure-induced impairments of spatial learning and memory, and determine the possible involvements of γ-aminobutyric acid (GABA) metabolism in vivo. Sprague-Dawley male rats received daily intraperitoneal injections MnCl2 (as 6.55 mg/kg Mn body weight, five days per week for 12 weeks), followed by daily subcutaneous injections of 100, 200, or 300 mg/kg PAS-Na for an additional six weeks. Mn exposure significantly impaired spatial learning and memory ability, as noted in the Morris water maze test, and the following PAS-Na treatment successfully restored these adverse effects to levels indistinguishable from controls. Unexpectedly, PAS-Na failed to recover the Mn-induced decrease in the overall GABA levels, although PAS-Na treatment reversed Mn-induced alterations in the enzyme activities directly responsible for the synthesis and degradation of GABA (glutamate decarboxylase and GABA-transaminase, respectively). Moreover, Mn exposure caused an increase of GABA transporter 1 (GAT-1) and decrease of GABA A receptor (GABAA) in transcriptional levels, which could be reverted by the highest dose of 300 mg/kg PAS-Na treatment. In conclusion, the GABA metabolism was interrupted by sub-chronic Mn exposure. However, the PAS-Na treatment mediated protection from sub-chronic Mn exposure-induced neurotoxicity, which may not be dependent on the GABA metabolism.
Collapse
Affiliation(s)
- Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| | - Chao-Yan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China.
| | - Sheng-Nan He
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| | - Xiao-Wei Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| | - Hai-Lan Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| | - Hao-Yang Meng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| | - Guo-Dong Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning 530021, China.
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| | - Tanara Vieira Peres
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer, 209, 1300 Morris Park Ave, Bronx, NY 10461, USA.
| | - Yi-Ni Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| | - Xiang-Fa Deng
- Department of Anatomy, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
24
|
McGough D, Jardine L. A two-generation inhalation reproductive toxicity study upon the exposure to manganese chloride. Neurotoxicology 2017; 58:194-202. [DOI: 10.1016/j.neuro.2016.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 11/15/2022]
|
25
|
Tamm C, Ceccatelli S. Mechanistic insight into neurotoxicity induced by developmental insults. Biochem Biophys Res Commun 2017; 482:408-418. [DOI: 10.1016/j.bbrc.2016.10.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/23/2016] [Indexed: 12/31/2022]
|
26
|
Su C, Chen K, Zou Y, Shen Y, Xia B, Liang G, Lv Y, Wang F, Huang D, Yang X. Chronic exposure to manganese sulfate leads to adverse dose-dependent effects on the neurobehavioral ability of rats. ENVIRONMENTAL TOXICOLOGY 2016; 31:1571-1579. [PMID: 26097037 DOI: 10.1002/tox.22161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 05/31/2015] [Accepted: 05/31/2015] [Indexed: 06/04/2023]
Abstract
Manganese sulfate is the main combustion product of methylcyclopentadienyl manganese tricarbonyl (MMT). Currently, little is known about the neurobehavioral consequences of chronic manganese sulfate exposure. In this study, rats were treated with 0, 5.0, 10.0, and 20.0 mg/kg MnSO4 ·H2 O for 24 consecutive weeks via intraperitoneal injection. During the treatment period, spatial learning-memory ability was measured using the Morris water maze (MWM). At the end of the exposure period, spontaneous motor behavior and emotional status, hippocampal histologic changes, and Hsp70 mRNA levels were measured using the open-field test (OFT), hematoxylin-eosin staining and real-time quantitative PCR (RT-PCR), respectively. A dose-dependent decrease was noted in the spatial learning-memory ability and the spontaneous activities of rats (P < 0.05), and negative emotions differed significantly between the exposed groups and the control group (P < 0.05). Moreover, overt morphological changes in the hippocampuses of the exposed rats were detected. Cellular degeneration and death were also found. The Hsp70 mRNA levels of the hippocampal areas in the 20.0 mg/kg group (1.567 ± 0.236) were significantly increased compared with the control group (P < 0.05). These results suggest that chronic exposure to manganese sulfate can have adverse dose-dependent effects on rats' neurobehavioral ability, and the mechanism of abnormal hippocampal Hsp70 expression needs to be further explored. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1571-1579, 2016.
Collapse
Affiliation(s)
- Cheng Su
- Department of Occupational Health and Environmental Health, Guangxi Medical University, School of Public Health, Nanning, Guangxi, China
| | - Kangcheng Chen
- Department of Occupational Health and Environmental Health, Guangxi Medical University, School of Public Health, Nanning, Guangxi, China
| | - Yunfeng Zou
- Department of Toxicology, Guangxi Medical University, School of Public Health, Nanning, Guangxi, China
| | - Yuefei Shen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bing Xia
- Department of Occupational Health and Environmental Health, Guangxi Medical University, School of Public Health, Nanning, Guangxi, China
| | - Guiqiang Liang
- Department of Toxicology, Guangxi Medical University, School of Public Health, Nanning, Guangxi, China
| | - Yingnan Lv
- Department of Occupational Health and Environmental Health, Guangxi Medical University, School of Public Health, Nanning, Guangxi, China
| | - Fenfen Wang
- Department of Occupational Health and Environmental Health, Guangxi Medical University, School of Public Health, Nanning, Guangxi, China
| | - Damin Huang
- Department of Occupational Health and Environmental Health, Guangxi Medical University, School of Public Health, Nanning, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, Guangxi Medical University, School of Public Health, Nanning, Guangxi, China.
