1
|
Lu D, Guo Y, Hu Y, Wang M, Li C, Gangrade A, Chen J, Zheng Z, Guo J. Fusion of apoptosis-related protein Cytochrome c with anti-HER-2 single-chain antibody targets the suppression of HER-2+ breast cancer. J Cell Mol Med 2021; 25:10638-10649. [PMID: 34697906 PMCID: PMC8581304 DOI: 10.1111/jcmm.17001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/19/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer treatment has gradually developed from toxic chemotherapy to targeted therapy with fewer side effects. Approximately 30% of breast cancer patients overexpress human epidermal growth factor receptor 2 (HER-2). Previous studies have successfully produced single-chain antibodies (scFv) targeting HER-2+ breast cancer; however, scFv have poor stability, easy aggregation and a shorter half-life, which have no significant effect on targeting therapy. Moreover, scFv has been considered as a drug delivery platform that can kill target cells by effector molecules. However, the functional killing domains of immunotoxins are mainly derived from plant or bacterial toxins, which have a large molecular weight, low tissue permeability and severe side effects. To address these concerns, we designed several apoptotic immune molecules to replace exogenous toxins using endogenous apoptosis-related protein DNA fragmentation factor 40 (DFF40) and tandem-repeat Cytochrome c base on caspase-3 responsive peptide (DEVD). Our results suggest that DFF40 or Cytc fusion scFv specifically targets HER-2 overexpressing breast cancer cells (SK-BR-3 and BT-474) rather than HER-2 negative cells (MDA-MB-231 and MCF-7). Following cellular internalization, apoptosis-related proteins inhibited tumour activity by initiating endogenous apoptosis pathways, which significantly reduced immunogenicity and toxic side effects. Therefore, we suggest that immunoapoptotic molecules may become potential drugs for targeted immunotherapy of breast cancer.
Collapse
Affiliation(s)
- DanDan Lu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - YiChen Guo
- Department of Surgery and Biomedical Engineering, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - YunFeng Hu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Abhishek Gangrade
- Department of Surgery and Biomedical Engineering, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - JiaHui Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - ZiHui Zheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Bauer R, Clowry GJ, Kaiser M. Creative Destruction: A Basic Computational Model of Cortical Layer Formation. Cereb Cortex 2021; 31:3237-3253. [PMID: 33625496 PMCID: PMC8196252 DOI: 10.1093/cercor/bhab003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
One of the most characteristic properties of many vertebrate neural systems is the layered organization of different cell types. This cytoarchitecture exists in the cortex, the retina, the hippocampus, and many other parts of the central nervous system. The developmental mechanisms of neural layer formation have been subject to substantial experimental efforts. Here, we provide a general computational model for cortical layer formation in 3D physical space. We show that this multiscale, agent-based model, comprising two distinct stages of apoptosis, can account for the wide range of neuronal numbers encountered in different cortical areas and species. Our results demonstrate the phenotypic richness of a basic state diagram structure. Importantly, apoptosis allows for changing the thickness of one layer without automatically affecting other layers. Therefore, apoptosis increases the flexibility for evolutionary change in layer architecture. Notably, slightly changed gene regulatory dynamics recapitulate the characteristic properties observed in neurodevelopmental diseases. Overall, we propose a novel computational model using gene-type rules, exhibiting many characteristics of normal and pathological cortical development.
Collapse
Affiliation(s)
- Roman Bauer
- Department of Computer Science, University of Surrey, Guildford, GU2 7XH, UK
| | - Gavin J Clowry
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Marcus Kaiser
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
- Precision Imaging Beacon, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
3
|
Picco N, García-Moreno F, Maini PK, Woolley TE, Molnár Z. Mathematical Modeling of Cortical Neurogenesis Reveals that the Founder Population does not Necessarily Scale with Neurogenic Output. Cereb Cortex 2019; 28:2540-2550. [PMID: 29688292 PMCID: PMC5998983 DOI: 10.1093/cercor/bhy068] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/14/2018] [Indexed: 12/21/2022] Open
Abstract
The mammalian cerebral neocortex has a unique structure, composed of layers of different neuron types, interconnected in a stereotyped fashion. While the overall developmental program seems to be conserved, there are divergent developmental factors generating cortical diversity amongst species. In terms of cortical neuronal numbers, some of the determining factors are the size of the founder population, the duration of cortical neurogenesis, the proportion of different progenitor types, and the fine-tuned balance between self-renewing and differentiative divisions. We develop a mathematical model of neurogenesis that, accounting for these factors, aims at explaining the high diversity in neuronal numbers found across species. By framing our hypotheses in rigorous mathematical terms, we are able to identify paths of neurogenesis that match experimentally observed patterns in mouse, macaque and human. Additionally, we use our model to identify key parameters that would particularly benefit from accurate experimental investigation. We find that the timing of a switch in favor of symmetric neurogenic divisions produces the highest variation in cortical neuronal numbers. Surprisingly, assuming similar cell cycle lengths in primate progenitors, the increase in cortical neuronal numbers does not reflect a larger size of founder population, a prediction that has identified a specific need for experimental quantifications.
Collapse
Affiliation(s)
- Noemi Picco
- St John's College Research Centre, St John's College, St Giles, Oxford, UK.,Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Road, Oxford, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Parque Científico UPV/EHU Edif. Sede, Leioa, Spain.,IKERBASQUE Foundation, María Díaz de Haro 3, 6th Floor, Bilbao, Spain
| | - Philip K Maini
- St John's College Research Centre, St John's College, St Giles, Oxford, UK.,Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Road, Oxford, UK
| | - Thomas E Woolley
- Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, UK
| | - Zoltán Molnár
- St John's College Research Centre, St John's College, St Giles, Oxford, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
4
|
Rebellato P, Kaczynska D, Kanatani S, Rayyes IA, Zhang S, Villaescusa C, Falk A, Arenas E, Hermanson O, Louhivuori L, Uhlén P. The T-type Ca 2+ Channel Ca v3.2 Regulates Differentiation of Neural Progenitor Cells during Cortical Development via Caspase-3. Neuroscience 2019; 402:78-89. [PMID: 30677486 DOI: 10.1016/j.neuroscience.2019.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/11/2018] [Accepted: 01/12/2019] [Indexed: 01/02/2023]
Abstract
Here we report that the low-voltage-dependent T-type calcium (Ca2+) channel Cav3.2, encoded by the CACNA1H gene, regulates neuronal differentiation during early embryonic brain development through activating caspase-3. At the onset of neuronal differentiation, neural progenitor cells exhibited spontaneous Ca2+ activity. This activity strongly correlated with the upregulation of CACNA1H mRNA. Cells exhibiting robust spontaneous Ca2+ signaling had increased caspase-3 activity unrelated to apoptosis. Inhibition of Cav3.2 by drugs or viral CACNA1H knock down resulted in decreased caspase-3 activity followed by suppressed neurogenesis. In contrast, when CACNA1H was overexpressed, increased neurogenesis was detected. Cortical slices from Cacna1h knockout mice showed decreased spontaneous Ca2+ activity, a significantly lower protein level of cleaved caspase-3, and microanatomical abnormalities in the subventricular/ventricular and cortical plate zones when compared to their respective embryonic controls. In summary, we demonstrate a novel relationship between Cav3.2 and caspase-3 signaling that affects neurogenesis in the developing brain.
Collapse
Affiliation(s)
- Paola Rebellato
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Dagmara Kaczynska
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ibrahim Al Rayyes
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Songbai Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Carlos Villaescusa
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ernest Arenas
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ola Hermanson
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Lauri Louhivuori
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
5
|
Rohrback S, Siddoway B, Liu CS, Chun J. Genomic mosaicism in the developing and adult brain. Dev Neurobiol 2018; 78:1026-1048. [PMID: 30027562 PMCID: PMC6214721 DOI: 10.1002/dneu.22626] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
Since the discovery of DNA, the normal developing and functioning brain has been assumed to be composed of cells with identical genomes, which remains the dominant view even today. However, this pervasive assumption is incorrect, as proven by increasing numbers of reports within the last 20 years that have identified multiple forms of somatically produced genomic mosaicism (GM), wherein brain cells-especially neurons-from a single individual show diverse alterations in DNA, distinct from the germline. Critically, these changes alter the actual DNA nucleotide sequences-in contrast to epigenetic mechanisms-and almost certainly contribute to the remarkably diverse phenotypes of single brain cells, including single-cell transcriptomic profiles. Here, we review the history of GM within the normal brain, including its major forms, initiating mechanisms, and possible functions. GM forms include aneuploidies and aneusomies, smaller copy number variations (CNVs), long interspersed nuclear element type 1 (LINE1) repeat elements, and single nucleotide variations (SNVs), as well as DNA content variation (DCV) that reflects all forms of GM with greatest coverage of large, brain cell populations. In addition, technical considerations are examined, along with relationships among GM forms and multiple brain diseases. GM affecting genes and loci within the brain contrast with current neural discovery approaches that rely on sequencing nonbrain DNA (e.g., genome-wide association studies (GWAS)). Increasing knowledge of neural GM has implications for mechanisms of development, diversity, and function, as well as understanding diseases, particularly considering the overwhelming prevalence of sporadic brain diseases that are unlinked to germline mutations. © 2018 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol, 2018.
