1
|
Gasparini S, Almeida‐Pereira G, Munuzuri ASP, Resch JM, Geerling JC. Molecular Ontology of the Nucleus of Solitary Tract. J Comp Neurol 2024; 532:e70004. [PMID: 39629676 PMCID: PMC11615840 DOI: 10.1002/cne.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/03/2024] [Accepted: 11/15/2024] [Indexed: 12/08/2024]
Abstract
The nucleus of the solitary tract (NTS) receives visceral information and regulates appetitive, digestive, and cardiorespiratory systems. Within the NTS, diverse processes operate in parallel to sustain life, but our understanding of their cellular composition is incomplete. Here, we integrate histologic and transcriptomic analysis to identify and compare molecular features that distinguish neurons in this brain region. Most glutamatergic neurons in the NTS and area postrema co-express the transcription factors Lmx1b and Phox2b, except for a ventral band of neurons in the far-caudal NTS, which include the Gcg-expressing neurons that produce glucagon-like peptide 1 (GLP-1). GABAergic interneurons intermingle through the Lmx1b+Phox2b macropopulation, and dense clusters of GABAergic neurons surround the NTS. The Lmx1b+Phox2b macropopulation includes subpopulations with distinct distributions expressing Grp, Hsd11b2, Npff, Pdyn, Pou3f1, Sctr, Th, and other markers. These findings highlight Lmx1b-Phox2b co-expression as a common feature of glutamatergic neurons in the NTS and improve our understanding of the organization and distribution of neurons in this critical brain region.
Collapse
Affiliation(s)
| | | | | | - Jon M. Resch
- Department of Neuroscience and PharmacologyUniversity of IowaIowa CityIowaUSA
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIowaUSA
| | - Joel C. Geerling
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
2
|
Kikuchi E, Inui T, Su S, Sato Y, Funahashi M. Chemogenetic inhibition of the bed nucleus of the stria terminalis suppresses the intake of a preferable and learned aversive sweet taste solution in male mice. Behav Brain Res 2023; 439:114253. [PMID: 36509179 DOI: 10.1016/j.bbr.2022.114253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Conditioned taste aversion (CTA) is established by pairing a taste solution as a conditioned stimulus (CS) with visceral malaise as an unconditioned stimulus (US). CTA decreases the taste palatability of a CS. The bed nucleus of the stria terminalis (BNST) receives taste inputs from the brainstem. However, the involvement of the BNST in CTA remains unclear. Thus, this study examined the effects of chemogenetic inhibition of the BNST neurons on CS intake after CTA acquisition. An adeno-associated virus was microinjected into the BNST of male C57/BL6 mice to induce the inhibitory designer receptor hM4Di. The mice received a pairing of 0.2% saccharin solution (CS) with 0.3 M lithium chloride (2% BW, intraperitoneal). After conditioning, the administration of clozapine-N-oxide (CNO, 1 mg/kg) significantly enhanced the suppression of CS intake on the retrieval of CTA compared with its intake following saline administration (p < 0.01). We further assessed the effect of BNST neuron inhibition on the intake of water and taste solutions (saccharin, sucralose, sodium chloride, monosodium glutamate, quinine hydrochloride, and citric acid) using naïve (not learned CTA) mice. CNO administration significantly decreased the intake of saccharin and sucralose (p < 0.05). Our results indicate that BNST neurons mediate sweet taste and regulate sweet intake, regardless of whether sweets should be ingested or rejected. BNST neurons may be inhibited in the retrieval of CTA, thereby suppressing CS intake.
Collapse
Affiliation(s)
- Emi Kikuchi
- Department of Oral Physiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan; Department of Orthodontics, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tadashi Inui
- Department of Oral Physiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Shaoyi Su
- Department of Oral Physiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshiaki Sato
- Department of Orthodontics, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Makoto Funahashi
- Department of Oral Physiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
3
|
Wiaderkiewicz J, Reilly S. Expression of c-Fos following voluntary ingestion of a novel or familiar taste in rats. Brain Res 2023; 1799:148177. [PMID: 36503889 PMCID: PMC9795852 DOI: 10.1016/j.brainres.2022.148177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 11/28/2022]
Abstract
Taste neophobia, the rejection of novel tastes or foods, involves an interplay of various brain regions encompassing areas within the central gustatory system, as well as nuclei serving other functions. Previous findings, utilising c-Fos imaging, identified several brain regions which displayed higher activity after ingestion of a novel taste as compared to a familiar taste. The present study extends this analysis to include additional regions suspected of contributing to the neurocircuitry involved in evoking taste neophobia. Our data show increased c-Fos expression in the basolateral amygdala, central nucleus of the amygdala, gustatory portion of the thalamus, gustatory portion of the insular cortex and the medial and lateral regions of the parabrachial nucleus. These results confirm the contribution of areas previously identified as active during ingestion of novel tastes and expose additional areas that express elevated levels of c-Fos under these conditions, thus adding to the neural network involved in the detection and initial processing of taste novelty.
Collapse
Affiliation(s)
- Jan Wiaderkiewicz
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, United States.
| | - Steve Reilly
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, United States.
| |
Collapse
|
4
|
The Regulation Effect of α7nAChRs and M1AChRs on Inflammation and Immunity in Sepsis. Mediators Inflamm 2021; 2021:9059601. [PMID: 34776789 PMCID: PMC8580654 DOI: 10.1155/2021/9059601] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
The inflammatory storm in the early stage and immunosuppression in the late stage are responsible for the high mortality rates and multiple organ dysfunction in sepsis. In recent years, studies have found that the body's cholinergic system can spontaneously and dynamically regulate inflammation and immunity in sepsis according to the needs of the body. Firstly, the vagus nerve senses and regulates local or systemic inflammation by means of the Cholinergic Anti-inflammatory Pathway (CAP) and activation of α7-nicotinic acetylcholine receptors (α7nAChRs); thus, α7nAChRs play important roles for the central nervous system (CNS) to modulate peripheral inflammation; secondly, the activation of muscarinic acetylcholine receptors 1 (M1AChRs) in the forebrain can affect the neurons of the Medullary Visceral Zone (MVZ), the core of CAP, to regulate systemic inflammation and immunity. Based on the critical role of these two cholinergic receptor systems in sepsis, it is necessary to collect and analyze the related findings in recent years to provide ideas for further research studies and clinical applications. By consulting the related literature, we draw some conclusions: MVZ is the primary center for the nervous system to regulate inflammation and immunity. It coordinates not only the sympathetic system and vagus system but also the autonomic nervous system and neuroendocrine system to regulate inflammation and immunity; α7nAChRs are widely expressed in immune cells, neurons, and muscle cells; the activation of α7nAChRs can suppress local and systemic inflammation; the expression of α7nAChRs represents the acute or chronic inflammatory state to a certain extent; M1AChRs are mainly expressed in the advanced centers of the brain and regulate systemic inflammation; neuroinflammation of the MVZ, hypothalamus, and forebrain induced by sepsis not only leads to their dysfunctions but also underlies the regulatory dysfunction on systemic inflammation and immunity. Correcting the neuroinflammation of these regulatory centers and adjusting the function of α7nAChRs and M1AChRs may be two key strategies for the treatment of sepsis in the future.
Collapse
|
5
|
Jin H, Fishman ZH, Ye M, Wang L, Zuker CS. Top-Down Control of Sweet and Bitter Taste in the Mammalian Brain. Cell 2021; 184:257-271.e16. [PMID: 33417862 DOI: 10.1016/j.cell.2020.12.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
Hardwired circuits encoding innate responses have emerged as an essential feature of the mammalian brain. Sweet and bitter evoke opposing predetermined behaviors. Sweet drives appetitive responses and consumption of energy-rich food sources, whereas bitter prevents ingestion of toxic chemicals. Here we identified and characterized the neurons in the brainstem that transmit sweet and bitter signals from the tongue to the cortex. Next we examined how the brain modulates this hardwired circuit to control taste behaviors. We dissect the basis for bitter-evoked suppression of sweet taste and show that the taste cortex and amygdala exert strong positive and negative feedback onto incoming bitter and sweet signals in the brainstem. Finally we demonstrate that blocking the feedback markedly alters responses to ethologically relevant taste stimuli. These results illustrate how hardwired circuits can be finely regulated by top-down control and reveal the neural basis of an indispensable behavioral response for all animals.
Collapse
Affiliation(s)
- Hao Jin
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics and Department of Neuroscience, Columbia College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Z Hershel Fishman
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics and Department of Neuroscience, Columbia College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mingyu Ye
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics and Department of Neuroscience, Columbia College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Li Wang
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics and Department of Neuroscience, Columbia College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Charles S Zuker
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics and Department of Neuroscience, Columbia College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
6
|
Gasparini S, Howland JM, Thatcher AJ, Geerling JC. Central afferents to the nucleus of the solitary tract in rats and mice. J Comp Neurol 2020; 528:2708-2728. [PMID: 32307700 DOI: 10.1002/cne.24927] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022]
Abstract
The nucleus of the solitary tract (NTS) regulates life-sustaining functions ranging from appetite and digestion to heart rate and breathing. It is also the brain's primary sensory nucleus for visceral sensations relevant to symptoms in medical and psychiatric disorders. To better understand which neurons may exert top-down control over the NTS, here we provide a brain-wide map of all neurons that project axons directly to the caudal, viscerosensory NTS, focusing on a medial subregion with aldosterone-sensitive HSD2 neurons. Injecting an axonal tracer (cholera toxin b) into the NTS produces a similar pattern of retrograde labeling in rats and mice. The paraventricular hypothalamic nucleus (PVH), lateral hypothalamic area, and central nucleus of the amygdala (CeA) contain the densest concentrations of NTS-projecting neurons. PVH afferents are glutamatergic (express Slc17a6/Vglut2) and are distinct from neuroendocrine PVH neurons. CeA afferents are GABAergic (express Slc32a1/Vgat) and are distributed largely in the medial CeA subdivision. Other retrogradely labeled neurons are located in a variety of brain regions, including the cerebral cortex (insular and infralimbic areas), bed nucleus of the stria terminalis, periaqueductal gray, Barrington's nucleus, Kölliker-Fuse nucleus, hindbrain reticular formation, and rostral NTS. Similar patterns of retrograde labeling result from tracer injections into different NTS subdivisions, with dual retrograde tracing revealing that many afferent neurons project axon collaterals to both the lateral and medial NTS subdivisions. This information provides a roadmap for studying descending axonal projections that may influence visceromotor systems and visceral "mind-body" symptoms.
