1
|
Breeyear JH, Mautz BS, Keaton JM, Hellwege JN, Torstenson ES, Liang J, Bray MJ, Giri A, Warren HR, Munroe PB, Velez Edwards DR, Zhu X, Li C, Edwards TL. A new test for trait mean and variance detects unreported loci for blood-pressure variation. Am J Hum Genet 2024; 111:954-965. [PMID: 38614075 PMCID: PMC11080606 DOI: 10.1016/j.ajhg.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024] Open
Abstract
Variability in quantitative traits has clinical, ecological, and evolutionary significance. Most genetic variants identified for complex quantitative traits have only a detectable effect on the mean of trait. We have developed the mean-variance test (MVtest) to simultaneously model the mean and log-variance of a quantitative trait as functions of genotypes and covariates by using estimating equations. The advantages of MVtest include the facts that it can detect effect modification, that multiple testing can follow conventional thresholds, that it is robust to non-normal outcomes, and that association statistics can be meta-analyzed. In simulations, we show control of type I error of MVtest over several alternatives. We identified 51 and 37 previously unreported associations for effects on blood-pressure variance and mean, respectively, in the UK Biobank. Transcriptome-wide association studies revealed 633 significant unique gene associations with blood-pressure mean variance. MVtest is broadly applicable to studies of complex quantitative traits and provides an important opportunity to detect novel loci.
Collapse
Affiliation(s)
- Joseph H Breeyear
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Brian S Mautz
- Population Analytics and Insights, Data Sciences, Janssen Research and Development, Spring House, PA, USA
| | - Jacob M Keaton
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacklyn N Hellwege
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric S Torstenson
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jingjing Liang
- Department of Pharmacy Practice and Science, University of Arizona, Tucson, AZ, USA
| | - Michael J Bray
- Department of Maternal and Fetal Medicine, Orlando Health, Orlando, FL, USA; Genetic Counseling Program, Bay Path University, Longmeadow, MA, USA
| | - Ayush Giri
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA; Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Helen R Warren
- Center of Clinical Pharmacology and Precision Medicine, Queen Mary University, London, England
| | - Patricia B Munroe
- Center of Clinical Pharmacology and Precision Medicine, Queen Mary University, London, England
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaofeng Zhu
- Department of Epidemiology and Biostatistics, Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Chun Li
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Batista S, Madar VS, Freda PJ, Bhandary P, Ghosh A, Matsumoto N, Chitre AS, Palmer AA, Moore JH. Interaction models matter: an efficient, flexible computational framework for model-specific investigation of epistasis. BioData Min 2024; 17:7. [PMID: 38419006 PMCID: PMC10900690 DOI: 10.1186/s13040-024-00358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
PURPOSE Epistasis, the interaction between two or more genes, is integral to the study of genetics and is present throughout nature. Yet, it is seldom fully explored as most approaches primarily focus on single-locus effects, partly because analyzing all pairwise and higher-order interactions requires significant computational resources. Furthermore, existing methods for epistasis detection only consider a Cartesian (multiplicative) model for interaction terms. This is likely limiting as epistatic interactions can evolve to produce varied relationships between genetic loci, some complex and not linearly separable. METHODS We present new algorithms for the interaction coefficients for standard regression models for epistasis that permit many varied models for the interaction terms for loci and efficient memory usage. The algorithms are given for two-way and three-way epistasis and may be generalized to higher order epistasis. Statistical tests for the interaction coefficients are also provided. We also present an efficient matrix based algorithm for permutation testing for two-way epistasis. We offer a proof and experimental evidence that methods that look for epistasis only at loci that have main effects may not be justified. Given the computational efficiency of the algorithm, we applied the method to a rat data set and mouse data set, with at least 10,000 loci and 1,000 samples each, using the standard Cartesian model and the XOR model to explore body mass index. RESULTS This study reveals that although many of the loci found to exhibit significant statistical epistasis overlap between models in rats, the pairs are mostly distinct. Further, the XOR model found greater evidence for statistical epistasis in many more pairs of loci in both data sets with almost all significant epistasis in mice identified using XOR. In the rat data set, loci involved in epistasis under the XOR model are enriched for biologically relevant pathways. CONCLUSION Our results in both species show that many biologically relevant epistatic relationships would have been undetected if only one interaction model was applied, providing evidence that varied interaction models should be implemented to explore epistatic interactions that occur in living systems.
Collapse
Affiliation(s)
- Sandra Batista
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA.
| | | | - Philip J Freda
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA
| | - Priyanka Bhandary
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA
| | - Attri Ghosh
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA
| | - Nicholas Matsumoto
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., Mailcode: 0667, La Jolla, CA, 92093-0667, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., Mailcode: 0667, La Jolla, CA, 92093-0667, USA
- Institute for Genomic Medicine, University of California, San Diego, 9500 Gilman Dr., Mailcode: 0667, La Jolla, CA, 92093-0667, USA
| | - Jason H Moore
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA.
| |
Collapse
|
3
|
Kadelka C, Butrie TM, Hilton E, Kinseth J, Schmidt A, Serdarevic H. A meta-analysis of Boolean network models reveals design principles of gene regulatory networks. SCIENCE ADVANCES 2024; 10:eadj0822. [PMID: 38215198 PMCID: PMC10786419 DOI: 10.1126/sciadv.adj0822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Gene regulatory networks (GRNs) play a central role in cellular decision-making. Understanding their structure and how it impacts their dynamics constitutes thus a fundamental biological question. GRNs are frequently modeled as Boolean networks, which are intuitive, simple to describe, and can yield qualitative results even when data are sparse. We assembled the largest repository of expert-curated Boolean GRN models. A meta-analysis of this diverse set of models reveals several design principles. GRNs exhibit more canalization, redundancy, and stable dynamics than expected. Moreover, they are enriched for certain recurring network motifs. This raises the important question why evolution favors these design mechanisms.
Collapse
Affiliation(s)
- Claus Kadelka
- Department of Mathematics, Iowa State University, Ames, IA 50011, USA
| | | | - Evan Hilton
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
| | - Jack Kinseth
- Department of Mathematics, Iowa State University, Ames, IA 50011, USA
| | - Addison Schmidt
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - Haris Serdarevic
- Department of Mathematics, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Patel D, Amiji H, Shropshire W, Condic N, Lermi NO, Sabha Y, John B, Hanson B, Karras GI. Ethanol Drives Evolution of Hsp90-Dependent Robustness by Redundancy in Yeast Domestication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.547572. [PMID: 37745611 PMCID: PMC10516021 DOI: 10.1101/2023.07.21.547572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Protein folding promotes and constrains adaptive evolution. We uncover this surprising duality in the role the protein-folding chaperone Hsp90 plays in mediating the interplay between proteome and the genome which acts to maintain the integrity of yeast metabolism in the face of proteotoxic stressors in anthropic niches. Of great industrial relevance, ethanol concentrations generated by fermentation in the making of beer and bread disrupt critical Hsp90-dependent nodes of metabolism and exert strong selective pressure for increased copy number of key genes encoding components of these nodes, yielding the classical genetic signatures of beer and bread domestication. This work establishes a mechanism of adaptive canalization in an ecology of major economic significance and highlights Hsp90-contingent variation as an important source of phantom heritability in complex traits.
Collapse
|
5
|
Posadas-García YS, Espinosa-Soto C. Early effects of gene duplication on the robustness and phenotypic variability of gene regulatory networks. BMC Bioinformatics 2022; 23:509. [DOI: 10.1186/s12859-022-05067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Research on gene duplication is abundant and comes from a wide range of approaches, from high-throughput analyses and experimental evolution to bioinformatics and theoretical models. Notwithstanding, a consensus is still lacking regarding evolutionary mechanisms involved in evolution through gene duplication as well as the conditions that affect them. We argue that a better understanding of evolution through gene duplication requires considering explicitly that genes do not act in isolation. It demands studying how the perturbation that gene duplication implies percolates through the web of gene interactions. Due to evolution’s contingent nature, the paths that lead to the final fate of duplicates must depend strongly on the early stages of gene duplication, before gene copies have accumulated distinctive changes.
Methods
Here we use a widely-known model of gene regulatory networks to study how gene duplication affects network behavior in early stages. Such networks comprise sets of genes that cross-regulate. They organize gene activity creating the gene expression patterns that give cells their phenotypic properties. We focus on how duplication affects two evolutionarily relevant properties of gene regulatory networks: mitigation of the effect of new mutations and access to new phenotypic variants through mutation.
Results
Among other observations, we find that those networks that are better at maintaining the original phenotype after duplication are usually also better at buffering the effect of single interaction mutations and that duplication tends to enhance further this ability. Moreover, the effect of mutations after duplication depends on both the kind of mutation and genes involved in it. We also found that those phenotypes that had easier access through mutation before duplication had higher chances of remaining accessible through new mutations after duplication.
Conclusion
Our results support that gene duplication often mitigates the impact of new mutations and that this effect is not merely due to changes in the number of genes. The work that we put forward helps to identify conditions under which gene duplication may enhance evolvability and robustness to mutations.
Collapse
|
6
|
Toupin LP, Ratz T, Montiglio PO. Effects of resource availability on the web structure of female western black widows: is the web structure constrained by physiological trade-offs? Behav Ecol 2022. [DOI: 10.1093/beheco/arac086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
A major challenge of biological research is to understand what generates and maintains consistent behavioral variation among animals. Time and energy trade-offs, where expressing one behavior is achieved at the expense of another, are often suggested to favor the maintenance of behavioral differences between individuals. However, few studies have investigated how individuals adjust their allocation to different functions over time and depending on resource abundance. Black widow spiders of the genus Latrodectus build persistent webs that include structural threads which protect against predators and sticky trap threads to capture prey. Web structure consistently differs among individuals in the number of trap and structural threads. To quantify the intensity of a trade-off, we assessed the relationship between the number of structural and trap threads and tested whether varying food abundance affected individual differences in web structure. We further quantified how these individual differences change over time and with food abundance. We subjected spiders to three different levels of prey abundance and monitored the structure of their webs every twelve hours. We found no evidence for a trade-off between trap and structural threads. Instead, spiders that produced more structural threads also produced more trap threads, showing that spiders invested equally in both types of threads. Interestingly, the magnitude of individual differences in web structure was greatest when spiders were fed ad libitum and at the beginning of web construction. We suggest that variation in web structure between spiders could be the result of stable developmental differences in morphology or genetic differences.