Collapse
Affiliation(s)
- Suzanne Rohrback
- Biomedical Sciences Graduate Program, School of MedicineUniversity of California San DiegoLa JollaCalifornia92093
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCalifornia
- Present address:
Illumina, Inc.San DiegoCA 92122USA
| | - Benjamin Siddoway
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCalifornia
| | - Christine S. Liu
- Biomedical Sciences Graduate Program, School of MedicineUniversity of California San DiegoLa JollaCalifornia92093
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCalifornia
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCalifornia
| |
Collapse
|
6
|
Picco N, Woolley TE. Time to change your mind? Modelling transient properties of cortex formation highlights the importance of evolving cell division strategies. J Theor Biol 2018; 481:110-118. [PMID: 30121294 DOI: 10.1016/j.jtbi.2018.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 11/16/2022]
Abstract
The successful development of the mammalian cerebral neocortex is linked to numerous cognitive functions such as language, voluntary movement, and episodic memory. Neocortex development occurs when neural progenitor cells divide and produce neurons. Critically, although the progenitor cells are able to self-renew they do not reproduce themselves endlessly. Hence, to fully understand the development of the neocortex we are faced with the challenge of understanding temporal changes in cell division strategy. Our approach to modelling neuronal production uses non-autonomous ordinary differential equations and allows us to use a ternary coordinate system in order to define a strategy space, through which we can visualise evolving cell division strategies. Using this strategy space, we fit the known data and use approximate Bayesian computation to predict the founding progenitor population sizes, currently unavailable in the experimental literature. Counter-intuitively, we show that humans can generate a larger number of neurons than a macaque's even when starting with a smaller number of progenitor cells. Accompanying the article is a self-contained piece of software, which provides the reader with immediate simulated results that will aid their intuition. The software can be found at www.dpag.ox.ac.uk/team/noemi-picco.
Collapse
Affiliation(s)
- Noemi Picco
- University of Oxford, Mathematical Institute, Woodstock Road, Oxford OX2 6GG, United Kingdom.
| | - Thomas E Woolley
- Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG, United Kingdom.
| |
Collapse
|
7
|
Spead O, Verreet T, Donelson CJ, Poulain FE. Characterization of the caspase family in zebrafish. PLoS One 2018; 13:e0197966. [PMID: 29791492 PMCID: PMC5965869 DOI: 10.1371/journal.pone.0197966] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/13/2018] [Indexed: 12/21/2022] Open
Abstract
First discovered for their role in mediating programmed cell death and inflammatory responses, caspases have now emerged as crucial regulators of other cellular and physiological processes including cell proliferation, differentiation, migration, and survival. In the developing nervous system, for instance, the non-apoptotic functions of caspases have been shown to play critical roles in the formation of neuronal circuits by regulating axon outgrowth, guidance and pruning. How caspase activity is spatially and temporally maintained at sub-lethal levels within cells remains however poorly understood, especially in vivo. Thanks to its transparency and accessibility, the zebrafish offers the unique ability to directly visualize caspase activation in vivo. Yet, detailed information about the caspase family in zebrafish is lacking. Here, we report the identification and characterization of 19 different caspase genes in zebrafish, and show that caspases have diverse expression profiles from cleavage to larval stages, suggesting highly specialized and/or redundant functions during embryonic development.
Collapse
Affiliation(s)
- Olivia Spead
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Tine Verreet
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Cory J. Donelson
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Fabienne E. Poulain
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| |
Collapse
|
8
|
Gao Y, Li S, Xu D, Wang J, Sun Y. Changes in apoptotic microRNA and mRNA expression profiling in Caenorhabditis elegans during the Shenzhou-8 mission. JOURNAL OF RADIATION RESEARCH 2015; 56:872-82. [PMID: 26286471 PMCID: PMC4628221 DOI: 10.1093/jrr/rrv050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/21/2015] [Indexed: 05/07/2023]
Abstract
Radiation and microgravity exposure have been proven to induce abnormal apoptosis in microRNA (miRNA) and mRNA expression, but whether space conditions, including radiation and microgravity, activate miRNAs to regulate the apoptosis is undetermined. For that purpose, we investigated miRNome and mRNA expression in the ced-1 Caenorhabditis elegans mutant vs the wild-type, both of which underwent spaceflight, spaceflight 1g-centrifuge control and ground control conditions during the Shenzhou-8 mission. Results showed that no morphological changes in the worms were detected, but differential miRNA expression increased from 43 (ground control condition) to 57 and 91 in spaceflight and spaceflight control conditions, respectively. Microgravity altered miRNA expression profiling by decreasing the number and significance of differentially expressed miRNA compared with 1 g incubation during spaceflight. Alterations in the miRNAs were involved in alterations in apoptosis, neurogenesis larval development, ATP metabolism and GTPase-mediated signal transduction. Among these, 17 altered miRNAs potentially involved in apoptosis were screened and showed obviously different expression signatures between space conditions. By integrated analysis of miRNA and mRNA, miR-797 and miR-81 may be involved in apoptosis by targeting the genes ced-10 and both drp-1 and hsp-1, respectively. Compared with ground condition, space conditions regulated apoptosis though a different manner on transcription, by altering expression of seven core apoptotic genes in spaceflight condition, and eight in spaceflight control condition. Results indicate that, miRNA of Caenorhabditis elegans probably regulates apoptotic gene expression in response to space environmental stress, and shows different behavior under microgravity condition compared with 1 g condition in the presence of space radiation.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Shuai Li
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Dan Xu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Junjun Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| |
Collapse
|
9
|
The Contribution of Cdc2 in Rotenone-Induced G2/M Arrest and Caspase-3-Dependent Apoptosis. J Mol Neurosci 2013; 53:31-40. [DOI: 10.1007/s12031-013-0185-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/13/2013] [Indexed: 12/24/2022]
|
10
|
Wąsik A, Kajta M, Lenda T, Antkiewicz-Michaluk L. Concentration-dependent opposite effects of 1-benzyl-1,2,3,4-tetrahydroisoquinoline on markers of apoptosis: in vitro and ex vivo studies. Neurotox Res 2013; 25:90-9. [PMID: 24190811 PMCID: PMC3889680 DOI: 10.1007/s12640-013-9436-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 01/31/2023]
Abstract
1-Benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ) was shown to be neurotoxic to the dopaminergic neurons, and thus it was proposed to be an endogenous risk factor leading to Parkinson’s disease. In order to better understand the molecular mechanisms of 1BnTIQ—produced toxicity, we examined the impact of different concentrations of 1BnTIQ (50, 100, and 500 μM) on glutamate-induced apoptotic pathway. We measured the markers of apoptosis, such as caspase-3 activity, lactate dehydrogenase release, and mitochondrial membrane potential. Molecular data were supported at the cellular level by calcein AM and Hoechst 33342 staining. The obtained data demonstrated concentration-dependent effects of 1BnTIQ opposing apoptosis, and evidenced that 1BnTIQ in a low concentration (50 μM) exhibited neuroprotective activity, whereas in 10 times higher concentration (500 μM) might be neurotoxic, and significantly intensified glutamate-induced increase in apoptosis markers. Additionally, using an ex vivo molecular study we indicated that both acute and chronic administration of 1BnTIQ did not affect the level of alpha synuclein and tyrosine hydroxylase protein in the rat substantia nigra. Summarizing the studies, we suggest that 1BnTIQ is a rather weak endogenous neurotoxin; however, it should be taken into account that in higher μmoles concentrations, it can initiate apoptosis in the central nervous system and may be involved in the etiopathology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Agnieszka Wąsik
- Department of Neurochemistry, Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343, Kraków, Poland,
| | | | | | | |
Collapse
|
11
|
Bushman DM, Chun J. The genomically mosaic brain: aneuploidy and more in neural diversity and disease. Semin Cell Dev Biol 2013; 24:357-69. [PMID: 23466288 PMCID: PMC3637860 DOI: 10.1016/j.semcdb.2013.02.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/25/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
Abstract
Genomically identical cells have long been assumed to comprise the human brain, with post-genomic mechanisms giving rise to its enormous diversity, complexity, and disease susceptibility. However, the identification of neural cells containing somatically generated mosaic aneuploidy - loss and/or gain of chromosomes from a euploid complement - and other genomic variations including LINE1 retrotransposons and regional patterns of DNA content variation (DCV), demonstrate that the brain is genomically heterogeneous. The precise phenotypes and functions produced by genomic mosaicism are not well understood, although the effects of constitutive aberrations, as observed in Down syndrome, implicate roles for defined mosaic genomes relevant to cellular survival, differentiation potential, stem cell biology, and brain organization. Here we discuss genomic mosaicism as a feature of the normal brain as well as a possible factor in the weak or complex genetic linkages observed for many of the most common forms of neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Diane M. Bushman
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, USA
- Biomedical Sciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
12
|
EphA/ephrin-A signaling is critically involved in region-specific apoptosis during early brain development. Cell Death Differ 2012; 20:169-80. [PMID: 22976838 DOI: 10.1038/cdd.2012.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
EphAs and ephrin-As have been implicated in the morphogenesis of the developing brain. We found that EphA7 and ephrin-A5 are coexpressed in the dorsal midline (DM) of the diencephalon and anterior mesencephalon. Interestingly, programmed cell death (PCD) of the neural epithelial cells normally found in this region was reduced in ephrin-A5/ephrin-A2 dual-deficient embryos. In contrast, in vivo expression of ephrin-A5-Fc or full-length ephrin-A5 strongly induced apoptosis in neural epithelial cells and was accompanied by severe brain malformation during embryonic development. Expression of ephrinA5-Fc correlated with apoptosis of EphA7-expressing cells, whereas null mutation of ephrin-A5 resulted in the converse phenotype. Importantly, null mutation of caspase-3 or endogenous ephrin-A5 attenuated the PCD induced by ectopically overexpressed ephrin-A5. Together, our results suggest that brain region-specific PCD may occur in a region where EphAs cluster with neighboring ephrin-As through cell-cell contact.