Collapse
Affiliation(s)
- Silvia Gasparini
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, Iowa city, Iowa, USA
| | - Jacob M Howland
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, Iowa city, Iowa, USA
| | - Andrew J Thatcher
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, Iowa city, Iowa, USA
| | - Joel C Geerling
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, Iowa city, Iowa, USA
| |
Collapse
|
7
|
Abstract
The gustatory system contributes to the flavor of foods and beverages and communicates information about nutrients and poisons. This system has evolved to detect and ultimately respond to hydrophilic molecules dissolved in saliva. Taste receptor cells, located in taste buds and distributed throughout the oral cavity, activate nerve afferents that project to the brainstem. From here, information propagates to thalamic, subcortical, and cortical areas, where it is integrated with information from other sensory systems and with homeostatic, visceral, and affective processes. There is considerable divergence, as well as convergence, of information between multiple regions of the central nervous system that interact with the taste pathways, with reciprocal connections occurring between the involved regions. These widespread interactions among multiple systems are crucial for the perception of food. For example, memory, hunger, satiety, and visceral changes can directly affect and can be affected by the experience of tasting. In this chapter, we review the literature on the central processing of taste with a specific focus on the anatomic and physiologic responses of single neurons. Emphasis is placed on how information is distributed along multiple systems with the goal of better understanding how the rich and complex sensations associated with flavor emerge from large-scale, systems-wide, interactions.
Collapse
|
8
|
Travers S, Breza J, Harley J, Zhu J, Travers J. Neurons with diverse phenotypes project from the caudal to the rostral nucleus of the solitary tract. J Comp Neurol 2018; 526:2319-2338. [PMID: 30325514 PMCID: PMC6193849 DOI: 10.1002/cne.24501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 12/31/2022]
Abstract
The nucleus of the solitary tract is a potential site for taste-visceral interactions. Connections from the caudal, visceral area of the nucleus (cNST) to the rostral, gustatory zone (rNST) have been described, but the phenotype of cells giving rise to the projection(s) and their distribution among rNST subdivisions are unknown. To determine these characteristics of the intrasolitary pathway, we injected pan-neuronal and floxed AAV viruses into the cNST of mice expressing cre in glutamatergic, GABAergic, or catecholaminergic neurons. Particular attention was paid to the terminal field distribution in rNST subdivisions by simultaneously visualizing P2X2 localized to gustatory afferent terminals. All three phenotypically identified pathways terminated in rNST, with the density greatest for glutamatergic and sparsest for catecholaminergic projections, observations supported by retrograde tracing. Interestingly, cNST neurons had more prominent projections to rNST regions medial and ventral to P2X2 staining, i.e., the medial and ventral subdivisions. In addition, GABAergic neurons projected robustly to the lateral subdivision and adjacent parts of the reticular formation and spinal trigeminal nucleus. Although cNST neurons also projected to the P2X2-rich central subdivision, such projections were sparser. These findings suggest that cNST visceral signals exert stronger excitatory and inhibitory influences on local autonomic and reflex pathways associated with the medial and ventral subdivisions compared to weaker modulation of ascending pathways arising from the central subdivision and ultimately destined for the forebrain.
Collapse
Affiliation(s)
- Susan Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Joseph Breza
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Jacob Harley
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - JiuLin Zhu
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Joseph Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
9
|
Suzuki T, Yoshihara M, Sakai S, Tsuji K, Nagoya K, Magara J, Tsujimura T, Inoue M. Effect of peripherally and cortically evoked swallows on jaw reflex responses in anesthetized rabbits. Brain Res 2018; 1694:19-28. [PMID: 29730058 DOI: 10.1016/j.brainres.2018.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/03/2018] [Accepted: 05/01/2018] [Indexed: 01/02/2023]
Abstract
This study aimed to investigate whether the jaw-opening (JOR) and jaw-closing reflexes (JCR) are modulated during not only peripherally, but also centrally, evoked swallowing. Experiments were carried out on 24 adult male Japanese white rabbits. JORs were evoked by trigeminal stimulation at 1 Hz for 30 s. In the middle 10 s, either the superior laryngeal nerve (SLN) or cortical swallowing area (Cx) was simultaneously stimulated to evoke swallowing. The peak-to-peak JOR amplitude was reduced during the middle and late 10-s periods (i.e., during and after SLN or Cx stimulation), and the reduction was dependent on the current intensity of SLN/Cx stimulation: greater SLN/Cx stimulus current resulted in greater JOR inhibition. The reduction rate was significantly greater during Cx stimulation than during SLN stimulation. The amplitude returned to baseline 2 min after 10-s SLN/Cx stimulation. The effect of co-stimulation of SLN and Cx was significantly greater than that of SLN stimulation alone. There were no significant differences in any parameters of the JCR between conditions. These results clearly showed that JOR responses were significantly suppressed, not only during peripherally evoked swallowing but also during centrally evoked swallowing, and that the inhibitory effect is likely to be larger during centrally compared with peripherally evoked swallowing. The functional implications of these results are discussed.
Collapse
Affiliation(s)
- Taku Suzuki
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8514, Japan
| | - Midori Yoshihara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8514, Japan
| | - Shogo Sakai
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8514, Japan
| | - Kojun Tsuji
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8514, Japan
| | - Kouta Nagoya
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8514, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8514, Japan
| | - Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8514, Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8514, Japan.
| |
Collapse
|
10
|
Tokita K, Boughter JD. Topographic organizations of taste-responsive neurons in the parabrachial nucleus of C57BL/6J mice: An electrophysiological mapping study. Neuroscience 2015; 316:151-66. [PMID: 26708748 DOI: 10.1016/j.neuroscience.2015.12.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 11/26/2022]
Abstract
The activities of 178 taste-responsive neurons were recorded extracellularly from the parabrachial nucleus (PbN) in the anesthetized C57BL/6J mouse. Taste stimuli included those representative of five basic taste qualities, sweet, salty, sour, bitter and umami. Umami synergism was represented by all sucrose-best and sweet-sensitive sodium chloride-best neurons. Mediolaterally the PbN was divided into medial, brachium conjunctivum (BC) and lateral subdivisions while rostrocaudally the PbN was divided into rostral and caudal subdivisions for mapping and reconstruction of recording sites. Neurons in the medial and BC subdivisions had a significantly greater magnitude of response to sucrose and to the mixture of monopotassium glutamate and inosine monophosphate than those found in the lateral subdivision. In contrast, neurons in the lateral subdivision possessed a more robust response to quinine hydrochloride. Rostrocaudally no difference was found in the mean magnitude of response. Analysis on the distribution pattern of neuron types classified by their best stimulus revealed that the proportion of neuron types in the medial vs. lateral and BC vs. lateral subdivisions was significantly different, with a greater amount of sucrose-best neurons found medially and within the BC, and a greater amount of sodium chloride-, citric acid- and quinine hydrochloride-best neurons found laterally. There was no significant difference in the neuron-type distribution between rostral and caudal PbN. We also assessed breadth of tuning in these neurons by calculating entropy (H) and noise-to-signal (N/S) ratio. The mean N/S ratio of all neurons (0.43) was significantly lower than that of H value (0.64). Neurons in the caudal PbN had a significantly higher H value than in the rostral PbN. In contrast, mean N/S ratios were not different both mediolaterally and rostrocaudally. These results suggest that although there is overlap in taste quality representation in the mouse PbN, taste-responsive neurons still possessed a topographic organization.
Collapse
Affiliation(s)
- K Tokita
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 515, Memphis, TN 38163, USA.
| | - J D Boughter
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 515, Memphis, TN 38163, USA
| |
Collapse
|
11
|
Li CS, Lu DP, Cho YK. Descending projections from the nucleus accumbens shell excite activity of taste-responsive neurons in the nucleus of the solitary tract in the hamster. J Neurophysiol 2015; 113:3778-86. [PMID: 25744880 DOI: 10.1152/jn.00362.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 03/04/2015] [Indexed: 11/22/2022] Open
Abstract
The nucleus of the solitary tract (NST) and the parabrachial nuclei (PbN) are the first and second relays in the rodent central taste pathway. A series of electrophysiological experiments revealed that spontaneous and taste-evoked activities of brain stem gustatory neurons are altered by descending input from multiple forebrain nuclei in the central taste pathway. The nucleus accumbens shell (NAcSh) is a key neural substrate of reward circuitry, but it has not been verified as a classical gustatory nucleus. A recent in vivo electrophysiological study demonstrated that the NAcSh modulates the spontaneous and gustatory activities of hamster pontine taste neurons. In the present study, we investigated whether activation of the NAcSh modulates gustatory responses of the NST neurons. Extracellular single-unit activity was recorded from medullary neurons in urethane-anesthetized hamsters. After taste response was confirmed by delivery of sucrose, NaCl, citric acid, and quinine hydrochloride to the anterior tongue, the NAcSh was stimulated bilaterally with concentric bipolar stimulating electrodes. Stimulation of the ipsilateral and contralateral NAcSh induced firings from 54 and 37 of 90 medullary taste neurons, respectively. Thirty cells were affected bilaterally. No inhibitory responses or antidromic invasion was observed after NAcSh activation. In the subset of taste cells tested, high-frequency electrical stimulation of the NAcSh during taste delivery enhanced taste-evoked neuronal firing. These results demonstrate that two-thirds of the medullary gustatory neurons are under excitatory descending influence from the NAcSh, which is a strong indication of communication between the gustatory pathway and the mesolimbic reward pathway.