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
27
|
Coetzee DJ, McGovern PM, Rao R, Harnack LJ, Georgieff MK, Stepanov I. Measuring the impact of manganese exposure on children's neurodevelopment: advances and research gaps in biomarker-based approaches. Environ Health 2016; 15:91. [PMID: 27576472 PMCID: PMC5004305 DOI: 10.1186/s12940-016-0174-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 08/23/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Children's exposure to manganese (Mn) is a public health concern and consistent policy guidelines for safe levels of Mn exposure is lacking. The complexity of establishing exposure thresholds for Mn partially relates to its dual role as an essential micronutrient with low levels required for good health, but also as a neurotoxin at high levels. Questions exist about the age-related susceptibility to excess Mn, particularly for children, and how best to measure chronic exposures. To address this concern we conducted a systematic review of studies examining children's exposure to Mn and neurodevelopmental outcomes focused on selection of biomarker-based and environmental measurements of Mn exposure to identify the scientific advances and research gaps. METHODS PubMed and EMBASE databases were searched through March 2016 for studies that were published in English, used a biomarker-based or environmental measurement of Mn exposure, and measured at least one neurological outcome for children aged 0-18 years. Ultimately, thirty-six papers from 13 countries were selected. Study designs were cross-sectional (24), prospective cohorts (9), and case control (3). Neurodevelopmental outcomes were first assessed for Mn exposure in infants (6 papers), toddlers or preschoolers (3 papers) and school-age children (27 papers). RESULTS Studies of school-aged children most frequently measured Intelligence Quotient (IQ) scores using Mn biomarkers of hair or blood. Higher hair concentrations of Mn were consistently associated with lower IQ scores while studies of blood biomarkers and IQ scores had inconsistent findings. Studies of infants and toddlers most frequently measured mental and psychomotor development; findings were inconsistent across biomarkers of Mn (hair, cord blood, tooth enamel, maternal or child blood and dentin). Although few studies measured environmental sources of Mn, hair biomarkers were associated with Mn in drinking water and infant formula. Only one paper quantified the associations between environmental sources of Mn and blood concentrations. CONCLUSION Hair-Mn was the more consistent and valid biomarker of Mn exposure in school-aged children. Accurate measurement of children's exposure to Mn is crucial for addressing these knowledge gaps in future studies. However, research on biomarkers feasible for fetuses and infants is urgently needed given their unique vulnerability to excessive Mn.
Collapse
Affiliation(s)
- Donna J. Coetzee
- Medical School, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455 USA
| | - Patricia M. McGovern
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Mayo Building, MMC 807, 420 Delaware St. SE, Minneapolis, MN 55455 USA
| | - Raghavendra Rao
- Neonatology Division, University of Minnesota, Mayo Mail Code 391, 420 Delaware St. SE, Minneapolis, MN 55455 USA
| | - Lisa J. Harnack
- School of Public Health, University of Minnesota, 300 West Bank Office Building 1300 S 2nd St, Minneapolis, MN 55454 USA
| | - Michael K. Georgieff
- Martin Lenz Harrison Land Grant Chair, Pediatrics and the Institute of Child Development, Center for Neurobehavioral Development, University of Minnesota, 717 Delaware Street SE, Ste. 333, Minneapolis, MN 55414 USA
| | - Irina Stepanov
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, 420 Delaware St SE, MMC 807, Minneapolis, MN 55454 USA
| |
Collapse
|
28
|
Amos-Kroohs RM, Davenport LL, Gutierrez A, Hufgard JR, Vorhees CV, Williams MT. Developmental manganese exposure in combination with developmental stress and iron deficiency: Effects on behavior and monoamines. Neurotoxicol Teratol 2016; 56:55-67. [PMID: 27302314 DOI: 10.1016/j.ntt.2016.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/20/2022]
Abstract
Manganese (Mn) is an essential element but neurotoxic at higher exposures, however, Mn exposure seldom occurs in isolation. It often co-occurs in populations with inadequate dietary iron (Fe) and limited resources that result in stress. Subclinical FeD affects up to 15% of U.S. children and exacerbates Mn toxicity by increasing Mn bioavailability. Therefore, we investigated Mn overexposure (MnOE) in rats in combination with Fe deficiency (FeD) and developmental stress, for which we used barren cage rearing. For barren cage rearing (BAR), rats were housed in cages with a wire grid floor or standard bedding material (STD) from embryonic day (E)7 through postnatal day (P)28. For FeD, dams were fed a 90% Fe-deficient NIH-07 diet from E15 through P28. Within each litter, different offspring were treated with 100mg/kg Mn (MnOE) or vehicle (VEH) by gavage every other day from P4-28. Behavior was assessed at two ages and consisted of: open-field, anxiety tests, acoustic startle response (ASR) with prepulse inhibition (PPI), sociability, sucrose preference, tapered beam crossing, and the Porsolt's forced swim test. MnOE had main effects of decreasing activity, ASR, social preference, and social novelty. BAR and FeD transiently modified MnOE effects. BAR groups weighed less and showed decreased anxiety in the elevated zero maze, had increased ASR and decreased PPI, and exhibited reduced sucrose preference compared with the STD groups. FeD animals also weighed less and had increased slips on the tapered beam. Most of the monoamine effects were dopaminergic and occurred in the MnOE groups. The results showed that Mn is a pervasive developmental neurotoxin, the effects of which are modulated by FeD and/or BAR cage rearing.
Collapse
Affiliation(s)
- Robyn M Amos-Kroohs
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States
| | - Laurie L Davenport
- Department of Environmental Health, University of Cincinnati, 3223 Eden Ave., Cincinnati, OH 45220, United States
| | - Arnold Gutierrez
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States
| | - Jillian R Hufgard
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States
| | - Charles V Vorhees
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States
| | - Michael T Williams
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| |
Collapse
|
29
|
Fu H, Chen W, Yu H, Wei Z, Yu X. The effects of preweaning manganese exposure on spatial learning ability and p-CaMKIIα level in the hippocampus. Neurotoxicology 2015; 52:98-103. [PMID: 26616912 DOI: 10.1016/j.neuro.2015.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND The effects and mechanisms of preweaning Manganese (Mn) exposure on cognitive dysfunction remain unclear. OBJECTIVE This study evaluated the effects of preweaning Mn exposure on spatial learning and memory as well as the protein expression of CaMKIIα and p-CaMKIIα. METHODS We treated neonate rats with Mn(2+) doses of 0 (control group), 10, 20 and 30mg of Mn(2+) per kg body weight (Mn-exposed groups) over postnatal day (PND) 1-21 by intraperitoneal injection. The ability of spatial learning and memory was tested on PND 22 using the Morris water maze (MWM), while the protein expressions of CaMKIIα and p-CaMKIIα in the hippocampus were evaluated by Western blotting. The levels of Mn in the blood and hippocampus were measured by inductively coupled plasma-mass spectrometry (ICP-MS). RESULTS The rats in Mn-exposed groups showed a significant delay in spatial learning ability on the third day of the MWM without dose-dependent differences, but there was no effect on the spatial memory ability. p-CaMKIIα, but not CaMKIIα protein expression significantly reduced in the Mn-exposed group. CONCLUSION These findings suggested that the inhibition of p-CaMKIIα could be one of the mechanisms involved in the occurrence of Mn-induced cognitive impairments.