Collapse
Affiliation(s)
- Louis-Philippe Toupin
- Département des Sciences Biologiques, Université du Québec à Montréal , CP-8888 Succursale Centre-ville, Montréal, QC, H3C 3P , Canada
| | - Tom Ratz
- Département des Sciences Biologiques, Université du Québec à Montréal , CP-8888 Succursale Centre-ville, Montréal, QC, H3C 3P , Canada
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU) , Planegg-Martinsried , Germany
| | - Pierre-Olivier Montiglio
- Département des Sciences Biologiques, Université du Québec à Montréal , CP-8888 Succursale Centre-ville, Montréal, QC, H3C 3P , Canada
| |
Collapse
|
7
|
Lye Z, Choi JY, Purugganan MD. Deleterious mutations and the rare allele burden on rice gene expression. Mol Biol Evol 2022; 39:6693943. [PMID: 36073358 PMCID: PMC9512150 DOI: 10.1093/molbev/msac193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Deleterious genetic variation is maintained in populations at low frequencies. Under a model of stabilizing selection, rare (and presumably deleterious) genetic variants are associated with increase or decrease in gene expression from some intermediate optimum. We investigate this phenomenon in a population of largely Oryza sativa ssp. indica rice landraces under normal unstressed wet and stressful drought field conditions. We include single nucleotide polymorphisms, insertion/deletion mutations, and structural variants in our analysis and find a stronger association between rare variants and gene expression outliers under the stress condition. We also show an association of the strength of this rare variant effect with linkage, gene expression levels, network connectivity, local recombination rate, and fitness consequence scores, consistent with the stabilizing selection model of gene expression.
Collapse
Affiliation(s)
- Zoe Lye
- Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Jae Young Choi
- Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY 10003.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
8
|
Fernlund Isaksson E, Reuland C, Kahrl AF, Devigili A, Fitzpatrick JL. Resource-dependent investment in male sexual traits in a viviparous fish. Behav Ecol 2022; 33:954-966. [PMID: 36382231 PMCID: PMC9639585 DOI: 10.1093/beheco/arac060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/12/2022] [Accepted: 05/25/2022] [Indexed: 09/01/2023] Open
Abstract
Exaggerated and conspicuous sexually selected traits are often costly to produce and maintain. Costly traits are expected to show resource-dependent expression, since limited resources prevent animals from investing maximally in multiple traits simultaneously. However, there may be critical periods during an individual's life where the expression of traits is altered if resources are limited. Moreover, costly sexual traits may arise from sexual selection acting both before (pre-copulatory) and after mating (post-copulatory). Gaining a robust understanding of resource-dependent trait expression therefore requires an approach that examines both episodes of sexual selection after resource limitation during different times in an individual's life. Yet few studies have taken such an approach. Here, we examine how resource restriction influences a set of pre- and post-copulatory traits in male pygmy halfbeaks (Dermogenys collettei), which invest in sexual ornaments and routinely engage in male-male contests and sperm competition. Critically, we examined responses in males when resources were restricted during development and after reaching sexual maturity. Both pre- and post-copulatory traits are resource-dependent in male halfbeaks. Body size, beak size, courtship behavior, and testes size were reduced by diet restriction, while, unexpectedly, the restricted-diet group had a larger area of red color on the beak and fins after diet treatment. These patterns were generally consistent when resources were restricted during development and after reaching sexual maturity. The study reinforces the role of resource acquisition in maintaining variation among sexual traits.
Collapse
Affiliation(s)
- Erika Fernlund Isaksson
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
| | - Charel Reuland
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
| | - Ariel F Kahrl
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
| | - Alessandro Devigili
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35131 Padova, Italy
| | - John L Fitzpatrick
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
| |
Collapse
|
9
|
Xiao L, Fan D, Qi H, Cong Y, Du Z. Defect-buffering cellular plasticity increases robustness of metazoan embryogenesis. Cell Syst 2022; 13:615-630.e9. [PMID: 35882226 DOI: 10.1016/j.cels.2022.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/14/2022] [Accepted: 06/30/2022] [Indexed: 01/26/2023]
Abstract
Developmental processes are intrinsically robust so as to preserve a normal-like state in response to genetic and environmental fluctuations. However, the robustness and potential phenotypic plasticity of individual developing cells under genetic perturbations remain to be systematically evaluated. Using large-scale gene perturbation, live imaging, lineage tracing, and single-cell phenomics, we quantified the phenotypic landscape of C. elegans embryogenesis in >2,000 embryos following individual knockdown of over 750 conserved genes. We observed that cellular genetic systems are not sufficiently robust to single-gene perturbations across all cells; rather, gene knockdowns frequently induced cellular defects. Dynamic phenotypic analyses revealed many cellular defects to be transient, with cells exhibiting phenotypic plasticity that serves to alleviate, correct, and accommodate the defects. Moreover, potential developmentally related cell modules may buffer the phenotypic effects of individual cell position changes. Our findings reveal non-negligible contributions of cellular plasticity and multicellularity as compensatory strategies to increase developmental robustness.
Collapse
Affiliation(s)
- Long Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duchangjiang Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Qi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yulin Cong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Walter GM, Clark J, Cristaudo A, Terranova D, Nevado B, Catara S, Paunov M, Velikova V, Filatov D, Cozzolino S, Hiscock SJ, Bridle JR. Adaptive divergence generates distinct plastic responses in two closely related Senecio species. Evolution 2022; 76:1229-1245. [PMID: 35344205 PMCID: PMC9322604 DOI: 10.1111/evo.14478] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/18/2022] [Indexed: 01/22/2023]
Abstract
The evolution of plastic responses to external cues allows species to maintain fitness in response to the environmental variations they regularly experience. However, it remains unclear how plasticity evolves during adaptation. To test whether distinct patterns of plasticity are associated with adaptive divergence, we quantified plasticity for two closely related but ecologically divergent Sicilian daisy species (Senecio, Asteraceae). We sampled 40 representative genotypes of each species from their native range on Mt. Etna and then reciprocally transplanted multiple clones of each genotype into four field sites along an elevational gradient that included the native elevational range of each species, and two intermediate elevations. At each elevation, we quantified survival and measured leaf traits that included investment (specific leaf area), morphology, chlorophyll fluorescence, pigment content, and gene expression. Traits and differentially expressed genes that changed with elevation in one species often showed little changes in the other species, or changed in the opposite direction. As evidence of adaptive divergence, both species performed better at their native site and better than the species from the other habitat. Adaptive divergence is, therefore, associated with the evolution of distinct plastic responses to environmental variation, despite these two species sharing a recent common ancestor.
Collapse
Affiliation(s)
- Greg M. Walter
- School of Biological SciencesUniversity of BristolUK
- School of Biological SciencesMonash UniversityMelbourneAustralia
| | - James Clark
- School of Biological SciencesUniversity of BristolUK
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Antonia Cristaudo
- Department of Biological, Geological, and Environmental SciencesUniversity of CataniaCataniaItaly
| | - Delia Terranova
- Department of Biological, Geological, and Environmental SciencesUniversity of CataniaCataniaItaly
| | - Bruno Nevado
- Department of Plant SciencesUniversity of OxfordOxfordUK
- Center of Ecology, Evolution, and Environmental ChangesUniversidade de LisboaLisboaPortugal
| | - Stefania Catara
- Department of Biological, Geological, and Environmental SciencesUniversity of CataniaCataniaItaly
| | - Momchil Paunov
- Faculty of BiologySofia University St. Kliment OhridskiSofiaBulgaria
| | - Violeta Velikova
- Bulgarian Academy of Sciences, Institute of Plant Physiology and GeneticsSofiaBulgaria
| | - Dmitry Filatov
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | | | | | - Jon R. Bridle
- School of Biological SciencesUniversity of BristolUK
- Department of Genetics, Evolution, and EnvironmentUniversity College LondonLondonUK
| |
Collapse
|
11
|
Forestiero S. The historical nature of biological complexity and the ineffectiveness of the mathematical approach to it. Theory Biosci 2022; 141:213-231. [PMID: 35583727 PMCID: PMC9184406 DOI: 10.1007/s12064-022-00369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
Contemporary scientific knowledge is built on both methodological and epistemological reductionism. The discovery of the limitations of the reductionist paradigm in the mathematical treatment of certain physical phenomena originated the notion of complexity, both as a pattern and process. After clarifying some very general terms and ideas on biological evolution and biological complexity, the article will tackle to seek to summarize the debate on biological complexity and discuss the difference between complexities of living and inert matter. Some examples of the major successes of mathematics applied to biological problems will follow; the notion of an intrinsic limitation in the application of mathematics to biological complexity as a global, relational, and historical phenomenon at the individual and species level will also be advanced.
Collapse
Affiliation(s)
- Saverio Forestiero
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
- Res Viva, Interuniversity Research Center for the Epistemology and History of Life Sciences, Rome, Italy.
| |
Collapse
|
12
|
Nagpal S, Tandon R, Gibson G. Canalization of the Polygenic Risk for Common Diseases and Traits in the UK Biobank Cohort. Mol Biol Evol 2022; 39:6547257. [PMID: 35275999 PMCID: PMC9004416 DOI: 10.1093/molbev/msac053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Since organisms develop and thrive in the face of constant perturbations due to environmental and genetic variation, species may evolve resilient genetic architectures. We sought evidence for this process, known as canalization, through a comparison of the prevalence of phenotypes as a function of the polygenic score (PGS) across environments in the UK Biobank cohort study. Contrasting seven diseases and three categorical phenotypes with respect to 151 exposures in 408,925 people, the deviation between the prevalence-risk curves was observed to increase monotonically with the PGS percentile in one-fifth of the comparisons, suggesting extensive PGS-by-Environment (PGS×E) interaction. After adjustment for the dependency of allelic effect sizes on increased prevalence in the perturbing environment, cases where polygenic influences are greater or lesser than expected are seen to be particularly pervasive for educational attainment, obesity, and metabolic condition type-2 diabetes. Inflammatory bowel disease analysis shows fewer interactions but confirms that smoking and some aspects of diet influence risk. Notably, body mass index has more evidence for decanalization (increased genetic influence at the extremes of polygenic risk), whereas the waist-to-hip ratio shows canalization, reflecting different evolutionary pressures on the architectures of these weight-related traits. An additional 10 % of comparisons showed evidence for an additive shift of prevalence independent of PGS between exposures. These results provide the first widespread evidence for canalization protecting against disease in humans and have implications for personalized medicine as well as understanding the evolution of complex traits. The findings can be explored through an R shiny app at https://canalization-gibsonlab.shinyapps.io/rshiny/.