Collapse
Affiliation(s)
- Cheng-Shu Li
- Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale, Illinois; Jiamusi Stomatological Hospital, School of Stomatology, Jiamusi University, Heilongjiang, People's Republic of China
| | - Da-Peng Lu
- Laboratory of Oral Cell Biology, Department of Emergency, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Beijing, People's Republic of China; and
| | - Young K Cho
- Department of Physiology and Neuroscience, College of Dentistry, and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| |
Collapse
|
12
|
Kim Y, Cho YK. Comparison of sucrose and ethanol-induced c-Fos-like immunoreactivity in the parabrachial nuclei and accumbens nucleus. J Biomed Res 2015. [DOI: 10.12729/jbr.2015.16.1.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Ganchrow D, Ganchrow JR, Cicchini V, Bartel DL, Kaufman D, Girard D, Whitehead MC. Nucleus of the solitary tract in the C57BL/6J mouse: Subnuclear parcellation, chorda tympani nerve projections, and brainstem connections. J Comp Neurol 2014; 522:1565-96. [PMID: 24151133 PMCID: PMC4090073 DOI: 10.1002/cne.23484] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/08/2013] [Indexed: 01/28/2023]
Abstract
The nucleus of the solitary tract (NST) processes gustatory and related somatosensory information rostrally and general viscerosensory information caudally. To compare its connections with those of other rodents, this study in the C57BL/6J mouse provides a subnuclear cytoarchitectonic parcellation (Nissl stain) of the NST into rostral, intermediate, and caudal divisions. Subnuclei are further characterized by NADPH staining and P2X2 immunoreactivity (IR). Cholera toxin subunit B (CTb) labeling revealed those NST subnuclei receiving chorda tympani nerve (CT) afferents, those connecting with the parabrachial nucleus (PBN) and reticular formation (RF), and those interconnecting NST subnuclei. CT terminals are densest in the rostral central (RC) and medial (M) subnuclei; less dense in the rostral lateral (RL) subnucleus; and sparse in the ventral (V), ventral lateral (VL), and central lateral (CL) subnuclei. CTb injection into the PBN retrogradely labels cells in the aforementioned subnuclei; RC and M providing the largest source of PBN projection neurons. Pontine efferent axons terminate mainly in V and rostral medial (RM) subnuclei. CTb injection into the medullary RF labels cells and axonal endings predominantly in V at rostral and intermediate NST levels. Small CTb injections within the NST label extensive projections from the rostral division to caudal subnuclei. Projections from the caudal division primarily interconnect subnuclei confined to the caudal division of the NST; they also connect with the area postrema. P2X2-IR identifies probable vagal nerve terminals in the central (Ce) subnucleus in the intermediate/caudal NST. Ce also shows intense NADPH staining and does not project to the PBN. J. Comp. Neurol. 522:1565–1596, 2014.
Collapse
Affiliation(s)
- Donald Ganchrow
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Ramat Aviv, Tel-Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
14
|
Riley CA, King MS. Differential effects of electrical stimulation of the central amygdala and lateral hypothalamus on fos-immunoreactive neurons in the gustatory brainstem and taste reactivity behaviors in conscious rats. Chem Senses 2013; 38:705-17. [PMID: 23978688 PMCID: PMC3777562 DOI: 10.1093/chemse/bjt039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Projections from the central amygdala (CeA) and lateral hypothalamus (LH) modulate the activity of gustatory brainstem neurons, however, the role of these projections in gustatory behaviors is unclear. The goal of the current study was to determine the effects of electrical stimulation of the CeA or LH on unconditioned taste reactivity (TR) behaviors in response to intra-oral infusion of tastants. In conscious rats, electrical stimulation of the CeA or LH was delivered with and without simultaneous intra-oral infusion of taste solutions via an intra-oral cannula. Immunohistochemistry for the Fos protein was used to identify neurons in the gustatory brainstem activated by the electrical and/or intra-oral stimulation. In the absence of intra-oral infusion of a tastant, electrical stimulation of either the CeA or the LH increased the number of ingestive, but not aversive, TR behaviors performed. During intra-oral infusions of taste solutions, CeA stimulation tended to increase aversive behaviors whereas LH stimulation dramatically reduced the number of aversive responses to quinine hydrochloride (QHCl). These data indicate that projections from the CeA and LH alter TR behaviors. A few of the behavioral effects were accompanied by changes in the number of Fos-immunoreactive neurons in the gustatory brainstem, suggesting a possible anatomical substrate for these effects.
Collapse
Affiliation(s)
- Christopher A Riley
- Department of Biology Department, Unit 8264, Stetson University, 421 North Woodland Boulevard, DeLand, FL 32723, USA.
| | | |
Collapse
|
15
|
Wang Q, Li J, Yang X, Chen K, Sun B, Yan J. Inhibitory effect of activation of GABAA receptor in the central nucleus of amygdala on the sodium intake in the sodium-depleted rat. Neuroscience 2012; 223:277-84. [DOI: 10.1016/j.neuroscience.2012.07.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/04/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
|
16
|
Reis DG, Scopinho AA, Guimarães FS, Corrêa FMA, Resstel LBM. Behavioral and autonomic responses to acute restraint stress are segregated within the lateral septal area of rats. PLoS One 2011; 6:e23171. [PMID: 21858017 PMCID: PMC3156740 DOI: 10.1371/journal.pone.0023171] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/11/2011] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The Lateral Septal Area (LSA) is involved with autonomic and behavior responses associated to stress. In rats, acute restraint (RS) is an unavoidable stress situation that causes autonomic (body temperature, mean arterial pressure (MAP) and heart rate (HR) increases) and behavioral (increased anxiety-like behavior) changes in rats. The LSA is one of several brain regions that have been involved in stress responses. The aim of the present study was to investigate if the neurotransmission blockade in the LSA would interfere in the autonomic and behavioral changes induced by RS. METHODOLOGY/PRINCIPAL FINDINGS Male Wistar rats with bilateral cannulae aimed at the LSA, an intra-abdominal datalogger (for recording internal body temperature), and an implanted catheter into the femoral artery (for recording and cardiovascular parameters) were used. They received bilateral microinjections of the non-selective synapse blocker cobalt chloride (CoCl(2), 1 mM/ 100 nL) or vehicle 10 min before RS session. The tail temperature was measured by an infrared thermal imager during the session. Twenty-four h after the RS session the rats were tested in the elevated plus maze (EPM). CONCLUSIONS/SIGNIFICANCE Inhibition of LSA neurotransmission reduced the MAP and HR increases observed during RS. However, no changes were observed in the decrease in skin temperature and increase in internal body temperature observed during this period. Also, LSA inhibition did not change the anxiogenic effect induced by RS observed 24 h later in the EPM. The present results suggest that LSA neurotransmission is involved in the cardiovascular but not the temperature and behavioral changes induced by restraint stress.
Collapse
Affiliation(s)
- Daniel G. Reis
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - América A. Scopinho
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francisco S. Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando M. A. Corrêa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo B. M. Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
17
|
Nersesyan LB, Eganova VS, Pogosyan NL, Avetisyan IN. Comparative study of effect of cortical nucleus of amygdala and pyriform cortex on activity of bulbar respiratory neurons in cats. J EVOL BIOCHEM PHYS+ 2011. [DOI: 10.1134/s0022093011030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Amygdalar connections in the lesser hedgehog tenrec. Brain Struct Funct 2011; 217:141-64. [PMID: 21638204 DOI: 10.1007/s00429-011-0328-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/04/2011] [Indexed: 12/18/2022]
Abstract
The present study analyses the overall extrinsic connectivity of the non-olfactory amygdala (Ay) in the lesser hedgehog tenrec. The data were obtained from tracer injections into the lateral and intermediate portions of the Ay as well as several non-amygdalar brain regions. Both the solitary and the parabrachial nucleus receive descending projections from the central nucleus of the Ay, but only the parabrachial nucleus appears to project to the Ay. There is one prominent region in the ventromedial hypothalamus connected reciprocally with the medial and central Ay. Amygdalar afferents clearly arise from the dorsomedial thalamus, the subparafascicular nuclei and the medial geniculate complex (GM). Similar to other subprimate species, the latter projections originate in the dorsal and most caudal geniculate portions and terminate in the dorsolateral Ay. Unusual is the presence of amygdalo-projecting cells in the marginal geniculate zone and their virtual absence in the medial GM. As in other species, amygdalo-striatal projections mainly originate in the basolateral Ay and terminate predominantly in the ventral striatum. Given the poor differentiation of the tenrec's neocortex, there is a remarkable similarity with regard to the amygdalo-cortical connectivity between tenrec and rat, particularly as to prefrontal, limbic and somatosensorimotor areas as well as the rhinal cortex throughout its length. The tenrec's isocortex dorsomedial to the caudal rhinal cortex, on the other hand, may not be connected with the Ay. An absence of such connections is expected for primary auditory and visual fields, but it is unusual for their secondary fields.