Collapse
Affiliation(s)
- HuanHuan Fu
- MOE-Shanghai Key Lab of Children Environmental Health, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - WeiWei Chen
- MOE-Shanghai Key Lab of Children Environmental Health, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - HongPing Yu
- Department of Epidemiology, School of Public Health, Guilin Medical University, Guangxi, China
| | - ZhenZhen Wei
- MOE-Shanghai Key Lab of Children Environmental Health, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - XiaoDan Yu
- MOE-Shanghai Key Lab of Children Environmental Health, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
30
|
Kikuchihara Y, Abe H, Tanaka T, Kato M, Wang L, Ikarashi Y, Yoshida T, Shibutani M. Relationship between brain accumulation of manganese and aberration of hippocampal adult neurogenesis after oral exposure to manganese chloride in mice. Toxicology 2015; 331:24-34. [DOI: 10.1016/j.tox.2015.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/04/2015] [Accepted: 02/13/2015] [Indexed: 12/28/2022]
|
31
|
Ma X, Han J, Wu Q, Liu H, Shi S, Wang C, Wang Y, Xiao J, Zhao J, Jiang J, Wan C. Involvement of dysregulated Wip1 in manganese-induced p53 signaling and neuronal apoptosis. Toxicol Lett 2015; 235:17-27. [PMID: 25791630 DOI: 10.1016/j.toxlet.2014.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 02/07/2023]
Abstract
Overexposure to manganese (Mn) has been known to induce neuronal death and neurodegenerative symptoms. However, the precise mechanisms underlying Mn neurotoxicity remain incompletely understood. In the present study, we established a Mn-exposed rat model and found that downregulation of wild type p53-induced phosphatase 1 (Wip1) might contribute to p53 activation and resultant neuronal apoptosis following Mn exposure. Western blot and immunohistochemical analyses revealed that the expression of Wip1 was markedly decreased following Mn exposure. In addition, immunofluorescence assay demonstrated that Mn exposure led to significant reduction in the number of Wip1-positive neurons. Accordingly, the expression of Mdm2 was progressively decreased, which was accompanied with markedly increased expression of p53, as well as the ratio of Bax/Bcl-xl. Furthermore, we showed that Mn exposure decreased the viability and induced apparent apoptosis in NFG-differentiated neuron-like PC12 cells. Importantly, the expression of Wip1 decreased progressively, whereas the level of cellular p53 and the ratio of Bax/Bcl-xl were elevated, which resembled the expression of the proteins in animal model studies. Depletion of p53 significantly ameliorated Mn-mediated cytotoxic effect in PC12 cells. In addition, ectopic expression of Wip1 attenuated Mn-induced p53 signaling as well as apoptosis in PC12 cells. Finally, we observed that depletion of Wip1 augmented Mn-induced apoptosis in PC12 cells. Collectively, these findings suggest that downregulated Wip1 expression plays an important role in Mn-induced neuronal death in the brain striatum via the modulation of p53 signaling.
Collapse
Affiliation(s)
- Xia Ma
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Jingling Han
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Qiyun Wu
- The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Hanzhang Liu
- The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Shangshi Shi
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Cheng Wang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Yueran Wang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Jing Xiao
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Junkang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China; The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China.
| | - Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, People's Republic of China; The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China.
| |
Collapse
|
32
|
Foster ML, Bartnikas TB, Johnson LC, Herrera C, Pettiglio MA, Keene AM, Taylor MD, Dorman DC. Pharmacokinetic evaluation of the equivalency of gavage, dietary, and drinking water exposure to manganese in F344 rats. Toxicol Sci 2015; 145:244-51. [PMID: 25724921 DOI: 10.1093/toxsci/kfv047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Concerns exist as to whether individuals may be at greater risk for neurotoxicity following increased manganese (Mn) oral intake. The goals of this study were to determine the equivalence of 3 methods of oral exposure and the rate (mg Mn/kg/day) of exposure. Adult male rats were allocated to control diet (10 ppm), high manganese diet (200 ppm), manganese-supplemented drinking water, and manganese gavage treatment groups. Animals in the drinking water and gavage groups were given the 10 ppm manganese diet and supplemented with manganese chloride (MnCl(2)) in drinking water or once-daily gavage to provide a daily manganese intake equivalent to that seen in the high-manganese diet group. No statistically significant difference in body weight gain or terminal body weights was seen. Rats were anesthetized following 7 and 61 exposure days, and samples of bile and blood were collected. Rats were then euthanized and striatum, olfactory bulb, frontal cortex, cerebellum, liver, spleen, and femur samples were collected for chemical analysis. Hematocrit was unaffected by manganese exposure. Liver and bile manganese concentrations were elevated in all treatment groups on day 61 (relative to controls). Increased cerebellum manganese concentrations were seen in animals from the high-manganese diet group (day 61, relative to controls). Increased (relative to all treatment groups) femur, striatum, cerebellum, frontal cortex, and olfactory bulb manganese concentrations were also seen following gavage suggesting that dose rate is an important factor in the pharmacokinetics of oral manganese. These data will be used to refine physiologically based pharmacokinetic models, extending their utility for manganese risk assessment by including multiple dietary exposures.