Collapse
|
13
|
Hyman BT, Yuan J. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci 2012; 13:395-406. [PMID: 22595785 DOI: 10.1038/nrn3228] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Caspases are cysteine proteases that mediate apoptosis, which is a form of regulated cell death that effectively and efficiently removes extra and unnecessary cells during development. In the mature nervous system, caspases are not only involved in mediating cell death but also regulatory events that are important for neural functions, such as axon pruning and synapse elimination, which are necessary to refine mature neuronal circuits. Furthermore, caspases can be reactivated to cause cell death as well as non-lethal changes in neurons during numerous pathological processes. Thus, although a global activation of caspases leads to apoptosis, restricted and localized activation may control normal physiology and pathophysiology in living neurons. This Review explores the multiple roles of caspase activity in neurons.
Collapse
Affiliation(s)
- Bradley T Hyman
- Neurology Service, Massachusetts General Hospital, 114 16th Street Charlestown, Massachusetts 01029, USA.
| | | |
Collapse
|
14
|
Curcumin has neuroprotection effect on homocysteine rat model of Parkinson. J Mol Neurosci 2012; 47:234-42. [PMID: 22418789 DOI: 10.1007/s12031-012-9727-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 02/13/2012] [Indexed: 01/01/2023]
Abstract
Parkinson's disease (PD) is a progressive neurological disorder which is emanated by dopaminergic death cell and depletion. Curcumin as a nontoxic matter has antioxidant, anti-inflammatory, and antiproliferative activities, and it involves antioxidant property same to vitamins C and E. In this study, we investigated the neuroprotective properties of the natural polyphenolic antioxidant compound, curcumin, against homocysteine (Hcy) neurotoxicity. Curcumin (50 mg/kg) was injected intraperitoneally (i.p.) once daily for a period of 10 days beginning 5 days prior to Hcy (2 μmol/μl) intracerebroventricular (i.c.v.) injection in rats. The studies included immunohistological and locomotor activity tests. These results suggest that homocysteine intracerebroventricular administration (2 μmol/μl i.c.v.) may induce changes in rat brain, and subsequently, polyphenol treatment curcumin 50 mg/kg (i.p.) was capable in improving locomotor function in insulted animal by protecting the nervous system against homocysteine toxicity.
Collapse
|
15
|
Goudarzvand M, Javan M, Mirnajafi-Zadeh J, Mozafari S, Tiraihi T. Vitamins E and D3 attenuate demyelination and potentiate remyelination processes of hippocampal formation of rats following local injection of ethidium bromide. Cell Mol Neurobiol 2010; 30:289-99. [PMID: 19768531 DOI: 10.1007/s10571-009-9451-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 08/26/2009] [Indexed: 01/21/2023]
Abstract
Cognitive deficits have been observed in patients with multiple sclerosis (MS) due to hippocampal insults. Antioxidant vitamins D and E are suggested for patients suffering from neurodegenerative diseases like MS, while their mechanisms of action are not well understood. Here, we have tried to study the effects of these vitamins on demyelination, cell death, and remyelination of rat hippocampus following local ethidium bromide (EB) injection. Animals received 100 mg/kg vitamin E or 5 microg/kg of vitamin D3 for 2, 7, or 28 days. The extent of demyelination, myelin staining intensity, and expression of myelin basic protein and caspase-3 were investigated using histological and immunoblotting verification. Administration of EB alone caused demyelination, cell death, and afterward an endogenous repair. Vitamins E and D3 reduced the EB-induced damage and increased the endogenous remyelination of hippocampus. Although the anti-apoptotic effect of these vitamins and protection against demyelination were predictable based on their antioxidant effect, our results indicated the positive effect of vitamins E and D3 on process of remyelination by endogenous progenitor cells and supported their possible therapeutic effects in the context of demyelinating diseases like MS.
Collapse
Affiliation(s)
- Mahdi Goudarzvand
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
16
|
Isayama RN, Leite PEC, Lima JPM, Uziel D, Yamasaki EN. Impact of ethanol on the developing GABAergic system. Anat Rec (Hoboken) 2010; 292:1922-39. [PMID: 19943346 DOI: 10.1002/ar.20966] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alcohol intake during pregnancy has a tremendous impact on the developing brain. Embryonic and early postnatal alcohol exposures have been investigated experimentally to elucidate the fetal alcohol spectrum disorders' (FASD) milieu, and new data have emerged to support a devastating effect on the GABAergic system in the adult and developing nervous system. GABA is a predominantly inhibitory neurotransmitter that during development excites neurons and orchestrates several developmental processes such as proliferation, migration, differentiation, and synaptogenesis. This review summarizes and brings new data on neurodevelopmental aspects of the GABAergic system with FASD in experimental telencephalic models.
Collapse
Affiliation(s)
- Ricardo Noboro Isayama
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
17
|
Maternal Oral Consumption of Morphine Increases Bax/Bcl-2 Ratio and Caspase 3 Activity During Early Neural System Development in Rat Embryos. J Mol Neurosci 2009; 41:156-64. [DOI: 10.1007/s12031-009-9312-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 11/03/2009] [Indexed: 12/19/2022]
|
18
|
Yung YC, Kennedy G, Chun J. Identification of neural programmed cell death through the detection of DNA fragmentation in situ and by PCR. ACTA ACUST UNITED AC 2009; Chapter 3:Unit 3.8. [PMID: 19575470 DOI: 10.1002/0471142301.ns0308s48] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Programmed cell death is a fundamental process for the development and somatic maintenance of organisms. This unit describes methods for visualizing both dying cells in situ and for detection of nucleosomal ladders. A description of various current detection strategies is provided, as well as support protocols for preparing positive and negative controls and for preparing genomic DNA.
Collapse
Affiliation(s)
- Yun C Yung
- Helen L. Dorris Child and Adolescent Neuropsychiatric Disorder Institute, The Scripps Research Institute, La Jolla, California, USA
| | | | | |
Collapse
|
19
|
Excitatory tonus is required for the survival of granule cell precursors during postnatal development within the cerebellum. Neuroscience 2008; 158:1364-77. [PMID: 19056468 DOI: 10.1016/j.neuroscience.2008.10.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 10/23/2008] [Accepted: 10/29/2008] [Indexed: 11/23/2022]
Abstract
In addition to protective effects within the adult central nervous system (CNS), in vivo application of N-methyl-d-aspartate inhibitors such as (+) MK-801 have been shown to induce neurodegeneration in neonatal rats over a specific developmental period. We have systematically mapped the nature and extent of MK-801-induced neurodegeneration throughout the neonatal murine brain in order to genetically dissect the mechanism of these effects. Highest levels of MK-801-induced neurodegeneration are seen in the cerebellar external germinal layer; while mature neurons of the internal granule layer are unaffected by MK-801 treatment. Examination of external germinal layer neurons by electron microscopy, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) and bromodeoxyuridine (BrdU) labeling, and caspase-3 activation demonstrate that these neurons die through the process of programmed cell death soon after they exit from the cell cycle. Significantly, ablation of caspase-3 activity completely inhibited the MK-801-induced (and developmental) programmed cell death of external germinal layer neurons. Similar to caspase-3, inactivation of muscarinic acetylcholine receptors in vivo using scopolamine inhibited MK-801-induced programmed cell death. By contrast, the GABAergic agonist diazepam, either alone or in combination with MK-801, enhanced programmed cell death within external germinal layer neurons. These data demonstrate that, in vivo, cerebellar granule neurons undergo a dramatic change in intracellular signaling in response to molecules present in the local cellular milieu during their first 24 h following exit from the cell cycle.