Collapse
|
19
|
Kang Y, Lundy RF. Amygdalofugal influence on processing of taste information in the nucleus of the solitary tract of the rat. J Neurophysiol 2010; 104:726-41. [PMID: 20519577 DOI: 10.1152/jn.00341.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown that corticofugal input to the first central synapse of the ascending gustatory system, the nucleus of the solitary tract (NST), can alter the way taste information is processed. Activity in other forebrain structures, such as the central nucleus of the amygdala (CeA), similarly influence activation of NST taste cells, although the effects of amygdalofugal input on neural coding of taste information is not well understood. The present study examined responses of 110 NST neurons to 15 taste stimuli before, during, and after electrical stimulation of the CeA in rats. The taste stimuli consisted of different concentrations of NaCl (0.03, 0.1, 0.3 M), sucrose (0.1, 0.3, 1.0 M), citric acid (0.005, 0.01 M), quinine HCl (0.003, 0.03 M), and 0.03 M MSG, 0.1 M KCl, as well as 0.1 M NaCl, 0.01 M citric acid, and 0.03 M MSG mixed with 10 muM amiloride. In 66% of NST cells sampled (73/110) response rates to the majority of effective taste stimuli were either inhibited or augmented. Nevertheless, the magnitude of effect across stimuli was often differential, which provides a neurophysiological mechanism to alter neural coding. Subsequent analysis of across-unit patterns showed that amygdalofugal input plays a role in shaping spatial patterns of activation and could potentially influence the perceptual similarity and/or discrimination of gustatory stimuli by altering this feature of neural coding.
Collapse
Affiliation(s)
- Yi Kang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | |
Collapse
|
20
|
Reis DG, Scopinho AA, Guimaraes FS, Correa FM, Resstel LB. Involvement of the lateral septal area in the expression of fear conditioning to context. Learn Mem 2010; 17:134-8. [DOI: 10.1101/lm.1534710] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Felizardo R, Boucher Y, Braud A, Carstens E, Dauvergne C, Zerari-Mailly F. Trigeminal projections on gustatory neurons of the nucleus of the solitary tract: A double-label strategy using electrical stimulation of the chorda tympani and tracer injection in the lingual nerve. Brain Res 2009; 1288:60-8. [DOI: 10.1016/j.brainres.2009.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/05/2009] [Accepted: 07/01/2009] [Indexed: 11/17/2022]
|
22
|
Tokita K, Inoue T, Boughter JD. Afferent connections of the parabrachial nucleus in C57BL/6J mice. Neuroscience 2009; 161:475-88. [PMID: 19327389 PMCID: PMC2705209 DOI: 10.1016/j.neuroscience.2009.03.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 10/21/2022]
Abstract
Although the mouse is an experimental model with an increasing importance in various fields of neuroscience, the characteristics of its central gustatory pathways have not yet been well documented. Recent electrophysiological studies using the rat and hamster have revealed that taste processing in the brainstem gustatory relays is under the strong influence of inputs from forebrain gustatory structures. In the present study, we investigated the organization of afferent projections to the mouse parabrachial nucleus (PbN), which is located at a key site between the brainstem and gustatory, viscerosensory and autonomic centers in the forebrain. We made injections of the retrograde tracer fluorogold centered around the "waist" area of the PbN, whose neurons are known to be highly responsive to taste stimuli. Retrogradely labeled neurons were found in the infralimbic, dysgranular and agranular insular cortex as well as the claustrum; the bed nucleus of the stria terminalis and the substantia innominata; the central nucleus of the amygdala; the lateral and medial preoptic areas, the paraventricular, the dorsomedial, the ventromedial, the arcuate, and the lateral hypothalamic areas; the periaqueductal gray, the substantia nigra pars compacta, and the ventral tegmental area; the supratrigeminal nucleus, rostral and caudal nucleus of the solitary tract; the parvicellular intermediate and gigantocellular reticular nucleus; the caudal and interpolar divisions of the spinal trigeminal nucleus, dorsomedial spinal trigeminal nucleus, and the area postrema. Numbers of labeled neurons in the main components of the gustatory system including the insular cortex, bed nucleus of the stria terminalis, central nucleus of the amygdala, lateral hypothalamus, and rostral nucleus of the solitary tract were quantified. These results are basically consistent with those of the previous rat and hamster studies, but some species differences were found. Functional implications of these afferent inputs are discussed with an emphasis on their role in taste.
Collapse
Affiliation(s)
- K Tokita
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 515, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
23
|
Zaidi F, Todd K, Enquist L, Whitehead MC. Types of taste circuits synaptically linked to a few geniculate ganglion neurons. J Comp Neurol 2008; 511:753-72. [PMID: 18925565 PMCID: PMC2613300 DOI: 10.1002/cne.21869] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The present study evaluates the central circuits that are synaptically engaged by very small subsets of the total population of geniculate ganglion cells to test the hypothesis that taste ganglion cells are heterogeneous in terms of their central connections. We used transsynaptic anterograde pseudorabies virus labeling of fungiform taste papillae to infect single or small numbers of geniculate ganglion cells, together with the central neurons with which they connect, to define differential patterns of synaptically linked neurons in the taste pathway. Labeled brain cells were localized within known gustatory regions, including the rostral central subdivision (RC) of the nucleus of the solitary tract (NST), the principal site where geniculate axons synapse, and the site containing most of the cells that project to the parabrachial nucleus (PBN) of the pons. Cells were also located in the rostral lateral NST subdivision (RL), a site of trigeminal and sparse geniculate input, and the ventral NST (V) and medullary reticular formation (RF), a caudal brainstem pathway leading to reflexive oromotor functions. Comparisons among cases, each with a random, very small subset of labeled geniculate neurons, revealed "types" of central neural circuits consistent with a differential engagement of either the ascending or the local, intramedullary pathway by different classes of ganglion cells. We conclude that taste ganglion cells are heterogeneous in terms of their central connectivity, some engaging, predominantly, the ascending "lemniscal," taste pathway, a circuit associated with higher order discriminative and homeostatic functions, others engaging the "local," intramedullary "reflex" circuit that mediates ingestion and rejection oromotor behaviors.
Collapse
Affiliation(s)
- Faisal Zaidi
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093
- Department of Neurobiology, University of California, San Diego, La Jolla, California 92093
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Krista Todd
- Department of Biology, University of California, San Diego, La Jolla, California 92093
| | - Lynn Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Mark C. Whitehead
- Department of Surgery, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
24
|
Zhu M, Cho YK, Li CS. Activation of delta-opioid receptors reduces excitatory input to putative gustatory cells within the nucleus of the solitary tract. J Neurophysiol 2008; 101:258-68. [PMID: 19019978 DOI: 10.1152/jn.90648.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The rostral nucleus of the solitary tract (NST) is the first central relay in the gustatory pathway and plays a key role in processing and modulation of gustatory information. Here, we investigated the effects of opioid receptor agonists and antagonists on synaptic responses of the gustatory parabrachial nuclei (PbN)-projecting neurons in the rostral NST to electrical stimulation of the solitary tract (ST) using whole cell recordings in the hamster brain stem slices. ST-evoked excitatory postsynaptic currents (EPSCs) were significantly reduced by met-enkephalin (MetE) in a concentration-dependent fashion and this effect was eliminated by naltrexone hydrochloride, a nonselective opioid receptor antagonist. Bath application of naltrindole hydrochloride, a selective delta-opioid receptor antagonist, eliminated MetE-induced reduction of EPSCs, whereas CTOP, a selective mu-opioid receptor antagonist had no effect, indicating that delta-opioid receptors are involved in the reduction of ST-evoked EPSCs induced by MetE. SNC80, a selective delta-opioid receptor agonist, mimicked the effect of MetE. The SNC80-induced reduction of ST-evoked EPSCs was eliminated by 7-benzylidenenaltrexone, a selective delta1-opioid receptor antagonist but not by naltriben mesylate, a selective delta2-opioid receptor antagonist, indicating that delta1-opioid receptors mediate the reduction of ST-evoked EPSCs induced by SNC80. Single-cell reverse transcriptase-polymerase chain reaction analysis revealed the presence of delta1-opioid receptor mRNA in cells that responded to SNC80 with a reduction in ST-evoked EPSCs. Moreover, Western blot analysis demonstrated the presence of 40-kDa delta-opioid receptor proteins in the rostral NST tissue. These results suggest that postsynaptic delta1-opioid receptors are involved in opioid-induced reduction of ST-evoked EPSCs of PbN-projecting rostral NST cells.
Collapse
Affiliation(s)
- Mingyan Zhu
- Department of Anatomy, Southern Illinois University School of Medicine, Life Science III Room 2073, 1135 Lincoln Dr., Carbondale, IL 62901, USA
| | | | | |
Collapse
|
25
|
Abstract
The nucleus of the solitary tract (NST) and the parabrachial nuclei (PbN) are the first and second central relays for the taste pathway, respectively. Taste neurons in the NST project to the PbN, which further transmits taste information to the rostral taste centers. Nevertheless, details of the neural connections among the brain stem gustatory nuclei are obscure. Here, we investigated these relationships in the hamster brain stem. Three electrode assemblies were used to record the activity of taste neurons extracellularly and then to electrically stimulate these same areas in the order: left PbN, right PbN, and right NST. A fourth electrode, a glass micropipette, was used to record from gustatory cells in the left NST. Results showed extensive bilateral communication between brain stem nuclei at the same level: 1) 10% of 96 NST neurons projected to the contralateral NST and 58% received synaptic input from the contralateral NST; and 2) 12% of 43 PbN neurons projected to the contralateral PbN and 21% received synaptic input from the contralateral PbN. Results also showed extensive communication between levels: 1) as expected, the majority of 119 NST neurons, 82%, projected to the ipsilateral PbN, but 85% of the 20 NST neurons tested received synaptic input from the ipsilateral PbN, as did 59% of 22 NST neurons that did not project to the PbN; and 2) although few, 3%, of 119 NST cells projected to the contralateral PbN and 38% received synaptic input from the contralateral PbN. These results demonstrated that taste neurons in the NST not only project to, but also receive descending input from the bilateral PbN and that gustatory neurons in the NST and PbN also communicate with the corresponding nucleus on the contralateral side.