Collapse
Affiliation(s)
- Sini Nagpal
- School of Biological Sciences, and Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Raghav Tandon
- Wallace H. Coulter Department of Biomedical Engineering, and Center for Machine Learning, Georgia Institute of Technology, Atlanta, GA, USA
| | - Greg Gibson
- School of Biological Sciences, and Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
13
|
Warret Rodrigues C, Angin B, Besnard A. Favoring recruitment as a conservation strategy to improve the resilience of long-lived reptile populations: Insights from a population viability analysis. Ecol Evol 2021; 11:13068-13080. [PMID: 34646453 PMCID: PMC8495825 DOI: 10.1002/ece3.8021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 12/02/2022] Open
Abstract
In long-lived species, although adult survival typically has the highest elasticity, temporal variations in less canalized demographic parameters are the main drivers of population dynamics. Targeting recruitment rates may thus be the most effective strategy to manage these species. We analyzed 1,136 capture-recapture histories collected over 9 years in an isolated population of the critically endangered Lesser Antillean iguana, using a robust design Pradel model to estimate adult survival and recruitment rates. From an adult population size estimated at 928 in 2013, we found a yearly decline of 4% over the 8-year period. As expected under the canalization hypothesis for a long-lived species, adult survival was high and constant, with little possibility for improvement, whereas the recruitment rate varied over time and likely drove the observed population decline. We then used a prospective perturbation analysis to explore whether managing the species' immature cohorts would at least slow the population decline. The prospective perturbation analysis suggested that a significant and sustained conservation effort would be needed to achieve a recruitment rate high enough to slow the population decline. We posit that the high recruitment rate achieved in 2014-likely due to the maintenance in 2012 of the main nesting sites used by this population-would be sufficient to slow this population's decline if it was sustained each year. Based on the results of diverse pilot studies we conducted, we identified the most likely threats targeting the eggs and immature cohorts, stressing the need to improve reproductive success and survival of immature iguanas. The threats we identified are also involved in the decline of several reptile species, and species from other taxa such as ground-nesting birds. These findings on a little-studied taxon provide further evidence that focusing on the immature life stages of long-lived species can be key to their conservation.
Collapse
Affiliation(s)
- Chloé Warret Rodrigues
- Office National de la Chasse et de la Faune SauvageCellule Technique des Antilles françaisesTrois‐îletsFrance
- Department of Biological SciencesUniversity of ManitobaWinnipegCanada
| | | | - Aurélien Besnard
- CEFEUniv MontpellierCNRSEPHE‐PSL UniversityIRDUniv Paul Valéry Montpellier 3MontpellierFrance
| |
Collapse
|
14
|
Noble DWA, Senior AM, Uller T, Schwanz LE. Heightened among-individual variation in life history but not morphology is related to developmental temperature in reptiles. J Evol Biol 2021; 34:1793-1802. [PMID: 34543488 DOI: 10.1111/jeb.13938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023]
Abstract
Increases in phenotypic variation under extreme (e.g. novel or stressful) environmental conditions are emerging as a crucial process through which evolutionary adaptation can occur. Lack of prior stabilizing selection, as well as potential instability of developmental processes in these environments, may lead to a release of phenotypic variation that can have important evolutionary consequences. Although such patterns have been shown in model study organisms, we know little about the generality of trait variance across environments for non-model organisms. Here, we test whether extreme developmental temperatures increase the phenotypic variation across diverse reptile taxa. We find that the among-individual variation in a key life-history trait (post-hatching growth) increases at extreme cold and hot temperatures. However, variations in two measures of hatchling morphology and in hatchling performance were not related to developmental temperature. Although extreme developmental temperatures may increase the variation in growth, our results suggest that plastic responses to stressful incubation conditions do not generally make more extreme phenotypes available to selection. We discuss the reasons for the general lack of increased variability at extreme incubation temperatures and the implications this has for local adaptation in hatchling morphology and physiology.
Collapse
Affiliation(s)
- Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Alistair M Senior
- Charles Perkins Centre, School of Life and Environmental Sciences, Sydney University, Sydney, NSW, Australia
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Skåne, Sweden
| | - Lisa E Schwanz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
15
|
Evans KM, Larouche O, Watson SJ, Farina S, Habegger ML, Friedman M. Integration drives rapid phenotypic evolution in flatfishes. Proc Natl Acad Sci U S A 2021; 118:e2101330118. [PMID: 33931506 PMCID: PMC8106320 DOI: 10.1073/pnas.2101330118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Evolutionary innovations are scattered throughout the tree of life, and have allowed the organisms that possess them to occupy novel adaptive zones. While the impacts of these innovations are well documented, much less is known about how these innovations arise in the first place. Patterns of covariation among traits across macroevolutionary time can offer insights into the generation of innovation. However, to date, there is no consensus on the role that trait covariation plays in this process. The evolution of cranial asymmetry in flatfishes (Pleuronectiformes) from within Carangaria was a rapid evolutionary innovation that preceded the colonization of benthic aquatic habitats by this clade, and resulted in one of the most bizarre body plans observed among extant vertebrates. Here, we use three-dimensional geometric morphometrics and a phylogenetic comparative toolkit to reconstruct the evolution of skull shape in carangarians, and quantify patterns of integration and modularity across the skull. We find that the evolution of asymmetry in flatfishes was a rapid process, resulting in the colonization of novel trait space, that was aided by strong integration that coordinated shape changes across the skull. Our findings suggest that integration plays a major role in the evolution of innovation by synchronizing responses to selective pressures across the organism.
Collapse
Affiliation(s)
- Kory M Evans
- Department of Biosciences, Rice University, Houston, TX 77005;
| | | | - Sara-Jane Watson
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801
| | - Stacy Farina
- Department of Biology, Howard University, Washington, DC 20059
| | | | - Matt Friedman
- Department of Paleontology, University of Michigan, Ann Arbor, MI 48109
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
16
|
Denver RJ. Stress hormones mediate developmental plasticity in vertebrates with complex life cycles. Neurobiol Stress 2021; 14:100301. [PMID: 33614863 PMCID: PMC7879041 DOI: 10.1016/j.ynstr.2021.100301] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
The environment experienced by developing organisms can shape the timing and character of developmental processes, generating different phenotypes from the same genotype, each with different probabilities of survival and performance as adults. Chordates have two basic modes of development, indirect and direct. Species with indirect development, which includes most fishes and amphibians, have a complex life cycle with a free-swimming larva that is typically a growth stage, followed by a metamorphosis into the adult form. Species with direct development, which is an evolutionarily derived developmental mode, develop directly from embryo to the juvenile without an intervening larval stage. Among the best studied species with complex life cycles are the amphibians, especially the anurans (frogs and toads). Amphibian tadpoles are exposed to diverse biotic and abiotic factors in their developmental habitat. They have extensive capacity for developmental plasticity, which can lead to the expression of different, adaptive morphologies as tadpoles (polyphenism), variation in the timing of and size at metamorphosis, and carry-over effects on the phenotype of the juvenile/adult. The neuroendocrine stress axis plays a pivotal role in mediating environmental effects on amphibian development. Before initiating metamorphosis, if tadpoles are exposed to predators they upregulate production of the stress hormone corticosterone (CORT), which acts directly on the tail to cause it to grow, thereby increasing escape performance. When tadpoles reach a minimum body size to initiate metamorphosis they can vary the timing of transformation in relation to growth opportunity or mortality risk in the larval habitat. They do this by modulating the production of thyroid hormone (TH), the primary inducer of metamorphosis, and CORT, which synergizes with TH to promote tissue transformation. Hypophysiotropic neurons that release the stress neurohormone corticotropin-releasing factor (CRF) are activated in response to environmental stress (e.g., pond drying, food restriction, etc.), and CRF accelerates metamorphosis by directly inducing secretion of pituitary thyrotropin and corticotropin, thereby increasing secretion of TH and CORT. Although activation of the neuroendocrine stress axis promotes immediate survival in a deteriorating larval habitat, costs may be incurred such as reduced tadpole growth and size at metamorphosis. Small size at transformation can impair performance of the adult, reducing probability of survival in the terrestrial habitat, or fecundity. Furthermore, elevations in CORT in the tadpole caused by environmental stressors cause long term, stable changes in neuroendocrine function, behavior and physiology of the adult, which can affect fitness. Comparative studies show that the roles of stress hormones in developmental plasticity are conserved across vertebrate taxa including humans.