Collapse
|
20
|
Fontaine RH, Cases O, Lelièvre V, Mesplès B, Renauld JC, Loron G, Degos V, Dournaud P, Baud O, Gressens P. IL-9/IL-9 receptor signaling selectively protects cortical neurons against developmental apoptosis. Cell Death Differ 2008; 15:1542-52. [PMID: 18551134 DOI: 10.1038/cdd.2008.79] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In mammals, programmed cell death (PCD) is a central event during brain development. Trophic factors have been shown to prevent PCD in postmitotic neurons. Similarly, cytokines have neurotrophic effects involving regulation of neuronal survival. Nevertheless, neuronal PCD is only partially understood and host determinants are incompletely defined. The present study provides evidence that the cytokine interleukin-9 (IL-9) and its receptor specifically control PCD of neurons in the murine newborn neocortex. IL-9 antiapoptotic action appeared to be time-restricted to early postnatal stages as both ligand and receptor transcripts were mostly expressed in neocortex between postnatal days 0 and 10. This period corresponds to the physiological peak of apoptosis for postmitotic neurons in mouse neocortex. In vivo studies showed that IL-9/IL-9 receptor pathway inhibits apoptosis in the newborn neocortex. Furthermore, in vitro studies demonstrated that IL-9 and its receptor are mainly expressed in neurons. IL-9 effects were mediated by the activation of the JAK/STAT (janus kinase/signal transducer and activator of transcription) pathway, whereas nuclear factor-kappaB (NF-kappaB) or Erk pathways were not involved in mediating IL-9-induced inhibition of cell death. Finally, IL-9 reduced the expression of the mitochondrial pro-apoptotic factor Bax whereas Bcl-2 level was not significantly affected. Together, these data suggest that IL-9/IL-9 receptor signaling pathway represents a novel endogenous antiapoptotic mechanism for cortical neurons by controlling JAK/STAT and Bax levels.
Collapse
|
21
|
Papanikolaou T, Lennington JB, Betz A, Figueiredo C, Salamone JD, Conover JC. In vitro generation of dopaminergic neurons from adult subventricular zone neural progenitor cells. Stem Cells Dev 2008; 17:157-72. [PMID: 18248323 DOI: 10.1089/scd.2007.0090] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The adult subventricular zone (SVZ) supports a population of cells that display the hallmarks of stem cells: they are self-renewing and multipotent-capable of generating neurons, oligodendrocytes, and astrocytes. In vivo, these adult neural stem cells (aNSCs) are fated primarily for a gamma-amino butyric acid (GABA)-ergic lineage of olfactory bulb interneurons, a small subpopulation of which is dopaminergic. Here, we investigate the plasticity of aNSCs in vitro, in particular, their ability to generate a specific neuronal lineage, midbrain dopamine neurons. Previous work using mouse embryonic stem (ES) cells showed that introduction of early developmental inductive cues, sonic hedgehog (SHH) and fibroblast growth factor-8 (FGF-8), directed ES cell-derived neuroepithelial cells to generate midbrain dopaminergic neurons, those lost in Parkinson's disease. Placing aNSCs under similar culture conditions, immunocytochemistry and RT-PCR analysis revealed early dopaminergic neuron specification. However, aNSC-derived neurons remained morphologically immature, exhibiting concurrent nestin and tyrosine hydroxylase (TH) expression, with cell death occurring in the final differentiation stage. High-performance liquid chromatography (HPLC) analysis revealed that while aNSC-derived neurons released dopamine, release was not significantly increased following depolarization with K+. In contrast, ES cell-generated TH+ neurons expressed the mature markers MAP2 and NeuN and showed K+-evoked release of dopamine. Reduced culture time of aNSC-derived nestin+ progenitors in FGF-2-containing medium improved survival of TH+ neurons. However, these neurons exhibited characteristics of forebrain dopamine neurons and also expressed low levels of midbrain transcription factors. Together, our data indicate that when presented with in vitro conditions that promote midbrain-specific dopamine neuron specification, aNSCs instead generate forebrain-like dopamine neurons, demonstrating their restricted and prescribed nature.
Collapse
|
22
|
|
23
|
Taupin P. BrdU immunohistochemistry for studying adult neurogenesis: Paradigms, pitfalls, limitations, and validation. ACTA ACUST UNITED AC 2007; 53:198-214. [DOI: 10.1016/j.brainresrev.2006.08.002] [Citation(s) in RCA: 460] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 08/10/2006] [Accepted: 08/22/2006] [Indexed: 12/17/2022]
|
24
|
Rehen SK, Kingsbury MA, Almeida BSV, Herr DR, Peterson S, Chun J. A new method of embryonic culture for assessing global changes in brain organization. J Neurosci Methods 2006; 158:100-8. [PMID: 16824613 DOI: 10.1016/j.jneumeth.2006.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 05/07/2006] [Accepted: 05/24/2006] [Indexed: 01/10/2023]
Abstract
While dissociated, reaggregated cells and organotypic slice cultures are useful models for understanding brain development, they only partially mimic the processes and organization that exist in vivo. Towards bridging the gap between in vitro and in vivo paradigms, a method for culturing intact brain tissue was developed using whole cerebral cortical hemispheres in which the anatomical and cellular organization of nervous system tissue is preserved. Single, free-floating telencephalic hemispheres were dissected from embryonic mice and placed into defined culture medium on an orbital shaker. Orbital shaking was necessary for optimal growth, and cortices grown under these conditions closely approximated in vivo parameters of cell division, differentiation, migration and cell death for up to 24 h. In addition to wild-type cultures, the method was compatible with genetically altered tissues. One particular advantage of this method is its ability to reveal global anatomical alterations in the embryonic brain following exposure to soluble growth factors. This method should thus be helpful for assessing a wide range of soluble molecules for their systemic effects on the embryonic brain.
Collapse
Affiliation(s)
- Stevens K Rehen
- Helen L. Dorris Child and Adolescent Neuropsychiatric Disorder Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
25
|
Baker KL, Daniels SB, Lennington JB, Lardaro T, Czap A, Notti RQ, Cooper O, Isacson O, Frasca S, Conover JC. Neuroblast protuberances in the subventricular zone of the regenerative MRL/MpJ mouse. J Comp Neurol 2006; 498:747-61. [PMID: 16927265 DOI: 10.1002/cne.21090] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The MRL mouse is unique in its capacity for regenerative healing of wounds. This regenerative ability includes complete closure, with little scarring, of wounds to the ear pinna and repair of cardiac muscle, without fibrosis, following cryoinjury. Here, we examine whether neurogenic zones within the MRL brain show enhanced regenerative capacity. The largest neurogenic zone in the adult brain, the subventricular zone (SVZ), lies adjacent to the lateral wall of the lateral ventricle and is responsible for replacement of interneuron populations within the olfactory bulb. Initial gross observation of the anterior forebrain in MRL mice revealed enlarged lateral ventricles; however, little neurodegeneration was detected within the SVZ or surrounding tissues. Instead, increased proliferation within the SVZ was observed, based on incorporation of the thymidine analogue bromodeoxyuridine. Closer examination using electron microscopy revealed that a significant number of SVZ astrocytes interpolated within the ependyma and established contact with the ventricle. In addition, subependymal, protuberant nests of cells, consisting primarily of neuroblasts, were found along the anterior SVZ of MRL mice. Whole mounts of the lateral wall of the lateral ventricle stained for the neuroblast marker doublecortin revealed normal formation of chains of migratory neuroblasts along the entire wall and introduction of enhanced green fluorescent protein-tagged retrovirus into the lateral ventricles confirmed that newly generated neuroblasts were able to track into the olfactory bulb.
Collapse
Affiliation(s)
- Kasey L Baker
- Center for Regenerative Biology, University of Connecticut, Storrs, 06269, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
In the adult mouse brain, the subventricular zone (SVZ) is a neurogenic stem cell niche only 4-5 cell diameters thick. Within this narrow zone, a unique microenvironment supports stem cell self-renewal, gliogenesis or neurogenesis lineage decisions and tangential migration of newly generated neurons out of the SVZ and into the olfactory bulb. However, with aging, SVZ neurogenesis declines. Here, we examine the dynamic interplay between SVZ cytoarchitecture and neurogenesis through aging. Assembly of high-resolution electron microscopy images of corresponding coronal sections from 2-, 10- and 22-month-old mice into photomontages reveal a thinning of the SVZ with age. Following a 2-h BrdU pulse, we detect a significant decrease in cell proliferation from 2 to 22 months. Neuroblast numbers decrease with age, as do transitory amplifying progenitor cells, while both SVZ astrocytes and adjacent ependymal cells remain relatively constant. At 22 months, only residual pockets of neurogenesis remain and neuroblasts become restricted to the anterior dorsolateral horn of the SVZ. Within this dorsolateral zone many key components of the younger neurogenic niche are maintained; however, in the aged SVZ, increased numbers of SVZ astrocytes are found interposed within the ependyma. These astrocytes co-label with markers to ependymal cells and astrocytes, form intercellular adherens junctions with neighboring ependymal cells, and some possess multiple basal bodies of cilia within their cytoplasm. Together, these data reveal an age-related, progressive restriction of SVZ neurogenesis to the dorsolateral aspect of the lateral ventricle with increased numbers of SVZ astrocytes interpolated within the ependyma.