Collapse
Affiliation(s)
- Melanie L Foster
- *North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, North Carolina 27607, USA, Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Rm. 522, Providence, Rhode Island 02912, USA, Afton Chemical Corporation, 500 Spring Street, Richmond, Virginia 23219, USA and Nickel Producers Environmental Research Association (NiPERA), 2525 Meridian Parkway, Suite 240 Durham, North Carolina 27713, USA
| | - Thomas B Bartnikas
- *North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, North Carolina 27607, USA, Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Rm. 522, Providence, Rhode Island 02912, USA, Afton Chemical Corporation, 500 Spring Street, Richmond, Virginia 23219, USA and Nickel Producers Environmental Research Association (NiPERA), 2525 Meridian Parkway, Suite 240 Durham, North Carolina 27713, USA
| | - Laura C Johnson
- *North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, North Carolina 27607, USA, Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Rm. 522, Providence, Rhode Island 02912, USA, Afton Chemical Corporation, 500 Spring Street, Richmond, Virginia 23219, USA and Nickel Producers Environmental Research Association (NiPERA), 2525 Meridian Parkway, Suite 240 Durham, North Carolina 27713, USA
| | - Carolina Herrera
- *North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, North Carolina 27607, USA, Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Rm. 522, Providence, Rhode Island 02912, USA, Afton Chemical Corporation, 500 Spring Street, Richmond, Virginia 23219, USA and Nickel Producers Environmental Research Association (NiPERA), 2525 Meridian Parkway, Suite 240 Durham, North Carolina 27713, USA
| | - Michael A Pettiglio
- *North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, North Carolina 27607, USA, Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Rm. 522, Providence, Rhode Island 02912, USA, Afton Chemical Corporation, 500 Spring Street, Richmond, Virginia 23219, USA and Nickel Producers Environmental Research Association (NiPERA), 2525 Meridian Parkway, Suite 240 Durham, North Carolina 27713, USA
| | - Athena M Keene
- *North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, North Carolina 27607, USA, Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Rm. 522, Providence, Rhode Island 02912, USA, Afton Chemical Corporation, 500 Spring Street, Richmond, Virginia 23219, USA and Nickel Producers Environmental Research Association (NiPERA), 2525 Meridian Parkway, Suite 240 Durham, North Carolina 27713, USA
| | - Michael D Taylor
- *North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, North Carolina 27607, USA, Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Rm. 522, Providence, Rhode Island 02912, USA, Afton Chemical Corporation, 500 Spring Street, Richmond, Virginia 23219, USA and Nickel Producers Environmental Research Association (NiPERA), 2525 Meridian Parkway, Suite 240 Durham, North Carolina 27713, USA
| | - David C Dorman
- *North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, North Carolina 27607, USA, Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Rm. 522, Providence, Rhode Island 02912, USA, Afton Chemical Corporation, 500 Spring Street, Richmond, Virginia 23219, USA and Nickel Producers Environmental Research Association (NiPERA), 2525 Meridian Parkway, Suite 240 Durham, North Carolina 27713, USA
| |
Collapse
|
33
|
Ode A, Rylander L, Gustafsson P, Lundh T, Källén K, Olofsson P, Ivarsson SA, Rignell-Hydbom A. Manganese and selenium concentrations in umbilical cord serum and attention deficit hyperactivity disorder in childhood. ENVIRONMENTAL RESEARCH 2015; 137:373-381. [PMID: 25601741 DOI: 10.1016/j.envres.2015.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/02/2015] [Accepted: 01/03/2015] [Indexed: 06/04/2023]
Abstract
Existing evidence on the effects of manganese and selenium during fetal life on neurodevelopmental disorders is inadequate. This study aims to investigate the hypothesized relationship between fetal exposure to manganese and selenium and attention deficit hyperactivity disorder (ADHD) diagnosis in childhood. Children born between 1978 and 2000 with ADHD (n=166) were identified at the Department of Child and Adolescent Psychiatry in Malmö, Sweden. Controls from the same region (n=166) were selected from the Medical Birth Register and were matched for year of birth and maternal country of birth. Manganese and selenium were measured in umbilical cord serum. The median cord serum concentrations of manganese were 4.3μg/L in the cases and 4.1μg/L in the controls. The corresponding concentrations of selenium were 47 and 48μg/L. When the exposures were analyzed as continuous variables no associations between cord manganese or selenium concentration and ADHD were observed. However, children with selenium concentrations above the 90th percentile had 2.5 times higher odds (95% confidence interval 1.3-5.1) of having ADHD compared to those with concentrations between the 10th and 90th percentiles. There was no significant interaction between manganese and selenium exposure (p=0.08). This study showed no association between manganese concentrations in umbilical cord serum and ADHD. The association between ADHD diagnoses in children with relatively high cord selenium was unexpected and should be interpreted with caution.
Collapse
Affiliation(s)
- Amanda Ode
- Institute of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, SE-22185 Lund, Sweden.
| | - Lars Rylander
- Institute of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, SE-22185 Lund, Sweden
| | - Peik Gustafsson
- Institute of Clinical Sciences, Department of Child and Adolescent Psychiatry, Lund University, Lund, Sweden
| | - Thomas Lundh
- Institute of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, SE-22185 Lund, Sweden
| | - Karin Källén
- Institute of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, SE-22185 Lund, Sweden
| | - Per Olofsson
- Department of Obstetrics and Gynecology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Sten A Ivarsson
- Pediatric Endocrinology Unit, Clinical Research Center, Lund University, Malmö, Sweden
| | - Anna Rignell-Hydbom
- Institute of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, SE-22185 Lund, Sweden
| |
Collapse
|
34
|
Pivotal roles of p53 transcription-dependent and -independent pathways in manganese-induced mitochondrial dysfunction and neuronal apoptosis. Toxicol Appl Pharmacol 2014; 281:294-302. [PMID: 25448048 DOI: 10.1016/j.taap.2014.10.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 01/14/2023]
Abstract
Chronic exposure to excessive manganese (Mn) has been known to lead to neuronal loss and a clinical syndrome resembling idiopathic Parkinson's disease (IPD). p53 plays an integral role in the development of various human diseases, including neurodegenerative disorders. However, the role of p53 in Mn-induced neuronal apoptosis and neurological deficits remains obscure. In the present study, we showed that p53 was critically involved in Mn-induced neuronal apoptosis in rat striatum through both transcription-dependent and -independent mechanisms. Western blot and immunohistochemistrical analyses revealed that p53 was remarkably upregulated in the striatum of rats following Mn exposure. Coincidentally, increased level of cleaved PARP, a hallmark of apoptosis, was observed. Furthermore, using nerve growth factor (NGF)-differentiated PC12 cells as a neuronal cell model, we showed that Mn exposure decreased cell viability and induced apparent apoptosis. Importantly, p53 was progressively upregulated, and accumulated in both the nucleus and the cytoplasm. The cytoplasmic p53 had a remarkable distribution in mitochondria, suggesting an involvement of p53 mitochondrial translocation in Mn-induced neuronal apoptosis. In addition, Mn-induced impairment of mitochondrial membrane potential (ΔΨm) could be partially rescued by pretreatment with inhibitors of p53 transcriptional activity and p53 mitochondrial translocation, Pifithrin-α (PFT-α) and Pifithrin-μ (PFT-μ), respectively. Moreover, blockage of p53 activities with PFT-α and PFT-μ significantly attenuated Mn-induced reactive oxidative stress (ROS) generation and mitochondrial H₂O₂ production. Finally, we observed that pretreatment with PFT-α and PFT-μ ameliorated Mn-induced apoptosis in PC12 cells. Collectively, these findings implicate that p53 transcription-dependent and -independent pathways may play crucial roles in the regulation of Mn-induced neuronal death.