Collapse
Affiliation(s)
- Robert J. Denver
- Department of Molecular, Cellular and Developmental Biology, and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA
| |
Collapse
|
17
|
Mitteroecker P, Stansfield E. A model of developmental canalization, applied to human cranial form. PLoS Comput Biol 2021; 17:e1008381. [PMID: 33591964 PMCID: PMC7909690 DOI: 10.1371/journal.pcbi.1008381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/26/2021] [Accepted: 01/14/2021] [Indexed: 11/26/2022] Open
Abstract
Developmental mechanisms that canalize or compensate perturbations of organismal development (targeted or compensatory growth) are widely considered a prerequisite of individual health and the evolution of complex life, but little is known about the nature of these mechanisms. It is even unclear if and how a “target trajectory” of individual development is encoded in the organism’s genetic-developmental system or, instead, emerges as an epiphenomenon. Here we develop a statistical model of developmental canalization based on an extended autoregressive model. We show that under certain assumptions the strength of canalization and the amount of canalized variance in a population can be estimated, or at least approximated, from longitudinal phenotypic measurements, even if the target trajectories are unobserved. We extend this model to multivariate measures and discuss reifications of the ensuing parameter matrix. We apply these approaches to longitudinal geometric morphometric data on human postnatal craniofacial size and shape as well as to the size of the frontal sinuses. Craniofacial size showed strong developmental canalization during the first 5 years of life, leading to a 50% reduction of cross-sectional size variance, followed by a continual increase in variance during puberty. Frontal sinus size, by contrast, did not show any signs of canalization. Total variance of craniofacial shape decreased slightly until about 5 years of age and increased thereafter. However, different features of craniofacial shape showed very different developmental dynamics. Whereas the relative dimensions of the nasopharynx showed strong canalization and a reduction of variance throughout postnatal development, facial orientation continually increased in variance. Some of the signals of canalization may owe to independent variation in developmental timing of cranial components, but our results indicate evolved, partly mechanically induced mechanisms of canalization that ensure properly sized upper airways and facial dimensions. Developmental mechanisms that canalize or compensate perturbations of organismal development are a prerequisite of individual health and the evolution of complex life. However, surprisingly little is known about these mechanisms, partly because the “target trajectories” of individual development cannot be directly observed. Here we develop a statistical model of developmental canalization that allows one to estimate the strength of canalization and the amount of canalized variance in a population even if the target trajectories are unobserved. We applied these approaches to data on human postnatal craniofacial growth. Whereas overall craniofacial size was strongly canalized during the first 5 years of age, frontal sinus size did not show any signs of canalization. The relative dimensions of the nasopharynx showed strong canalization and a reduction of variance throughout postnatal development, whereas other shape features, such as facial orientation, continually increased in variance. Our results indicate evolved, partly mechanically induced mechanisms of canalization that ensure properly sized upper airways and facial dimensions.
Collapse
Affiliation(s)
- Philipp Mitteroecker
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- * E-mail:
| | | |
Collapse
|
18
|
Gualtieri CT. Genomic Variation, Evolvability, and the Paradox of Mental Illness. Front Psychiatry 2021; 11:593233. [PMID: 33551865 PMCID: PMC7859268 DOI: 10.3389/fpsyt.2020.593233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
Twentieth-century genetics was hard put to explain the irregular behavior of neuropsychiatric disorders. Autism and schizophrenia defy a principle of natural selection; they are highly heritable but associated with low reproductive success. Nevertheless, they persist. The genetic origins of such conditions are confounded by the problem of variable expression, that is, when a given genetic aberration can lead to any one of several distinct disorders. Also, autism and schizophrenia occur on a spectrum of severity, from mild and subclinical cases to the overt and disabling. Such irregularities reflect the problem of missing heritability; although hundreds of genes may be associated with autism or schizophrenia, together they account for only a small proportion of cases. Techniques for higher resolution, genomewide analysis have begun to illuminate the irregular and unpredictable behavior of the human genome. Thus, the origins of neuropsychiatric disorders in particular and complex disease in general have been illuminated. The human genome is characterized by a high degree of structural and behavioral variability: DNA content variation, epistasis, stochasticity in gene expression, and epigenetic changes. These elements have grown more complex as evolution scaled the phylogenetic tree. They are especially pertinent to brain development and function. Genomic variability is a window on the origins of complex disease, neuropsychiatric disorders, and neurodevelopmental disorders in particular. Genomic variability, as it happens, is also the fuel of evolvability. The genomic events that presided over the evolution of the primate and hominid lineages are over-represented in patients with autism and schizophrenia, as well as intellectual disability and epilepsy. That the special qualities of the human genome that drove evolution might, in some way, contribute to neuropsychiatric disorders is a matter of no little interest.
Collapse
|
19
|
Kuwahara H, Gao X. Stable maintenance of hidden switches as a strategy to increase the gene expression stability. NATURE COMPUTATIONAL SCIENCE 2021; 1:62-70. [PMID: 38217152 DOI: 10.1038/s43588-020-00001-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/02/2020] [Indexed: 01/15/2024]
Abstract
In response to severe genetic and environmental perturbations, wild-type organisms can express hidden alternative phenotypes adaptive to such adverse conditions. While our theoretical understanding of the population-level fitness advantage and evolution of phenotypic switching under variable environments has grown, the mechanism by which these organisms maintain phenotypic switching capabilities under static environments remains to be elucidated. Here, using computational simulations, we analyzed the evolution of gene circuits under natural selection and found that different strategies evolved to increase the gene expression stability near the optimum level. In a population comprising bistable individuals, a strategy of maintaining bistability and raising the potential barrier separating the bistable regimes was consistently taken. Our results serve as evidence that hidden bistable switches can be stably maintained during environmental stasis-an essential property enabling the timely release of adaptive alternatives with small genetic changes in the event of substantial perturbations.
Collapse
Affiliation(s)
- Hiroyuki Kuwahara
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
20
|
Joschinski J, Bonte D. Transgenerational Plasticity and Bet-Hedging: A Framework for Reaction Norm Evolution. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.517183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Decision-making under uncertain conditions favors bet-hedging (avoidance of fitness variance), whereas predictable environments favor phenotypic plasticity. However, entirely predictable or entirely unpredictable conditions are rarely found in nature. Intermediate strategies are required when the time lag between information sensing and phenotype induction is large (e.g., transgenerational plasticity) and when cues are only partially predictive of future conditions. Nevertheless, current theory regards plasticity and bet-hedging as distinct entities. We here develop a unifying framework: based on traits with binary outcomes like seed germination or diapause incidence we clarify that diversified bet-hedging (risk-spreading among one’s offspring) and transgenerational plasticity are mutually exclusive strategies, arising from opposing changes in reaction norms (allocating phenotypic variance among or within environments). We further explain the relationship of this continuum with arithmetic mean maximization vs. conservative bet-hedging (a risk-avoidance strategy), and canalization vs. phenotypic variance in a three-dimensional continuum of reaction norm evolution. We discuss under which scenarios costs and limits may constrain the evolution of reaction norm shapes.
Collapse
|
21
|
Huang W, Carbone MA, Lyman RF, Anholt RRH, Mackay TFC. Genotype by environment interaction for gene expression in Drosophila melanogaster. Nat Commun 2020; 11:5451. [PMID: 33116142 PMCID: PMC7595129 DOI: 10.1038/s41467-020-19131-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023] Open
Abstract
The genetics of phenotypic responses to changing environments remains elusive. Using whole-genome quantitative gene expression as a model, here we study how the genetic architecture of regulatory variation in gene expression changed in a population of fully sequenced inbred Drosophila melanogaster strains when flies developed in different environments (25 °C and 18 °C). We find a substantial fraction of the transcriptome exhibited genotype by environment interaction, implicating environmentally plastic genetic architecture of gene expression. Genetic variance in expression increases at 18 °C relative to 25 °C for most genes that have a change in genetic variance. Although the majority of expression quantitative trait loci (eQTLs) for the gene expression traits in the two environments are shared and have similar effects, analysis of the environment-specific eQTLs reveals enrichment of binding sites for two transcription factors. Finally, although genotype by environment interaction in gene expression could potentially disrupt genetic networks, the co-expression networks are highly conserved across environments. Genes with higher network connectivity are under stronger stabilizing selection, suggesting that stabilizing selection on expression plays an important role in promoting network robustness.
Collapse
Affiliation(s)
- Wen Huang
- Program in Genetics, Department of Biological Sciences, W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA.
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA.
| | - Mary Anna Carbone
- Program in Genetics, Department of Biological Sciences, W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Center for Integrated Fungal Research and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7244, USA
| | - Richard F Lyman
- Program in Genetics, Department of Biological Sciences, W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Clemson Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Robert R H Anholt
- Program in Genetics, Department of Biological Sciences, W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Clemson Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Trudy F C Mackay
- Program in Genetics, Department of Biological Sciences, W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA.
- Clemson Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA.
| |
Collapse
|
22
|
Reddon H, Kerr T, Milloy MJ. Ranking evidence in substance use and addiction. THE INTERNATIONAL JOURNAL OF DRUG POLICY 2020; 83:102840. [PMID: 32645584 PMCID: PMC7669593 DOI: 10.1016/j.drugpo.2020.102840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 01/04/2023]
Abstract
Evidence-based medicine has consistently prized the epistemological value of randomized-controlled trials (RCTs) owing to their methodological advantages over alternative designs such as observational studies. However, there are limitations to RCTs that hinder their ability to study chronic and dynamic conditions such as substance use and addiction. For these conditions, observational studies may provide superior evidence based on methodological and practical strengths. Assuming epistemic superiority of RCTs has led to an inappropriate devaluation of other study designs and the findings they support, including support for harm reduction services, especially needle exchange programs and supervised injection facilities. The value offered by observational studies should be reflected in evidence-based medicine by allowing more flexibility in evidence hierarchies that presume methodological superiority of RCTs. Despite the popularity of evidence ranking systems and hierarchies, nothing should replace critical appraisal of study methodology and examining the suitability of applying a given study design to a specific research question.
Collapse
Affiliation(s)
- Hudson Reddon
- British Columbia Centre on Substance Use, 1045 Howe Street, Vancouver, BC V6Z 2A9, Canada; CIHR Canadian HIV Trials Network, 588-1081 Burrard Street, Vancouver, BC V6B 3E6, Canada
| | - Thomas Kerr
- British Columbia Centre on Substance Use, 1045 Howe Street, Vancouver, BC V6Z 2A9, Canada; Department of Medicine, University of British Columbia, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada
| | - M-J Milloy
- British Columbia Centre on Substance Use, 1045 Howe Street, Vancouver, BC V6Z 2A9, Canada; Department of Medicine, University of British Columbia, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada.
| |
Collapse
|
23
|
Abstract
Canalization refers to the evolution of populations such that the number of individuals who deviate from the optimum trait, or experience disease, is minimized. In the presence of rapid cultural, environmental, or genetic change, the reverse process of decanalization may contribute to observed increases in disease prevalence. This review starts by defining relevant concepts, drawing distinctions between the canalization of populations and robustness of individuals. It then considers evidence pertaining to three continuous traits and six domains of disease. In each case, existing genetic evidence for genotype-by-environment interactions is insufficient to support a strong inference of decanalization, but we argue that the advent of genome-wide polygenic risk assessment now makes an empirical evaluation of the role of canalization in preventing disease possible. Finally, the contributions of both rare and common variants to congenital abnormality and adult onset disease are considered in light of a new kerplunk model of genetic effects.