Collapse
Affiliation(s)
- Jie Luo
- Center for Regenerative Biology, Department of Physiology and Neurobiology, University of Connecticut, Storrs, 06250-4243, USA
| | | | | | | | | |
Collapse
|
27
|
Oomman S, Strahlendorf H, Finckbone V, Strahlendorf J. Non-lethal active caspase-3 expression in Bergmann glia of postnatal rat cerebellum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 160:130-45. [PMID: 16226814 DOI: 10.1016/j.devbrainres.2005.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 07/27/2005] [Accepted: 07/29/2005] [Indexed: 11/27/2022]
Abstract
Caspase-3, an apoptotic executor, has been shown in recent years to mediate non-lethal events like cellular proliferation and differentiation, primarily in studies related to non-neural tissue. In central nervous system development, the role of active caspase-3 is still unclear. We provide the first evidence for a potential new role of active (cleaved) caspase-3 in promoting differentiation of Bergmann glia. This study was predicated on the hypothesis that active caspase-3 is important for the differentiation of glia. We addressed the hypothesis through the following specific aims: (1) to establish the expression of active caspase-3 in glia; (2) to determine the developmental phenotype of the active caspase-3-expressing glia; and (3) to confirm that active caspase-3 expression is not mediating an apoptotic event. Through a temporal investigation from postnatal day 8 to 21, we observed that Bergmann glia express active caspase-3 without compromising their survival. Potential apoptotic fate of active caspase-3-positive Bergmann glia were ruled out based on immunohistochemical exclusion of phosphatidylserine exposure (Annexin V), DNA fragmentation (TUNEL), and DNA compaction (TOPRO-3). More than 90% of the active caspase-3-positive cells lacked colabeling for one of the apoptotic markers. Correlative studies using a proliferation marker Ki67 and a differentiation marker brain lipid-binding protein suggest that the expression of active caspase-3 was mostly associated with differentiating rather than proliferating Bergmann glia at all ages. Thus, this study supports the hypothesis that active caspase-3 may be regulating both differentiation of Bergmann glia by allowing the cells to exit the cell cycle and their morphogenesis.
Collapse
Affiliation(s)
- Sowmini Oomman
- Department of Physiology, Texas Tech University Health Sciences Center, Room 5A163, Lubbock, TX 79430, USA
| | | | | | | |
Collapse
|
28
|
Lossi L, Cantile C, Tamagno I, Merighi A. Apoptosis in the mammalian CNS: Lessons from animal models. Vet J 2005; 170:52-66. [PMID: 15993789 DOI: 10.1016/j.tvjl.2004.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2004] [Indexed: 12/30/2022]
Abstract
It is generally assumed that about half of the neurons produced during neurogenesis die before completion of maturation of the central nervous system (CNS). Neural cell death is also relevant in aging and several neurodegenerative diseases. Among the modalities by which neurons die, apoptosis has very much attracted the interest of investigators because in this type of cell death neurons are actively responsible for their own demise by switching on a number of genes and activating a series of specific intracellular pathways. This review focuses on the cellular and molecular mechanisms of apoptosis in normal and transgenic animal models related to naturally occurring neuronal death within the CNS. We will also consider some examples of apoptotic cell death in canine neuropathologies. A thorough analysis of naturally occurring neuronal death in vivo will offer a basis for parallel and future studies involving secondary neuronal loss such as those in neurodegenerative disorders, trauma or ischaemia.
Collapse
Affiliation(s)
- L Lossi
- Dipartimento di Morfofisiologia Veterinaria, University of Torino, Via Leonardo da Vinci 44, I-10095 Grugliasco, Italy.
| | | | | | | |
Collapse
|
29
|
Li J, Spletter ML, Johnson DA, Wright LS, Svendsen CN, Johnson JA. Rotenone-induced caspase 9/3-independent and -dependent cell death in undifferentiated and differentiated human neural stem cells. J Neurochem 2005; 92:462-76. [PMID: 15659217 DOI: 10.1111/j.1471-4159.2004.02872.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We used human neural stem cells (hNSCs) and their differentiated cultures as a model system to evaluate the mechanism(s) involved in rotenone (RO)- and camptothecin (CA)-induced cytotoxicity. Results from ultrastructural damage and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining indicated that RO-induced cytotoxicity resembled CA-induced apoptosis more than H(2)O(2)-induced necrosis. However, unlike CA-induced, caspase 9/3-dependent apoptosis, there was no increased activity in caspase 9, caspase 3 or poly (ADP-ribose) polymerase (PARP) cleavage in RO-induced cytotoxicity, in spite of time-dependent release of cytochrome c and apoptosis-inducing factor (AIF) following mitochondrial membrane depolarization and a significant increase in reactive oxygen species generation. Equal doses of RO and CA used in hNSCs induced caspase 9/3-dependent apoptosis in differentiated cultures. Time-dependent ATP depletion occurred earlier and to a greater extent in RO-treated hNSCs than in CA-treated hNSCs, or differentiated cultures treated with RO or CA. In conclusion, these results represent a unique ultrastructural and molecular characterization of RO- and CA-induced cytotoxicity in hNSCs and their differentiated cultures. Intracellular ATP levels may play an important role in determining whether neural progenitors or their differentiated cells follow a caspase 9/3-dependent or -independent pathway in response to acute insults from neuronal toxicants.
Collapse
Affiliation(s)
- Jiang Li
- School of Pharmacy, University of Wisconsin at Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
| | | | | | | | | | | |
Collapse
|
30
|
Hinoue A, Takigawa T, Miura T, Nishimura Y, Suzuki S, Shiota K. Disruption of actin cytoskeleton and anchorage-dependent cell spreading induces apoptotic death of mouse neural crest cells cultured in vitro. ACTA ACUST UNITED AC 2005; 282:130-7. [PMID: 15627983 DOI: 10.1002/ar.a.20150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In vertebrate embryos, neural crest cells emigrate out of the neural tube and contribute to the formation of a variety of neural and nonneural tissues. Some neural crest cells undergo apoptotic death during migration, but its biological significance and the underlying mechanism are not well understood. We carried out an in vitro study to examine how the morphology and survival of cranial neural crest (CNC) cells of the mouse embryo are affected when their actin cytoskeleton or anchorage-dependent cell spreading is perturbed. Disruption of actin fiber organization by cytochalasin D (1 microg/ml) and inhibition of cell attachment by matrix metalloproteinase-2 (MMP-2; 2.0 units/ml) were followed by morphologic changes and apoptotic death of cultured CNC cells. When the actin cytoskeleton was disrupted by cytochalasin D, the morphologic changes of cultured CNC cells preceded DNA fragmentation. These results indicate that the maintenance of cytoskeleton and anchorage-dependent cell spreading are required for survival of CNC cells. The spatially and temporally regulated expression of proteinases may be essential for the differentiation and migration of neural crest cells.
Collapse
Affiliation(s)
- Atsushi Hinoue
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Shi J, Parada LF, Kernie SG. Bax limits adult neural stem cell persistence through caspase and IP3 receptor activation. Cell Death Differ 2005; 12:1601-12. [PMID: 15947791 DOI: 10.1038/sj.cdd.4401676] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neural stem cells in the mammalian brain persist and are functional well into adulthood. There is, however, little insight into mechanisms that control adult neural stem cell survival. Mice deficient in the proapoptotic molecule Bax exhibit increased numbers of multipotent progenitor cells in the adult subventricular zone. In vitro, these progenitors behave as neural stem cells and utilize Bax and caspase activation to direct cell death. We demonstrate that the predominate mechanism underlying caspase and Bax-mediated adult neural stem cell death lies in the modulation of calcium flux through interaction with the IP3 receptor.
Collapse
Affiliation(s)
- J Shi
- Department of Pediatrics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-9133, USA
| | | | | |
Collapse
|
32
|
Kim KW, Kim YS, Ha KY, Woo YK, Park JB, Park WS, An HS. An autocrine or paracrine Fas-mediated counterattack: a potential mechanism for apoptosis of notochordal cells in intact rat nucleus pulposus. Spine (Phila Pa 1976) 2005; 30:1247-51. [PMID: 15928547 DOI: 10.1097/01.brs.0000164256.72241.75] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Immunohistochemistry and in situ nick end-labeling (TUNEL) were performed in rat lumbar intervertebral discs. OBJECTIVES To demonstrate the mechanism of notochordal cell death in the nucleus pulposus (NP). SUMMARY OF BACKGROUND DATA With age, notochordal cells gradually disappear in the NP. We hypothesized that this phenomenon might be related to Fas-mediated apoptosis. MATERIALS AND METHODS Expressions of Fas; Fas ligand (FasL); caspase 3, 8, 9, 10; Ki-67 protein; and TUNEL were examined in 4-week-, 6-month- and 12-month-old rat NPs. Apoptosis (TUNEL-positive) and proliferation potential (Ki-67-positive) indexes of notochordal cells were calculated and compared among age groups. RESULTS Notochordal cells constitutively expressed both Fas and FasL. Among their downstream initiator (caspase 8, 9, and 10) and executioner (caspase 3) caspases tested, caspase 9 and 3 were expressed. Proliferation potential of the notochordal cells was the highest at 4 weeks (1.96 +/- 1.3%) and decreased to a significantly lower level at 6 (0.81 +/- 0.68%) and 12 months (0.8 +/- 0.37%; P = 0.03 and 0.01, respectively). In contrast, apoptosis of the notochordal cells was the lowest at 4 weeks (3.52 +/- 1.07%) and increased to a significantly higher level at 6 (19.38 +/- 10.99%) and 12 months (21.51 +/- 16.99%; P < 0.001 in both comparisons). CONCLUSIONS Fas-mediated mitochondrial caspase 9 pathway is constitutively present in the rat notochordal cells. The constitutive expression of Fas, FasL and its downstream caspases, as well as the homogeneity ofnotochordal cell population suggests an autocrine or paracrine Fas-mediated counterattack to be a potential mechanism for apoptosis of rat notochordal cells. A regulated negative balance of notochordal cell proliferation against apoptosis is likely to involve the disappearance of notochordal cells in the rat NP. This information on the mechanism for apoptosis of notochordal cells could be important in the investigation of intervertebral disc development as well as aging and perhaps degeneration.