Collapse
Affiliation(s)
- Young K Cho
- Department of Physiology and Neuroscience, Kangnung National University College of Dentistry, Kangnung, Kangwon, South Korea
| | | |
Collapse
|
26
|
Cho YK, Mao L, Li CS. Modulation of solitary taste neurons by electrical stimulation of the ventroposteromedial nucleus of the thalamus in the hamster. Brain Res 2008; 1221:67-79. [PMID: 18565498 DOI: 10.1016/j.brainres.2008.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/21/2008] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
Abstract
Taste neurons in the nucleus of the solitary tract (NST) not only send axons to the parabrachial nuclei (PbN), but also receive descending projections from gustatory nuclei in the forebrain in rodents. The parvicellular portion of the ventroposteromedial nucleus of the thalamus (VPMpc) receives projections from the bilateral PbN and transmits taste information to the gustatory cortex. Here, we examined the influence of bilateral stimulation of the VPMpc on taste-responsive neurons in the NST. Extracellular single unit activity was recorded from the urethane-anesthetized hamster. Taste responses were confirmed by delivery of four basic tastants to the anterior tongue. After identifying a taste neuron in the NST, the VPMpc was stimulated bilaterally. Thirty seven out of 83 neurons were orthodromically activated following VPMpc stimulation: 30 were excited and seven were inhibited. Among these cells, seven were excited and one was inhibited bilaterally. In addition, four NST neurons were antidromically invaded from the ipsilateral VPMpc. The effect of VPMpc activation on taste-driven responses was tested on 8 of 30 cells that were excited, and all seven cells that were inhibited by the VPMpc stimulation. The VPMpc stimulation enhanced responses to the effective taste stimuli or suppressed the taste-evoked activities in all eight and seven cells tested, respectively, parallel to the type of the inputs which they received from the VPMpc. These results suggest that a subset of taste neurons in the NST is under the influence from the bilateral VPMpc and that the VPMpc activation modulates taste responses of these cells.
Collapse
Affiliation(s)
- Young K Cho
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | | | | |
Collapse
|
27
|
Mao L, Cho YK, Li CS. Modulation of activity of gustatory neurons in the hamster parabrachial nuclei by electrical stimulation of the ventroposteromedial nucleus of the thalamus. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1461-73. [PMID: 18321954 DOI: 10.1152/ajpregu.00802.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The parvicellular part of the ventroposteromedial nucleus of the thalamus (VPMpc) is positioned at the key site between the gustatory parabrachial nuclei (PbN) and the gustatory cortex for relaying and processing gustatory information via the thalamocortical pathway. Although neuroanatomical and electrophysiological studies have provided information regarding the gustatory projection from PbN to VPMpc, the exact relationship between PbN and VPMpc, especially the efferent projection involving VPMpc to PbN, is obscure. Here we investigated the reciprocal connection between these two gustatory relays in urethane-anesthetized hamsters. We recorded from 114 taste-responsive neurons in the PbN and examined their responsiveness to electrical stimulation of the VPMpc bilaterally. Stimulation of either or both of the ipsilateral or contralateral VPMpc antidromically activated 109 gustatory PbN neurons. Seventy-two PbN neurons were antidromically activated after stimulation of both sides of the VPMpc, indicating that taste neurons in the PbN project heavily to the bilateral VPMpc. Stimulation of VPMpc also orthodromically activated 110 of PbN neurons, including 106 VPMpc projection neurons. Seventy-eight neurons were orthodromically activated bilaterally. Among orthodromic activations of the PbN cells, the inhibitory response was the dominant response; 106 cells were inhibited, including 10 neurons that were also excited contralaterally, indicating that taste neurons in the PbN are subject to strong inhibitory control from VPMpc. Moreover, stimulation of VPMpc altered taste responses of the neurons in the PbN, indicating that VPMpc modulates taste responses of PbN neurons. These results may provide functional insight of neural circuitry for taste processing and modulation involving these two nuclei.
Collapse
Affiliation(s)
- Limin Mao
- Department of Oral and Maxillofacial Surgery, Harbin Medical University School of Dentistry, Harbin, Heilongjiang, PR China
| | | | | |
Collapse
|
28
|
|
29
|
Li CS, Mao L, Cho YK. Taste-responsive neurons in the nucleus of the solitary tract receive gustatory information from both sides of the tongue in the hamster. Am J Physiol Regul Integr Comp Physiol 2007; 294:R372-81. [PMID: 18077506 DOI: 10.1152/ajpregu.00791.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Taste receptors on the left and right sides of the anterior tongue are innervated by chorda tympani (CT) fibers, which carry taste information to the ipsilateral nucleus of the solitary tract (NST). Although the anterior tongue is essential for taste, patients with unilateral CT nerve damage often report no subjective change in their taste experience. The standing theory that explains the taste constancy is the "release of inhibition", which hypothesizes that within the NST there are inhibitory interactions between inputs from the CT and glossopharyngeal nerves and that the loss of taste information from the CT is compensated by a release of inhibition on the glossopharyngeal nerve input. However, the possibility of compensation by taste input from the other side of the tongue has never been investigated in rodents. We recorded from 95 taste-responsive neurons in the NST and examined their responsiveness to stimulation of the contralateral CT. Forty-six cells were activated, mostly with excitatory responses (42 cells). Activation of NST cells induced by contralateral CT stimulation was blocked by microinjection of lidocaine into the contralateral NST but was not affected by anesthetization of the contralateral parabrachial nuclei (PbN). In addition, the NST cells that were activated by contralateral CT stimulation showed reduced responsiveness to taste stimulation after microinjection of lidocaine into the contralateral NST. These results demonstrate that nearly half of the taste neurons in the NST receive gustatory information from both sides of the tongue. This "cross talk" between bilateral NST may also contribute to the "taste constancy".
Collapse
Affiliation(s)
- Cheng-Shu Li
- Department of Anatomy, Southern Illinois University School of Medicine, Life Science III, 1135 Lincoln Drive, Carbondale, IL 62901, USA.
| | | | | |
Collapse
|
30
|
Scopinho AA, Crestani CC, Alves FHF, Resstel LBM, Correa FMA. The lateral septal area modulates the baroreflex in unanesthetized rats. Auton Neurosci 2007; 137:77-83. [PMID: 17913592 DOI: 10.1016/j.autneu.2007.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 08/21/2007] [Accepted: 08/22/2007] [Indexed: 11/18/2022]
Abstract
The septal lateral area (LSA) is a limbic structure that is involved with autonomic and behavioral responses. In the present study we report the effect of acute and reversible LSA synaptic inhibition on the parasympathetic and the sympathetic components of baroreflex in unanesthetized rats. Neurotransmission was temporarily inhibited by bilateral microinjection of the nonselective synapse blocker CoCl(2) in the LSA. Bilateral microinjection of 100 nL of 1 mM CoCl(2) into the LSA did not affect blood pressure or heart rate baseline, suggesting no tonic LSA influence on resting cardiovascular parameters. However, 10 min after CoCl(2) microinjections, maximum tachycardiac responses to blood pressure decreases caused by intravenous infusion of sodium nitroprusside and bradycardiac responses evoked by blood pressure increases caused by intravenous infusion of phenylephrine were enhanced when compared with control values. These enhancement of both the tachycardiac and bradycardiac reflex evoked increase of baroreflex gain. Baroreflex activity returned to control values 60 min after CoCl(2) microinjections, confirming the reversible blockade. The present results indicate an involvement of the LSA in baroreflex modulation. Data suggest that synapses in the LSA play a tonic inhibitory influence on both the sympathetic and the parasympathetic components of the baroreflex in unanesthetized rats.
Collapse
Affiliation(s)
- América Augusto Scopinho
- Departments of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14090-090, Brazil
| | | | | | | | | |
Collapse
|
31
|
Tokita K, Shimura T, Nakamura S, Inoue T, Yamamoto T. Involvement of forebrain in parabrachial neuronal activation induced by aversively conditioned taste stimuli in the rat. Brain Res 2007; 1141:188-96. [PMID: 17276421 DOI: 10.1016/j.brainres.2007.01.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/05/2007] [Accepted: 01/06/2007] [Indexed: 11/15/2022]
Abstract
We previously have shown that forebrain inputs increase responses of amiloride-sensitive NaCl-best neurons to the conditioned stimulus (CS) in the rat parabrachial nucleus (PBN) after the establishment of conditioned taste aversion (CTA) to NaCl. In the present study, we examined the effects of aversively-conditioned NaCl taste stimulation on Fos-like immunoreactivity (FLI) in the PBN using awake intact and decerebrate rats. In Experiment 1, the CTA-trained and sham-conditioned control rats were intraorally infused with 0.1 M NaCl or 0.1 M NaCl mixed with 10(-4) M amiloride, a sodium-channel blocker. Significantly more NaCl-stimulated FLI was observed in the central medial (cms) and external lateral subnuclei (els) of PBN in the CTA-trained group than in the control group. In both groups, amiloride markedly reduced NaCl-stimulated FLI in the cms but not in the els. In Experiment 2, we found that after decerebration, there was no significant difference in FLI between the CTA-trained and sham-conditioned groups. These results suggest that (1) amirolide-sensitive taste information of NaCl projects mainly to the cms; (2) sensory information of aversive taste stimuli is likely to be represented in the els; and (3) forebrain inputs are required for elevated FLI in the PBN after CTA.