Collapse
Affiliation(s)
- Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;
| | - Kristine A Lacek
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;
| |
Collapse
|
24
|
Pesevski M, Dworkin I. Genetic and environmental canalization are not associated among altitudinally varying populations of Drosophila melanogaster. Evolution 2020; 74:1755-1771. [PMID: 32562566 DOI: 10.1111/evo.14039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 05/19/2020] [Accepted: 05/30/2020] [Indexed: 01/23/2023]
Abstract
Organisms are exposed to environmental and mutational effects influencing both mean and variance of phenotypes. Potentially deleterious effects arising from this variation can be reduced by the evolution of buffering (canalizing) mechanisms, ultimately reducing phenotypic variability. There has been interest regarding the conditions enabling the evolution of canalization. Under some models, the circumstances under which genetic canalization evolves are limited despite apparent empirical evidence for it. It has been argued that genetic canalization evolves as a correlated response to environmental canalization (congruence model). Yet, empirical evidence has not consistently supported predictions of a correlation between genetic and environmental canalization. In a recent study, a population of Drosophila adapted to high altitude showed evidence of genetic decanalization relative to those from low altitudes. Using strains derived from these populations, we tested if they varied for multiple aspects of environmental canalization We observed the expected differences in wing size, shape, cell (trichome) density and mutational defects between high- and low-altitude populations. However, we observed little evidence for a relationship between measures of environmental canalization with population or with defect frequency. Our results do not support the predicted association between genetic and environmental canalization.
Collapse
Affiliation(s)
- Maria Pesevski
- Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Ian Dworkin
- Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
25
|
Moderate Amounts of Epistasis are Not Evolutionarily Stable in Small Populations. J Mol Evol 2020; 88:435-444. [PMID: 32350572 DOI: 10.1007/s00239-020-09942-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
High mutation rates select for the evolution of mutational robustness where populations inhabit flat fitness peaks with little epistasis, protecting them from lethal mutagenesis. Recent evidence suggests that a different effect protects small populations from extinction via the accumulation of deleterious mutations. In drift robustness, populations tend to occupy peaks with steep flanks and positive epistasis between mutations. However, it is not known what happens when mutation rates are high and population sizes are small at the same time. Using a simple fitness model with variable epistasis, we show that the equilibrium fitness has a minimum as a function of the parameter that tunes epistasis, implying that this critical point is an unstable fixed point for evolutionary trajectories. In agent-based simulations of evolution at finite mutation rate, we demonstrate that when mutations can change epistasis, trajectories with a subcritical value of epistasis evolve to decrease epistasis, while those with supercritical initial points evolve towards higher epistasis. These two fixed points can be identified with mutational and drift robustness, respectively.
Collapse
|
26
|
Huang A, Rupprecht JF, Saunders TE. Embryonic geometry underlies phenotypic variation in decanalized conditions. eLife 2020; 9:e47380. [PMID: 32048988 PMCID: PMC7032927 DOI: 10.7554/elife.47380] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Abstract
During development, many mutations cause increased variation in phenotypic outcomes, a phenomenon termed decanalization. Phenotypic discordance is often observed in the absence of genetic and environmental variations, but the mechanisms underlying such inter-individual phenotypic discordance remain elusive. Here, using the anterior-posterior (AP) patterning of the Drosophila embryo, we identified embryonic geometry as a key factor predetermining patterning outcomes under decanalizing mutations. With the wild-type AP patterning network, we found that AP patterning is robust to variations in embryonic geometry; segmentation gene expression remains reproducible even when the embryo aspect ratio is artificially reduced by more than twofold. In contrast, embryonic geometry is highly predictive of individual patterning defects under decanalized conditions of either increased bicoid (bcd) dosage or bcd knockout. We showed that the phenotypic discordance can be traced back to variations in the gap gene expression, which is rendered sensitive to the geometry of the embryo under mutations.
Collapse
Affiliation(s)
- Anqi Huang
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
| | - Jean-François Rupprecht
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
- CNRS and Turing Center for Living Systems, Centre de Physique Théorique, Aix-Marseille UniversitéMarseilleFrance
| | - Timothy E Saunders
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
- Department of Biological Sciences, National University of SingaporeSingaporeSingapore
- Institute of Molecular and Cell Biology, Proteos, A*StarSingaporeSingapore
| |
Collapse
|
27
|
Irvine SQ. Embryonic canalization and its limits-A view from temperature. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:128-144. [PMID: 32011096 DOI: 10.1002/jez.b.22930] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Many animals are able to produce similar offspring over a range of environmental conditions. This property of the developmental process has been termed canalization-the channeling of developmental pathways to generate a stable outcome despite varying conditions. Temperature is one environmental parameter that has fundamental effects on cell physiology and biochemistry, yet developmental programs generally result in a stable phenotype under a range of temperatures. On the other hand, there are typically upper and lower temperature limits beyond which the developmental program is unable to produce normal offspring. This review summarizes data on how development is affected by temperature, particularly high temperature, in various animal species. It also brings together information on potential cell biological and developmental genetic factors that may be responsible for developmental stability in varying temperatures, and likely critical mechanisms that break down at high temperature. Also reviewed are possible means for studying temperature effects on embryogenesis and how to determine which factors are most critical at the high-temperature limits for normal development. Increased knowledge of these critical factors will point to the targets of selection under climate change, and more generally, how developmental robustness in varying environments is maintained.
Collapse
Affiliation(s)
- Steven Q Irvine
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
28
|
Lorenz C, Suesdek L. The use of wing shape for characterising macroevolution in mosquitoes (Diptera: Culicidae). INFECTION GENETICS AND EVOLUTION 2019; 77:104052. [PMID: 31669430 DOI: 10.1016/j.meegid.2019.104052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 10/25/2022]
Abstract
The wing form of culicid mosquitoes shows considerable variation among groups: this phenomenon has been addressed by several studies through space-time analyses in mosquito populations, species, and genera. The observed variation results from a combination of two distinct factors: heredity and phenotypic plasticity. The first is usually related to wing shape, a complex character that may serve as a taxonomic marker in specific cases. We hypothesized that wing shape might be phylogenetically meaningful in Culicidae. In this study, we applied a geometric morphometrical approach based on 18 landmarks in 81 species of mosquitoes, representing 19 different genera, to investigate whether wing shape can help retrieve macroevolutionary patterns or identify any phylogenetic signals. We observed that wing shape differed considerably among groups, especially between Anophelinae and Culicinae subfamilies; thus, some wing shape elements may be synapomorphic. Comparisons among wing consensus after Procrustes superimposition revealed that landmark #1, located between the veins RS and R1, was the most variable. Sabethini tribe was distinguished from other taxa owing to a strong phylogenetic signal of its wings, whereas other culicids presented weaker signals and were not that distinguishable. Evolutionary forces such as natural selection, evolutionary limitation/constraint, or canalization mechanisms might drive the evolution of wing phenotype. These findings suggest that the wing undergoes evolution over long periods, but is not neutral enough to reconstruct the phylogenetic history of these insects. Gene-based studies should be performed to understand the driving forces in wing evolution.
Collapse
Affiliation(s)
- Camila Lorenz
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, São Paulo CEP 05509-300, Brazil; Biologia da Relação Patógeno-Hospedeiro- Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo CEP 05508-000, Brazil.
| | - Lincoln Suesdek
- Instituto Butantan, Av. Vital Brazil 1500, Butantã, São Paulo, SP CEP 05503-900, Brazil; Instituto de Medicina Tropical, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar 470, Jardim América, São Paulo, SP CEP 05403-000, Brazil
| |
Collapse
|
29
|
Dumitrascu B, Darnell G, Ayroles J, Engelhardt BE. Statistical tests for detecting variance effects in quantitative trait studies. Bioinformatics 2019; 35:200-210. [PMID: 29982387 PMCID: PMC6330007 DOI: 10.1093/bioinformatics/bty565] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 07/04/2018] [Indexed: 11/17/2022] Open
Abstract
Motivation Identifying variants, both discrete and continuous, that are associated with quantitative traits, or QTs, is the primary focus of quantitative genetics. Most current methods are limited to identifying mean effects, or associations between genotype or covariates and the mean value of a quantitative trait. It is possible, however, that a variant may affect the variance of the quantitative trait in lieu of, or in addition to, affecting the trait mean. Here, we develop a general methodology to identify covariates with variance effects on a quantitative trait using a Bayesian heteroskedastic linear regression model (BTH). We compare BTH with existing methods to detect variance effects across a large range of simulations drawn from scenarios common to the analysis of quantitative traits. Results We find that BTH and a double generalized linear model (dglm) outperform classical tests used for detecting variance effects in recent genomic studies. We show BTH and dglm are less likely to generate spurious discoveries through simulations and application to identifying methylation variance QTs and expression variance QTs. We identify four variance effects of sex in the Cardiovascular and Pharmacogenetics study. Our work is the first to offer a comprehensive view of variance identifying methodology. We identify shortcomings in previously used methodology and provide a more conservative and robust alternative. We extend variance effect analysis to a wide array of covariates that enables a new statistical dimension in the study of sex and age specific quantitative trait effects. Availability and implementation https://github.com/b2du/bth. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Bianca Dumitrascu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Gregory Darnell
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Julien Ayroles
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Barbara E Engelhardt
- Department of Computer Science, Princeton University, Princeton, NJ, USA.,Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, USA
| |
Collapse
|
30
|
An extinction event in planktonic Foraminifera preceded by stabilizing selection. PLoS One 2019; 14:e0223490. [PMID: 31609985 PMCID: PMC6791547 DOI: 10.1371/journal.pone.0223490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/22/2019] [Indexed: 11/29/2022] Open
Abstract
Unless they adapt, populations facing persistent stress are threatened by extinction. Theoretically, populations facing stress can react by either disruption (increasing trait variation and potentially generating new traits) or stabilization (decreasing trait variation). In the short term, stabilization is more economical, because it quickly transfers a large part of the population closer to a new ecological optimum. However, stabilization is deleterious in the face of persistently increasing stress, because it reduces variability and thus decreases the ability to react to further changes. Understanding how natural populations react to intensifying stress reaching terminal levels is key to assessing their resilience to environmental change such as that caused by global warming. Because extinctions are hard to predict, observational data on the adaptation of populations facing extinction are rare. Here, we make use of the glacial salinity rise in the Red Sea as a natural experiment allowing us to analyse the reaction of planktonic Foraminifera to stress escalation in the geological past. We analyse morphological trait state and variation in two species across a salinity rise leading to their local extinction. Trilobatus sacculifer reacted by stabilization in shape and size, detectable several thousand years prior to extinction. Orbulina universa reacted by trait divergence, but each of the two divergent populations remained stable or reacted by further stabilization. These observations indicate that the default reaction of the studied Foraminifera is stabilization, and that stress escalation did not lead to the emergence of adapted forms. An inherent inability to breach the global adaptive threshold would explain why communities of Foraminifera and other marine protists reacted to Quaternary climate change by tracking their zonally shifting environments. It also means that populations of marine plankton species adapted to response by migration will be at risk of extinction when exposed to stress outside of the adaptive range.