Collapse
Affiliation(s)
- Ki-Won Kim
- Department of Orthopedic Surgery, St. Mary's Hospital, Catholic University of Korea, Seoul, Korea.
| | | | | | | | | | | | | |
Collapse
|
33
|
Chen Z, Kontonotas D, Friedmann D, Pitts-Kiefer A, Frederick JR, Siman R, Neumar RW. Developmental status of neurons selectively vulnerable to rapidly triggered post-ischemic caspase activation. Neurosci Lett 2005; 376:166-70. [PMID: 15721215 DOI: 10.1016/j.neulet.2004.11.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 11/15/2004] [Accepted: 11/16/2004] [Indexed: 10/26/2022]
Abstract
Caspase activation occurs within 1h of reperfusion in discrete cell populations of the adult rat brain following transient forebrain ischemia. Based on the proximity of these cells to regions of adult neurogenesis and the known susceptibility of developing neurons to apoptosis, we tested the hypothesis that rapidly triggered post-ischemic caspase activation occurs in immature neurons or neuroprogenitor cells. Adult male Long Evans rats were injected with BrdU to label mitotic cells 1, 7, or 28 days prior to being studied. Rats were then subjected to either sham surgery or 10-min transient forebrain ischemia. At 1h after reperfusion, rats underwent perfusion fixation and brains prepared for immunohistochemical analysis. Immunolabeling for caspase-substrate cleavage, using an antibody directed at the caspase derived fragment of alpha-spectrin, was observed in discrete cell populations of the rostral dentate gyrus, dorsal striatum, extreme paramedian CA1 hippocampus, indusium gresium, olfactory tubercle, and thalamus. No cells double-labeled for caspase-substrate cleavage and BrdU at any time point after BrdU injection. Furthermore, cells immunolabeled for caspase-substrate cleavage did not double-label for markers of immature neurons (doublecortin) or progenitor cells (nestin), but did double-label for the mature neuronal marker NeuN. These results indicate that the phenomenon of rapidly triggered caspase activation in the adult rat brain after transient forebrain ischemia is specific to mature neurons and does not occur in neuroprogenitor cells or immature neurons.
Collapse
Affiliation(s)
- Zhaoming Chen
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104-4283, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Putz U, Harwell C, Nedivi E. Soluble CPG15 expressed during early development rescues cortical progenitors from apoptosis. Nat Neurosci 2005; 8:322-31. [PMID: 15711540 PMCID: PMC3075944 DOI: 10.1038/nn1407] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 01/21/2005] [Indexed: 12/31/2022]
Abstract
The balance between proliferation and apoptosis is critical for proper development of the nervous system. Yet, little is known about molecules that regulate apoptosis of proliferative neurons. Here we identify a soluble, secreted form of CPG15 expressed in embryonic rat brain regions undergoing rapid proliferation and apoptosis, and show that it protects cultured cortical neurons from apoptosis by preventing activation of caspase 3. Using a lentivirus-delivered small hairpin RNA, we demonstrate that endogenous CPG15 is essential for the survival of undifferentiated cortical progenitors in vitro and in vivo. We further show that CPG15 overexpression in vivo expands the progenitor pool by preventing apoptosis, resulting in an enlarged, indented cortical plate and cellular heterotopias within the ventricular zone, similar to the phenotypes of mutant mice with supernumerary forebrain progenitors. CPG15 expressed during mammalian forebrain morphogenesis may help balance neuronal number by countering apoptosis in specific neuroblasts subpopulations, thus influencing final brain size and shape.
Collapse
Affiliation(s)
- Ulrich Putz
- The Picower Center for Learning and Memory, Departments of Brain and Cognitive Sciences and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
35
|
Gohlke JM, Griffith WC, Faustman EM. The role of cell death during neocortical neurogenesis and synaptogenesis: implications from a computational model for the rat and mouse. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 151:43-54. [PMID: 15246691 DOI: 10.1016/j.devbrainres.2004.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/29/2004] [Indexed: 11/23/2022]
Abstract
We are quantitatively evaluating the acquisition of neocortical neurons through key stages of development including neurogenesis, migration, and synaptogenesis. Here we expand upon a previous computational model describing neocortical neurogenesis in the rat and mouse [Dev. Neurosci. 24 (2002) 467], to include the period of synaptogenesis (P0-P14) when programmed cell death (PCD) is known to play a major role in shaping the neocortex. We also quantitatively evaluate differing hypotheses on the role of cell death during neurogenesis. This new model construct allows prediction of acquisition of adult neuronal number in the rat and mouse neocortex from the beginning of neurogenesis through synaptogenesis. The mathematical model output is validated by independently derived stereologically determined neuron number estimates in the adult rat and mouse. Simulations suggest cell death during synaptogenesis reduces the neocortical neuronal population by 20-30%, while cell death of progenitor cells and newly formed neurons during neurogenesis may reduce output by as much as 24%. However, higher death rates during neurogenesis as suggested by some research would deplete the progenitor population, not allowing for the vast expansion that is the hallmark of the mammalian neocortex. Furthermore, our simulations suggest the clearance time of dying neurons labeled by TUNEL or pyknosis is relatively short, between 1 and 4 h, corroborating experimental research. This novel mathematical model for adult neocortical neuronal acquisition allows for in silico analysis of normal and perturbed states of neocortical development as well as interspecies and evolutionary analyses of neocortical development.
Collapse
Affiliation(s)
- Julia M Gohlke
- Center for Child Environmental Health Risks Research, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105-6099, USA
| | | | | |
Collapse
|
36
|
Kerr LE, McGregor AL, Amet LEA, Asada T, Spratt C, Allsopp TE, Harmar AJ, Shen S, Carlson G, Logan N, Kelly JS, Sharkey J. Mice overexpressing human caspase 3 appear phenotypically normal but exhibit increased apoptosis and larger lesion volumes in response to transient focal cerebral ischaemia. Cell Death Differ 2004; 11:1102-11. [PMID: 15153940 DOI: 10.1038/sj.cdd.4401449] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Caspase 3 activation has been implicated in cell death following a number of neurodegenerative insults. To determine whether caspase genes can affect the susceptibility of cells to neurodegeneration, a transgenic mouse line was created, expressing human caspase 3 under control of its own promoter. The human gene was regulated by the murine homeostatic machinery and human procaspase 3 was expressed in the same tissues as mouse caspase 3. These novel transgenic mice appeared phenotypically and developmentally normal and survived in excess of 2 years. Behavioural assessment using the 5-choice serial reaction time task found no differences from wild-type littermates. Caspase activity was found to be tightly regulated under physiological conditions, however, significantly larger lesions were obtained when transgenic mice were subjected to focal cerebral ischaemia/reperfusion injury compared to wild-type littermates. These data demonstrate that mice overexpressing human caspase 3 are essentially normal, however, they have increased susceptibility to degenerative insults.
Collapse
Affiliation(s)
- L E Kerr
- Fujisawa Institute of Neuroscience in Edinburgh, University of Edinburgh, Edinburgh EH8 9JZ, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Apoptosis is a conserved cell-death process displaying characteristic morphological and molecular changes including activation of caspase proteases. Recent work challenges the accepted roles of these proteases. New investigations in mice and the nematode Caenorhabditis elegans suggest that there could be caspase-independent pathways leading to cell death. In addition, another type of cell death displaying autophagic features might depend on caspases. Recent studies also indicate that caspase activation does not always lead to cell death and, instead, might be important for cell differentiation. Here, we review recent evidence for both the expanded roles of caspases and the existence of caspase-independent cell-death processes. We suggest that cellular context plays an important role in defining the consequences of caspase activation.
Collapse
Affiliation(s)
- Mary C Abraham
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
38
|
Jin K, Sun Y, Xie L, Peel A, Mao XO, Batteur S, Greenberg DA. Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 2004; 24:171-89. [PMID: 14550778 DOI: 10.1016/s1044-7431(03)00159-3] [Citation(s) in RCA: 408] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pathological processes, including cerebral ischemia, can enhance neurogenesis in the adult brain, but the fate of the newborn neurons that are produced and their role in brain repair are obscure. To determine if ischemia-induced neuronal proliferation is associated with migration of nascent neurons toward ischemic lesions, we mapped the migration of cells labeled by cell proliferation markers and antibodies against neuronal marker proteins, for up to 2 weeks after a 90-min episode of focal cerebral ischemia caused by occlusion of the middle cerebral artery. Doublecortin-immunoreactive cells in the rostral subventricular zone, but not the dentate gyrus, migrated into the ischemic penumbra of the adjacent striatum and, via the rostral migratory stream and lateral cortical stream, into the penumbra of ischemic cortex. These results indicate that after cerebral ischemia, new neurons are directed toward sites of brain injury, where they might be in a position to participate in brain repair and functional recovery.