Collapse
|
35
|
Abe H, Ohishi T, Nakane F, Shiraki A, Tanaka T, Yoshida T, Shibutani M. Exposure to MnCl2 · 4H2O during development induces activation of microglial and perivascular macrophage populations in the hippocampal dentate gyrus of rats. J Appl Toxicol 2014; 35:529-35. [PMID: 25219578 DOI: 10.1002/jat.3059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/09/2014] [Accepted: 07/09/2014] [Indexed: 01/08/2023]
Abstract
Developmental exposure to Mn caused Mn accumulation in the brain tissue and transient disruption of granule cell neurogenesis, targeting the late stage differentiation of progenitor cells in the subgranular zone of the hippocampal dentate gyrus of rats. Because neurogenesis is influenced by proinflammatory responses, this study was performed to determine whether Mn exposure causes microglial activation in the dentate hilus, a region anatomically close to the subgranular zone of the dentate gyrus. Pregnant rats were treated with dietary MnCl2 · 4H2O at 32, 160 or 800 ppm from gestational day 10 to day 21 after delivery. An immunohistochemical analysis revealed increases in Iba1(+) microglia in the hilus on postnatal day 21 following exposure to MnCl2 · 4H2O in a dose-unrelated manner at 32 and at 800 ppm and an increase in CD163(+) macrophage at 800 ppm in the hilus. Real-time reverse transcription-polymerase chain reaction analysis revealed increases in the mRNA levels of Il1α, Il6, Nos2 and Tnf after 800 ppm MnCl2 · 4H2O. These results suggest that activation of microglia and perivascular macrophages occurs in the hilus after developmental exposure to MnCl2 · 4H2O at 800 ppm, and probably involves the disruption of neurogenesis through the accumulation of Mn in the brain tissue.
Collapse
Affiliation(s)
- Hajime Abe
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Vorhees CV, Graham DL, Amos-Kroohs RM, Braun AA, Grace CE, Schaefer TL, Skelton MR, Erikson KM, Aschner M, Williams MT. Effects of developmental manganese, stress, and the combination of both on monoamines, growth, and corticosterone. Toxicol Rep 2014; 1:1046-1061. [PMID: 25574457 PMCID: PMC4285371 DOI: 10.1016/j.toxrep.2014.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Developmental exposure to manganese (Mn) or stress can each be detrimental to brain development. Here, Sprague-Dawley rats were exposed to two housing conditions and Mn from postnatal day (P)4–28. Within each litter two males and two females were assigned to the following groups: 0 (vehicle), 50, or 100 mg/kg Mn by gavage every other day. Half the litters were reared in cages with standard bedding and half with no bedding. One pair/group in each litter had an acute shallow water stressor before tissue collection (i.e., standing in shallow water). Separate litters were assessed at P11, 19, or 29. Mn-treated rats raised in standard cages showed no change in baseline corticosterone but following acute stress increased more than controls on P19; no Mn effects were seen on P11 or P29. Mn increased neostriatal dopamine in females at P19 and norepinephrine at P11 and P29. Mn increased hippocampal dopamine at P11 and P29 and 5-HT at P29 regardless of housing or sex. Mn had no effect on hypothalamic dopamine, but increased norepinephrine in males at P29 and 5-HT in males at all ages irrespective of rearing condition. Barren reared rats showed no or opposite effects of Mn, i.e., barren rearing + Mn attenuated corticosterone increases to acute stress. Barren rearing also altered the Mn-induced changes in dopamine and norepinephrine in the neostriatum, but not in the hippocampus. Barren rearing caused a Mn-associated increase in hypothalamic dopamine at P19 and P29 not seen in standard reared Mn-treated groups. Developmental Mn alters monoamines and corticosterone as a function of age, stress (acute and chronic), and sex.
Collapse
Affiliation(s)
- Charles V. Vorhees
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Corresponding authors. Tel.: +513 636 8624 MTW; 513 636 8622 CVV; fax: +513 636 3912
| | - Devon L. Graham
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robyn M. Amos-Kroohs
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Amanda A. Braun
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Curtis E. Grace
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tori L. Schaefer
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Matthew R. Skelton
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Keith M. Erikson
- Department of Nutrition, University of North Carolina, Greensboro, NC, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael T. Williams
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Corresponding authors. Tel.: +513 636 8624 MTW; 513 636 8622 CVV; fax: +513 636 3912
| |
Collapse
|
37
|
Brain deposition and neurotoxicity of manganese in adult mice exposed via the drinking water. Arch Toxicol 2013; 88:47-64. [PMID: 23832297 DOI: 10.1007/s00204-013-1088-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 06/20/2013] [Indexed: 12/27/2022]
Abstract
Natural leaching processes and/or anthropogenic contamination can result in ground water concentrations of the essential metal manganese (Mn) that far exceed the current regulatory standards. Neurological consequences of Mn drinking water (DW) overexposure to experimental animals, i.e., mice, including its brain deposition/distribution and behavioral effects are understudied. Adult male C57BL/6 mice were exposed to Mn via the DW for 8 weeks. After 5 weeks of Mn exposure, magnetic resonance imaging revealed significant Mn deposition in all examined brain regions; the degree of Mn deposition did not increase further a week later. Behaviorally, early hyperactivity and more time spent in the center of the arenas in an open field test, decreased forelimb grip strength and less time swimming in a forced swim test were observed after 6 weeks of Mn DW exposure. Eight-week Mn DW exposure did not alter striatal dopamine, its metabolites, or the expression of key dopamine homeostatic proteins, but it significantly increased striatal 5-hydroxyindoleacetic acid (a serotonin metabolite) levels, without affecting the levels of serotonin itself. Increased expression (mRNA) of glial fibrillary acidic protein (GFAP, an astrocyte activation marker), heme oxygenase-1 and inducible nitric oxide synthase (oxidative and nitrosative stress markers, respectively) were observed 8 weeks post-Mn DW exposure in the substantia nigra. Besides mRNA increases, GFAP protein expression was increased in the substantia nigra pars reticulata. In summary, the neurobehavioral deficits, characterized by locomotor and emotional perturbations, and nigral glial activation associated with significant brain Mn deposition are among the early signs of Mn neurotoxicity caused by DW overexposure.