Collapse
|
31
|
Jackson ISC. Developmental bias in the fossil record. Evol Dev 2019; 22:88-102. [PMID: 31475437 DOI: 10.1111/ede.12312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
Abstract
The role of developmental bias and plasticity in evolution is a central research interest in evolutionary biology. Studies of these concepts and related processes are usually conducted on extant systems and have seen limited investigation in the fossil record. Here, I identify plasticity-led evolution (PLE) as a form of developmental bias accessible through scrutiny of paleontological material. I summarize the process of PLE and describe it in terms of the environmentally mediated accumulation and release of cryptic genetic variation. Given this structure, I then predict its manifestation in the fossil record, discuss its similarity to quantum evolution and punctuated equilibrium, and argue that these describe macroevolutionary patterns concordant with PLE. Finally, I suggest methods and directions towards providing evidence of PLE in the fossil record and conclude that such endeavors are likely to be highly rewarding.
Collapse
|
32
|
Affiliation(s)
- Anne Le Maître
- Department of Theoretical Biology University of Vienna Vienna Austria
- PALEVOPRIM ‐ UMR 7262 CNRS INEE, Université de Poitiers Poitiers Cedex 9 France
| | | |
Collapse
|
33
|
Reyes Corral WD, Aguirre WE. Effects of temperature and water turbulence on vertebral number and body shape in Astyanax mexicanus (Teleostei: Characidae). PLoS One 2019; 14:e0219677. [PMID: 31356643 PMCID: PMC6663064 DOI: 10.1371/journal.pone.0219677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/29/2019] [Indexed: 11/22/2022] Open
Abstract
Environmental changes can modify the phenotypic characteristics of populations, which in turn can influence their evolutionary trajectories. In ectotherms like fishes, temperature is a particularly important environmental variable that is known to have significant impacts on the phenotype. Here, we raised specimens of the surface ecomorph of Astyanax mexicanus at temperatures of 20°C, 23°C, 25°C, and 28°C to examine how temperature influenced vertebral number and body shape. To increase biological realism, specimens were also subjected to two water turbulence regimes. Vertebral number was counted from x-rays and body shape variation was analysed using geometric morphometric methods. Temperature significantly impacted mean total vertebral number, which increased at the lowest and highest temperatures. Fish reared at lower temperatures had relatively more precaudal vertebrae while fish reared at higher temperatures had relatively more caudal vertebrae. Vertebral anomalies, especially vertebral fusions, were most frequent at the extreme temperature treatments. Temperature significantly impacted body shape as well, with fish reared at 20°C being particularly divergent. Water turbulence also impacted body shape in a generally predictable manner, with specimens reared in high turbulence environments being more streamlined and having extended dorsal and anal fin bases. Variation in environmental variables thus resulted in significant changes in morphological traits known to impact fish fitness, indicating that A. mexicanus has the capacity to exhibit a range of phenotypic plasticity when challenged by environmental change. Understanding the biochemical mechanisms underlying this plasticity and whether adaptive plasticity has influenced the evolutionary radiation of the Characidae, are major directions for future research.
Collapse
Affiliation(s)
| | - Windsor E. Aguirre
- Department of Biological Sciences, DePaul University, Chicago, Illinois, United States of America
| |
Collapse
|
34
|
Monson TA, Boisserie J, Brasil MF, Clay SM, Dvoretzky R, Ravindramurthy S, Schmitt CA, Souron A, Takenaka R, Ungar PS, Yoo S, Zhou M, Zuercher ME, Hlusko LJ. Evidence of strong stabilizing effects on the evolution of boreoeutherian (Mammalia) dental proportions. Ecol Evol 2019; 9:7597-7612. [PMID: 31346425 PMCID: PMC6635932 DOI: 10.1002/ece3.5309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 11/28/2022] Open
Abstract
The dentition is an extremely important organ in mammals with variation in timing and sequence of eruption, crown morphology, and tooth size enabling a range of behavioral, dietary, and functional adaptations across the class. Within this suite of variable mammalian dental phenotypes, relative sizes of teeth reflect variation in the underlying genetic and developmental mechanisms. Two ratios of postcanine tooth lengths capture the relative size of premolars to molars (premolar-molar module, PMM), and among the three molars (molar module component, MMC), and are known to be heritable, independent of body size, and to vary significantly across primates. Here, we explore how these dental traits vary across mammals more broadly, focusing on terrestrial taxa in the clade of Boreoeutheria (Euarchontoglires and Laurasiatheria). We measured the postcanine teeth of N = 1,523 boreoeutherian mammals spanning six orders, 14 families, 36 genera, and 49 species to test hypotheses about associations between dental proportions and phylogenetic relatedness, diet, and life history in mammals. Boreoeutherian postcanine dental proportions sampled in this study carry conserved phylogenetic signal and are not associated with variation in diet. The incorporation of paleontological data provides further evidence that dental proportions may be slower to change than is dietary specialization. These results have implications for our understanding of dental variation and dietary adaptation in mammals.
Collapse
Affiliation(s)
- Tesla A. Monson
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia
- Human Evolution Research CenterUniversity of CaliforniaBerkeleyCalifornia
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCalifornia
- Anthropologisches Institut und MuseumUniversität ZürichZürichSwitzerland
| | | | - Marianne F. Brasil
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia
- Human Evolution Research CenterUniversity of CaliforniaBerkeleyCalifornia
| | - Selene M. Clay
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia
- Department of Human GeneticsUniversity of ChicagoChicagoIllinois
| | - Rena Dvoretzky
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia
| | | | | | | | - Risa Takenaka
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCalifornia
| | - Peter S. Ungar
- Department of AnthropologyUniversity of ArkansasFayettevilleArkansas
| | - Sunwoo Yoo
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia
| | - Michael Zhou
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia
| | | | - Leslea J. Hlusko
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia
- Human Evolution Research CenterUniversity of CaliforniaBerkeleyCalifornia
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCalifornia
| |
Collapse
|
35
|
DelPrete H. Similarities in pelvic dimorphisms across populations. Am J Hum Biol 2019; 31:e23282. [DOI: 10.1002/ajhb.23282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 04/04/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Hillary DelPrete
- Department of History and AnthropologyMonmouth University Long Branch New Jersey
| |
Collapse
|
36
|
Lea A, Subramaniam M, Ko A, Lehtimäki T, Raitoharju E, Kähönen M, Seppälä I, Mononen N, Raitakari OT, Ala-Korpela M, Pajukanta P, Zaitlen N, Ayroles JF. Genetic and environmental perturbations lead to regulatory decoherence. eLife 2019; 8:e40538. [PMID: 30834892 PMCID: PMC6400502 DOI: 10.7554/elife.40538] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 02/14/2019] [Indexed: 01/24/2023] Open
Abstract
Correlation among traits is a fundamental feature of biological systems that remains difficult to study. To address this problem, we developed a flexible approach that allows us to identify factors associated with inter-individual variation in correlation. We use data from three human cohorts to study the effects of genetic and environmental variation on correlations among mRNA transcripts and among NMR metabolites. We first show that environmental exposures (infection and disease) lead to a systematic loss of correlation, which we define as 'decoherence'. Using longitudinal data, we show that decoherent metabolites are better predictors of whether someone will develop metabolic syndrome than metabolites commonly used as biomarkers of this disease. Finally, we demonstrate that correlation itself is under genetic control by mapping hundreds of 'correlation quantitative trait loci (QTLs)'. Together, this work furthers our understanding of how and why coordinated biological processes break down, and points to a potential role for decoherence in disease. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Amanda Lea
- Department of Ecology and EvolutionPrinceton UniversityPrincetonUnited States
- Lewis-Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonUnited States
| | - Meena Subramaniam
- Department of Medicine, Lung Biology CenterUniversity of California, San FranciscoSan FranciscoUnited States
| | - Arthur Ko
- Department of Medicine, David Geffen School of Medicine at UCLAUniversity of California, Los AngelesLos AngelesUnited States
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Finnish Cardiovascular Research Center, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Emma Raitoharju
- Finnish Cardiovascular Research Center, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Mika Kähönen
- Finnish Cardiovascular Research Center, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Department of Clinical PhysiologyTampere University, Tampere University HospitalTampereFinland
| | - Ilkka Seppälä
- Finnish Cardiovascular Research Center, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Nina Mononen
- Finnish Cardiovascular Research Center, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular MedicineUniversity of TurkuTurkuFinland
- Department of Clinical Physiology and Nuclear MedicineTurku University HospitalTurkuFinland
| | - Mika Ala-Korpela
- Systems Epidemiology, Baker Heart and Diabetes InstituteMelbourneAustralia
- Computational Medicine, Faculty of Medicine, Biocenter OuluUniversity of OuluOuluFinland
- NMR Metabolomics Laboratory, School of PharmacyUniversity of Eastern FinlandKuopioFinland
- Population Health Science, Bristol Medical SchoolUniversity of BristolBristolUnited Kingdom
- Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUnited Kingdom
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health SciencesThe Alfred Hospital, Monash UniversityMelbourneAustralia
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLAUniversity of California, Los AngelesLos AngelesUnited States
| | - Noah Zaitlen
- Department of Medicine, Lung Biology CenterUniversity of California, San FranciscoSan FranciscoUnited States
| | - Julien F Ayroles
- Department of Ecology and EvolutionPrinceton UniversityPrincetonUnited States
- Lewis-Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonUnited States
| |
Collapse
|
37
|
Hughes S, Vrinds I, de Roo J, Francke C, Shimeld SM, Woollard A, Sato A. DnaJ chaperones contribute to canalization. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2019; 331:201-212. [PMID: 30653842 DOI: 10.1002/jez.2254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/04/2023]
Abstract
Canalization, an intrinsic robustness of development to external (environmental) or internal (genetic) perturbations, was first proposed over half a century ago. However, whether the robustness to environmental stress (environmental canalization [EC]) and to genetic variation (genetic canalization) are underpinned by the same molecular basis remains elusive. The recent discovery of the involvement of two endoplasmic reticulum (ER)-associated DnaJ genes in developmental buffering, orthologues of which are conserved across Metazoa, indicates that the role of ER-associated DnaJ genes might be conserved across the animal kingdom. To test this, we surveyed the ER-associated DnaJ chaperones in the nematode Caenorhabditis elegans. We then quantified the phenotype, in the form of variance and mean of seam cell counts, from RNA interference knockdown of DnaJs under three different temperatures. We find that seven out of eight ER-associated DnaJs are involved in either EC or microenvironmental canalization. Moreover, we also found two DnaJ genes not specifically associated with ER (DNAJC2/dnj-11 and DNAJA2/dnj-19) were involved in canalization. Protein expression pattern showed that these DnaJs are upregulated by heat stress, yet not all of them are expressed in the seam cells. Moreover, we found that most of the buffering DnaJs also control lifespan. We therefore concluded that a number of DnaJ chaperones, not limited to those associated with the ER, are involved in canalization as a part of the complex system that underlies development.