Collapse
Affiliation(s)
- Kunlin Jin
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Kingsbury MA, Rehen SK, Ye X, Chun J. Genetics and cell biology of lysophosphatidic acid receptor-mediated signaling during cortical neurogenesis. J Cell Biochem 2004; 92:1004-12. [PMID: 15258921 DOI: 10.1002/jcb.20061] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lysophosphatidic acid (LPA) is a small lysophospholipid that signals through G-protein coupled receptors (GPCRs) to mediate diverse cellular responses. Two LPA receptors, LPA(1) and LPA(2), show gene expression profiles in mouse embryonic cerebral cortex, suggesting roles for LPA signaling in cerebral cortical development. Here, we review loss-of-function and gain-of-function models that have been used to examine LPA signaling. Genetic deletion of lpa(1) or both lpa(1) and lpa(2) in mice results in 50-65% neonatal lethality, but not obvious cortical phenotypes in survivors, suggesting that compensatory signaling systems exist for regulating cortical development. A gain-of-function model, approached by increasing receptor activation through exogenous delivery of LPA, shows that LPA signaling regulates cerebral cortical growth and anatomy by affecting proliferation, differentiation and cell survival during embryonic development.
Collapse
Affiliation(s)
- M A Kingsbury
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, ICND 118, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
40
|
Oomman S, Finckbone V, Dertien J, Attridge J, Henne W, Medina M, Mansouri B, Singh H, Strahlendorf H, Strahlendorf J. Active caspase-3 expression during postnatal development of rat cerebellum is not systematically or consistently associated with apoptosis. J Comp Neurol 2004; 476:154-73. [PMID: 15248196 DOI: 10.1002/cne.20223] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Development is a dynamic process that includes an intricate balance between an increase in cell mass and an elimination of excess or defective cells. Although caspases have been intimately linked to apoptotic events, there are a few reports suggesting that these cysteine proteases can influence the differentiation and proliferation of cells. Specifically, the active form of caspase-3, which has been classified as an executor of apoptosis, recently has been implicated in a nonapoptotic role in the regulation of the cell cycle, cell proliferation, and cell differentiation. This study investigated the nonapoptotic function and phenotypic expression of active caspase-3-positive cells in the external granule cell layer (EGL) of the postnatal rat cerebellum by using biochemical and immunohistochemical analyses, respectively. Evidence that negates an apoptotic function for the caspase-3-positive EGL cells includes a failure to exhibit chromatin condensation (assessed with TOPRO), phosphatidyl serine externalization (Annexin V labeling), or DNA fragmentation (TUNEL labeling). Proliferative (Ki67-positive) and differentiated (TUJ1-positive) cells within the EGL exhibited a cytosolic expression of caspase-3, whereas terminally differentiated granule cells (NeuN-positive) in the internal granular layer and the migrating granule cells did not express active caspase-3. Thus, this study supports a nonapoptotic role for active caspase-3 in cells residing in the EGL and suggests a possible involvement in EGL proliferation and differentiation.
Collapse
Affiliation(s)
- Sowmini Oomman
- Department of Physiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kingsbury MA, Rehen SK, Contos JJA, Higgins CM, Chun J. Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding. Nat Neurosci 2003; 6:1292-9. [PMID: 14625558 DOI: 10.1038/nn1157] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 10/16/2003] [Indexed: 11/08/2022]
Abstract
Lysophosphatidic acid (LPA) is a phospholipid that has extracellular signaling properties mediated by G protein-coupled receptors. Two LPA receptors, LPA(1) and LPA(2), are expressed in the embryonic cerebral cortex, suggesting roles for LPA signaling in cortical formation. Here we report that intact cerebral cortices exposed to extracellular LPA ex vivo rapidly increased in width and produced folds resembling gyri, which are not normally present in mouse brains and are absent in LPA(1) LPA(2) double-null mice. Mechanistically, growth was not due to increased proliferation but rather to receptor-dependent reduced cell death and increased terminal mitosis of neural progenitor cells (NPCs). Our results implicate extracellular lipid signals as new influences on brain formation during embryonic development.
Collapse
Affiliation(s)
- Marcy A Kingsbury
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, ICND 118, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
42
|
Lossi L, Merighi A. In vivo cellular and molecular mechanisms of neuronal apoptosis in the mammalian CNS. Prog Neurobiol 2003; 69:287-312. [PMID: 12787572 DOI: 10.1016/s0301-0082(03)00051-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Apoptosis has been recognized to be an essential process during neural development. It is generally assumed that about half of the neurons produced during neurogenesis die before completion of the central nervous system (CNS) maturation, and this process affects nearly all classes of neurons. In this review, we discuss the experimental data in vivo on naturally occurring neuronal death in normal, transgenic and mutant animals, with special attention to the cerebellum as a study model. The emerging picture is that of a dual wave of apoptotic cell death affecting central neurons at different stages of their life. The first wave consists of an early neuronal death of proliferating precursors and young postmitotic neuroblasts, and appears to be closely linked to cell cycle regulation. The second wave affects postmitotic neurons at later stages, and is much better understood in functional terms, mainly on the basis of the neurotrophic concept in its broader definition. The molecular machinery of late apoptotic death of postmitotic neurons more commonly follows the mitochondrial pathway of intracellular signal transduction, but the death receptor pathway may also be involved.Undoubtedly, analysis of naturally occurring neuronal death (NOND) in vivo will offer a basis for parallel and future studies aiming to elucidate the mechanisms of pathologic neuronal loss occurring as the result of conditions such as neurodegenerative disorders, trauma or ischemia.
Collapse
Affiliation(s)
- L Lossi
- Department of Veterinary Morphophysiology, University of Torino, Via Leonardo da Vinci 44, I-10095 (TO), Grugliasco, Italy.
| | | |
Collapse
|
43
|
Bello BC, Hirth F, Gould AP. A pulse of the Drosophila Hox protein Abdominal-A schedules the end of neural proliferation via neuroblast apoptosis. Neuron 2003; 37:209-19. [PMID: 12546817 DOI: 10.1016/s0896-6273(02)01181-9] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Postembryonic neuroblasts are stem cell-like precursors that generate most neurons of the adult Drosophila central nervous system (CNS). Their capacity to divide is modulated along the anterior-posterior body axis, but the mechanism underlying this is unclear. We use clonal analysis of identified precursors in the abdomen to show that neuron production stops because the cell death program is activated in the neuroblast while it is still engaged in the cell cycle. A burst of expression of the Hox protein Abdominal-A (AbdA) specifies the time at which apoptosis occurs, thereby determining the final number of progeny that each neuroblast generates. These studies identify a mechanism linking the Hox axial patterning system to neural proliferation, and this involves temporal regulation of precursor cell death rather than the cell cycle.
Collapse
Affiliation(s)
- Bruno C Bello
- Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | |
Collapse
|
44
|
Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A 2002; 99:11946-50. [PMID: 12181492 PMCID: PMC129374 DOI: 10.1073/pnas.182296499] [Citation(s) in RCA: 1166] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is an angiogenic protein with neurotrophic and neuroprotective effects. Because VEGF promotes the proliferation of vascular endothelial cells, we examined the possibility that it also stimulates the proliferation of neuronal precursors in murine cerebral cortical cultures and in adult rat brain in vivo. VEGF (>10 ng/ml) stimulated 5-bromo-2'-deoxyuridine (BrdUrd) incorporation into cells that expressed immature neuronal marker proteins and increased cell number in cultures by 20-30%. Cultured cells labeled by BrdUrd expressed VEGFR2/Flk-1, but not VEGFR1/Flt-1 receptors, and the effect of VEGF was blocked by the VEGFR2/Flk-1 receptor tyrosine kinase inhibitor SU1498. Intracerebroventricular administration of VEGF into rat brain increased BrdUrd labeling of cells in the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG), where VEGFR2/Flk-1 was colocalized with the immature neuronal marker, doublecortin (Dcx). The increase in BrdUrd labeling after the administration of VEGF was caused by an increase in cell proliferation, rather than a decrease in cell death, because VEGF did not reduce caspase-3 cleavage in SVZ or SGZ. Cells labeled with BrdUrd after VEGF treatment in vivo include immature and mature neurons, astroglia, and endothelial cells. These findings implicate the angiogenesis factor VEGF in neurogenesis as well.