Collapse
|
38
|
Cordova FM, Aguiar AS, Peres TV, Lopes MW, Gonçalves FM, Pedro DZ, Lopes SC, Pilati C, Prediger RDS, Farina M, Erikson KM, Aschner M, Leal RB. Manganese-exposed developing rats display motor deficits and striatal oxidative stress that are reversed by Trolox. Arch Toxicol 2013; 87:1231-44. [PMID: 23385959 DOI: 10.1007/s00204-013-1017-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/22/2013] [Indexed: 01/05/2023]
Abstract
While manganese (Mn) is essential for proper central nervous system (CNS) development, excessive Mn exposure may lead to neurotoxicity. Mn preferentially accumulates in the basal ganglia, and in adults it may cause Parkinson's disease-like disorder. Compared to adults, younger individuals accumulate greater Mn levels in the CNS and are more vulnerable to its toxicity. Moreover, the mechanisms mediating developmental Mn-induced neurotoxicity are not completely understood. The present study investigated the developmental neurotoxicity elicited by Mn exposure (5, 10 and 20 mg/kg; i.p.) from postnatal day 8 to PN27 in rats. Neurochemical analyses were carried out on PN29, with a particular focus on striatal alterations in intracellular signaling pathways (MAPKs, Akt and DARPP-32), oxidative stress generation and cell death. Motor alterations were evaluated later in life at 3, 4 or 5 weeks of age. Mn exposure (20 mg/kg) increased p38(MAPK) and Akt phosphorylation, but decreased DARPP-32-Thr-34 phosphorylation. Mn (10 and 20 mg/kg) increased caspase activity and F2-isoprostane production (a biological marker of lipid peroxidation). Paralleling the changes in striatal biochemical parameters, Mn (20 mg/kg) also caused motor impairment, evidenced by increased falling latency in the rotarod test, decreased distance traveled and motor speed in the open-field test. Notably, the antioxidant Trolox™ reversed the Mn (20 mg/kg)-dependent augmentation in p38(MAPK) phosphorylation and reduced the Mn (20 mg/kg)-induced caspase activity and F2-isoprostane production. Trolox™ also reversed the Mn-induced motor coordination deficits. These findings are the first to show that long-term exposure to Mn during a critical period of neurodevelopment causes motor coordination dysfunction with parallel increment in oxidative stress markers, p38(MAPK) phosphorylation and caspase activity in the striatum. Moreover, we establish Trolox™ as a potential neuroprotective agent given its efficacy in reversing the Mn-induced neurodevelopmental effects.
Collapse
Affiliation(s)
- Fabiano M Cordova
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ohishi T, Wang L, Akane H, Shiraki A, Goto K, Ikarashi Y, Suzuki K, Mitsumori K, Shibutani M. Reversible aberration of neurogenesis affecting late-stage differentiation in the hippocampal dentate gyrus of rat offspring after maternal exposure to manganese chloride. Reprod Toxicol 2012; 34:408-19. [DOI: 10.1016/j.reprotox.2012.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 03/15/2012] [Accepted: 04/25/2012] [Indexed: 01/13/2023]
|
40
|
Betharia S, Maher TJ. Neurobehavioral effects of lead and manganese individually and in combination in developmentally exposed rats. Neurotoxicology 2012; 33:1117-27. [DOI: 10.1016/j.neuro.2012.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/26/2012] [Accepted: 06/06/2012] [Indexed: 11/26/2022]
|
41
|
Blecharz-Klin K, Piechal A, Joniec-Maciejak I, Pyrzanowska J, Widy-Tyszkiewicz E. Effect of intranasal manganese administration on neurotransmission and spatial learning in rats. Toxicol Appl Pharmacol 2012; 265:1-9. [PMID: 23022103 DOI: 10.1016/j.taap.2012.09.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/11/2012] [Accepted: 09/18/2012] [Indexed: 11/29/2022]
Abstract
The effect of intranasal manganese chloride (MnCl(2)·4H(2)O) exposure on spatial learning, memory and motor activity was estimated in Morris water maze task in adult rats. Three-month-old male Wistar rats received for 2weeks MnCl(2)·4H(2)O at two doses the following: 0.2mg/kg b.w. (Mn0.2) or 0.8mg/kg b.w. (Mn0.8) per day. Control (Con) and manganese-exposed groups were observed for behavioral performance and learning in water maze. ANOVA for repeated measurements did not show any significant differences in acquisition in the water maze between the groups. However, the results of the probe trial on day 5, exhibited spatial memory deficits following manganese treatment. After completion of the behavioral experiment, the regional brain concentrations of neurotransmitters and their metabolites were determined via HPLC in selected brain regions, i.e. prefrontal cortex, hippocampus and striatum. ANOVA demonstrated significant differences in the content of monoamines and metabolites between the treatment groups compared to the controls. Negative correlations between platform crossings on the previous platform position in Southeast (SE) quadrant during the probe trial and neurotransmitter turnover suggest that impairment of spatial memory and cognitive performance after manganese (Mn) treatment is associated with modulation of the serotonergic, noradrenergic and dopaminergic neurotransmission in the brain. These findings show that intranasally applied Mn can impair spatial memory with significant changes in the tissue level and metabolism of monoamines in several brain regions.
Collapse
Affiliation(s)
- Kamilla Blecharz-Klin
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland
| | | | | | | | | |
Collapse
|
42
|
Flamm EG. Neonatal animal testing paradigms and their suitability for testing infant formula. Toxicol Mech Methods 2012; 23:57-67. [DOI: 10.3109/15376516.2012.725108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Willhite CC, Bhat VS, Ball GL, McLellan CJ. Emergency Do Not Consume/Do Not Use concentrations for potassium permanganate in drinking water. Hum Exp Toxicol 2012; 32:275-98. [DOI: 10.1177/0960327112456316] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past decade, regulatory authorities and water purveyors have become increasingly concerned with accidental or intentional adulteration of municipal drinking water. Emergency response guidelines, such as the ‘Do Not Consume’ or use concentration limits derived herein, can be used to notify the public in such cases. Potassium permanganate (KMnO4) is used to control iron concentrations and to reduce the levels of nuisance materials that affect odor or taste of finished drinking water. Manganese (Mn) is recognized an essential nutrient, permanganate (MnO4−) and manganous (Mn+2) ions are caustic, and the acute toxicity of KMnO4 is defined by its oxidant/irritant properties and by the toxicity of Mn. Ingestion of small amounts (4–20 mg/kg) of aqueous KMnO4 solutions that are above 200 mg/L causes gastrointestinal distress, while bolus ingestion has caused respiratory arrest following coagulative necrosis and hemorrhage in the esophagus, stomach, or liver. Dilute KMnO4 solutions (1–100 mg/L) are used as a topical antiseptics and astringents, but >1:5000 (200 mg/L) dilutions can irritate or discolor sensitive mucous membranes and direct skin or ocular contact with concentrated KMnO4 can perforate tissues. Based on clinical experience with 200 mg/L KMnO4, a Do Not Consume concentration of 7 mg/L KMnO4 (equivalent to 2 mg Mn/L) is recommended. Recognizing limited empirical data from which to calculate an ocular reference value, a skin contact ‘Do Not Use’ concentration of 30 mg Mn/L is recommended based on the skin irritation in some patients after a 10-min contact with 100 mg KMnO4/L.