Collapse
Affiliation(s)
- Samantha Hughes
- HAN BioCentre, HAN University of Applied Science, Isnstitute of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | - Inge Vrinds
- HAN BioCentre, HAN University of Applied Science, Isnstitute of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | - Joris de Roo
- HAN BioCentre, HAN University of Applied Science, Isnstitute of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | - Christof Francke
- HAN BioCentre, HAN University of Applied Science, Isnstitute of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | | | - Alison Woollard
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Atsuko Sato
- Department of Biology, Ochanomizu University, Tokyo, Japan
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
38
|
Singhal S, Gomez SM, Burch CL. Recombination drives the evolution of mutational robustness. ACTA ACUST UNITED AC 2019; 13:142-149. [PMID: 31572829 DOI: 10.1016/j.coisb.2018.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recombination can impose fitness costs as beneficial parental combinations of alleles are broken apart, a phenomenon known as recombination load. Computational models suggest that populations may evolve a reduced recombination load by reducing either the likelihood of recombination events (bring interacting loci in physical proximity) or the strength of interactions between loci (make loci more independent of one another). We review evidence for each of these possibilities and their consequences for the genotype-fitness relationship. In particular, we expect that reducing interaction strengths between loci will lead to genomes that are also robust to mutational perturbations, but reducing recombination rates alone will not. We note that both mechanisms most likely played a role in the evolution of extant populations, and that both can result in the frequently-observed pattern of physical linkage between interacting loci.
Collapse
Affiliation(s)
- Sonia Singhal
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shawn M Gomez
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514.,Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Christina L Burch
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
39
|
Galis F, Metz JA, van Alphen JJ. Development and Evolutionary Constraints in Animals. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062339] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review the evolutionary importance of developmental mechanisms in constraining evolutionary changes in animals—in other words, developmental constraints. We focus on hard constraints that can act on macroevolutionary timescales. In particular, we discuss the causes and evolutionary consequences of the ancient metazoan constraint that differentiated cells cannot divide and constraints against changes of phylotypic stages in vertebrates and other higher taxa. We conclude that in all cases these constraints are caused by complex and highly controlled global interactivity of development, the disturbance of which has grave consequences. Mutations that affect such global interactivity almost unavoidably have many deleterious pleiotropic effects, which will be strongly selected against and will lead to long-term evolutionary stasis. The discussed developmental constraints have pervasive consequences for evolution and critically restrict regeneration capacity and body plan evolution.
Collapse
Affiliation(s)
- Frietson Galis
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Johan A.J. Metz
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria
- Mathematical Institute, University of Leiden; 2333 CA Leiden, The Netherlands
| | - Jacques J.M. van Alphen
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
40
|
Nijhout HF, Best JA, Reed MC. Systems biology of robustness and homeostatic mechanisms. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1440. [DOI: 10.1002/wsbm.1440] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/30/2018] [Accepted: 09/21/2018] [Indexed: 12/30/2022]
Affiliation(s)
| | - Janet A. Best
- Department of Mathematics Ohio State University Columbus Ohio
| | - Michael C. Reed
- Department of Mathematics Duke University Durham North Carolina
| |
Collapse
|
41
|
Sato A. Chaperones, Canalization, and Evolution of Animal Forms. Int J Mol Sci 2018; 19:E3029. [PMID: 30287767 PMCID: PMC6213012 DOI: 10.3390/ijms19103029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022] Open
Abstract
Over half a century ago, British developmental biologist Conrad Hal Waddington proposed the idea of canalization, that is, homeostasis in development. Since the breakthrough that was made by Rutherford and Lindquist (1998), who proposed a role of Hsp90 in developmental buffering, chaperones have gained much attention in the study of canalization. However, recent studies have revealed that a number of other molecules are also potentially involved in canalization. Here, I introduce the emerging role of DnaJ chaperones in canalization. I also discuss how the expression levels of such buffering molecules can be altered, thereby altering organismal development. Since developmental robustness is maternally inherited in various organisms, I propose that dynamic bet hedging, an increase in within-clutch variation in offspring phenotypes that is caused by unpredictable environmental challenges to the mothers, plays a key role in altering the expression levels of buffering molecules. Investigating dynamic bet hedging at the molecular level and how it impacts upon morphological phenotypes will help our understanding of the molecular mechanisms of canalization and evolutionary processes.
Collapse
Affiliation(s)
- Atsuko Sato
- Department of Biology, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-0012, Japan.
- Marine Biological Association of the UK, The Laboratory, Plymouth PL1 2PB, UK.
| |
Collapse
|
42
|
Zabinsky RA, Mason GA, Queitsch C, Jarosz DF. It's not magic - Hsp90 and its effects on genetic and epigenetic variation. Semin Cell Dev Biol 2018; 88:21-35. [PMID: 29807130 DOI: 10.1016/j.semcdb.2018.05.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/15/2018] [Accepted: 05/15/2018] [Indexed: 10/14/2022]
Abstract
Canalization, or phenotypic robustness in the face of environmental and genetic perturbation, is an emergent property of living systems. Although this phenomenon has long been recognized, its molecular underpinnings have remained enigmatic until recently. Here, we review the contributions of the molecular chaperone Hsp90, a protein that facilitates the folding of many key regulators of growth and development, to canalization of phenotype - and de-canalization in times of stress - drawing on studies in eukaryotes as diverse as baker's yeast, mouse ear cress, and blind Mexican cavefish. Hsp90 is a hub of hubs that interacts with many so-called 'client proteins,' which affect virtually every aspect of cell signaling and physiology. As Hsp90 facilitates client folding and stability, it can epistatically suppress or enable the expression of genetic variants in its clients and other proteins that acquire client status through mutation. Hsp90's vast interaction network explains the breadth of its phenotypic reach, including Hsp90-dependent de novo mutations and epigenetic effects on gene regulation. Intrinsic links between environmental stress and Hsp90 function thus endow living systems with phenotypic plasticity in fluctuating environments. As environmental perturbations alter Hsp90 function, they also alter Hsp90's interaction with its client proteins, thereby re-wiring networks that determine the genotype-to-phenotype map. Ensuing de-canalization of phenotype creates phenotypic diversity that is not simply stochastic, but often has an underlying genetic basis. Thus, extreme phenotypes can be selected, and assimilated so that they no longer require environmental stress to manifest. In addition to acting on standing genetic variation, Hsp90 perturbation has also been linked to increased frequency of de novo variation and several epigenetic phenomena, all with the potential to generate heritable phenotypic change. Here, we aim to clarify and discuss the multiple means by which Hsp90 can affect phenotype and possibly evolutionary change, and identify their underlying common feature: at its core, Hsp90 interacts epistatically through its chaperone function with many other genes and their gene products. Its influence on phenotypic diversification is thus not magic but rather a fundamental property of genetics.
Collapse
Affiliation(s)
- Rebecca A Zabinsky
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA, United States
| | | | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA, United States; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
43
|
Webster M. Morphological homeostasis in the fossil record. Semin Cell Dev Biol 2018; 88:91-104. [PMID: 29787861 DOI: 10.1016/j.semcdb.2018.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/31/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022]
Abstract
Morphological homeostasis limits the extent to which genetic and/or environmental variation is translated into phenotypic variation, providing generation-to-generation fitness advantage under a stabilizing selection regime. Depending on its lability, morphological homeostasis might also have a longer-term impact on evolution by restricting the variation-and thus the response to directional selection-of a trait. The fossil record offers an inviting opportunity to investigate whether and how morphological homeostasis constrained trait evolution in lineages or clades on long timescales (thousands to millions of years) that are not accessible to neontological studies. Fossils can also reveal insight into the nature of primitive developmental systems that might not be predictable from the study of modern organisms. The ability to study morphological homeostasis in fossils is strongly limited by taphonomic processes that can destroy, blur, or distort the original biological signal: genetic data are unavailable; phenotypic data can be modified by tectonic or compaction-related deformation; time-averaging limits temporal resolution; and environmental variation is hard to study and impossible to control. As a result of these processes, neither allelic sensitivity (and thus genetic canalization) nor macroenvironmental sensitivity (and thus environmental canalization) can be unambiguously assessed in the fossil record. However, homeorhesis-robustness against microenvironmental variation (developmental noise)-can be assessed in ancient developmental systems by measuring the level of fluctuating asymmetry (FA) in a nominally symmetric trait. This requires the analysis of multiple, minimally time-averaged samples of exquisite preservational quality. Studies of FA in fossils stand to make valuable contributions to our understanding of the deep-time significance of homeorhesis. Few empirical studies have been conducted to date, and future paleontological research focusing on how homeorhesis relates to evolutionary rate (including stasis), species survivorship, and purported macroevolutionary trends in evolvability would reap high reward.