Collapse
Affiliation(s)
- Kenichi Tokita
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | | | | | |
Collapse
|
32
|
Simon SA, de Araujo IE, Gutierrez R, Nicolelis MAL. The neural mechanisms of gustation: a distributed processing code. Nat Rev Neurosci 2007; 7:890-901. [PMID: 17053812 DOI: 10.1038/nrn2006] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Whenever food is placed in the mouth, taste receptors are stimulated. Simultaneously, different types of sensory fibre that monitor several food attributes such as texture, temperature and odour are activated. Here, we evaluate taste and oral somatosensory peripheral transduction mechanisms as well as the multi-sensory integrative functions of the central pathways that support the complex sensations that we usually associate with gustation. On the basis of recent experimental data, we argue that these brain circuits make use of distributed ensemble codes that represent the sensory and post-ingestive properties of tastants.
Collapse
Affiliation(s)
- Sidney A Simon
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
33
|
|
34
|
|
35
|
Li CS, Cho YK. Efferent projection from the bed nucleus of the stria terminalis suppresses activity of taste-responsive neurons in the hamster parabrachial nuclei. Am J Physiol Regul Integr Comp Physiol 2006; 291:R914-26. [PMID: 16966389 DOI: 10.1152/ajpregu.00750.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the reciprocal projections between the bed nucleus of the stria terminalis (BNST) and the gustatory parabrachial nuclei (PbN) have been demonstrated neuroanatomically, there is no direct evidence showing that the projections from the PbN to the BNST carry taste information or that descending inputs from the BNST to the PbN modulate the activity of PbN gustatory neurons. A recent electrophysiological study has demonstrated that the BNST exerts modulatory influence on taste neurons in the nucleus of the solitary tract (NST), suggesting that the BNST may also modulate the activity of taste neurons in the PbN. In the present study, we recorded from 117 taste-responsive neurons in the PbN and examined their responsiveness to electrical stimulation of the BNST bilaterally. Thirteen neurons (11.1%) were antidromically invaded from the BNST, mostly from the ipsilateral side (12 cells), indicating that a subset of taste neurons in the PbN project their axons to the BNST. The BNST stimulation induced orthodromic responses on most of the PbN neurons: 115 out of 117 (98.3%), including all BNST projection units. This descending modulation on the PbN gustatory neurons was exclusively inhibitory. We also confirmed that activation of this efferent inhibitory projection from the BNST reduces taste responses of PbN neurons in all units tested. The BNST is part of the neural circuits that involve stress-associated feeding behavior. It is also known that brain stem gustatory nuclei, including the PbN, are associated with feeding behavior. Therefore, this neural substrate may be important in the stress-elicited alteration in ingestive behavior.
Collapse
Affiliation(s)
- Cheng-Shu Li
- Department of Anatomy, Southern Illinois University School of Medicine, Life Science III Rm. 2073, 1135 Lincoln Dr., Carbondale, IL 62901, USA.
| | | |
Collapse
|
36
|
Minami N, Mori N, Nagasaka M, Ito O, Kurosawa H, Kanazawa M, Kaku K, Lee E, Kohzuki M. Mechanism behind Augmentation in Baroreflex Sensitivity after Acute Exercise in Spontaneously Hypertensive Rats. Hypertens Res 2006; 29:117-22. [PMID: 16755145 DOI: 10.1291/hypres.29.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A single bout of dynamic exercise increases baroreflex sensitivity (BRS) in spontaneously hypertensive rats (SHR). We examined whether change in hemodynamics (increases in blood pressure and heart rate) associated with dynamic exercise contribute to the post-exercise modulation of BRS. SHR aged 12 weeks were chronically instrumented with a carotid artery catheter and jugular vein catheter. They were then allocated to three groups submitted to 40 min of 1) running on a treadmill at 12 m/min (Run), 2) concomitant infusion of isoproterenol and a relatively high dose of phenylephrine (Iso+Phe(high)), or 3) concomitant infusion of isoproterenol and a relatively low dose of phenylephrine (Iso+Phe(low)). Arterial pressure and heart rate were continuously recorded throughout the experiments. BRS estimated by heart rate responses to phenylephrine injection and systolic blood pressure-low frequency power amplitude (SBP-LFamp) evaluated by power spectral analysis of SBP, a marker of sympathetic activity, were examined before and after running (Run group), or administration of drugs (Iso+Phe(high) or Iso+Phe(low) groups). BRS increased significantly from 1.4 to 1.9 bpm/mmHg after running, but not after administration of Iso+Phe(high) or Iso+Phe(low). Blood pressure and SBP-LFamp significantly decreased in each of the Run, Iso+Phe(high) and Iso+Phe(low) groups. These results suggest that hemodynamic change alone does not contribute to post-exercise modulation of BRS, while hemodynamic change or sympathetic activation during exercise contributes to post-exercise hypotension associated with a reduction of sympathetic activity.
Collapse
Affiliation(s)
- Naoyoshi Minami
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho, Aoba-ku, Sendai 980-8574, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zerari-Mailly F, Buisseret P, Buisseret-Delmas C, Nosjean A. Trigemino-solitarii-facial pathway in rats. J Comp Neurol 2005; 487:176-89. [PMID: 15880487 DOI: 10.1002/cne.20554] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study was undertaken to identify premotor neurons in the nucleus tractus solitarii (NTS) serving as relay neurons between the sensory trigeminal complex (STC) and the facial motor nucleus in rats. Trigemino-solitarii connections were first investigated following injections of anterograde and/or retrograde (biotinylated dextran amine, biocytin, or gold-HRP) tracers in STC or NTS. Trigemino-solitarii neurons were abundant in the ventral and dorsal parts of the STC and of moderate density in its intermediate part. They project throughout the entire rostrocaudal extent of the NTS with a strong lateral preponderance. Solitarii-trigeminal neurons were observed mostly in the rostral and rostrolateral NTS. They mainly project to the ventral and dorsal parts of the spinal trigeminal nucleus but not to the principal nucleus. Additional neurons located in the middle NTS were found to project exclusively to the spinal trigeminal nucleus pars caudalis. No solitarii-trigeminal cells were observed in the caudal NTS. In addition, evidence was obtained of NTS retrogradely labeled neurons contacted by anterogradely labeled trigeminal terminals. Second, solitarii-facial projections were analyzed following injections of anterograde and retrograde tracers into the NTS and the facial nucleus, respectively. NTS neurons, except those of the rostrolateral part, reached the dorsal aspect of the facial nucleus. Finally, simultaneous injections of anterograde tracer in the STC and retrograde tracer in the facial nucleus gave retrogradely labeled neurons in the NTS receiving contacts from anterogradely labeled trigeminal boutons. Thus, the present data demonstrate for the first time the existence of a trigemino-solitarii-facial pathway. This could account for the involvement of the NTS in the control of orofacial motor behaviors.
Collapse
Affiliation(s)
- Fawzia Zerari-Mailly
- Laboratoire de Neuroanatomie Fonctionnelle des Systèmes Sensorimoteurs, 75251 Paris Cedex 05, France.
| | | | | | | |
Collapse
|
38
|
Smith DV, Ye MK, Li CS. Medullary taste responses are modulated by the bed nucleus of the stria terminalis. Chem Senses 2005; 30:421-34. [PMID: 15872146 DOI: 10.1093/chemse/bji037] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies have shown a modulatory influence of limbic forebrain areas, such as the central nucleus of the amygdala and lateral hypothalamus, on the activity of taste-responsive cells in the nucleus of the solitary tract (NST). The bed nucleus of the stria terminalis (BST), which receives gustatory afferent information, also sends descending axons to the NST. The present studies were designed to investigate the role of the BST in the modulation of NST gustatory activity. Extracellular action potentials were recorded from 101 taste-responsive cells in the NST of urethane-anesthetized hamsters and analyzed for a change in excitability following bilateral electrical stimulation of the BST. The response of NST taste cells to stimulation of the BST was predominately inhibitory. Orthodromic inhibitory responses were observed in 29 of 101 (28.7%) NST taste-responsive cells, with four cells inhibited bilaterally. An increase in excitability was observed in seven of the 101 (6.9%) NST taste cells. Of the 34 cells showing these responses, 25 were modulated by the ipsilateral BST and 15 by the contralateral; four were inhibited bilaterally and two inhibited ipsilaterally and excited contralaterally. The duration of inhibitory responses (mean = 177.9 ms) was significantly longer than that of excitatory responses (35.4 ms). Application of subthreshold electrical stimulation to the BST during taste trials inhibited or excited the taste responses of every BST-responsive NST cell tested with this protocol. NST neurons that were most responsive to sucrose, NaCl, citric acid or quinine hydrochloride were all affected by BST stimulation, although citric acid-best cells were significantly more often modulated and NaCl-best less often modulated than expected by chance. These results combine with excitatory and inhibitory modulation of NST neurons by the insular cortex, lateral hypothalamus and central nucleus of the amygdala to demonstrate extensive centrifugal modulation of brainstem gustatory neurons.