Collapse
Affiliation(s)
| | | | | | - CJ McLellan
- NSF International, Dixboro Road, Ann Arbor, Michigan, USA
| |
Collapse
|
44
|
Wang L, Ohishi T, Shiraki A, Morita R, Akane H, Ikarashi Y, Mitsumori K, Shibutani M. Developmental exposure to manganese chloride induces sustained aberration of neurogenesis in the hippocampal dentate gyrus of mice. Toxicol Sci 2012; 127:508-21. [PMID: 22407947 DOI: 10.1093/toxsci/kfs110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The effect of exogenously administered manganese (Mn) on developmental neurogenesis in the hippocampal dentate gyrus was examined in male mice after maternal exposure to MnCl(2) (0, 32, 160, or 800 ppm as Mn in diet) from gestational day 10 to day 21 after delivery on weaning. Immunohistochemistry was performed to monitor neurogenesis and interneuron subpopulations on postnatal days (PNDs) 21 and 77 (adult stage). Reelin-synthesizing γ-aminobutyric acid (GABA)ergic interneurons increased in the hilus with ≥ 160 ppm on weaning to sustain to PND 77 at 800 ppm. Apoptosis in the neuroblast-producing subgranular zone increased with 800 ppm and TUC4-expressing immature granule cells decreased with 800 ppm on weaning, whereas at the adult stage, immature granule cells increased. On PND 21, transcript levels increased with Reln and its receptor gene Lrp8 and decreased with Dpysl3 coding TUC4 in the dentate gyrus, confirming immunohistochemical results. Double immunohistochemistry revealed a sustained increase of reelin-expressing and NeuN-lacking or weakly positive immature interneurons and NeuN-expressing mature neurons in the hilus through to the adult stage as examined at 800 ppm. Brain Mn concentrations increased at both PNDs 21 and 77 in all MnCl(2)-exposed groups. These results suggest that Mn targets immature granule cells causing apoptosis and neuronal mismigration. Sustained increases in immature reelin-synthesizing GABAergic interneurons may represent continued aberration in neurogenesis and following migration to cause an excessive response for overproduction of immature granule cells through to the adult stage. Sustained high concentration of Mn in the brain may be responsible for these changes.
Collapse
Affiliation(s)
- Liyun Wang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Update on a Pharmacokinetic-Centric Alternative Tier II Program for MMT-Part I: Program Implementation and Lessons Learned. J Toxicol 2012; 2012:946742. [PMID: 22545047 PMCID: PMC3321555 DOI: 10.1155/2012/946742] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/18/2012] [Indexed: 11/18/2022] Open
Abstract
Concerns have been raised regarding environmental manganese exposure since high exposures have been associated with neurological disorders. The USA Environmental Protection Agency most recent human health risk assessment of inhaled manganese conducted in 1993 identified specific areas of uncertainty regarding manganese pharmacokinetics. This led to the development of a test rule under the USA Clean Air Act that required the generation of pharmacokinetic information on the inorganic manganese combustion products of the organometallic fuel additive methylcyclopentadienyl manganese tricarbonyl (MMT). The Alternative Tier 2 testing program for MMT, described in this paper, has yielded substantial pharmacokinetic data and has enabled the generation of physiologically based pharmacokinetic (PBPK) models for manganese. These models are capable of predicting tissue manganese concentrations across a variety of dose routes, levels, and durations while accounting for factors such as age, gender, and reproductive status, enabling the consideration of tissue dosimetry in future risk assessments.
Collapse
|
46
|
Cordova FM, Aguiar AS, Peres TV, Lopes MW, Gonçalves FM, Remor AP, Lopes SC, Pilati C, Latini AS, Prediger RDS, Erikson KM, Aschner M, Leal RB. In vivo manganese exposure modulates Erk, Akt and Darpp-32 in the striatum of developing rats, and impairs their motor function. PLoS One 2012; 7:e33057. [PMID: 22427945 PMCID: PMC3302787 DOI: 10.1371/journal.pone.0033057] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 02/06/2012] [Indexed: 11/30/2022] Open
Abstract
Manganese (Mn) is an essential metal for development and metabolism. However, exposures to high Mn levels may be toxic, especially to the central nervous system (CNS). Neurotoxicity is commonly due to occupational or environmental exposures leading to Mn accumulation in the basal ganglia and a Parkinsonian-like disorder. Younger individuals are more susceptible to Mn toxicity. Moreover, early exposure may represent a risk factor for the development of neurodegenerative diseases later in life. The present study was undertaken to investigate the developmental neurotoxicity in an in vivo model of immature rats exposed to Mn (5, 10 and 20 mg/kg; i.p.) from postnatal day 8 (PN8) to PN12. Neurochemical analysis was carried out on PN14. We focused on striatal alterations in intracellular signaling pathways, oxidative stress and cell death. Moreover, motor alterations as a result of early Mn exposure (PN8-12) were evaluated later in life at 3-, 4- and 5-weeks-of-age. Mn altered in a dose-dependent manner the activity of key cell signaling elements. Specifically, Mn increased the phosphorylation of DARPP-32-Thr-34, ERK1/2 and AKT. Additionally, Mn increased reactive oxygen species (ROS) production and caspase activity, and altered mitochondrial respiratory chain complexes I and II activities. Mn (10 and 20 mg/kg) also impaired motor coordination in the 3rd, 4th and 5th week of life. Trolox™, an antioxidant, reversed several of the Mn altered parameters, including the increased ROS production and ERK1/2 phosphorylation. However, Trolox™ failed to reverse the Mn (20 mg/kg)-induced increase in AKT phosphorylation and motor deficits. Additionally, Mn (20 mg/kg) decreased the distance, speed and grooming frequency in an open field test; Trolox™ blocked only the decrease of grooming frequency. Taken together, these results establish that short-term exposure to Mn during a specific developmental window (PN8-12) induces metabolic and neurochemical alterations in the striatum that may modulate later-life behavioral changes. Furthermore, some of the molecular and behavioral events, which are perturbed by early Mn exposure are not directly related to the production of oxidative stress.