Collapse
Affiliation(s)
- Mark Webster
- Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL, 60637, USA.
| |
Collapse
|
44
|
Takahashi KH. Multiple modes of canalization: Links between genetic, environmental canalizations and developmental stability, and their trait-specificity. Semin Cell Dev Biol 2018; 88:14-20. [PMID: 29787862 DOI: 10.1016/j.semcdb.2018.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/14/2018] [Accepted: 05/15/2018] [Indexed: 10/16/2022]
Abstract
The robustness of biological systems against mutational and environmental perturbations is termed canalization. Because reducing phenotypic variability under environmental and genetic perturbations can be adaptive and facilitated by natural selection, it has been suggested that once canalization mechanisms have evolved to buffer the effects of environmental perturbations, they may act to buffer any and all sources of variation. Although whether canalization mechanisms are general or specific to the types of perturbation or phenotypic traits that they buffer is often addressed, the links between different canalization mechanisms remain unclear. In this review, three major sources of phenotypic variation, associated canalization concepts and indicators of the degree of canalization are first outlined. Then, the molecular bases of canalization mechanisms based on recent empirical studies are overviewed. Finally, the links between the underlying processes of different canalization mechanisms are explored.
Collapse
Affiliation(s)
- Kazuo H Takahashi
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-si, Okayama-ken, 700-8530, Japan.
| |
Collapse
|
45
|
Gene-by-environment interactions in urban populations modulate risk phenotypes. Nat Commun 2018; 9:827. [PMID: 29511166 PMCID: PMC5840419 DOI: 10.1038/s41467-018-03202-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/26/2018] [Indexed: 01/21/2023] Open
Abstract
Uncovering the interaction between genomes and the environment is a principal challenge of modern genomics and preventive medicine. While theoretical models are well defined, little is known of the G × E interactions in humans. We used an integrative approach to comprehensively assess the interactions between 1.6 million data points, encompassing a range of environmental exposures, health, and gene expression levels, coupled with whole-genome genetic variation. From ∼1000 individuals of a founder population in Quebec, we reveal a substantial impact of the environment on the transcriptome and clinical endophenotypes, overpowering that of genetic ancestry. Air pollution impacts gene expression and pathways affecting cardio-metabolic and respiratory traits, when controlling for genetic ancestry. Finally, we capture four expression quantitative trait loci that interact with the environment (air pollution). Our findings demonstrate how the local environment directly affects disease risk phenotypes and that genetic variation, including less common variants, can modulate individual’s response to environmental challenges. Individuals with different genotypes may respond differently to environmental variation. Here, Favé et al. find substantial impacts of different environment exposures on the transcriptome and clinical endophenotypes when controlling for genetic ancestry by analyzing data from ∼1000 individuals from a founder population in Quebec.
Collapse
|
46
|
Villamil CI. Phenotypic integration of the cervical vertebrae in the Hominoidea (Primates). Evolution 2018; 72:490-517. [DOI: 10.1111/evo.13433] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Catalina I. Villamil
- Department of Anthropology; Dickinson College; P.O. Box 1773 Carlisle Pennsylvania 17013
- Center for the Study of Human Origins, Department of Anthropology; New York University; 25 Waverly Place New York New York 10003
- New York Consortium in Evolutionary Primatology; New York New York 10024
| |
Collapse
|
47
|
Yang E, Wang G, Yang J, Zhou B, Tian Y, Cai JJ. Epistasis and destabilizing mutations shape gene expression variability in humans via distinct modes of action. Hum Mol Genet 2018; 25:4911-4919. [PMID: 28171656 DOI: 10.1093/hmg/ddw314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/19/2016] [Accepted: 09/12/2016] [Indexed: 11/14/2022] Open
Abstract
Increasing evidence shows that phenotypic variance is genetically determined, but the underlying mechanisms of genetic control over the variance remain obscure. Here, we conducted variance-association mapping analyses to identify expression variability QTLs (evQTLs), i.e. genomic loci associated with gene expression variance, in humans. We discovered that common genetic variants may contribute to increasing gene expression variance via two distinct modes of action—epistasis and destabilization. Specifically, epistasis explains a quarter of the identified evQTLs, of which the formation is attributed to the presence of ‘third-party’ eQTLs that influence the gene expression mean in a fraction, rather than the entire set, of sampled individuals. On the other hand, the destabilization model explains the other three-quarters of evQTLs, caused by mutations that disrupt the stability of the transcription process of genes. To show the destabilizing effect, we measured discordant gene expression between monozygotic twins, and estimated the stability of gene expression in single samples using repetitive qRT-PCR assays. The mutations that cause destabilizing evQTLs were found to be associated with more pronounced expression discordance between twin pairs and less stable gene expression in single samples. Together, our results suggest that common genetic variants work either interactively or independently to shape the variability of gene expression in humans. Our findings contribute to the understanding of the mechanisms of genetic control over phenotypic variance and may have implications for the development of variance-centred analytic methods for quantitative trait mapping.
Collapse
Affiliation(s)
- Ence Yang
- Department of Veterinary Integrative Biosciences.,Institute for Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Gang Wang
- Department of Veterinary Integrative Biosciences
| | - Jizhou Yang
- Department of Veterinary Integrative Biosciences
| | - Beiyan Zhou
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA.,Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - James J Cai
- Department of Veterinary Integrative Biosciences.,Interdisciplinary Program of Genetics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
48
|
Gibbin EM, Massamba N'Siala G, Chakravarti LJ, Jarrold MD, Calosi P. The evolution of phenotypic plasticity under global change. Sci Rep 2017; 7:17253. [PMID: 29222433 PMCID: PMC5722875 DOI: 10.1038/s41598-017-17554-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
Marine ecosystems are currently in a state of flux, with ocean warming and acidification occurring at unprecedented rates. Phenotypic plasticity underpins acclimatory responses by shifting the mean phenotype in a population, which may buffer the negative effects of global change. However, little is known about how phenotypic plasticity evolves across multiple generations. We tested this by reciprocally-transplanting the polychaete Ophryotrocha labronica between control and global change scenarios (ocean warming and acidification in isolation and combined) over five generations. By comparing the reaction norms of four life-history traits across generations, we show that juvenile developmental rate in the combined scenario was the only trait that changed its plastic response across generations when transplanted back to control conditions, and that adaptive plasticity was conserved in most traits, despite significant levels of selection and strong declines in individual fitness in the multi-generational exposure. We suggest the change in level of plasticity in the combined scenario is caused by differential allocation of energy between the mean and the plasticity of the trait along the multigenerational exposure. The ability to maintain within-generational levels of plasticity under global change scenarios has important eco-evolutionary and conservation implications, which are examined under the framework of assisted evolution programs.
Collapse
Affiliation(s)
- Emma M Gibbin
- Département de Biologie Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada.
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Gloria Massamba N'Siala
- Département de Biologie Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE- CNRS), Montpellier, Cedex 5, UMR 5175, France
| | - Leela J Chakravarti
- Département de Biologie Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
- College of Science and Engineering, James Cook University, Townsville, 4811, Queensland, Australia
| | - Michael D Jarrold
- Département de Biologie Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
- College of Science and Engineering, James Cook University, Townsville, 4811, Queensland, Australia
| | - Piero Calosi
- Département de Biologie Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
| |
Collapse
|
49
|
Encinas JM, Fitzsimons CP. Gene regulation in adult neural stem cells. Current challenges and possible applications. Adv Drug Deliv Rev 2017; 120:118-132. [PMID: 28751200 DOI: 10.1016/j.addr.2017.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Adult neural stem and progenitor cells (NSPCs) offer a unique opportunity for neural regeneration and niche modification in physiopathological conditions, harnessing the capability to modify from neuronal circuits to glial scar. Findings exposing the vast plasticity and potential of NSPCs have accumulated over the past years and we currently know that adult NSPCs can naturally give rise not only to neurons but also to astrocytes and reactive astrocytes, and eventually to oligodendrocytes through genetic manipulation. We can consider NSPCs as endogenous flexible tools to fight against neurodegenerative and neurological disorders and aging. In addition, NSPCs can be considered as active agents contributing to chronic brain alterations and as relevant cell populations to be preserved, so that their main function, neurogenesis, is not lost in damage or disease. Altogether we believe that learning to manipulate NSPC is essential to prevent, ameliorate or restore some of the cognitive deficits associated with brain disease and injury, and therefore should be considered as target for future therapeutic strategies. The first step to accomplish this goal is to target them specifically, by unveiling and understanding their unique markers and signaling pathways.
Collapse
Affiliation(s)
- Juan Manuel Encinas
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 205, 48170 Zamudio, Spain; Ikerbasque, The Basque Science Foundation, María Díaz de Haro 3, 6(th) Floor, 48013 Bilbao, Spain; University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| | - Carlos P Fitzsimons
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Stochastic noncooperative and cooperative evolutionary game strategies of a population of biological networks under natural selection. Biosystems 2017; 162:90-118. [PMID: 28882507 DOI: 10.1016/j.biosystems.2017.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/04/2017] [Indexed: 11/20/2022]
Abstract
We review current static and dynamic evolutionary game strategies of biological networks and discuss the lack of random genetic variations and stochastic environmental disturbances in these models. To include these factors, a population of evolving biological networks is modeled as a nonlinear stochastic biological system with Poisson-driven genetic variations and random environmental fluctuations (stimuli). To gain insight into the evolutionary game theory of stochastic biological networks under natural selection, the phenotypic robustness and network evolvability of noncooperative and cooperative evolutionary game strategies are discussed from a stochastic Nash game perspective. The noncooperative strategy can be transformed into an equivalent multi-objective optimization problem and is shown to display significantly improved network robustness to tolerate genetic variations and buffer environmental disturbances, maintaining phenotypic traits for longer than the cooperative strategy. However, the noncooperative case requires greater effort and more compromises between partly conflicting players. Global linearization is used to simplify the problem of solving nonlinear stochastic evolutionary games. Finally, a simple stochastic evolutionary model of a metabolic pathway is simulated to illustrate the procedure of solving for two evolutionary game strategies and to confirm and compare their respective characteristics in the evolutionary process.
Collapse
|