Collapse
Affiliation(s)
- David V Smith
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 515, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
39
|
Kang Y, Yan J, Huang T. Microinjection of bicuculline into the central nucleus of the amygdala alters gustatory responses of the rat parabrachial nucleus. Brain Res 2005; 1028:39-47. [PMID: 15518640 DOI: 10.1016/j.brainres.2004.08.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2004] [Indexed: 11/25/2022]
Abstract
The central amygdaloid nucleus (CeA) receives projection from the parabrachial nucleus (PBN) gustatory neurons and descendingly projects to the PBN, and taste responses in the PBN are significantly affected by stimulation or lesion of the CeA. To examine whether the GABA receptors within the CeA are involved in this modulation, the effects of microinjection of bicuculline, a GABA(A)-selective antagonist, into the CeA on the activities of PBN taste neurons were observed by using extracellular recording technique. In general, after bicuculline was administered to ipsilateral CeA, the responses of PBN neurons to four tastants all increased, with the magnitudes significantly higher than those obtained before drug administration (P<0.01), respectively. However, after bicuculline was delivered into the contralateral CeA, only the responses to NaCl, HCl and QHCl increased. According to the best-stimulus category, 47% NaCl-best (8/17), 64% HCl-best (7/11), 80% QHCl-best (4/5), and 33% sucrose-best (1/3) increased their responses to at least one basic taste stimulus after GABA(A) receptors within the ipsilateral CeA were blocked. After contralteral CeA injection, more NaCl-best neurons (6/8) increased responses than that after ipsilateral CeA injection, but other best-stimulus units showed no differences before and after drug injection into the contralateral CeA. Analyses of across-unit patterns indicated that the correlation coefficient of responses between NaCl and sucrose was apparently higher after drug administration to the CeA. However, after drug injection into the contralateral CeA, the correlations between NaCl and the other three tastants were higher than those before. These results indicate that the GABA(A) receptors within the CeA play an important role in modulating the gustatory activities of PBN neurons.
Collapse
Affiliation(s)
- Yi Kang
- Department of Physiology, School of Medicine, Xi'an Jiaotong University, 245 Zhuque Street, Xi'an, Shaanxi 710061, People's Republic of China
| | | | | |
Collapse
|
40
|
Tokita K, Karádi Z, Shimura T, Yamamoto T. Centrifugal inputs modulate taste aversion learning associated parabrachial neuronal activities. J Neurophysiol 2004; 92:265-79. [PMID: 14973323 DOI: 10.1152/jn.01090.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous studies have demonstrated that gustatory neurons in the parabrachial nucleus (PBN) show altered responses after the acquisition of conditioned taste aversion (CTA) to NaCl. The present study was conducted 1) to examine centrifugal influences on the altered gustatory activity of CTA-trained rats, and 2) to evaluate the role of amiloride-sensitive (ASN) and -insensitive NaCl (AIN) best units in coding the taste of NaCl. Animals were separated into 2 groups: a CTA group that had acquired taste aversion to 0.1 M NaCl and a control group that underwent pseudoconditioning before the recording experiment. Single-neuron activity, in 2 separate series of experiments, was extracellularly recorded in anesthetized rats. In the stimulation studies, the effects of electrical stimulation of the gustatory cortex (GC) or the central nucleus of amygdala (CeA) were examined on firing of PBN taste units. CeA stimulation produced excitatory effect in significantly more neurons in the CTA group (n = 8) than in the control group (n = 1). Furthermore, ASN-best units in the CTA group showed larger responses to NaCl than similar units in the control group. In the decerebration experiment, there was no statistical difference among the taste responses between the 2 groups in any best-stimulus category. These results suggest that CTA conditioning uses an effective central amygdaloid input to modulate activity of gustatory neurons in the PBN. Data also substantiate that amiloride-sensitive components of NaCl-best neurons play a critical role in the recognition of distinctive taste of NaCl.
Collapse
Affiliation(s)
- Ken'ichi Tokita
- Department of Behavioral Physiology, Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
41
|
Abstract
It is proposed that in the gustatory system there exist separate sensory and hedonic (reward-aversion) representations in each of the primary structures in which processing of gustatory stimuli occurs. Anatomical and physiological data are used to determine putative separate sensory and hedonic representations in the nucleus of the solitary tract, parabrachial complex, gustatory thalamus, and cortical gustatory areas. In the nucleus of the solitary tract, the sensory representation is located in the rostralmost part of the nucleus, and the hedonic representation most probably in the intermediate parts. In the parabrachial complex, the sensory representation is located in the central medial and ventral lateral subnuclei, and in the waist area, and the hedonic representation in the inner division of the external lateral subnucleus and in the external medial subnucleus. In the rodent gustatory thalamic relay, the sensory representation occurs in the dorsal lateral parts of the nucleus, and the hedonic representation in the ventromedial parts. In rodent gustatory insular cortex, the sensory representation is found in anterior parts of the gustatory area, and the hedonic representation caudal to the sensory representation. The function of the separate sensory and hedonic representations is discussed in relation to the conditioned taste aversion paradigm.
Collapse
Affiliation(s)
- Terence V Sewards
- Sandia Research Center, 21 Perdiz Canyon Road, Placitas, NM 87043, USA.
| |
Collapse
|
42
|
Lundy RF, Norgren R. Activity in the hypothalamus, amygdala, and cortex generates bilateral and convergent modulation of pontine gustatory neurons. J Neurophysiol 2003; 91:1143-57. [PMID: 14627662 DOI: 10.1152/jn.00840.2003] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evidence suggests that centrifugal modulation of brain stem gustatory cells might play a role in the elaboration of complex taste-guided behaviors like conditioned taste aversion and sodium appetite. We previously showed that activity in one forebrain area, the central nucleus of the amygdala (CeA), increased the chemical selectivity of taste cells in the parabrachial nucleus (PBN). The present study investigates how activity in 2 other similarly interconnected forebrain sites, the lateral hypothalamus (LH) and gustatory cortex (GC), might influence PBN gustatory processing in rats. The potential convergence of descending inputs from these sites, as well as the CeA, was also evaluated. After anesthesia (35 mg/kg Nembutal ip), 70 PBN gustatory neurons were tested before, during, and after electrical stimulation of these forebrain sites, while responding to 0.3 M sucrose, 0.1 M NaCl, 0.01 M citric acid, and 0.003 M QHCl. Although each forebrain site modulated taste-evoked responses, more PBN neurons were influenced by stimulation of the GC (67%) and CeA (73%) than of the LH (48%). Activation of cortex (71%) and amygdala (85%) most often produced inhibition, whereas inhibition and excitation occurred equally often during hypothalamic stimulation. Of the neurons tested for convergence (n = 60), 88% were influenced by > or =1 of the 3 sites. Twenty were modulated by stimulation at all 3 sites and another 17 by 2 of the 3 sites. The net effect of centrifugal modulation was to sharpen the across-stimulus response profiles of PBN cells, particular with regard to the NaCl- and citric acid-best cells.
Collapse
Affiliation(s)
- Robert F Lundy
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, Hershey, Pennsylvania 17033, USA.
| | | |
Collapse
|
43
|
King MS. Distribution of immunoreactive GABA and glutamate receptors in the gustatory portion of the nucleus of the solitary tract in rat. Brain Res Bull 2003; 60:241-54. [PMID: 12754086 DOI: 10.1016/s0361-9230(03)00034-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The distribution of glutamate (GLU) and gamma-aminobutyric acid (GABA) receptors within the gustatory portion of the rat nucleus of the solitary tract (gNST) was investigated using immunohistochemical, histological and neural tract tracing techniques. Numerous somata throughout the gNST were immunoreactive for alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors, while few were labeled for kainate receptors. AMPA and NMDA receptors were particularly abundant in the rostral central (RC) subdivision of the gNST, which receives most of the primary afferent input from the oral cavity and contains most of the gNST neurons that project to the parabrachial nuclei (PBN). This finding supports electrophysiological evidence that AMPA and NMDA receptors are involved in responses to orosensory input and indicates that their action may influence ascending taste signals as well. Compared to the ionotropic GLU receptors, few cell bodies were immunoreactive for metabotropic GLU receptors. Somata immunoreactive for GABA(A) and GABA(B) receptors were located throughout the nucleus. The densest neuropil labeling was for GABA(A) receptors in the ventral (V) subnucleus, the gNST subdivision that sends output to brainstem oromotor centers. The distributions of immunolabeling for GLU and GABA receptors imply that different functional roles may exist for specific receptors within this nucleus.
Collapse
Affiliation(s)
- Michael S King
- Unit 8264, Biology Department, Stetson University, DeLand, FL 32723, USA.
| |
Collapse
|
44
|
Young DL, Eldridge FL, Poon CS. Integration-differentiation and gating of carotid afferent traffic that shapes the respiratory pattern. J Appl Physiol (1985) 2003; 94:1213-29. [PMID: 12496139 DOI: 10.1152/japplphysiol.00639.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The phase-dependent plasticity of carotid chemoafferent signaling was studied with electrical stimulation of a carotid sinus nerve during either inspiration or expiration in anesthetized, glomectomized, vagotomized, paralyzed, and ventilated rats. Stroboscopic and interferometric analyses of the resulting phase-contrast disturbances of the respiratory rhythm revealed that carotid chemoafferent traffic was dynamically filtered centrally by a parallel bank of leaky integrators and differentiators, each being logically gated to the inspiratory or expiratory phase in a stop-and-go manner as follows: 1) carotid short-term potentiation of inspiratory drive was mediated by dual integrators that both shortened inspiration and augmented phrenic motor output cooperatively in long and short timescales; 2) carotid short-term depression of respiratory frequency was mediated by a (possibly pontine) integrator that lengthened expiration with a relatively long memory; and 3) carotid "chemoreflex" shortening of expiration was mediated by an occult fast integrator, which, together with carotid short-term depression, formed a differentiator. These effects were modulated anteriorly by integrators in the nucleus tractus solitarius that were "auto-gated" to, or recruited by, the carotid sinus nerve input. Such phase-selective and activity-dependent time-frequency filtering of carotid chemoafferent feedback in parallel neurological-neurodynamic central pathways may profoundly affect respiratory stability during hypoxia and sleep and could contribute to the dynamic optimization of the respiratory pattern and maintenance of homeostasis in health and in disease states.