Collapse
Affiliation(s)
- Fabiano M. Cordova
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- Centro de Ciência Animal, Universidade Federal do Tocantins, Araguaína, Brazil
| | - Aderbal S. Aguiar
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Tanara V. Peres
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Mark W. Lopes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Filipe M. Gonçalves
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aline P. Remor
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Samantha C. Lopes
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Célso Pilati
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, Brazil
| | - Alexandra S. Latini
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Rui D. S. Prediger
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Keith M. Erikson
- Department of Nutrition, University of North Carolina, Greensboro, North Carolina, United States of America
| | - Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Rodrigo B. Leal
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- * E-mail:
| |
Collapse
|
47
|
Streifel KM, Moreno JA, Hanneman WH, Legare ME, Tjalkens RB. Gene deletion of nos2 protects against manganese-induced neurological dysfunction in juvenile mice. Toxicol Sci 2012; 126:183-92. [PMID: 22174044 PMCID: PMC3289496 DOI: 10.1093/toxsci/kfr335] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/02/2011] [Indexed: 01/15/2023] Open
Abstract
The mechanisms underlying cognitive and neurobehavioral abnormalities associated with childhood exposure to manganese (Mn) are not well understood but may be influenced by neuroinflammatory activation of microglia and astrocytes that results in nitrosative stress due to expression of inducible nitric oxide synthase (iNOS/NOS2). We therefore postulated that gene deletion of NOS2 would protect against the neurotoxic effects of Mn in vivo and in vitro. Juvenile NOS2 knockout (NOS2(-/-)) mice were orally exposed to 50 mg/kg of MnCl₂ by intragastric gavage from days 21 to 34 postnatal. Results indicate that NOS2(-/-) mice exposed to Mn were protected against neurobehavioral alterations, despite histopathological activation of astrocytes and microglia in Mn-treated mice in both genotypes. NOS2(-/-) mice had decreased Mn-induced formation of 3-nitrotyrosine protein adducts within neurons in the basal ganglia that correlated with protection against Mn-induced neurobehavioral defects. Primary striatal astrocytes from wildtype mice caused apoptosis in cocultured striatal neurons following treatment with MnCl₂ and tumor necrosis factor-α, whereas NOS2(-/-) astrocytes failed to cause any increase in markers of apoptosis in striatal neurons. Additionally, scavenging nitric oxide (NO) with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) prevented the ability of Mn- and cytokine-treated wildtype astrocytes to cause apoptosis in cocultured striatal neurons. These data demonstrate that NO plays a crucial role in Mn-induced neurological dysfunction in juvenile mice and that NOS2 expression in activated glia is an important mediator of neuroinflammatory injury during Mn exposure.
Collapse
Affiliation(s)
| | | | | | | | - Ronald B. Tjalkens
- Center for Environmental Medicine, Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523-1680
| |
Collapse
|
48
|
Takács S, Szabó A, Oszlánczi G, Paulik E, Papp A. A pilot study with simultaneous recording of changes in motility and cortical electrical activity of rats during four weeks of oral manganese exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2011; 22:331-339. [PMID: 22182062 DOI: 10.1080/09603123.2011.643228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Manganese as an environmental neurotoxicant can cause oral exposure. Six rats were equipped with a connector "crown", allowing repeated recording of electrocorticogram (ECoG) with simultaneous recording of motor activity in an open field box. Weekly one 30-min recording session was held, and after two control sessions, four of the six rats had 2.5 mg/ml manganese chloride in their drinking water. The treated rats showed higher motility during the exposure period than the untreated ones; and substantially decreased total ECoG power without marked change the spectrum. The changes of both motility and ECoG were correlated to the individual brain Mn levels, and the activity decrease during a session was correlated to the total ECoG power. These effects can be likened to early adult manganism and to symptoms of children exposed to Mn via drinking water. Repeated simultaneous recording of open field motility and spontaneous cortical activity seems suitable to detect early electrophysiological and behavioral effects of an oral neurotoxic exposure.
Collapse
Affiliation(s)
- Szabolcs Takács
- Department of Public Health, University of Szeged Faculty of Medicine, Szeged, H 6720, Hungary
| | | | | | | | | |
Collapse
|
49
|
Khan K, Wasserman GA, Liu X, Ahmed E, Parvez F, Slavkovich V, Levy D, Mey J, van Geen A, Graziano JH, Factor-Litvak P. Manganese exposure from drinking water and children's academic achievement. Neurotoxicology 2011; 33:91-7. [PMID: 22182530 DOI: 10.1016/j.neuro.2011.12.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/21/2011] [Accepted: 12/02/2011] [Indexed: 02/02/2023]
Abstract
Drinking water manganese (WMn) is a potential threat to children's health due to its associations with a wide range of outcomes including cognitive, behavioral and neuropsychological effects. Although adverse effects of Mn on cognitive function of the children indicate possible impact on their academic achievement little evidence on this issue is available. Moreover, little is known regarding potential interactions between exposure to Mn and other metals, especially water arsenic (WAs). In Araihazar, a rural area of Bangladesh, we conducted a cross-sectional study of 840 children to investigate associations between WMn and WAs and academic achievement in mathematics and languages among elementary school-children, aged 8-11 years. Data on As and Mn exposure were collected from the participants at the baseline of an ongoing longitudinal study of school-based educational intervention. Annual scores of the study children in languages (Bangla and English) and mathematics were obtained from the academic achievement records of the elementary schools. WMn above the WHO standard of 400μg/L was associated with 6.4% score loss (95% CI=-12.3 to -0.5) in mathematics achievement test scores, adjusted for WAs and other sociodemographic variables. We did not find any statistically significant associations between WMn and academic achievement in either language. Neither WAs nor urinary As was significantly related to any of the three academic achievement scores. Our finding suggests that a large number of children in rural Bangladesh may experience deficits in mathematics due to high concentrations of Mn exposure in drinking water.
Collapse
Affiliation(s)
- Khalid Khan
- Columbia University Mailman School of Public Health, Department of Environmental Health Sciences, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Filipov NM, Dodd CA. Role of glial cells in manganese neurotoxicity. J Appl Toxicol 2011; 32:310-7. [PMID: 22120544 DOI: 10.1002/jat.1762] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 09/27/2011] [Accepted: 09/27/2011] [Indexed: 11/06/2022]
Abstract
The objectives of this focused review are to (i) provide a systematic overview of recent advances pertaining to the role of glia, namely microglia and astrocytes, in the neuropathology associated with excessive exposure to manganese (Mn), (ii) highlight possible mechanisms and factors involved in Mn-modulated, glia-derived neuroinflammation, and (iii) discuss the implications of excessive neuroinflammation on neuronal injury within the context of Mn overexposure. As this is not meant to be a comprehensive review on the topic of Mn neurotoxicity, the reader may wish to refer to several broader and more comprehensive reviews. After a brief introduction to Mn neurotoxicity, we first discuss the role of glial cells in neurodegeneration. Next, we review existing in vitro and in vivo studies that implicate Mn as a modulator of glial activation and ensuing neuroinflammation. This is followed by an examination of recognized and potential mechanisms that are involved in the modulation of glial inflammatory output by Mn; here the common pathways activated by Mn in glial and neuronal cells, including outcomes of such activation, are also addressed. We finish with a discussion of the implications of Mn-modulated glial activation for neuronal survival and with a list of data gaps in the topic that need to be filled in the future.
Collapse
Affiliation(s)
- Nikolay M Filipov
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|