Collapse
Affiliation(s)
- Kunlin Jin
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | | | | | | | | | | |
Collapse
|
45
|
Kendall SE, Goldhawk DE, Kubu C, Barker PA, Verdi JM. Expression analysis of a novel p75(NTR) signaling protein, which regulates cell cycle progression and apoptosis. Mech Dev 2002; 117:187-200. [PMID: 12204258 DOI: 10.1016/s0925-4773(02)00204-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neurotrophin receptor-interacting MAGE (NRAGE) is the most recently identified p75 neurotrophin receptor (p75(NTR)) intracellular binding protein. Previously, NRAGE over-expression was shown to mediate cell cycle arrest and facilitate nerve growth factor (NGF) dependent apoptosis of sympathetic neuroblasts in a p75(NTR) specific manner. Here we have examined the temporal and spatial expression patterns of NRAGE over the course of murine embryogenesis to determine whether NRAGE's expression is consistent with its proposed functions. We demonstrate that NRAGE mRNA and protein are expressed throughout embryonic and adult tissues. The mRNA is constitutively expressed within each tissue across development. However, expression of NRAGE protein displays a tight temporal tissue specific regulation. During early CNS development, NRAGE protein is expressed throughout the neural tube, but by later stages of neurogenesis, NRAGE protein is restricted within the ventricular zone, subplate and cortical plate. Moreover, NRAGE protein expression is limited to proliferative neural subpopulations as we fail to detect NRAGE expression co-localized with mature/differentiation associated neuronal markers. Interestingly, NRAGE's expression is not restricted solely to areas of p75(NTR) expression suggesting that NRAGE may mediate proliferation and/or apoptosis from other environmental signals in addition to NGF within the CNS. Our data support previously characterized roles for NRAGE as a mediator of precursor apoptosis and a repressor of cell cycle progression in neural development.
Collapse
Affiliation(s)
- Stephen E Kendall
- The Laboratory of Neural Stem Cell Biology, The John P Robarts Research Institute, 100 Perth Drive, London, Ontario, Canada N6A 5K8
| | | | | | | | | |
Collapse
|
46
|
Leonard JR, Klocke BJ, D'Sa C, Flavell RA, Roth KA. Strain-dependent neurodevelopmental abnormalities in caspase-3-deficient mice. J Neuropathol Exp Neurol 2002; 61:673-7. [PMID: 12152782 DOI: 10.1093/jnen/61.8.673] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Targeted gene disruptions have revealed significant roles for caspase family members in the regulation of neuronal programmed cell death. Both caspase-3- and caspase-9-deficient mice exhibit a variably severe neurodevelopmental phenotype that may include marked ventricular zone expansion, exencephaly, and ectopic neuronal structures. Our previous studies of caspase-3- and caspase-9-deficient mice were performed using mice on mixed genetic backgrounds, raising the possibility that strain-specific generic factors influence the effects of caspase deficiency on nervous system development. To directly test this hypothesis. we backcrossed the caspase-3 mutation for 7-10 generations onto pure C57BL/6J and 129X1/SvJ genetic backgrounds. Caspase-3-deficient 129X1/SvJ mice were uniformly and severely affected. These mice died during the perinatal period and exhibited marked neural precursor cell expansion and exencephaly. In contrast, caspase-3-deficient C57BL/6J mice reached adulthood, were fertile and showed minimal brain pathology. Intercrosses of C57BL/6J and 129X1/SvJ mutants revealed that the vast majority of caspase-3-/- F1 mice displayed the severe 129X1/SvJ-"like" phenotype. These findings are consistent with an incompletely penetrant strain-dependent genetic modifier (or modifiers) that alters the neurodevelopmental consequences of caspase-3 deficiency. Since caspase-9- and Apaf-1-deficient mice also display variably severe developmental neuropathology, this strain-dependent modifier(s) may be involved in the activation of a caspase-independent death pathway; alternatively, strain-dependent compensatory caspase activation and/or its inhibition may influence the severity of the caspase-3-deficient neuronal phenotype.
Collapse
Affiliation(s)
- Jeffrey R Leonard
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
47
|
Hostettler ME, Knapp PE, Carlson SL. Platelet-activating factor induces cell death in cultured astrocytes and oligodendrocytes: involvement of caspase-3. Glia 2002; 38:228-39. [PMID: 11968060 DOI: 10.1002/glia.10065] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The biologically active lipid metabolite, platelet-activating factor (PAF), is thought to contribute to inflammatory processes and tissue damage in a variety of central nervous system (CNS) injuries. In previous studies, we found that after contusion spinal cord injury, treatment with a PAF antagonist led to significantly increased white matter tissue sparing as well as decreased mRNA levels for pro-inflammatory cytokines. Some studies suggest that PAF can also have toxic effects on neurons in vitro. Few studies, however, have examined the effects of PAF on glial cells of the CNS. In the present study, the potential for PAF to act as a toxin to cultured astrocytes was examined. Also investigated were the effects of PAF on oligodendrocytes at two different stages of development. Treatment with 0.02-2 microM PAF for 72 h resulted in significant levels of cell death in both cell types (P < 0.05), an effect that was blocked by the PAF receptor antagonists, WEB 2170 and BN 52021. To investigate PAF-induced glial cell death further, we looked for activation of the enzyme, caspase-3, which can be indicative of apoptosis. Immunocytochemistry demonstrated that PAF at all concentrations caused activation of caspase-3 at 24, 48, and 72 h after treatment in both cell types. Caspase-3-dependent cell death was further confirmed using knockout mice (-/-) deficient in the caspase-3 gene. Toxicity was lost when astrocytes (-/-) were exposed to 0.02-2 microM PAF (P < 0.01). Oligodendrocytes (-/-) were not susceptible to toxicity at 2 microM PAF (P < 0.001). The results demonstrate that the pro-inflammatory molecule, PAF, induces cell death in cultured CNS glial cells and that this effect is, in part, dependent on caspase-3 activation.
Collapse
Affiliation(s)
- Mary Ellen Hostettler
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington 40536-0398, USA
| | | | | |
Collapse
|
48
|
Peterson C, Carney GE, Taylor BJ, White K. reaper is required for neuroblast apoptosis during Drosophila development. Development 2002; 129:1467-76. [PMID: 11880355 DOI: 10.1242/dev.129.6.1467] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Developmentally regulated apoptosis in Drosophila requires the activity of the reaper (rpr), grim and head involution defective (hid) genes. The expression of these genes is differentially regulated, suggesting that there are distinct requirements for their proapoptotic activity in response to diverse developmental and environmental inputs. To examine this hypothesis, a mutation that removes the rpr gene was generated. In flies that lack rpr function, most developmental apoptosis was unaffected. However, the central nervous systems of rpr null flies were very enlarged. This was due to the inappropriate survival of both larval neurons and neuroblasts. Importantly, neuroblasts rescued from apoptosis remained functional, continuing to proliferate and generating many extra neurons. Males mutant for rpr exhibited behavioral defects resulting in sterility. Although both the ecdysone hormone receptor complex and p53 directly regulate rpr transcription, rpr was found to play a limited role in inducing apoptosis in response to either of these signals.
Collapse
Affiliation(s)
- Christian Peterson
- CBRC, Massachusetts General Hospital/Harvard Medical School, Building 149, 13 Street, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Normal CNS development involves the sequential differentiation of multipotent stem cells. Alteration of the numbers of stem cells, their self-renewal ability, or their proliferative capacity will have major effects on the appropriate development of the nervous system. In this review, we discuss different mechanisms that regulate neural stem cell differentiation. Proliferation signals and cell cycle regulators may regulate cell kinetics or total number of cell divisions. Loss of trophic support and cytokine receptor activation may differentially contribute to the induction of cell death at specific stages of development. Signaling from differentiated progeny or asymmetric distribution of specific molecules may alter the self-renewal characteristics of stem cells. We conclude that the final decision of a cell to self-renew, differentiate or remain quiescent is dependent on an integration of multiple signaling pathways and at each instant will depend on cell density, metabolic state, ligand availability, type and levels of receptor expression, and downstream cross-talk between distinct signaling pathways.
Collapse
Affiliation(s)
- Lukas Sommer
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hoenggerberg HPM E38, CH-8093 Zürich, Switzerland.
| | | |
Collapse
|
50
|
Rehen SK, McConnell MJ, Kaushal D, Kingsbury MA, Yang AH, Chun J. Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc Natl Acad Sci U S A 2001; 98:13361-6. [PMID: 11698687 PMCID: PMC60876 DOI: 10.1073/pnas.231487398] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A basic assumption about the normal nervous system is that its neurons possess identical genomes. Here we present direct evidence for genomic variability, manifested as chromosomal aneuploidy, among developing and mature neurons. Analysis of mouse embryonic cerebral cortical neuroblasts in situ detected lagging chromosomes during mitosis, suggesting the normal generation of aneuploidy in these somatic cells. Spectral karyotype analysis identified approximately 33% of neuroblasts as aneuploid. Most cells lacked one chromosome, whereas others showed hyperploidy, monosomy, and/or trisomy. The prevalence of aneuploidy was reduced by culturing cortical explants in medium containing fibroblast growth factor 2. Interphase fluorescence in situ hybridization on embryonic cortical cells supported the rate of aneuploidy observed by spectral karyotyping and detected aneuploidy in adult neurons. Our results demonstrate that genomes of developing and adult neurons can be different at the level of whole chromosomes.
Collapse
Affiliation(s)
- S K Rehen
- Department of Pharmacology, School of Medicine, University of California, San Diego, CA 92093-0636, USA
| | | | | | | | | | | |
Collapse
|