Collapse
Affiliation(s)
- Daniel L Young
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
45
|
Abstract
Projections to the parabrachial nucleus (PBN) from the nucleus of the solitary tract (NST) carry afferent signals from both the oral cavity and gastrointestinal tract. Although physiological studies suggest the convergence of oral and gastrointestinal sensory signals in the parabrachial nucleus, anatomical studies have emphasized the segregation of these pathways. To more precisely determine the anatomical relationship between gastric distension and oral afferent representation in PBN, small deposits of two anterograde tracers were made into the NST under physiological guidance in the same rat. Gastric terminations were dense and separate from taste projections in the rostral portion of the external lateral and dorsal lateral subnuclei. Gustatory projections were densest and separate from gastric terminations in the ventral lateral and central medial subnuclei of the caudal waist region, but were intermingled with gastric projections in these subnuclei and the external subnuclei at slightly more rostral levels. Patterns of segregation and overlap often appeared as 'patches' within or across subnuclear boundaries. In a second set of experiments, physiological evidence for overlap in PBN was evaluated from single unit extracellular responses evoked by gastric distension and orosensory (taste and orotactile) stimulation. Neurophysiological recordings verified that a small proportion of single cells within the waist and external subnuclei could be activated by both gastric and orotactile stimulation. The anatomical experiments further revealed intranuclear projections from the caudal NST injections that extended rostrally to sites at which responses to oral stimulation had been recorded. Although existing physiological data suggest such interactions are more limited than those in PBN, these anatomical data suggest that gastric/oral interactions may also exist in the NST.
Collapse
|
46
|
Li CS, Cho YK, Smith DV. Taste responses of neurons in the hamster solitary nucleus are modulated by the central nucleus of the amygdala. J Neurophysiol 2002; 88:2979-92. [PMID: 12466423 DOI: 10.1152/jn.00239.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown a modulatory influence of forebrain gustatory areas, such as the gustatory cortex and lateral hypothalamus, on the activity of taste-responsive cells in the nucleus of the solitary tract (NST). The central nucleus of the amygdala (CeA), which receives gustatory afferent information, also exerts descending control over taste neurons in the parabrachial nuclei (PbN) of the pons. The present studies were designed to investigate the role of descending amgydaloid projections to the NST in the modulation of gustatory activity. Extracellular action potentials were recorded from 109 taste-responsive cells in the NST of urethan-anesthetized hamsters and analyzed for a change in excitability following electrical and chemical stimulation of the CeA. Electrical stimulation of the CeA orthodromically modulated 36 of 109 (33.0%) taste-responsive NST cells. An excitatory response was observed in 33 (30.28%) cells. An initial decrease in excitability to electrical stimulation of the CeA, suggestive of postsynaptic inhibition, was observed in three (2.75%) NST taste cells. NST cells modulated by the CeA were significantly less responsive to taste stimuli than cells that were not. Many of these cells were under the modulatory influence of the contralateral CeA (28/36 = 77.8%) as well as the ipsilateral (22/36 = 61.1%); 14 (38.9%) were excited bilaterally. Latencies for excitation were longer after ipsilateral than after contralateral CeA stimulation. Microinjection of DL-homocysteic acid (DLH) into the CeA mimicked the effect of electrical stimulation on each of the nine cells tested: DLH excited eight and inhibited one of these electrically activated NST cells. Application of subthreshold electrical stimulation to the CeA during taste trials increased the taste responses of every CeA-responsive NST cell (n = 7) tested with this protocol. These effects would enhance taste discriminability by increasing the signal-to-noise ratio of taste-evoked activity.
Collapse
Affiliation(s)
- Cheng-Shu Li
- Department of Anatomy and Neurobiology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
47
|
Cho YK, Li CS, Smith DV. Taste responses of neurons of the hamster solitary nucleus are enhanced by lateral hypothalamic stimulation. J Neurophysiol 2002; 87:1981-92. [PMID: 11929917 DOI: 10.1152/jn.00765.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gustatory responses in the brain stem are modifiable by several physiological factors, including blood insulin and glucose, intraduodenal lipids, gastric distension, and learning, although the neural substrates for these modulatory effects are not known. Stimulation of the lateral hypothalamus (LH) produces increases in food intake and alterations in taste preference behavior, whereas damage to this area has opposite effects. In the present study, we investigated the effects of LH stimulation on the neural activity of taste-responsive cells in the nucleus of the solitary tract (NST) of the hamster. Bipolar stimulating electrodes were bilaterally implanted in the LH, and the responses of 99 neurons in the NST, which were first characterized for their taste sensitivities, were tested for their response to both ipsilateral and contralateral LH stimulation. Half of the taste-responsive cells in the NST (49/99) were modulated by LH stimulation. Contralateral stimulation was more often effective (41 cells) than ipsilateral (13 cells) and always excitatory; 10 cells were excited bilaterally. Six cells were inhibited by ipsilateral stimulation. A subset of these cells (n = 13) was examined for the effects of microinjection of DL-homocysteic acid (DLH), a glutamate receptor agonist, into the LH. The effects of electrical stimulation were completely mimicked by DLH, indicating that cell somata in and around the LH are responsible for these effects. Other cells (n = 14) were tested for the effects of electrical stimulation of the LH on the responses to stimulation of the tongue with 0.032 M sucrose, NaCl, and quinine hydrochloride, and 0.0032 M citric acid. Responses to taste stimuli were more than doubled by the excitatory influence of the LH. These data show that the LH, in addition to its role in feeding and metabolism, exerts descending control over the processing of gustatory information through the brain stem.
Collapse
Affiliation(s)
- Young K Cho
- Department of Anatomy and Neurobiology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
48
|
Künzle H, Radtke-Schuller S, von Stebut B. Parabrachio-cortical connections with the lateral hemisphere in the madagascan hedgehog tenrec: prominent projections to layer 1, weak projections from layer 6. Brain Res Bull 2002; 57:705-19. [PMID: 11927376 DOI: 10.1016/s0361-9230(01)00784-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The present study was undertaken to further characterize and subdivide the rhinal cortex (insular and perirhinal areas) in the hedgehog tenrec (Echinops telfairi), a placental mammal with a rather low encephalisation index. Injections of wheat germ agglutinin-horseradish peroxidase into the dorsolateral pontine tegmentum revealed a prominent layer 1 projection to several rhinal target areas, while the rhinal cortex only stained weakly for the calcitonin gene-related peptide. Among the regions retrogradely labeled following tracer injections into the rhinal cortex, the parabrachial nucleus was considered the main origin of the tegmento-cortical projection. This conclusion was based on the circumscribed pattern of termination, as well as the differences noted between the pattern of anterograde labeling and the pattern obtained by thyrosine hydroxylase immunohistochemistry. The tracer injections into the dorsolateral tegmentum also revealed numerous retrogradely labeled cells in the layer 5 of the dorsomedial frontal cortex. In contrast, the rhinal cortex only showed few labeled cells and most of these cells were located in the layer 6/7. A comparison with other species indicates that the tenrec's parabrachial nucleus gives rise to the most extensive cortical projections but receives the least prominent input from the lateral cerebral hemisphere. The layer 6/7 projection may be a common mammalian feature but it is overshadowed by the layer 5 projection in higher mammals.
Collapse
Affiliation(s)
- Heinz Künzle
- Institute of Anatomy, Ludwig Maximilians University, Pettenkoferstrasse 11, D-80336 Munich, Germany.
| | | | | |
Collapse
|
49
|
Emch GS, Hermann GE, Rogers RC. TNF-alpha-induced c-Fos generation in the nucleus of the solitary tract is blocked by NBQX and MK-801. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1394-400. [PMID: 11641108 DOI: 10.1152/ajpregu.2001.281.5.r1394] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that identified neurons of the nucleus of the solitary tract (NST) are excited by the cytokine tumor necrosis factor-alpha (TNF-alpha). Vagal afferent connections with the NST are predominantly glutaminergic. Therefore, we hypothesized that TNF-alpha effects on NST neurons may be via modulation of glutamate neurotransmission. The present study used activation of the immediate early gene product c-Fos as a marker for neuronal activation in the NST. c-Fos expression was evaluated after microinjections of TNF-alpha in the presence or absence of either the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium (NBQX) or the N-methyl-D- aspartate (NMDA) antagonist MK-801. To assess the specificity of the interaction between TNF-alpha and glutamate, c-Fos expression was also evaluated after injection of oxytocin (OT) (which has a direct excitatory effect in this area of the brain stem) in the presence and absence of NBQX or MK-801. c-Fos labeling was significantly increased in the NST after TNF-alpha exposure. Coinjection of either NBQX or MK-801 with TNF-alpha prevented significant c-Fos induction in the NST. Microinjections of OT also induced significant NST c-Fos elevation, but this expression was unaffected by coinjection of either antagonist with OT. These data lead us to conclude that TNF-alpha activation of NST neurons depends on glutamate and such an interaction is not generalized to all agonists that act on the NST.
Collapse
Affiliation(s)
- G S Emch
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
50
|
Abstract
The existence, location and interrelationships of cortical gustatory association areas in primates and rodents are discussed. Based on previous proposals, and on anatomical, physiological and lesion data, we propose that in addition to primary gustatory cortex, located in primate opercular cortex and rodent granular insular cortex, three association areas exist. A secondary area is located in dysgranular insular cortex, a tertiary area in agranular insular cortex, and the terminus of the cortical gustatory analyzer is located in perirhinal cortex. We propose that the subjective awareness of flavor is most probably due to neuronal activities in agranular insular cortex.
Collapse
Affiliation(s)
- T V Sewards
- Sandia Research Center, 21 Perdiz Canyon Road, Placitas, NM 87043, USA.
| | | |
Collapse
|